On the links between horocyclic and geodesic orbits on geometrically infinite surfaces
Journal de l’École polytechnique — Mathématiques, Volume 5 (2018), pp. 443-454.

We study the intersection between an almost minimizing half-geodesic and the closure of the corresponding horocyclic orbit on a smooth geometrically infinite surface. We prove that if the half-geodesic goes through an infinite number of parts of the surface with injectivity radii bounded from above, then the intersection contains an unbounded sequence of points. We also prove that if the half-geodesic goes through arbitrarily thin parts of the surface, the intersection is the whole half-geodesic. Finally, we construct an example proving that this last condition is not necessary.

Nous étudions l’intersection entre une demi-géodésique quasi-minimisante et l’adhérence de l’orbite horocyclique correspondante sur une surface hyperbolique lisse géométriquement infinie. Nous démontrons que si la demi-géodésique traverse un nombre infini de parties de la surface de rayons d’injectivité bornés supérieurement, alors l’intersection contient une suite non bornée d’éléments. Nous démontrons aussi que si la demi-géodésique traverse des parties arbitrairement fines de la surface, l’intersection est toute la demi-géodésique. Enfin, nous construisons un exemple montrant que cette dernière condition n’est pas nécessaire.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.75
Classification: 37D40, 37E35
Keywords: Topological dynamics, flows on surfaces
Mot clés : Dynamique topologique, flots sur des surfaces

Alexandre Bellis 1

1 Institut de Recherche Mathématique de Rennes, Université de Rennes 1 263 Avenue du Général Leclerc, 35042 Rennes, France
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2018__5__443_0,
     author = {Alexandre Bellis},
     title = {On the links between horocyclic and geodesic orbits on geometrically infinite surfaces},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {443--454},
     publisher = {\'Ecole polytechnique},
     volume = {5},
     year = {2018},
     doi = {10.5802/jep.75},
     zbl = {06988585},
     mrnumber = {3808891},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.75/}
}
TY  - JOUR
AU  - Alexandre Bellis
TI  - On the links between horocyclic and geodesic orbits on geometrically infinite surfaces
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2018
SP  - 443
EP  - 454
VL  - 5
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.75/
DO  - 10.5802/jep.75
LA  - en
ID  - JEP_2018__5__443_0
ER  - 
%0 Journal Article
%A Alexandre Bellis
%T On the links between horocyclic and geodesic orbits on geometrically infinite surfaces
%J Journal de l’École polytechnique — Mathématiques
%D 2018
%P 443-454
%V 5
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.75/
%R 10.5802/jep.75
%G en
%F JEP_2018__5__443_0
Alexandre Bellis. On the links between horocyclic and geodesic orbits on geometrically infinite surfaces. Journal de l’École polytechnique — Mathématiques, Volume 5 (2018), pp. 443-454. doi : 10.5802/jep.75. https://jep.centre-mersenne.org/articles/10.5802/jep.75/

[CM10] Y. Coudène & F. Maucourant - “Horocycles récurrents sur des surfaces de volume infini”, Geom. Dedicata 149 (2010), p. 231-242 | DOI | Zbl

[Dal11] F. Dal’Bo - Geodesic and horocyclic trajectories, Universitext, Springer-Verlag London, Ltd. & EDP Sciences, London & Les Ulis, 2011 | DOI | Zbl

[Ebe77] P. Eberlein - “Horocycle flows on certain surfaces without conjugate points”, Trans. Amer. Math. Soc. 233 (1977), p. 1-36 | DOI | MR | Zbl

[GL17] M. Gaye & C. Lo - “Sur l’inexistence d’ensembles minimaux pour le flot horocyclique”, Confluentes Math. 9 (2017) no. 1, p. 95-104 | DOI | MR | Zbl

[Haa96] A. Haas - “Dirichlet points, Garnett points, and infinite ends of hyperbolic surfaces. I”, Ann. Acad. Sci. Fenn. Math. 21 (1996) no. 1, p. 3-29 | MR | Zbl

[Hed36] G. A. Hedlund - “Fuchsian groups and transitive horocycles”, Duke Math. J. 2 (1936), p. 530-542 | DOI | MR | Zbl

[Kul04] M. Kulikov - “The horocycle flow without minimal sets”, Comptes Rendus Mathématique 338 (2004) no. 6, p. 477-480 | DOI | MR | Zbl

[Led97] F. Ledrappier - “Horospheres on abelian covers”, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997) no. 2, p. 363-375, Erratum: Ibid. 29 (1998), no. 1, p. 195 | DOI | MR | Zbl

[Mat16] S. Matsumoto - “Horocycle flows without minimal sets”, J. Math. Sci. Univ. Tokyo 23 (2016) no. 3, p. 661-673 | MR | Zbl

[PP15] J. Parkkonen & F. Paulin - “On the hyperbolic orbital counting problem in conjugacy classes”, Math. Z. 279 (2015) no. 3-4, p. 1175-1196 | DOI | MR | Zbl

[Rat91] M. Ratner - “Raghunathan’s topological conjecture and distributions of unipotent flows”, Duke Math. J. 63 (1991) no. 1, p. 235-280 | MR | Zbl

[Sar10] O. Sarig - “The horocyclic flow and the Laplacian on hyperbolic surfaces of infinite genus”, Geom. Funct. Anal. 19 (2010) no. 6, p. 1757-1812 | DOI | MR

[Sta95] A. N. Starkov - “Fuchsian groups from the dynamical viewpoint”, J. Dynam. Control Systems 1 (1995) no. 3, p. 427-445 | DOI | MR | Zbl

Cited by Sources: