Extensions of Schreiber’s theorem on discrete approximate subgroups in  d
[Extensions du théorème de Schreiber sur les sous-groupes approximatifs discrets de  d ]
Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 149-162.

Dans cet article, nous donnons une autre démonstration du théorème de Schreiber : un sous-groupe approximatif discret infini de d est relativement dense au voisinage d’un sous-espace. Nous déduisons aussi du théorème de Schreiber deux nouveaux résultats : le premier affirme qu’un sous-groupe approximatif discret infini de d est la restriction d’un ensemble de Meyer à un épaississement d’un sous-espace linéaire de d , et le second propose une extension du théorème de Schreiber au cas du groupe de Heisenberg.

In this paper we give an alternative proof of Schreiber’s theorem which says that an infinite discrete approximate subgroup in d is relatively dense around a subspace. We also deduce from Schreiber’s theorem two new results. The first one says that any infinite discrete approximate subgroup in d is a restriction of a Meyer set to a thickening of a linear subspace in d , and the second one provides an extension of Schreiber’s theorem to the case of the Heisenberg group.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.90
Classification : 11B30, 52C23
Keywords: Approximate groups, approximate lattices, Meyer sets
Mot clés : Groupes approximatifs, réseaux approximatifs, ensembles de Meyer

Alexander Fish 1

1 School of Mathematics and Statistics F07, University of Sydney NSW 2006, Australia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2019__6__149_0,
     author = {Alexander Fish},
     title = {Extensions of {Schreiber{\textquoteright}s} theorem on discrete approximate subgroups in~$\protect \mathbb{R}^d$},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {149--162},
     publisher = {\'Ecole polytechnique},
     volume = {6},
     year = {2019},
     doi = {10.5802/jep.90},
     mrnumber = {3915195},
     zbl = {07033368},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.90/}
}
TY  - JOUR
AU  - Alexander Fish
TI  - Extensions of Schreiber’s theorem on discrete approximate subgroups in $\protect \mathbb{R}^d$
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2019
SP  - 149
EP  - 162
VL  - 6
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.90/
DO  - 10.5802/jep.90
LA  - en
ID  - JEP_2019__6__149_0
ER  - 
%0 Journal Article
%A Alexander Fish
%T Extensions of Schreiber’s theorem on discrete approximate subgroups in $\protect \mathbb{R}^d$
%J Journal de l’École polytechnique — Mathématiques
%D 2019
%P 149-162
%V 6
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.90/
%R 10.5802/jep.90
%G en
%F JEP_2019__6__149_0
Alexander Fish. Extensions of Schreiber’s theorem on discrete approximate subgroups in $\protect \mathbb{R}^d$. Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 149-162. doi : 10.5802/jep.90. https://jep.centre-mersenne.org/articles/10.5802/jep.90/

[1] M. Björklund & T. Hatnick - “Approximate lattices”, Duke Math. J. 167 (2018) no. 15, p. 2903-2964 | DOI | MR

[2] E. Breuillard, B. Green & T. Tao - “The structure of approximate groups”, Publ. Math. Inst. Hautes Études Sci. 116 (2012), p. 115-221 | DOI | MR

[3] G. A. Freĭman - Foundations of a structural theory of set addition, Translations of Mathematical Monographs, vol. 37, American Mathematical Society, Providence, R. I., 1973 | MR | Zbl

[4] B. Green & I. Z. Ruzsa - “Freiman’s theorem in an arbitrary abelian group”, J. London Math. Soc. (2) 75 (2007) no. 1, p. 163-175 | DOI | MR | Zbl

[5] E. Hrushovski - “Stable group theory and approximate subgroups”, J. Amer. Math. Soc. 25 (2012) no. 1, p. 189-243 | DOI | MR | Zbl

[6] J. C. Lagarias - “Meyer’s concept of quasicrystal and quasiregular sets”, Comm. Math. Phys. 179 (1996) no. 2, p. 365-376 | DOI | MR | Zbl

[7] Y. Meyer - Nombres de Pisot, nombres de Salem et analyse harmonique, Lect. Notes in Math., vol. 117, Springer-Verlag, Berlin-New York, 1970 | MR | Zbl

[8] R. V. Moody - “Model sets: survey” (2000), arXiv:math/0002020

[9] J.-P. Schreiber - Approximations diophantiennes et problèmes additifs dans les groupes abéliens localement compacts, Ph. D. Thesis, Université Paris-Sud, 1972

Cité par Sources :