Hyperbolicity of singular spaces
[Hyperbolicité des espaces singuliers]
Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 1-18.

Nous étudions l’hyperbolicité des quotients singuliers de domaines symétriques bornés. Nous donnons des critères effectifs assurant que de tels quotients vérifient les conjectures de Green-Griffiths-Lang, à la fois dans le cadre analytique et algébrique. Comme application, nous établissons que les variétés modulaires de Hilbert, à part quelques exceptions possibles, satisfont les conjectures attendues.

We study the hyperbolicity of singular quotients of bounded symmetric domains. We give effective criteria for such quotients to satisfy Green-Griffiths-Lang’s conjectures in both analytic and algebraic settings. As an application, we show that Hilbert modular varieties, except for a few possible exceptions, satisfy all expected conjectures.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.85
Classification : 32Q45, 32M15, 11F41
Keywords: Green-Griffiths-Lang’s conjectures, bounded symmetric domains, quotient singularities, Hilbert modular varieties
Mot clés : Conjectures de Green-Griffiths-Lang, domaines symétriques bornés, singularités quotients, variétés modulaires de Hilbert

Benoît Cadorel 1 ; Erwan Rousseau 2 ; Behrouz Taji 3

1 Institut de Mathématiques de Toulouse (IMT), Université Paul Sabatier 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
2 Institut Universitaire de France & Université d’Aix Marseille, CNRS, Centrale Marseille, I2M 39, rue Frédéric Joliot-Curie, 13453 Marseille Cedex 13, France
3 University of Notre Dame, Department of Mathematics 278 Hurley, Notre Dame, IN 46556, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2019__6__1_0,
     author = {Beno{\^\i}t Cadorel and Erwan Rousseau and Behrouz Taji},
     title = {Hyperbolicity of singular spaces},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1--18},
     publisher = {\'Ecole polytechnique},
     volume = {6},
     year = {2019},
     doi = {10.5802/jep.85},
     mrnumber = {3882579},
     zbl = {07003359},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.85/}
}
TY  - JOUR
AU  - Benoît Cadorel
AU  - Erwan Rousseau
AU  - Behrouz Taji
TI  - Hyperbolicity of singular spaces
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2019
SP  - 1
EP  - 18
VL  - 6
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.85/
DO  - 10.5802/jep.85
LA  - en
ID  - JEP_2019__6__1_0
ER  - 
%0 Journal Article
%A Benoît Cadorel
%A Erwan Rousseau
%A Behrouz Taji
%T Hyperbolicity of singular spaces
%J Journal de l’École polytechnique — Mathématiques
%D 2019
%P 1-18
%V 6
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.85/
%R 10.5802/jep.85
%G en
%F JEP_2019__6__1_0
Benoît Cadorel; Erwan Rousseau; Behrouz Taji. Hyperbolicity of singular spaces. Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 1-18. doi : 10.5802/jep.85. https://jep.centre-mersenne.org/articles/10.5802/jep.85/

[AMRT75] A. Ash, D. Mumford, M. Rapoport & Y. Tai - Smooth compactification of locally symmetric varieties, Lie Groups: History, Frontiers and Applications, vol. IV, Math. Sci. Press, Brookline, MA, 1975 | Zbl

[BC18] Y. Brunebarbe & B. Cadorel - “Hyperbolicity of varieties supporting a variation of Hodge structure”, Internat. Math. Res. Notices (2018), article no. rny054 | DOI

[BD18] S. Boucksom & S. Diverio - “A note on Lang’s conjecture for quotients of bounded domains” (2018), arXiv:1809.02398

[Bor69] A. Borel - Introduction aux groupes arithmétiques, Actualités scientifiques et industrielles, Hermann, Paris, 1969 | Zbl

[Bru16] Y. Brunebarbe - “A strong hyperbolicity property of locally symmetric varieties” (2016), arXiv:1606.03972

[Cad16] B. Cadorel - “Symmetric differentials on complex hyperbolic manifolds with cusps” (2016), arXiv:1606.05470

[Cam04] F. Campana - “Orbifolds, special varieties and classification theory”, Ann. Inst. Fourier (Grenoble) 54 (2004) no. 3, p. 499-630 | DOI | MR | Zbl

[CKT16] B. Claudon, S. Kebekus & B. Taji - “Generic positivity and applications to hyperbolicity of moduli spaces” (2016), arXiv:1610.09832

