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SYMPLECTOMORPHISMS OF EXOTIC DISCS

by Roger Casals, Ailsa Keating & Ivan Smith
with an appendix by Sylvain Courte

Abstract. — We construct a symplectic structure on a disc that admits a compactly supported
symplectomorphism which is not smoothly isotopic to the identity. The symplectic structure
has an overtwisted concave end; the construction of the symplectomorphism is based on a
unitary version of the Milnor–Munkres pairing. En route, we introduce a symplectic analogue
of the Gromoll filtration. The Appendix by S.Courte shows that for our symplectic structure
the map from compactly supported symplectic mapping classes to compactly supported smooth
mapping classes is in fact surjective.

Résumé (Symplectomorphismes de disques exotiques). — Le but principal de cet article est
la construction d’une structure symplectique sur un disque avec un symplectomorphisme à
support compact qui n’est pas isotope à l’identité. Cette structure symplectique a un bord
concave donné par la symplectification d’une structure de contact vrillée. La construction du
symplectomorphisme est basée sur une version unitaire de l’accouplement de Milnor-Munkres.
En chemin, nous introduisons un analogue symplectique de la filtration de Gromoll. Dans
l’appendice, S. Courte montre que, pour notre structure symplectique, l’application qui associe
à une classe d’applications symplectiques à support compact une classe d’applications lisses à
support compact est surjective.
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1. Introduction

In this note, we construct compactly supported symplectomorphisms of certain
Euclidean spaces, equipped with non-standard symplectic structures, which are not
smoothly isotopic to the identity.

Theorem 1.1. — Let φ ∈ π0 Diffc(R4k) be the mapping class of the Kervaire sphere
Σ4k+1. There is a (non-standard) symplectic structure ωot ∈ Ω2(R4k) and a compactly
supported symplectomorphism ϕ ∈ Sympc(R4k;ωot) such that [ϕ] = φ in π0 Diffc(R4k).

Therefore, the inclusion Sympc(R4k;ωot) ⊆ Diffc(R4k) induces a non–zero map

(1.1) π0 Sympc(R4k;ωot) −→ π0 Diffc(R4k)

whenever k /∈ {1, 3, 7, 15, 31}.

The Kervaire (4k + 1)-sphere is the boundary of the plumbing of two copies
of T ∗S2k+1; we recall its definition in more detail in Section 2.1. The symplectic
2-form ωot has an overtwisted concave end [2, 13, 37], in particular (R4k;ωot) is not
a Weinstein domain, as we will prove in Proposition 5.1. The question of whether the
analogous map to (1.1) is non-trivial for the standard symplectic structure on the disc
is still an open problem, about which we can unfortunately say nothing.

The same techniques used to prove Theorem 1.1 yield:

Theorem 1.2. — Let (R4k−1; kerαot) be an overtwisted contact structure and let
(R4k;ωot) be its symplectization. Suppose k /∈ {1, 3, 7, 15, 31}.

(1) We have π1 Contc(R4k−1; kerαot) 6= {1}.

(2) If k is odd, then
{
πj Sympc(R4k−j ;ωot) 6= {1} for j ∈ {2, 4},
πj Contc(R4k−j ; kerαot) 6= {1} for j ∈ {3, 5}.

In each case, we find a non-zero element whose image under the composition of the
forgetful map to πi Diffc(R4k−i) with the Gromoll-filtration map to π0 Diffc(R4k) is
the clutching map for the Kervaire sphere. The non-trivial classes in both theorems
have order at least 2 and at most (2k)!, see Remark 4.3. These symplectomorphisms
can be implanted into a closed symplectic manifold (M,ω) by changing ω near a point
p ∈M to yield a symplectic structure onM r{p} with a concave end, cf. Lemma 5.3.

Remark 1.3 (Note on the Appendix). — Remark 4.2 points out that the methods
of this paper give a symplectic lift of any exotic sphere for which the corresponding
diffeomorphism can be suspended to a loop of almost complex maps. In forthcoming
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work, D.Crowley proves a stronger statement (the total derivative map Diffc(Rn)→
Ωn SO(n) induces a trivial map on πj for j 6 1). After the first version of this paper
was written, Sylvain Courte realised that the weaker statement suffices to strengthen
Theorem 1.1 to a statement about all smooth mapping classes. His argument, and the
resulting stronger conclusion that the map (1.1) is always surjective, is contained in
the Appendix to this paper. We have taken a hands-on approach throughout, hoping
that this explicitness might help shed light on the case of the standard symplectic
structure in the future, and because the explicit constructions are currently required
for Theorem 1.2. The Appendix is written in the more abstract language of Serre
fibrations, and puts at centre-stage the homotopy-theoretic aspects of the argument.
We hope that presenting both arguments will be useful to the reader.

