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ON THE LINKS BETWEEN

HOROCYCLIC AND GEODESIC ORBITS ON

GEOMETRICALLY INFINITE SURFACES

by Alexandre Bellis

Abstract. — We study the intersection between an almost minimizing half-geodesic and the
closure of the corresponding horocyclic orbit on a smooth geometrically infinite surface. We
prove that if the half-geodesic goes through an infinite number of parts of the surface with
injectivity radii bounded from above, then the intersection contains an unbounded sequence of
points. We also prove that if the half-geodesic goes through arbitrarily thin parts of the surface,
the intersection is the whole half-geodesic. Finally, we construct an example proving that this
last condition is not necessary.

Résumé (Sur les liens entre les orbites horocycliques et géodésiques sur les surfaces géométrique-
ment infinies)

Nous étudions l’intersection entre une demi-géodésique quasi-minimisante et l’adhérence de
l’orbite horocyclique correspondante sur une surface hyperbolique lisse géométriquement infinie.
Nous démontrons que si la demi-géodésique traverse un nombre infini de parties de la surface
de rayons d’injectivité bornés supérieurement, alors l’intersection contient une suite non bornée
d’éléments. Nous démontrons aussi que si la demi-géodésique traverse des parties arbitrairement
fines de la surface, l’intersection est toute la demi-géodésique. Enfin, nous construisons un
exemple montrant que cette dernière condition n’est pas nécessaire.
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1. Introduction

Among the curves of constant curvature in the Poincaré half-plane H2 are the
geodesics of curvature zero and the horocycles of curvature one. They give rise to
two flows in the unitary tangent bundle T 1H2 which are deeply related: the geodesic
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444 A. Bellis

flow and the horocycle flow respectively. Consider now a Fuchsian group Γ and the
quotient surface S := Γ\H2. Both flows descend to the quotient T 1S := Γ\(T 1H2).
We denote them by gR and hR respectively.

The orbits of the geodesic flow have many different topological behaviors. By con-
trast, those of the horocycle flow tend to be rigid. This is illustrated by a result of
G.Hedlund in [Hed36] stating that when the surface S is compact, for every u in T 1S,
the orbit hRu is dense in T 1S. This result is deduced from a fundamental link between
horocyclic and geodesic orbits: if the projection on S of gR+u, denoted by u(R+), is
almost minimizing (specifically: ∃C > 0,∀ t > 0, d(u(0), u(t)) > t − C), then hRu is
not dense in the non-wandering set Ωh of the horocycle flow. In [Ebe77], P. Eberlein
proves that this implication is actually an equivalence.

As a consequence of this link, one obtains that if the surface is geometrically finite
(i.e., with a finitely generated fundamental group) and if u is in Ωh, then hRu is either
dense in Ωh or periodic.

This rigidity property was generalized by M.Ratner to Lie groups and unipotent
actions in [Rat91]. However, it does not extend to geometrically infinite surfaces (i.e.,
not geometrically finite). Indeed, S is geometrically finite if and only if every horocyclic
orbit in Ωh is dense in Ωh or periodic (see [Dal11]).

In this paper, we are interested in the topological dynamics of the horocycle flow on
geometrically infinite surfaces, for which little is known. Untwisted hyperbolic flutes
are the simplest examples of such surfaces (see [Haa96] or [CM10]). More precisely, we
investigate the links between the geodesic flow and the horocycle flow. We associate
to x in S the real number Inj(x) defined as the maximal radius of a ball centered at
x without self-intersection. It is the injectivity radius of S at x.

The main result of this paper is:

Theorem 1.1. — Let Γ be a Fuchsian group without elliptic elements and such that the
quotient surface S := Γ\H2 is geometrically infinite. Consider u in the non-wandering
set Ωh of hR in T 1S. Suppose that u(R+) is almost minimizing and that hRu is not
periodic and define Inj(u(R+)) := lim inf

t→+∞
Inj(u(t)).

If Inj(u(R+)) < +∞, then there exists a sequence of times tn converging to +∞
such that gtnu ∈ hRu for all n.

Moreover, if Inj(u(R+)) = 0, then gR+u ⊂ hRu.

