Nous prouvons que pour tout entier , la constante de Davenport est équivalente à lorsque tend vers l’infini. Nous proposons aussi une extension de ce théorème.
We prove that for every integer the Davenport constant is asymptotic to when tends to infinity. An extension of this theorem is also provided.
Accepté le :
Publié le :
DOI : 10.5802/jep.79
Keywords: Additive combinatorics, zero-sum sequences, Davenport constant, finite Abelian groups
Mot clés : Combinatoire additive, suites de somme nulle, constante de Davenport, groupes abéliens finis
Benjamin Girard 1
@article{JEP_2018__5__605_0, author = {Benjamin Girard}, title = {An asymptotically tight bound for {the~Davenport} constant}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {605--611}, publisher = {\'Ecole polytechnique}, volume = {5}, year = {2018}, doi = {10.5802/jep.79}, zbl = {1401.05311}, mrnumber = {3852262}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.79/} }
TY - JOUR AU - Benjamin Girard TI - An asymptotically tight bound for the Davenport constant JO - Journal de l’École polytechnique — Mathématiques PY - 2018 SP - 605 EP - 611 VL - 5 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.79/ DO - 10.5802/jep.79 LA - en ID - JEP_2018__5__605_0 ER -
%0 Journal Article %A Benjamin Girard %T An asymptotically tight bound for the Davenport constant %J Journal de l’École polytechnique — Mathématiques %D 2018 %P 605-611 %V 5 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.79/ %R 10.5802/jep.79 %G en %F JEP_2018__5__605_0
Benjamin Girard. An asymptotically tight bound for the Davenport constant. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 605-611. doi : 10.5802/jep.79. https://jep.centre-mersenne.org/articles/10.5802/jep.79/
[1] - “There are infinitely many Carmichael numbers”, Ann. of Math. (2) 139 (1994) no. 3, p. 703-722 | DOI | MR | Zbl
[2] - “A lattice point problem and additive number theory”, Combinatorica 15 (1995) no. 3, p. 301-309 | DOI | MR | Zbl
[3] - “Regular subgraphs of almost regular graphs”, J. Combin. Theory Ser. B 37 (1984) no. 1, p. 79-91 | DOI | MR | Zbl
[4] - “The interplay of invariant theory with multiplicative ideal theory and with arithmetic combinatorics”, in Multiplicative ideal theory and factorization theory, Springer Proc. Math. Stat., vol. 170, Springer, 2016, p. 43-95 | DOI | MR | Zbl
[5] - “Zero-sum problems in finite abelian groups and affine caps”, Q. J. Math. 58 (2007) no. 2, p. 159-186 | DOI | MR | Zbl
[6] - “The classification of the largest caps in ”, J. Combin. Theory Ser. A 99 (2002) no. 1, p. 95-110 | DOI | MR | Zbl
[7] - “On large subsets of with no three-term arithmetic progression”, Ann. of Math. (2) 185 (2017) no. 1, p. 339-343 | DOI | MR | Zbl
[8] - A combinatorial problem on finite abelian groups. II (1969) no. ZW-007, 60 pages, Technical report | MR | Zbl
[9] - A combinatorial problem on finite abelian groups. III (1969) no. ZW-008, Technical report | Zbl
[10] - “Zero-sum problems and coverings by proper cosets”, European J. Combin. 24 (2003) no. 5, p. 531-549 | DOI | MR | Zbl
[11] - “Zero-sum problems in finite abelian groups: a survey”, Exposition. Math. 24 (2006) no. 4, p. 337-369 | DOI | MR | Zbl
[12] - “On short zero-sum subsequences. II”, Integers 7 (2007), article #A21 | MR | Zbl
[13] - “Additive group theory and non-unique factorizations”, in Combinatorial number theory and additive group theory, Adv. Courses Math. CRM Barcelona, Birkhäuser Verlag, Basel, 2009, p. 1-86 | Zbl
[14] - Non-unique factorizations. Algebraic, combinatorial and analytic theory, Pure and Applied Mathematics, vol. 278, Chapman & Hall/CRC, Boca Raton, FL, 2006 | Zbl
[15] - “On the Davenport constant and on the structure of extremal zero-sum free sequences”, Period. Math. Hungar. 64 (2012) no. 2, p. 213-225 | DOI | MR | Zbl
[16] - “On Davenport’s constant”, J. Combin. Theory Ser. A 61 (1992) no. 1, p. 147-152 | DOI | MR | Zbl
[17] - “Ein Extremalproblem für Gitterpunkte”, J. reine angew. Math. 262/263 (1973), p. 356-360 | MR | Zbl
[18] - “On the distribution of irreducible algebraic integers”, Monatsh. Math. 156 (2009) no. 1, p. 47-71 | MR | Zbl
[19] - “A note on the growth of Davenport’s constant”, Manuscripta Math. 74 (1992) no. 3, p. 229-235 | DOI | MR | Zbl
[20] - “An uncertainty inequality and zero subsums”, Discrete Math. 84 (1990) no. 2, p. 197-200 | MR | Zbl
[21] - Elementary and analytic theory of algebraic numbers, Springer Monographs in Math., Springer-Verlag, Berlin, 2004 | DOI | Zbl
[22] - “A combinatorial problem on finite Abelian groups. I”, J. Number Theory 1 (1969), p. 8-10 | DOI | MR | Zbl
[23] - “A combinatorial problem on finite Abelian groups. II”, J. Number Theory 1 (1969), p. 195-199 | DOI | MR | Zbl
[24] - “The maximal order of the spherical cap in ”, Matematiche 25 (1971), p. 149-157
[25] - “Maximal caps in ”, Des. Codes Cryptogr. 46 (2008) no. 3, p. 243-259 | DOI | MR | Zbl
[26] - “A combinatorial problem in Abelian groups”, Math. Proc. Cambridge Philos. Soc. 59 (1963), p. 559-562 | DOI | MR | Zbl
Cité par Sources :