The article is organized as follows. In order to establish Theorem 1.1, we use the
Milnor–Munkres construction of exotic mapping classes in the almost complex setting;
this is the content of Section 2. Section 3 develops the symplectic analogue of the
smooth Gromoll filtration, intertwining contact and symplectic structures. Section 4
contains the proofs of Theorems 1.1 and 1.2. Finally, Section 5 elaborates on the
properties of the symplectic structures featuring in the statements of the above results
and provides a few brief remarks on properties of symplectomorphisms (should any
exist) for the standard symplectic structure. The paper ends with Sylvain Courte’s
Appendix.

Acknowledgements. — We are grateful to Diarmuid Crowley, Dusa McDuff and Os-
car Randal–Williams for valuable conversations, and to Sylvain Courte for allowing
us to incorporate his work as an Appendix to this paper.

2. Milnor–Munkres Pairings

The group of compactly supported diffeomorphisms of Euclidean space R2m is
denoted by Diffc(R2m). It is equipped with the C∞ topology; equivalently, one could
define it as the space of diffeomorphisms of a closed disk which are the identity
in an unspecified open neighbourhood of the boundary, viewed as a subspace of
all diffeomorphisms of the disk (since a closed disk is compact, the topology on
its diffeomorphism group is unambiguous, cf. [23]). Its set of connected compo-
nents π0 Diffc(R2m) inherits a group structure, which coincides with the group
of exotic (2m + 1)–dimensional spheres under connected sum. Given a mapping
class η ∈ Diffc(R2m), we denote by Ση ∈ Θ2m+1 the corresponding exotic sphere
obtained by clutching two smooth (2m+1)–disks along their boundaries by using the
diffeomorphism η (extended by the identity to a diffeomorphism of the 2m–sphere
S2m = ∂D2m+1).

2.1. Smooth Milnor-Munkres pairing. — The Milnor–Munkres pairing is, in its sim-
plest form [27, p. 583], a group homomorphism

(2.1) τ : πm SO(m)× πm SO(m) −→ π0 Diffc(R2m).

J.É.P. — M., 2018, tome 5
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The map is obtained by a commutator construction. Given a pair of homotopy classes
a, b ∈ πm SO(m), choose two continuous maps

(2.2) A,B : (Rm,Rm rDm(1)) −→ (SO(m), id)

respectively representing these homotopy classes, and consider the two diffeomor-
phisms

ΦA,ΨB : Rm × Rm −→ Rm × Rm,
ΦA : (x, y) 7−→ (x,A(x)(y)), ΨB : (x, y) 7−→ (B(y)(x), y),

of the Euclidean space R2m endowed with co–ordinates (x, y) ∈ Rm × Rm. These
diffeomorphisms are not compactly supported, but their commutator

[ΦA,ΨB ] = Ψ−1
B Φ−1

A ΨBΦA

is a compactly supported diffeomorphism, and its mapping class depends only on
the homotopy classes a and b; the pairing (2.1) is then defined by setting τ(a, b) =

[ΦA,ΨB ].
The resulting mapping class τ(a, b) ∈ π0 Diffc(R2m) defines a smooth structure on

the topological sphere S2m+1. This smooth structure, not necessarily diffeomorphic
to the standard sphere S2m+1, also admits a description as the boundary of a smooth
plumbing, as follows.

Each homotopy class a ∈ πm SO(m) defines, by the standard inclusion SO(m) →
SO(m + 1), a homotopy class ã ∈ πm SO(m + 1) ∼= πm+1(BSO(m + 1)) and hence a
rank (m + 1) vector bundle Ea → Sm+1. Explicitly, this vector bundle is obtained
by using the element in πm SO(m + 1) as the clutching map for the vector bundle
trivialised over the two hemispheres of Sm+1. Therefore, a pair of classes a, b define a
pair of such vector bundles, whose disc bundles we denote by Ea and Eb.

Lemma 2.1. — The smooth boundary of the plumbing Ea\Eb is diffeomorphic to the
exotic smooth (2m+ 1)–sphere defined by τ(a, b).

Proof. — See for instance [28, p. 834] �

Consider the smooth (2m+ 1)–dimensional manifold

Σ = {z3
1 + z2

2 + · · ·+ z2
m+2 = 1} ∩ {|z1|2 + · · ·+ |zm+2|2 = 1} ⊆ Cm+2,

i.e., the link of the A2–singularity. The manifold Σ is a homotopy sphere, known as
the Kervaire sphere. It relates to the previous discussion via the following;

Corollary 2.2. — Consider two homotopy classes a, b ∈ πm SO(m) such that

ã = b̃ = [TSm+1] ∈ πm SO(m+ 1).

