Dans cet article, nous donnons une autre démonstration du théorème de Schreiber : un sous-groupe approximatif discret infini de est relativement dense au voisinage d’un sous-espace. Nous déduisons aussi du théorème de Schreiber deux nouveaux résultats : le premier affirme qu’un sous-groupe approximatif discret infini de est la restriction d’un ensemble de Meyer à un épaississement d’un sous-espace linéaire de , et le second propose une extension du théorème de Schreiber au cas du groupe de Heisenberg.
In this paper we give an alternative proof of Schreiber’s theorem which says that an infinite discrete approximate subgroup in is relatively dense around a subspace. We also deduce from Schreiber’s theorem two new results. The first one says that any infinite discrete approximate subgroup in is a restriction of a Meyer set to a thickening of a linear subspace in , and the second one provides an extension of Schreiber’s theorem to the case of the Heisenberg group.
Accepté le :
Publié le :
DOI : 10.5802/jep.90
Keywords: Approximate groups, approximate lattices, Meyer sets
Mot clés : Groupes approximatifs, réseaux approximatifs, ensembles de Meyer
Alexander Fish 1
@article{JEP_2019__6__149_0, author = {Alexander Fish}, title = {Extensions of {Schreiber{\textquoteright}s} theorem on discrete approximate subgroups in~$\protect \mathbb{R}^d$}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {149--162}, publisher = {\'Ecole polytechnique}, volume = {6}, year = {2019}, doi = {10.5802/jep.90}, mrnumber = {3915195}, zbl = {07033368}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.90/} }
TY - JOUR AU - Alexander Fish TI - Extensions of Schreiber’s theorem on discrete approximate subgroups in $\protect \mathbb{R}^d$ JO - Journal de l’École polytechnique — Mathématiques PY - 2019 SP - 149 EP - 162 VL - 6 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.90/ DO - 10.5802/jep.90 LA - en ID - JEP_2019__6__149_0 ER -
%0 Journal Article %A Alexander Fish %T Extensions of Schreiber’s theorem on discrete approximate subgroups in $\protect \mathbb{R}^d$ %J Journal de l’École polytechnique — Mathématiques %D 2019 %P 149-162 %V 6 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.90/ %R 10.5802/jep.90 %G en %F JEP_2019__6__149_0
Alexander Fish. Extensions of Schreiber’s theorem on discrete approximate subgroups in $\protect \mathbb{R}^d$. Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 149-162. doi : 10.5802/jep.90. https://jep.centre-mersenne.org/articles/10.5802/jep.90/
[1] - “Approximate lattices”, Duke Math. J. 167 (2018) no. 15, p. 2903-2964 | DOI | MR
[2] - “The structure of approximate groups”, Publ. Math. Inst. Hautes Études Sci. 116 (2012), p. 115-221 | DOI | MR
[3] - Foundations of a structural theory of set addition, Translations of Mathematical Monographs, vol. 37, American Mathematical Society, Providence, R. I., 1973 | MR | Zbl
[4] - “Freiman’s theorem in an arbitrary abelian group”, J. London Math. Soc. (2) 75 (2007) no. 1, p. 163-175 | DOI | MR | Zbl
[5] - “Stable group theory and approximate subgroups”, J. Amer. Math. Soc. 25 (2012) no. 1, p. 189-243 | DOI | MR | Zbl
[6] - “Meyer’s concept of quasicrystal and quasiregular sets”, Comm. Math. Phys. 179 (1996) no. 2, p. 365-376 | DOI | MR | Zbl
[7] - Nombres de Pisot, nombres de Salem et analyse harmonique, Lect. Notes in Math., vol. 117, Springer-Verlag, Berlin-New York, 1970 | MR | Zbl
[8] - “Model sets: survey” (2000), arXiv:math/0002020
[9] - Approximations diophantiennes et problèmes additifs dans les groupes abéliens localement compacts, Ph. D. Thesis, Université Paris-Sud, 1972
Cité par Sources :