In particular, when Inj(u(R+)) < +∞ for every u in T 1S (O. Sarig calls such a
surface weakly tame, see [Sar10]) then, if hRu is not periodic, there always exists a
positive time t such that gtu ∈ hRu. As a corollary, we get:

Corollary 1.2. — Let Γ be a Fuchsian group with neither elliptic nor parabolic ele-
ment such that the quotient surface S := Γ\H2 is geometrically infinite. If S is weakly
tame, then the horocycle flow does not admit any minimal set on T 1S.
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This corollary gives an easy way to construct surfaces without a minimal set for
the horocycle flow. The first example of such a surface was produced by M.Kulikov
in [Kul04]. Later, theorems of non-existence were obtained in [Mat16] and [GL17].

In the setting of Theorem 1.1, we can ask:

Question. — Is it possible that gR+u ⊂ hRu if 0 < Inj(u(R+)) < +∞?

Clearly, if hRu is not recurrent (i.e., it does not accumulate on itself), then gR+u 6⊂
hRu. This implies in particular that hRu is locally closed (there exists a neighbour-
hood V of u such that V ∩ (hRu− hRu) = ∅) even though it is not closed. In [Sta95],
A.N. Starkov gives an example of a surface S satisfying the hypotheses of Theorem 1.1
such that 0 < Inj(u(R+)) < +∞ and hRu is not recurrent. F. Ledrappier claimed that
this example could be generalized to manifolds with bounded geometry (see [Led97,
Prop. 3]): let M be a manifold with bounded geometry and u in T 1M such that u(R+)

is asymptotically almost minimizing. Then, for every t ∈ R, the strong stable leaf

W ss(gtu) := {v ∈ T 1M | d(gt+su, gsv) −→
s→+∞

0}

is locally closed.
When S is a hyperbolic surface, this assertion is equivalent to saying that if the

injectivity radius of S is uniformly bounded from below by a positive constant, then
hRu is locally closed provided that u ∈ Ωh and that u(R+) is almost minimizing.

Actually, this proposition is false and I construct in Section 4 the following counter-
example which also answers the previous question:

Theorem 1.3. — There exists a geometrically infinite surface S with an injectivity ra-
dius everywhere bigger than some positive constant C (i.e., S has bounded geometry),
with u in Ωh satisfying:

(i) u(R+) is almost minimizing.
(ii) gR+u ⊂ hRu.
(iii) Inj(u(R+)) < +∞.

In particular, hRu is not locally closed.

Acknowledgements. — I thank my Ph.D advisor Françoise Dal’Bo for her numerous
and precious advices about the redaction of this paper. I also thank Yves Coudène
for fruitful discussions.

2. Notation and tools

For two points z and z′ in H2 and two points ξ and η in ∂H2 := R ∪ {∞}, we
denote by [z, z′] the hyperbolic segment between z and z′, by [z, ξ) the half-geodesic
joining z to ξ and by (η, ξ) the geodesic between η and ξ. We denote by gR and hR the
geodesic, respectively horocycle, flow in the unitary tangent bundle T 1H2. For any u
in T 1H2, the function symbol u(t) refers to the projection on H2 of gtu and u+ refers
to the endpoint in ∂H2 of the half-geodesic u(R+).

J.É.P. — M., 2018, tome 5



446 A. Bellis

Consider now two elements u and v in T 1H2. Denote by z and z′ the base points
of u and v respectively and suppose that u+ = v+ = ξ. Then there exists t in R such
that gthRu = hRv. The Busemann cocycle Bξ(z, z′) centered at ξ between z and z′

is by definition the number Bξ(z, z′) = t. Thus, the set {z′ |Bξ(z, z′) = 0} is the
horocycle centered at ξ passing through z.

Level sets of isometries. — The group PSL2(R) acts by orientation preserving isome-
tries on (H2, d), where the distance d is defined by the measure dz2 := (dx2 + dy2)/y2.
Let γ ∈ PSL2(R) be a hyperbolic isometry. We denote by γ− and γ+ respectively the
repelling and attractive fixed points of γ in ∂H2. Observe that a point z ∈ H2 is moved
by γ along the hypercycle (which is either a piece of an Euclidean circle, or a straight
half-line if ∞ = γ− or ∞ = γ+) passing through γ−, z and γ+. We denote that
hypercycle by Cγ(z). For a positive integer k, the point γkz belongs to the portion of
Cγ(z) between z and γ+.

Let `γ := infz∈H2 d(z, γz) be the translation length of γ, realized on its axis
(γ−, γ+). We have:

Proposition 2.1 ([PP15, §5]). — For any hyperbolic isometry γ and any z in H2, we
have:

sinh
d(z, γz)

2
= cosh s sinh

`γ
2
,

where s = d(z, (γ−, γ+)).