Then the exotic sphere defined by τ(a, b) is diffeomorphic to the Kervaire sphere.

The class of the tangent bundle [TSm+1] ∈ πm SO(m + 1) lifts to an element of
πm SO(m) when m is even, since odd-dimensional spheres admit nowhere vanishing
vector fields; hence the comparison with the classes a, b ∈ πm SO(m) can be made in
a rank m bundle.
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Corollary 2.2 provides the description for the Kervaire sphere we shall use in the
proof of Theorem 1.1. First, we further examine the case where m = 2n is even and
the classes a, b are in the image of π2n U(n), in which situation the Milnor-Munkres
maps have nice descriptions as almost-complex maps.

2.2. Unitary Milnor-Munkres pairings. — Let us start by specifying the definition
of an almost complex diffeomorphism. We fix the standard complex structure i and
metric g on Cm = R2m.

Definition 2.3. — A compactly supported almost-complex diffeomorphism of Eu-
clidean space R2m is a pair (f, h) consisting of a compactly supported diffeomorphism
f ∈ Diffc(R2m) and a path h = {hi}i∈[0,1] of bundle automorphisms hi : TR2m →
TR2m such that:

(a) h0 = Df and h1 is a U(m)–bundle map, i.e., the fiber maps

(hi)p : TpR2m −→ Thi(p)R
2m, ∀ p ∈ R2m,

lie in the subgroup U(m) ⊂ GLm(C) ⊂ GL2m(R).
(b) Each hi has compact support: hi = id outside TK, for some compactK ⊆ R2m.

The collection of such pairs (f, h) is denoted by Diffc(R2m; i). A compactly supported
almost–contact diffeomorphism is defined as a stable almost–complex diffeomorphism:
a pair (g, k) with g ∈ Diffc(R2m+1) and {ki}i∈[0,1] a homotopy of bundle maps from
the differential k0 = Dg to a (U(m)⊕1)–bundle map k1 with the obvious compactness
conditions. �

The set Diffc(R2m; i) is topologised as a subspace of

Diffc(R2m)×Maps([0, 1],End(TR2m)).

There is an obvious analogue for a general (not necessarily constant) almost com-
plex structure J on R2m and J-compatible metric g, in which the homotopy {hi}
interpolates between Df and a J-linear isometry through compactly supported bun-
dle automorphisms. We will refer to the corresponding subgroup as Diffc(R2m; J).
Since the space of almost complex structures on R2m compatible with the standard
orientation is connected, the homotopy type of the resulting space Diffc(R2m; J) is
independent of J .

Let TOP(2m) denote the group of homeomorphisms of R2m. A result of [8] yields
a homotopy equivalence Diffc(R2m) ' Ω2m+1(TOP(2m)/ SO(2m)), and analogously
Diffc(R2m; J) ' Ω2m+1(TOP(2m)/U(m)). In particular, the space of almost complex
diffeomorphisms is an h-space, even if not strictly a group.

Lemma 2.4. — The forgetful map π0(j) : π0 Diffc(R2m; J) → π0 Diffc(R2m) is onto
for m > 3.

Proof. — The inclusion U(m) ⊂ SO(2m) induces the following Serre cofibration:
SO(2m)

U(m)
−→ TOP(2m)

U(m)
−→ TOP(2m)

SO(2m)
.
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294 R. Casals, A. Keating & I. Smith

The associated long exact sequence of homotopy groups gives

· · · −→ π0 Diffc(R2m; J)
forget−−−−−−→ π0 Diffc(R2m)

δ−−→ π2m(SO(2m)/U(m)) −→ · · · ,

where δ factors through the natural map δ′ : π0 Diffc(R2m) → π2m SO(2m), induced
by pointwise differentiation. By [8, Prop. 5.4 (iv)] the map

π2m(l) : π2m SO(2m) −→ π2m TOP(2m)

induced by the Serre fibration

SO(2m)
l−→ TOP(2m)

p−→ TOP(2m)/ SO(2m),

is injective and thus δ′ = π2m−1(p) is zero, which yields the required surjectivity. �

Remark 2.5. — Fix a symplectic form ω on R2m. There is a well-defined homotopy
class of maps

Sympc(R2m, ω)
i−−→ Diffc(R2m; J)

associated to a choice of compatible almost complex structure J for ω, and a cor-
responding reduction of the structure group of (TR2m, ω) to the unitary group.
Lemma 2.4 shows that in the special case of Euclidean space, the existence of a sym-
plectic lift of a smooth mapping class cannot be obstructed by the lack of existence
of an almost-complex lift.