[CP15] F. Campana & M. Păun - “Orbifold generic semi-positivity: an application to families of canonically polarized manifolds”, Ann. Inst. Fourier (Grenoble) 65 (2015) no. 2, p. 835-861 | DOI | MR | Zbl

[Dem97] J.-P. Demailly - “Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials”, in Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, American Mathematical Society, Providence, RI, 1997, p. 285-360 | DOI | MR | Zbl

[GG80] M. Green & P. Griffiths - “Two applications of algebraic geometry to entire holomorphic mappings”, in The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), Springer, New York, 1980, p. 41-74 | DOI | Zbl

[GKK10] D. Greb, S. Kebekus & S. J. Kovács - “Extension theorems for differential forms, and Bogomolov-Sommese vanishing on log canonical varieties”, Compositio Math. 146 (2010), p. 193-219, Extended version: arXiv:0808.3647 | DOI | MR | Zbl

[GP16] H. Guenancia & M. Păun - “Conic singularities metrics with prescribed Ricci curvature: General cone angles along normal crossing divisors”, J. Differential Geom. 103 (2016) no. 1, p. 15-57 | DOI | MR | Zbl

[GRVR18] J. Grivaux, J. Restrepo Velasquez & E. Rousseau - “On Lang’s conjecture for some product-quotient surfaces”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 18 (2018) no. 4, p. 1483-1501 | MR | Zbl

[GT16] H. Guenancia & B. Taji - “Orbifold stability and Miyaoka-Yau inequality for minimal pairs” (2016), arXiv:1611.05981

[Gue18] H. Guenancia - “Quasi-projective manifolds with negative holomorphic sectional curvature” (2018), arXiv:1808.01854

[JK11] K. Jabbusch & S. Kebekus - “Families over special base manifolds and a conjecture of Campana”, Math. Z. 269 (2011) no. 3-4, p. 847-878 | DOI | MR | Zbl

[Keu08] J. Keum - “Quotients of fake projective planes”, Geom. Topol. 12 (2008) no. 4, p. 2497-2515 | DOI | MR | Zbl

[KM08] J. Kollár & S. Mori - Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, Cambridge University Press, 2008

[Kol07] J. Kollár - Lectures on resolution of singularities, Annals of Math. Studies, vol. 166, Princeton University Press, Princeton, NJ, 2007 | MR | Zbl

[Lan86] S. Lang - “Hyperbolic and Diophantine analysis”, Bull. Amer. Math. Soc. (N.S.) 14 (1986) no. 2, p. 159-205 | DOI | MR | Zbl

[Laz04] R. Lazarsfeld - Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergeb. Math. Grenzgeb. (3), vol. 48, Springer-Verlag, Berlin, 2004 | Zbl

[Mum77] D. Mumford - “Hirzebruch’s proportionality theorem in the noncompact case”, Invent. Math. 42 (1977), p. 239-272 | DOI | MR | Zbl

[Nad89] A. M. Nadel - “The nonexistence of certain level structures on abelian varieties over complex function fields”, Ann. of Math. (2) 129 (1989) no. 1, p. 161-178 | DOI | MR | Zbl

[Pre68] A. Prestel - “Die elliptischen Fixpunkte der Hilbertschen Modulgruppen”, Math. Ann. 177 (1968), p. 181-209 | DOI | MR | Zbl

[Rou16] E. Rousseau - “Hyperbolicity, automorphic forms and Siegel modular varieties”, Ann. Sci. École Norm. Sup. (4) 49 (2016) no. 1, p. 249-255 | DOI | MR | Zbl

[RT18] E. Rousseau & F. Touzet - “Curves in Hilbert modular varieties”, Asian J. Math. 22 (2018) no. 4, p. 673-690 | DOI | MR | Zbl

[Taj16] B. Taji - “The isotriviality of smooth families of canonically polarized manifolds over a special quasi-projective base”, Compositio Math. 152 (2016) no. 7, p. 1421-1434 | DOI | MR | Zbl

[Tsu85] S. Tsuyumine - “On the Kodaira dimensions of Hilbert modular varieties”, Invent. Math. 80 (1985) no. 2, p. 269-281 | DOI | MR | Zbl

[Tsu86] S. Tsuyumine - “Multitensors of differential forms on the Hilbert modular variety and on its subvarieties”, Math. Ann. 274 (1986) no. 4, p. 659-670 | DOI | MR | Zbl

Cité par Sources :