When γ is parabolic, we denote by Cγ(z) the horocycle centered at the unique
fixed point γ+ = γ− of γ and passing through z. We have:

Proposition 2.2 ([PP15, §6]). — Consider a parabolic isometry γ and pick any z0

in H2. Denote by `γ(z0) the distance `γ(z0) = d(z0, γz0). For any z in H2, we have:

sinh
d(z, γz)

2
= es sinh

`γ(z0)

2
,

where s = Bγ+(z, Cγ(z0)).

To prove our theorems, we will translate the dynamics of the horocycle flow on
Γ\(T 1H2) in terms of the action of Γ on H2 and ∂H2 using the following proposition.

Proposition 2.3 ([Dal11, Chap. 5, Prop. 2.1]). — Take a vector u in T 1S and a posi-
tive real number r. Denote by ũ a lift of u in T 1H2 and suppose that ũ+ is not fixed
by any element of Γ except the identity. Then(

gru ∈ hRu− hRu
)~�(

∃ (αn)N ∈ ΓN s.t. αnũ+ −→
n→+∞

ũ+ and Bũ+(α−1
n i, ũ(0)) −→

n→+∞
Bũ+(i, ũ(r))

)
.
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3. Proof of Theorem 1.1

Definition 3.1. — Let S := Γ\H2 be a hyperbolic surface. The injectivity radius of S
at p is:

Inj(p) := min
γ∈Γ
γ 6=id

d(p̃, γp̃),

where p̃ is any lift of p to H2.

We shall now prove Theorem 1.1 in several steps. Consider a lift ũ of u in T 1H2.
Up to conjugacy, we can suppose ũ+ =∞ and ũ(0) = i. Note that with our choice of
lift ũ of u, the equivalence of Proposition 2.3 becomes:

(1) (gru ∈ hRu− hRu)⇐⇒
(
∃ (αn)N ∈ ΓN, αn →∞ and B∞(α−1

n i, i)→ r
)
.

The key is to find elements αn in Γ on which to apply this equivalence.

Lemma 1. — There is a sequence of points (qn)n going to ∞ on the half-geodesic
[i,∞) = [ũ(0), ũ+) and a sequence of elements γn in Γ that are all distinct such that

(i) d(qn, γnqn) −→
n→+∞

Inj(u(R+)).

(ii) For every sequence of positive integers (kn)N we have γknn ∞ −→
n→+∞

∞.

Proof. — The hypothesis Inj(u(R+)) < +∞ of Theorem 1.1 gives us a sequence of
points qn going to∞ in ∂H2 along the half-geodesic [i,∞) and a sequence of elements
(γn)n>0 in Γ−{Id} satisfying Property (i) of Lemma 1. Since neither gRu nor hRu is
periodic, these elements γn are all distinct.

Let us consider a subsequence of (γn)N, that we still denote by (γn)N, such that
limn→+∞ γ−n = η and limn→+∞ γ+

n = ξ.
Suppose first that η 6= ξ. In this case, for any z in H2, the distance sn =

d(z, (γ−n , γ
+
n )) is bounded from above. Thus, since `γn 6 d(qn, γnqn) for every n,

Proposition 2.1 implies that for any z in H2, the elements γnz stay in a compact.
This contradicts the discreteness of Γ.

Suppose now that η = ξ 6=∞. If the elements γn are hyperbolic, consider the half-
geodesic [p, ξ) starting from a point p on (0,∞) and orthogonal to (0,∞) (if η = ξ = 0,
consider any point p on (0,∞)). For n big enough, we have

d(p, (γ−n , γ
+
n )) < d(qn, (γ

−
n , γ

+
n )).

Thus, Proposition 2.1 implies that d(p, γnp) < d(qn, γnqn). Since the latter is
bounded from above, we get again a contradiction with the discreteness of Γ.
Finally, if the elements γn are parabolic, for any z and any z0 in H2, we eventu-
ally have Bγ+

n
(z, Cγn(z0)) < Bγ+

n
(qn, Cγn(z0)). Thus, Proposition 2.2 implies that

d(z, γnz) < d(qn, γnqn), which again gives a contradiction with the discreteness of Γ.
In conclusion,

(2) η = ξ =∞.

Choose now the following orientation for the elements γn.
– If γn is hyperbolic, choose |γ−n | 6 |γ+

n |.