This should be contrasted with a result of Randal-Williams [33], who showed that
the corresponding constraint is non-trivial for certain plumbings. In addition, we have
recently learnt from D.Crowley that there is work in progress showing that πk–maps
are also surjective. �

Suppose now 2m = 4n. There is then a homomorphism

(2.3) τU : π2n U(n)× π2n U(n) −→ π2n SO(2n)× π2n SO(2n)
τ−−→ π0 Diffc(R4n).

which we refer to as the unitary Milnor-Munkres pairing.

Proposition 2.6. — The image of (2.3) consists of the class [µ] ∈ π0 Diffc(R4n) of
the Kervaire sphere Σµ and the identity. In particular, τU is non–trivial for n /∈
{1, 3, 7, 15, 31}.

Proof. — Since S2n+1 admits an almost contact structure, the tangent bundle TS2n+1

splits as a trivial real line bundle and an almost complex bundle. It follows that the
class ρ ∈ π2n SO(2n+ 1) of the tangent bundle lifts under the natural maps

π2n U(n) −→ π2n SO(2n) −→ π2n SO(2n+ 1).

Let σ ∈ π2n U(n) denote such a lift. Let A : R2n → U(n) be a compactly supported
map representing the homotopy class σ and denote µ = [ΦA,ΨA]. By Corollary 2.2,
the homotopy sphere Σµ is the Kervaire sphere. By work of Browder [6] and Hill,
Hopkins and Ravenel [22], the (4n+1)–dimensional Kervaire sphere Σ ∈ Θ4n+1 is not
diffeomorphic to the standard sphere, except when n = 1, 3, 7, 15, and possibly 31,
which proves the second statement.
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One can check using [25, 21] that the composition map g :π2n U(n)→π2n SO(2n+1)

has image contained in a cyclic group Z/2. Thus the only possibly non-trivial class
admitting a lift is the Kervaire sphere ρ. �

The argument we use for Theorem 1.1 requires certain geometric properties of the
representatives A,B of Equation (2.2), which we establish in the following proposition.
We use the identification R4n r {0} ∼= S4n−1 × (0,+∞) and denote the restriction of
a given diffeomorphism µ ∈ Diffc(R4n) to the radial spheres by µt := µ|S4n−1×{t}.

Proposition 2.7. — A smooth mapping class in the image of (2.3) has a representa-
tive µ ∈ Diffc(R4n) such that:

(1) µ preserves the distance to the origin,
(2) µ is supported on the shell D4n(0.9) rD4n(0.1) ⊆ R4n,
(3) µ is the identity on the points (x, y) ∈ R4n = R2n × R2n such that ‖x‖ < 0.1

or ‖y‖ < 0.1.
In addition, there exists a path of bundle maps hi : TR4n → TR4n, i ∈ [0, 1], which

covers the diffeomorphism µ such that:
I. h0 = Dµ, h1 is a U(2n)–bundle map, and with the same support supp(hi) =

supp(µ).
II. For t ∈ (0, 1], the bundle maps hi induce an isotopy of almost-contact forms

between µ∗tαst and the standard contact form αst on the sphere S4n−1.

Note that Property I lifts µ to an almost-complex map.

Proof. — Given two homotopy classes a, b ∈ π2n U(n) represented by compactly sup-
ported maps A,B : R2n → U(n), we denote µ = [ΦA,ΨB ] ∈ Diffc(R4n) as before.
By construction, the diffeomorphisms ΦA and ΨB both preserve the distance to the
origin and thus µ does also. Moreover, we can choose two representatives A,B such
that A(q) = B(q) = id for q ∈ D2n(0.1), and shrink their respective supports to a
thickened sphere, ensuring the second and third properties in the statement.

Now we want to exhibit a path of compactly supported bundle maps from the
differential D([ΦA,ΨB ]) : TR4n → TR4n to a U(2n)–bundle map. First, notice that(

DΦA
)

(x,y)
=

(
id ∗
0 ι(A(x))

)
,

where ι : U(2n) → GL(4n,R) is the standard inclusion and thus there is a path
(DA,i)i∈[0,1] of bundle maps, i ∈ [0, 1], obtained by covering the fixed map ΦA on
the base and, on the fibres, given by linearly interpolating between the differential
(DΦA)(x,y) and the unitary matrix(

DA,1

)
(x,y)

=

(
id 0

0 ι(A(x))

)
.

Let us denote the analogous path of bundle maps for DΨB by (DB,i)i∈[0,1], and note
that, by considering their inverse, these induce paths (D−1

A,i)i∈[0,1] and (D−1
B,i)i∈[0,1]

of bundle maps for the diffeomorphisms Φ−1
A and Ψ−1

B . By using the chain rule to
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describeD([ΦA,ΨB ]) and applying these four isotopies of bundle maps simultaneously
we obtain a path

hi := D−1
B,i ◦D

−1
A,i ◦DB,i ◦DA,i, i ∈ [0, 1],

of compactly supported bundle maps, all covering [ΦA,ΨB ]), and interpolating be-
tween D([ΦA,ΨB ]) and the U(2n)–bundle map D−1

B,1 ◦D
−1
A,1 ◦DB,1 ◦DA,1, as desired.

