Symplectomorphisms of exotic discs
[Symplectomorphismes de disques exotiques]
Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 289-316.

Le but principal de cet article est la construction d’une structure symplectique sur un disque avec un symplectomorphisme à support compact qui n’est pas isotope à l’identité. Cette structure symplectique a un bord concave donné par la symplectification d’une structure de contact vrillée. La construction du symplectomorphisme est basée sur une version unitaire de l’accouplement de Milnor-Munkres. En chemin, nous introduisons un analogue symplectique de la filtration de Gromoll. Dans l’appendice, S. Courte montre que, pour notre structure symplectique, l’application qui associe à une classe d’applications symplectiques à support compact une classe d’applications lisses à support compact est surjective.

We construct a symplectic structure on a disc that admits a compactly supported symplectomorphism which is not smoothly isotopic to the identity. The symplectic structure has an overtwisted concave end; the construction of the symplectomorphism is based on a unitary version of the Milnor–Munkres pairing. En route, we introduce a symplectic analogue of the Gromoll filtration. The Appendix by S. Courte shows that for our symplectic structure the map from compactly supported symplectic mapping classes to compactly supported smooth mapping classes is in fact surjective.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.71
Classification : 57R17, 53D10, 53D15
Keywords: Symplectomorphism, overtwisted contact structure, Milnor–Munkres pairing, Gromoll filtration
Mot clés : Symplectomorphisme, structure de contact vrillée, accouplement de Milnor-Munkres, filtration de Gromoll

Roger Casals 1 ; Ailsa Keating 2 ; Ivan Smith 2 ; Sylvain Courte 3

1 Massachusetts Institute of Technology, Department of Mathematics 77 Massachusetts Avenue Cambridge, MA 02139, United States of America
2 Centre for Mathematical Sciences, University of Cambridge Wilberforce Road, Cambridge CB3 0WB, United Kingdom
3 Institut Fourier, Université Grenoble Alpes et CNRS 100 rue des maths, 38610, Gières, France
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2018__5__289_0,
     author = {Roger Casals and Ailsa Keating and Ivan Smith and Sylvain Courte},
     title = {Symplectomorphisms of exotic discs},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {289--316},
     publisher = {\'Ecole polytechnique},
     volume = {5},
     year = {2018},
     doi = {10.5802/jep.71},
     zbl = {06988581},
     mrnumber = {3795444},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.71/}
}
TY  - JOUR
AU  - Roger Casals
AU  - Ailsa Keating
AU  - Ivan Smith
AU  - Sylvain Courte
TI  - Symplectomorphisms of exotic discs
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2018
SP  - 289
EP  - 316
VL  - 5
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.71/
DO  - 10.5802/jep.71
LA  - en
ID  - JEP_2018__5__289_0
ER  - 
%0 Journal Article
%A Roger Casals
%A Ailsa Keating
%A Ivan Smith
%A Sylvain Courte
%T Symplectomorphisms of exotic discs
%J Journal de l’École polytechnique — Mathématiques
%D 2018
%P 289-316
%V 5
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.71/
%R 10.5802/jep.71
%G en
%F JEP_2018__5__289_0
Roger Casals; Ailsa Keating; Ivan Smith; Sylvain Courte. Symplectomorphisms of exotic discs. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 289-316. doi : 10.5802/jep.71. https://jep.centre-mersenne.org/articles/10.5802/jep.71/

[1] M. Abouzaid & I. Smith - “Homological mirror symmetry for the 4-torus”, Duke Math. J. 152 (2010) no. 3, p. 373-440 | DOI | MR | Zbl

[2] D. Auroux, S. K. Donaldson & L. Katzarkov - “Singular Lefschetz pencils”, Geom. Topol. 9 (2005), p. 1043-1114 | DOI | MR | Zbl

[3] M. S. Borman, Y. Eliashberg & E. Murphy - “Existence and classification of overtwisted contact structures in all dimensions”, Acta Math. 215 (2015) no. 2, p. 281-361 | MR | Zbl

[4] R. Bott - “A note on the Samelson product in the classical groups”, Comment. Math. Helv. 34 (1960), p. 249-256 | DOI | MR | Zbl

[5] W. Browder - “Torsion in H-spaces”, Ann. of Math. (2) 74 (1961), p. 24-51 | DOI | MR | Zbl

[6] W. Browder - “The Kervaire invariant of framed manifolds and its generalization”, Ann. of Math. (2) 90 (1969), p. 157-186 | DOI | MR | Zbl

[7] G. Brumfiel - “The homotopy groups of BPL and PL/O. III”, Michigan Math. J. 17 (1970), p. 217-224 | MR | Zbl

[8] D. Burghelea & R. Lashof - “The homotopy type of the space of diffeomorphisms. I, II”, Trans. Amer. Math. Soc. 196 (1974), p. 1-36 & 37–50 | DOI | MR | Zbl

[9] R. Casals, E. Murphy & F. Presas - “Geometric criteria for overtwistedness”, arXiv:1503.06221 | DOI

[10] J. Cerf - “La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie”, Publ. Math. Inst. Hautes Études Sci. (1970) no. 39, p. 5-173 | Numdam | Zbl