J.É.P. — M., 2018, tome 5



448 A. Bellis

– If γn is parabolic, choose it such that |γn∞| > |γ+
n |.

This choice of orientation combined with (2) enables us to conclude the proof. �

Lemma 2. — For every positive integer n big enough and every nonpositive integer a,
there exists a point pn,a in H2 satisfying the two following conditions.

(i) d(pn,a, γnpn,a) = d(qn, γnqn).
(ii) B∞(pn,a, γ

a
ni) = −d(γani, pn,a).

Proof. — Take an isometry γn as in Lemma 1. Observe that a point in Cγn(qn) ∩
[γani,∞) would satisfy Property (i) and also Property (ii) according to Proposition 2.1
and Proposition 2.2. We prove that this intersection is not empty.

Suppose that γn is hyperbolic. There are two cases. The first case is when the signs
of γ−n and γ+

n are opposed. Since limn→+∞ γ−n = limn→+∞ γ+
n = ∞, the graph of

Cγn(i) lies below that of Cγn(qn). So every geodesic starting from a point z on Cγn(i)

and ending at ∞ has an intersection with Cγn(qn). This is true in particular when
z = γani.

The second case is when γ−n and γ+
n have the same sign. Observe then that we

eventually have d(i, (γ−n , γ
+
n )) > d(qn, (γ

−
n , γ

+
n )), because the converse would contra-

dict the discreteness of Γ, as seen by using Proposition 2.1. Thus, if n is big enough,
the graph of Cγn(i) is not contained in the same component of H2 − Cγn(qn) as
(γ−n , γ

+
n ). Observe now that as a is a nonpositive integer, the point γani belongs to

the portion of Cγn(i) between i and γ−n , and that for any point z in this portion of
Cγn(i), the intersection Cγn(qn) ∩ [z,∞) is not empty.

If γn is parabolic, the proof is similar to the second case, when replacing
d(i, (γ−n , γ

+
n )) and d(qn, (γ

−
n , γ

+
n )) by Bγ+

n
(i, Cγn(z0)) and Bγ+

n
(qn, Cγn(z0)) respec-

tively, and using Proposition 2.2 instead of Proposition 2.1. �

Lemma 3. — Fix ε > 0 and an interval I of R+ of length Inj(u(R+)) + ε. If n is big
enough, there exists an integer kn such that B∞(γ−knn i, i) belongs to I.

Proof. — For every positive integers n and k we put:

rn,k := B∞(γ−kn i, i) =

k−1∑
`=0

B∞(γ−k+`
n i, γ−k+`+1

n i).

Let us prove that for n big enough, each step B∞(γ−k+`
n i, γ−k+`+1

n i) is smaller than
Inj(u(R+)) + ε.

For convenience, let us set sn,a := d(γani, pn,a) and Ak,` := B∞(γ−k+`
n i, γ−k+`+1

n i).
Using Lemma 2, we compute:

Ak,` = B∞(γ−k+`
n i, γ−1

n pn,−k+`+1) +B∞(γ−1
n pn,−k+`+1, pn,−k+`+1)

+B∞(pn,−k+`+1, γ
−k+`+1
n i)

6 d(γ−k+`
n i, γ−1

n pn,−k+`+1) + d(γ−1
n pn,−k+`+1, pn,−k+`+1)− sn,−k+`+1

= sn,−k+`+1 + d(qn, γnqn)− sn,−k+`+1

= d(qn, γnqn).
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As d(qn, γnqn) is eventually smaller than Inj(u(R+)) + ε, we obtain that for n big
enough:

(3) Ak,` = B∞(γ−k+`
n i, γ−k+`+1

n i) 6 Inj(u(R+)) + ε.

Thus, rn,k is a sum of k terms Ak,`, for ` = 0, . . . , k − 1, all smaller than
Inj(u(R+)) + ε which is the length of the interval I of R+. We now use the fact
that since limk→+∞ γ−kn i = γ−n 6= ∞ for every n, we have limk→+∞ rn,k = +∞ for
every n. Thus, there exists an integer kn such that rn,kn belongs to I. �

Proof of Theorem 1.1. — Take the elements γn given by Lemma 1. Fix an ε > 0, cho-
sen arbitrarily small, and an interval I of R+ of length Inj(u(R+)) + ε. Consider the
sequence of positive integers (kn)N given by Lemma 3. Since the numbers B∞(γ−knn i, i)

eventually all belong to I, the sequence of numbers (B∞(γ−knn i, i))N admits an accu-
mulation point r in I. Thus, setting αn := γknn and applying the equivalence (1), we
get that gru ∈ hRu− hRu.