It thus remains to discuss Property II, for which we consider the radial vector
field ∂t. Let us say that a bundle map D : TR4n → R4n satisfies (†) if for all points
p ∈ R4n it has the following two properties

– D(T (S4n−1 × {t})) ⊂ TR4n coincides with T (S4n−1 × {t}),
– Dp(∂t) = ∂t + up for a tangent vector up ∈ T (S4n−1 × {‖p‖}).

On the one hand, DΦA and DΨB satisfy (†), as ΦA and ΨB preserve the distance
to the origin. On the other hand, by construction, DA,1 and DB,1 satisfy (†) as well:
in fact, DA,1(∂t) = ∂t, and similarly for B. Thus the interpolations DA,i and DB,i

satisfy (†), as do their inverses. Since the composition of two bundle maps satisfying (†)
also satisfies (†), it follows that hi satisfies (†) for all i ∈ [0, 1], as required. �

2.3. Towards Gromoll lifts of unitary Milnor-Munkres maps. — In this section we
elaborate on the construction described in Proposition 2.7 by achieving symmetries
in further directions than the radial one. These additional symmetries enter in the
proof of Theorem 1.2, where Proposition 2.9 is used.

Lemma 2.8. — The class σ ∈ π2n U(n) lifts to a class in π2n U(n− 1) if and only if n
is odd.

Proof. — As noted in the proof of Proposition 2.6, the class of the tangent bundle
[TS2n+1] ∈ π2n SO(2n+1) is an element of order 2, which admits a lift σ to π2n U(n).
For n = 2m+1 odd, the following exact sequence constructed by Kervaire [25, p. 164]

0 −→ Z/2 −→ π4m+2 U(2m) −→ π4m+2 U(2m+ 1) −→ 0

yields the claim in this case. In the even case k = 2m, the corresponding exact
sequence is

0 −→ π4m U(2m− 1) −→ π4m U(2m) −→ Z/2 −→ 0.

Thus the classes which admit lifts to π4m U(2m− 1) are exactly the even multiples of
the generator c of the group π4m U(2m) = Z/(2m!). However, the classes which map
to TS2n+1 are exactly the odd multiples of the generator c since the tangent bundle
has order two. �

Lemma 2.8 can now be used to prove an analogue of Proposition 2.7. In the state-
ment we shall use the co–ordinates (x, y, z1, z2) ∈ C2n, where the pairs are given by
(x, y) ∈ C×C and (z1, z2) ∈ ×Cn−1×Cn−1, and we also denote z = (z1, z2) ∈ ×C2n−2.
We also identify

C×(C2n−1r{0}) ∼= C×S4n−3×(0,+∞), C2×(C2n−2r{0}) ∼= C2×S4n−5×(0,+∞),

and denote restrictions by νx;t := ν{x}×S4n−3×{t} and νx,y;t := ν{(x,y)}×S4n−5×{t}.
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Proposition 2.9. — Let n ∈ N be odd. Then there exists a diffeomorphism ν ∈
Diffc(C2n), whose homotopy class is that of the Kervaire sphere, such that:

(1′) There are maps νx,y : C2n−2 → C2n−2 preserving the distance to the origin
such that

ν(x, y, z) = (x, y, νx,y(z)),

(2′) The support satisfies

supp(ν) ⊆ {(x, y, z) ∈ C2n | ‖(x, y)‖ < 0.9, 0.1 < ‖z‖ < 0.9},

(3′) ν(x, y, z1, z2) = id in a region where ‖z1‖ < 0.1 or ‖z2‖ < 0.1.
In addition, there exists a path of bundle maps hi : TR4n → TR4n, i ∈ [0, 1], which

covers the diffeomorphism ν and satisfies:
I. h0 = Dµ, h1 is a U(2n)–bundle map, and with the same support supp(hi) =

supp(µ).
II′. For t ∈ (0, 1], and x ∈ C, resp. (x, y) ∈ C2, the bundle maps hi induce an iso-

topy of almost-contact forms between ν∗x;tαst, resp. ν∗x,y;tαst, and the standard contact
form αst on S4n−3, resp. S4n−5.