[11] K. Cieliebak & Y. Eliashberg - From Stein to Weinstein and back, Amer. Math. Soc. Colloquium Publ., vol. 59, American Mathematical Society, Providence, RI, 2012 | MR | Zbl

[12] G. Dimitroglou Rizell & J. D. Evans - “Exotic spheres and the topology of symplectomorphism groups”, J. Topology 8 (2015) no. 2, p. 586-602 | DOI | MR | Zbl

[13] Y. Eliashberg & E. Murphy - “Making cobordisms symplectic”, arXiv:1504.06312

[14] Y. Eliashberg & E. Murphy - “Lagrangian caps”, Geom. Funct. Anal. 23 (2013) no. 5, p. 1483-1514 | DOI | MR | Zbl

[15] A. Floer - “Morse theory for Lagrangian intersections”, J. Differential Geom. 28 (1988) no. 3, p. 513-547 | DOI | MR | Zbl

[16] K. Fukaya, P. Seidel & I. Smith - “Exact Lagrangian submanifolds in simply-connected cotangent bundles”, Invent. Math. 172 (2008) no. 1, p. 1-27 | MR | Zbl

[17] J. Ge - “Isoparametric foliations, diffeomorphism groups and exotic smooth structures”, Adv. Math. 302 (2016), p. 851-868 | DOI | MR | Zbl

[18] E. Giroux & P. Massot - “On the contact mapping class group of Legendrian circle bundles”, Compositio Math. 153 (2017) no. 2, p. 294-312 | DOI | MR | Zbl

[19] D. Gromoll - “Differenzierbare Strukturen und Metriken positiver Krümmung auf Sphären”, Math. Ann. 164 (1966), p. 353-371 | DOI | MR | Zbl

[20] M. Gromov - “Pseudo holomorphic curves in symplectic manifolds”, Invent. Math. 82 (1985) no. 2, p. 307-347 | MR | Zbl

[21] B. Harris - “Some calculations of homotopy groups of symmetric spaces”, Trans. Amer. Math. Soc. 106 (1963), p. 174-184 | DOI | MR | Zbl

[22] M. Hill, M. Hopkins & D. Ravenel - “On the non-existence of elements of Kervaire invariant one”, Ann. of Math. (2) 184 (2016) no. 1, p. 1-262 | Zbl

[23] M. W. Hirsch - Differential topology, Graduate Texts in Math., vol. 33, Springer-Verlag, New York, 1994 | MR

[24] J. R. Hubbuck - “On homotopy commutative H-spaces”, Topology 8 (1969), p. 119-126 | DOI | MR | Zbl

[25] M. A. Kervaire - “Some nonstable homotopy groups of Lie groups”, Illinois J. Math. 4 (1960), p. 161-169 | MR

[26] M. A. Kervaire & J. W. Milnor - “Groups of homotopy spheres. I”, Ann. of Math. (2) 77 (1963), p. 504-537 | DOI | MR | Zbl

[27] R. Lashof (ed.) - “Problems in differential and algebraic topology. Seattle Conference, 1963”, Ann. of Math. (2) 81 (1965), p. 565-591 | DOI | MR | Zbl

[28] T. C. Lawson - “Remarks on the pairings of Bredon, Milnor, and Milnor-Munkres-Novikov”, Indiana Univ. Math. J. 22 (1972/73), p. 833-843 | DOI | MR | Zbl

[29] J. Levine - “Inertia groups of manifolds and diffeomorphisms of spheres”, Amer. J. Math. 92 (1970), p. 243-258 | DOI | MR | Zbl

[30] D. McDuff - “Symplectic manifolds with contact type boundaries”, Invent. Math. 103 (1991) no. 3, p. 651-671 | DOI | MR | Zbl

[31] M. McLean - “Symplectic homology of Lefschetz fibrations and Floer homology of the monodromy map”, Selecta Math. (N.S.) 18 (2012) no. 3, p. 473-512 | DOI | MR | Zbl

[32] T. Püttmann & A. Rigas - “Presentations of the first homotopy groups of the unitary groups”, Comment. Math. Helv. 78 (2003) no. 3, p. 648-662 | DOI | MR | Zbl

[33] O. Randal-Williams - “On diffeomorphisms acting on almost complex structures”, Unpublished note, available at https://www.dpmms.cam.ac.uk/~or257/publications.htm

[34] R. Schultz - “On the inertia group of a product of spheres”, Trans. Amer. Math. Soc. 156 (1971), p. 137-153 | DOI | MR | Zbl

[35] P. Seidel - “More about vanishing cycles and mutation”, in Symplectic geometry and mirror symmetry (Seoul, 2000), World Sci. Publ., River Edge, NJ, 2001, p. 429-465 | DOI | MR | Zbl

[36] P. Seidel - “A long exact sequence for symplectic Floer cohomology”, Topology 42 (2003) no. 5, p. 1003-1063 | DOI | MR | Zbl

[37] C. H. Taubes - “The structure of pseudo-holomorphic subvarieties for a degenerate almost complex structure and symplectic form on S 1 ×B 3 , Geom. Topol. 2 (1998), p. 221-332 | DOI | Zbl

[38] I. Uljarevic - “Floer homology of automorphisms of Liouville domains”, J. Symplectic Geom. 15 (2017) no. 3, p. 861-903 | DOI | MR | Zbl

Cité par Sources :