Now, applying the same argument to a partition (I`)N of R+ in intervals of lengths
Inj(u(R+)) + ε, we get a sequence of times (t`)N, where each t` is in I`, and such
that gt`u belongs to hRu for every `. Moreover, if Inj(u(R+)) = 0, as the intervals I`
will be of length 0 + ε for an ε > 0 arbitrarily small, we get gR+u ⊂ hRu. �

4. An example to prove Theorem 1.3

The Dirichlet domain centered at i of a Fuchsian group Γ with no elliptic element
fixing i is defined by:

Di(Γ) :=
⋂
γ∈Γ
γ 6=id

Hi(γ),

where Hi(γ) := {z ∈ H2 | d(z, i) 6 d(z, γ(i))}. The following classical result (see
[Dal11, Chap. I, Prop. 4.9]) shows a link between the ideal boundary of the Dirichlet
domain and the almost minimizing character of geodesics.

Proposition 4.1. — If u ∈ Γ\(T 1H2) and if for some lift ũ in T 1H2 the point ũ+

belongs to Di(Γ) ∩ ∂H2, then u(R+) is almost minimizing.

Let us now construct our example. Consider, for any rational number q ∈ [4,+∞)

and any n in N, the hyperbolic isometry:

gq,n :=

( √
q (1− q)rn

−1/rn
√
q

)
,

where (rn)N is the sequence of real numbers defined by:{
r1 = 2

rn = 3rn−1, ∀n > 2.

Let F1 := {gq,n | q ∈ Q ∩ [4,+∞), n ∈ N}. We now conjugate the isometries g4,n by
the isometries Tq,n :=

(
1 tq,n
0 1

)
, for any rational number q ∈ (1, 4) and any n in N,

J.É.P. — M., 2018, tome 5



450 A. Bellis

with tq,n := −rn(
√
q − 2). We have:

hq,n := T−1
q,n g4,n Tq,n =

(
4−√q rn[(

√
q − 2)2 − 3]

−1/rn
√
q

)
.

Set F2 := {hq,n | q ∈ Q ∩ (1, 4), n ∈ N}. For every q ∈ Q ∩ (1,+∞), we define the
hyperbolic isometry fq,n by:

fq,n :=

{
hq,n if q ∈ Q ∩ (1, 4),

gq,n if q ∈ Q ∩ [4,+∞),

and set F := F1 ∪ F2 = {fq,n, q ∈ Q ∩ (1,+∞)}.
For any non-elliptic isometry γ in PSL2(R), define ∂Hi(γ) to be the perpendicu-

lar bisector of the segment [i, γi]. Also denote by c(γ) the centre of the Euclidean
half-circle ∂Hi(γ) and by e`(γ), with ` = 1, 2, the endpoints in ∂H2 of ∂Hi(γ).
Finally, denote by C(η,ξ)(z) the hypercycle with endpoints η and ξ in ∂H2 and passing
through z in H2. The following key proposition gives us all the necessary information
about the perpendicular bisectors ∂Hi(γ) (see Section 5 for the proof).

Proposition 4.2. — For every q ∈ (1,+∞) we have the following:

(i) lim
n→+∞

c(fq,n) = −∞ and lim
n→+∞

c(f−1
q,n) = +∞.

(ii) lim
n→+∞

e`(fq,n) = −∞ and lim
n→+∞

e`(f
−1
q,n) = +∞ for ` = 1, 2.

(iii) If n is big enough, the perpendicular bisector ∂Hi(f−1
q,n) do not meet the hyper-

cycle C(0,∞)(1 + 2i/
√

5).

By means of Proposition 4.2, we shall choose a sequence of elements γm of F
such that all the perpendicular bisectors ∂Hi(γm) are disjoint and which contains an
infinite number of elements fq,n for every rational number q ∈ (1,+∞).

Consider any bijection ψ : N 7→ Q ∩ (1,+∞) × N and set ψ(m) = (qm, ψ2(m)).
Observe that for every q in (1,+∞), there is an infinite number of elements qm such
that qm = q. We can now write F = {fqm,ψ2(m) | m ∈ N}.