Proof. — First, rearrange the coordinates to (x, z1, y, z2) ∈ C2n. By Lemma 2.8, there
exists a representative A : Cn → Im(U(n−1)) ⊂ U(n) of the homotopy class [TS2n+1],
where the inclusion U(n− 1) ⊂ U(n) is given by using the final (n− 1) co–ordinates.
Then the commutator

[ΦA,ΨA]

yields a map ν which satisfies Property (1′). Properties (2′) and (3′) can be achieved by
further taylor-picking the representative A(x, z1) as follows. By thickening the values
A(x, 0), we can assume that for fixed x and sufficiently small z1, the diffeomorphism
A(x, z1) is constant. Now the values A(x,0) determine a class in π2 U(n − 1) which
is zero if n > 2. Thus, after a further homotopy we can assume that A(x, z1) = id for
‖z1‖ < 0.1, which ensures Property (3′) and the lower bound in Property (2′). The
upper bounds in Property (2′) can be achieved by shrinking the domain of A.

For Properties I and II′, we will use the same homotopy as in the proof of Propo-
sition 2.7, which we still denote by (hi)i∈[0,1]. Property I is satisfied by construction,
and we now discuss Property II for the family νx;t. By construction, we have the
following form for the differential

(
DΦA

)
(x,z1,y,z2)

=


1 0 0 ∗
0 id 0 ∗
0 0 1 ∗
0 0 0 ι(A(x, z1))

 .

Consider the vector field ∂t, where t denotes the distance to the x–plane, and in the
same vein as before let us introduce the following condition (†):

– DT ({x} × S4n−3 × {t}) = DT ({x} × S4n−3 × {t}),
– D(∂t) = ∂t + vp for some family of horizontal vectors vp ∈ T ({x}×S4n−3×{t}).
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Since ΦA and ΨA preserve the coordinate t, and fix the x–coordinate of every point,
the bundle maps DΦA and DΨA satisfy (†). In addition the maps DA,1 and DB,1,
defined in the proof of Proposition 2.7, also satisfy (†) by construction and thus we can
conclude the proof in a completely analogous manner to that of Proposition 2.7. �

3. A symplectic and contact Gromoll filtration

The Gromoll filtration [19] is the subgroup filtration of the group π0(Diffc(Rn))

induced by the Gromoll morphisms

λk,` : πk Diffc(Rn) −→ πk−` Diffc(Rn+`)

which are the maps of homotopy groups induced by the natural morphisms

Ωks Diffc(Rn) −→ Ωk−`s Diffc(Rn+`),

where Ωs denotes the space of smooth loops. The aim of this section is to inter-
twine this fibration from smooth topology with contact and symplectic structures,
the resulting filtration being the content of Proposition 3.4.

In its simplest instance, the Gromoll map

λk,1 : πk Diffc(Rn) −→ πk−1 Diffc(Rn+1)

is the suspension of a loop of diffeomorphisms, and the maps λk,` for higher values
` ∈ N can be understood as concatenations of the maps λk,1. We accordingly focus
on the contact and symplectic analogues of λk,1 in Propositions 3.1 and 3.3.

3.1. Suspending a loop of contactomorphisms. — Let (X2n, dθ) be an exact sym-
plectic manifold and denote by

Sympc(X, ∂; θ)

the group of symplectomorphisms ψ : (X, dθ)→ (X, dθ) such that
– ψ has compact support and in the interior of X,
– ψ is an exact symplectomorphism: ψ∗(θ) = θ + df , for some smooth function

f : X → R with compact support in Int(X).
Let (M, kerα) be a contact manifold, possibly with boundary; in the analogous

fashion we define Contc(M,∂; kerα). Let us consider

{ηs}s∈[0,1] ∈ Ω1 Contc(M,∂; kerα)

a loop of compactly supported contactomorphisms such that ηs = id for s ∈
Op({0}∪{1}). The underlying loop of diffeomorphisms yields a compactly supported
diffeomorphism of M × R via

η̃(x, t) = (ηt(x), t),

where t is the coordinate on R and we extend ηs = id in the region s /∈ [0, 1]. Consider
the symplectization

(M × R, ω) = (M × R, d(etα)).
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We would like to upgrade the diffeomorphism η̃ ∈ Diffc(M × R, ∂) to a compactly
supported symplectomorphism of the symplectization.

Proposition 3.1. — Let (M, kerα) be a contact manifold and let {ηs}s∈[0,1] ∈
Contc(M,∂; kerα) be a loop of compactly supported contactomorphisms. There is a
compactly supported exact symplectomorphism φ of (M × R, d(etα)) representing the
class [η̃] ∈ π0 Diffc(M × R, ∂).

The proof of Proposition 3.1 uses the following technical lemma, with the same
input.

Lemma 3.2. — There exist a compactly supported isotopy {η̃s}s∈[0,1] and a compactly
supported smooth function k : M × R→ R such that

(3.1) η̃0 = η̃, (η̃1)∗
(
etα
)

= et(α+ k(x, t)dt).