Choice of the elements γm. — Put γ0 := fq0,0 and set 2C to be the distance between
the geodesic (0,∞) and the hypercycle C(0,∞)(1 + 2i/

√
5). Then, for every m > 1, we

define γm by induction. We ask that γm = fqm,nm where nm is the smallest integer
among the integers p satisfying the following properties:

(i) |e1(fqm,p)| > |e2(γm−1)| and |e1(f−1
qm,p)| > |e2(γ−1

m−1)|.
(ii) d(∂Hi(fqm,p), ∂Hi(f−1

qm,p)) > 2C.
(iii) d(∂Hi(fqm,p), ∂Hi(γ±1

s )) > C and d(∂Hi(f−1
qm,p), ∂Hi(γ

−1
s )) > C for all integers

s < m.

Such a sequence (γm)N exists according to Proposition 4.2. We set Γ := 〈γm | m ∈ N〉
and prove that S = Γ\H2 fulfills the properties of Theorem 1.3.
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By a classic ping-pong argument (see [Dal11]), the group Γ is discrete and free.
Moreover, its Dirichlet domain centered at i is:

Di(Γ) =
⋂
m∈N

Hi(γm) ∩
⋂
m∈N

Hi(γ−1
m ).

Fix ũ in T 1H2 such that ũ(0) = i and ũ+ = ∞ and consider its projection u to
T 1S := Γ\(T 1H2). Since ∞ is in Di(Γ) ∩ ∂H2, according to Proposition 4.1, the
half-geodesic u(R+) is almost minimizing. Hence (i) of Theorem 1.3.

To prove condition (ii), we use Proposition 2.3. Observe that it follows directly
from the definition of fq,n that for every rational number q in (1,+∞), we have

(4) f−1
q,n∞ −→

n→+∞
∞.

Moreover, since limn→+∞ im(fq,ni) = 1/q, we have:

(5) B∞(fq,ni, i) −→
n→+∞

B∞(i/q, i) = |ln(q)|.

Now, for every q ∈ Q∩ (1,+∞) there is an infinite number of elements fq,n in (γm)N,
thus in Γ. So, according to (4), (5) and Proposition 2.3, it follows that all the elements
g| ln(q)|u belong to hRu. Hence, gR+u is included in hRu and we get (ii) of Theorem 1.3.

Finally, fix z in the interior of Di(Γ) and any γ = γi1m1
· · · γikmk

in Γ different from
the identity, written as a reduced word in the letters γm. If k = 1, then γ = γi1m1

and

d(z, γz) = d(z, γ−1z) > max(d(z, ∂Hi(γm1
)), d(z, ∂Hi(γ−1

m1
)))

Since d(∂Hi(γm1
), ∂Hi(γ−1

m1
)) > 2C, we obtain that d(z, γz) > C. If k > 1,

d(z, γz) = d(z, γi1m1
. . . γikmk

z) = d(γ−i1m1
z, γi2m2

. . . γikmk
z)

> d(∂Hi(γ±1
m1

), ∂Hi(γ±1
m2

)) > C.

It follows that the injectivity radius on S is everywhere bigger than C. Finally, since
all the axes of the elements γm in Γ intersect the half-geodesic [i,∞), and since their
translation length `γn is constant by definition of the elements fq,n, the injectivity
radius Inj(u(R+)) is also finite. So C 6 Inj(u(R+)) < +∞. Hence Property (iii) of
Theorem 1.3. This completes the proof. �

5. Proof of Proposition 4.2

Using the classical formula

∀ a, b ∈ H2, sinh
d(a, b)

2
=

|a− b|
2
√

im(a) im(b)
,

we get:

Proposition 5.1. — Consider a point P = R+ iI in H2. The equation of the perpen-
dicular bisector of the hyperbolic segment between i and P is:(

x+
R

I − 1

)2

+ y2 = I
(

1 +
R2

(I − 1)2

)
.
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For the following calculations, we distinguish the case q ∈ [4,+∞) from the case
q ∈ (1, 4).

Case 1: fix q ∈ [4,+∞). — We have fq,ni = Rq,n + iIq,n where

Rq,n :=

√
q(1− q)rn −

√
q/rn

q + 1/r2
n

and Iq,n :=
1

q + 1/r2
n

.

Since limn→+∞ rn = +∞, the quantities Rq,n and Iq,n are equivalent to rn(1− q)/√q
and 1/q respectively as n converges to +∞. Applying Proposition 5.1 we get the
following asymptotic equivalence:

c(fq,n) = − Rq,n
Iq,n − 1

�
n→+∞

−rn
√
q.

Hence, the centres c(fq,n) converge to −∞ as n goes to +∞.
Let us now study the radii of the geodesics ∂Hi(fq,n). We have√

Iq,n

(
1 +

R2
q,n

(Iq,n − 1)2

)1/2

�
n→+∞

1
√
q

Rq,n
Iq,n − 1

= − 1
√
q
c(fq,n).

According to Proposition 5.1, the endpoints e`(fq,n) for ` = 1, 2 of the geodesics
∂Hi(fq,n) converge to −∞ as n goes to +∞. Moreover, since 1/

√
q 6 2/3, all these

geodesics are below the hypercycle C(0,∞)(−1 + 2i/
√

5).
We now study the case of ∂Hi(f−1

q,n). We have:

f−1
q,ni =

√
q (q − 1)rn +

√
q/rn

q + 1/r2
n

+ i
1

q + 1/r2
n

.

We observe that the real part of f−1
q,ni is the negative of the real part of fq,ni. So the

geodesics ∂Hi(f−1
q,n) and ∂Hi(fq,n) are symmetric with respect to the imaginary axis.

In particular, they are below the hypercycle C(0,∞)(1 + 2i/
√

5).

Case 2: fix q ∈ Q ∩ (1, 4). — We have fq,ni = Rq,n + iIq,n where

Rq,n :=
rn
√
q((
√
q − 2)2 − 3)− (4−√q)/rn

q + 1/r2
n

and Iq,n =
1

q + 1/r2
n

.

Since q ∈ (1, 4), the number √q((√q − 2)2 − 3) is different from 0. Thus, as n goes
to +∞, we have the equivalences:

Rq,n �
n→+∞

rn
(
√
q − 2)2 − 3
√
q

and Iq,n �
n→+∞

1

q
.

Hence, according to Proposition 5.1,

c(fq,n) = − Rq,n
Iq,n − 1

�
n→+∞

−rn
√
q

(
√
q − 2)2 − 3

1− q
,

where √q((√q− 2)2− 3)/(1− q) is a real number greater than 2. Thus, these centers
converge to −∞ as n goes to +∞.

Let us now study the radii of the geodesics ∂Hi(fq,n). We have√
In,q

(
1 +

R2
n,q

(In,q − 1)2

)1/2

�
n→+∞

1
√
q

Rn,q
In,q − 1

= − 1
√
q
c(fq,n),
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where 1/
√
q belongs to (1/2, 1). Thus, again, the endpoints e`(fq,n) for ` = 1, 2 of the

geodesics ∂Hi(fq,n) converge to −∞ as n goes to +∞.
We now study the case of f−1

q,n for q ∈ (1, 4). We have f−1
q,ni = Rq,n + iIq,n where

Rq,n =
−rn(4−√q)[(√q − 2)2 − 3] +

√
q/rn

(4−√q)2 + 1/r2
n

and Iq,n =
1

(4−√q)2 + 1/r2
n

.

Since q ∈ (1, 4), the number (4−√q)[(√q − 2)2 − 3] is different from 0. Thus, we get
the equivalences

Rq,n �
n→+∞

rn
(
√
q − 2)2 − 3
√
q − 4

and Iq,n �
n→+∞

1

(4−√q)2
,

from which we deduce

c(f−1
q,n) = − Rq,n

Iq,n − 1
�

n→+∞
−rn

((
√
q − 2)2 − 3)(

√
q − 4)

1− (4−√q)2
.

Since the number ((
√
q − 2)2 − 3)(

√
q − 4)/(1− (4−√q)2) is negative for q ∈ (1, 4),

the centers c(f−1
q,n) of the geodesics ∂Hi(f−1

q,n) converge to +∞ as n goes to +∞.
We now study the radii:√

In,q

(
1 +

R2
n,q

(In,q − 1)2

)1/2

�
n→+∞

1

4−√q
Rq,n

Iq,n − 1
= − 1

4−√q
c(f−1

q,n),

where the number 1/(4 − √q) belongs to (1/3, 1/2). Thus, the endpoints e`(f−1
q,n)

for ` = 1, 2 converge to +∞ as n goes to +∞. Moreover, from the inequality
1/(4−√q) < 2/3, we deduce that the geodesics ∂Hi(f−1

q,n) do not meet the hypercy-
cle C(0,∞)(1 + 2i/

√
5) as claimed. �
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