Proof. — For each s ∈ [0, 1], ηs is a compactly supported contactomorphism and thus
there exist compactly supported functions fs : M → R such that

η∗s (α) = efs(x)α.

By definition of η̃, the pull–back of the Liouville form etα reads

η̃∗
(
etα
)

= et
(
eft(x)α+ g(x, t)dt

)
,

where g : M×R→ R is a compactly supported smooth function, since η̃ is the identity
away from a compact set. In order to correct the term introduced by the conformal
factors {ft}, consider the smooth map

η̌(x, t) = (ηt(x), t− ft(x)).

By construction,

η̌∗
(
etα
)

= et−ft(x)
(
eft(x)α+ g1(x, t)dt

)
= etα+ g2(x, t)dt,

where g1, g2 : M × R → R are compactly supported smooth functions, for the con-
formal factors {ft} and ηt respectively vanishing and equal the identity away from a
compact set. The smooth map η̌ satisfies the Equation 3.1 in the statement as long
as η̌ is indeed a diffeomorphism. Surjectivity follows from the fact that each ηt is a
diffeomorphism, and for any p ∈M , the function

t− ft(η−1
t (p))

is continuous, and agrees with t outside a compact set. It remains to ensure injectivity.
Injectivity for η̌ means that there do not exist pairs (x, t), (y, `) ∈M ×R such that

ηt(x) = η`(y) and t− ft(x) = `− f`(y).

Equivalently, at no point p ∈M do there exist two levels t, ` ∈ R such that

(3.2) t− ft(η−1
t (p)) = `− f`(η−1

` (p)).

In order to prove this, consider for each point p ∈M , the smooth function

Fp : R −→ R, Fp(t) = ft(η
−1
t (p)).
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By the intermediate value theorem, the equality (3.2) above implies that η̌ will be
injective if ‖DFp‖ < 1 for all p ∈ M ; note that a priori, we only know that the
derivatives ‖DFp‖ are bounded. To complete the proof, we use a rescaling trick.

Fix some small ε > 0 and define ρ ∈ Diffc(M × R, ∂) by

ρ(x, t) = (ηεt(x), t).

By construction,
ρ∗
(
etα
)

= et
(
efεt(x)α+ ζ(x, t)dt

)
for some smooth function ζ : M × R→ R and it suffices to show that the function

ρ̌(x, t) := (ηεt(x), t− fεt(x))

is injective. The analogue of equation (3.2) is now

t− fεt(η−1
εt (p)) = `− fε`(η−1

ε` (p)).

and the analogue of the function Fp is

Gp(t) := fεt(η
−1
εt (p)) = Fp(εt).

To ensure injectivity, it suffices to have ‖DGp‖ = ε‖DFp‖ < 1 for all p ∈ M , which
can be achieved so long as ε > 0 is sufficiently small. Suppose we have chosen such
an epsilon.

Finally, we need to check that ρ̌ is isotopic to η̃ through compactly supported
diffeomorphisms. Note that η̃ is isotopic to ρ through compactly supported diffeo-
morphisms, and we can also consider the linear interpolation

ρ̌`(x, t) = (ηεt(x), t− ` · fεt(x)) ` ∈ [0, 1]

between the diffeomorphisms ρ and ρ̌. As before, to show that each (ρ̌`)`∈[0,1] is
a diffeomorphism, it suffices to check injectivity. Proceeding as before we get the
condition ‖`DGp‖ < 1 for all p ∈M , which holds for ` ∈ [0, 1]. �

Proof of Proposition 3.1. — Let us start with the map ψ = η̃1 given to us by Lemma
3.2; we will post-compose it with a compactly supported Moser isotopy in order to
obtain a compactly supported symplectomorphism of (M × R, d(etα)). First, non-
degeneracy of the symplectic 2–form ω = d(etα) gives the pointwise inequality

(3.3)
(
d
(
etα
))∧n

> 0.

Consider the pullback of ω by the diffeomorphism ψ

ψ∗
(
d
(
etα
))

= d
(
etα
)

+ d(k(x, t)) ∧ dt,

where k : M×R→ R is a compactly supported smooth function. This pull–back form
is a symplectic structure on M × R, so we also have the pointwise inequality

(3.4) ψ∗
(
d
(
etα
))∧n

=
(
d
(
etα
))∧n

+ C
(
d
(
etα
))∧(n−1) ∧ dk ∧ dt > 0

for some binomial coefficient C. Now consider the linear interpolation between these
two symplectic forms:

ω` := (1− `)ω + `ψ∗ω = d
(
etα
)

+ `d(k(x, t)) ∧ dt, ` ∈ [0, 1].
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These are closed 2–forms by linearity of the differential, and we also have

(ω`)
∧n =

(
d
(
etα
))∧n

+ ` · C
(
d
(
etα
))∧n−1 ∧ dk ∧ dt

which, by equations (3.3) and (3.4), is strictly positive at every point. This implies
that each of the 2–forms ω` is a symplectic structure, and further they are all exact
and agree with ψ∗ω outside a compact subset of M ×R. Applying the Moser isotopy
theorem to this family of symplectic forms ω` provides the symplectomorphism φ, as
required. �

Proposition 3.1 constructs the contact–symplectic Gromoll map

λc
1,1 : π1 Contc(M,∂; kerα) −→ π0 Sympc(M × R, ∂; d(etα)), λc

1,1(η) = φ.

We now proceed to establish the symplectic–contact counterpart.

3.2. Suspending a loop of symplectomorphisms. — Let (M2n, dθ) be an exact sym-
plectic manifold and let [{φs}] ∈ π1(Sympc(M,∂;ω, θ)) be a path of such exact sym-
plectomorphisms, represented by a one–parameter family of maps (φs)s∈[0,1] which
satisfies

– φs = id for s ∈ Op({0} ∪ {1});
– φ∗sθ = θ + dfs, for a smooth family fs : M → R with compact support inside

Int(M).
Now consider the contact manifold (M × R, ker(θ − dz)), where z is the coordinate
on R. The class [{φs}] induces the isotopy class of diffeomorphisms

[φ̃] ∈ π0 Diffc(M × R, ∂), φ̃(x, z) = (φz(x), z),

where we have extended the family φz by the identity in the natural manner.
In order to define the symplectic–contact Gromoll map

λs1,1 : π1 Sympc(M,∂; θ) −→ π0 Contc(M × R, ∂; ker(θ − dz)),

we now prove the following proposition.

Proposition 3.3. — There is a contactomorphism η ∈ Contc(M × R, ∂; ker(θ − dz))
smoothly isotopic to φ̃ through compactly supported diffeomorphisms of M × R.

Proof. — First, note that the pull–back of the contact form can be written as

φ∗(θ − dz) = θ + dx(fz(x)) + g(x, z)dz − dz

for some smooth function g : M ×R→ R, which is supported in the union of the sets
supp(φz) × [0, 1] for z ∈ [0, 1]. Now, let us fix a small constant ε ∈ R+ and consider
the map

ψ(x, z) := (φεz(x), z).

The maps φ and ψ are certainly isotopic through compactly supported diffeomor-
phisms fixing an open neighborhood Op(∂(M × R)). Let e ∈ Diff(M × R) be the
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diffeomorphism e(x, z) := (x, εz), which we can use to write ψ = e−1 ◦φ ◦ e, and thus
the chain rule implies

ψ∗(θ − dz) = θ + dx(fεz(x)) + εg(x, εz)dz − dz.

Consider the family of one-forms

λs := θ + s · (dx(fεz(x)) + εg(x, εz)dz)− dz, s ∈ [0, 1].

By construction, λ0 = θ− dz and λ1 = ψ∗(θ− dz), and we claim that the 1–forms λs
are contact for all s ∈ [0, 1] provided that ε is suitably small.

Indeed, let f, fε : M × R → R be given by f(x, z) = fz(x), and fe(x, z) = fεz(x),
and let gε(x, z) = g(x, εz). Now, for a fixed choice of metric, each of the terms in

(3.5) (dλ0)n ∧ λ0 − (dλs)
n ∧ λs

is bounded above in absolute value by a product of binomial coefficients, multiples
of s, and at least one multiple of one of the following terms:

‖dzdxfε‖ = ε‖dzdxf‖, ‖εgε‖ = ε‖g‖, ‖dx(εgε)‖ = ε‖dxg‖.

In consequence, for sufficiently small ε, the two 1–forms (dλ0)n ∧ λ0 and (dλs)
n ∧ λs

are of the same non-zero sign at each point, and thus λs is a contact form for every
s ∈ [0, 1]. Then, by applying the Gray stability theorem to the family of contact
structures {kerλs}s∈[0,1] we obtained the desired isotopy and the contactomorphism η

in the statement. �

3.3. Symplectic and contact Gromoll filtration. — By applying Propositions 3.1
and 3.3 to Dk–parametric families of maps, we have proven the following:

Proposition 3.4. — Let (M, θ) be an exact symplectic manifold, (N, kerα) a contact
manifold and k ∈ N. Then the smooth Gromoll filtration can be refined as follows:

(1) There exists a symplectic–contact Gromoll map

λsk,1 : πk Sympc(M,∂;ω, θ) −→ πk−1 Contc(M × R, ∂; ker(θ − dz))

such that the following diagram commutes:

πk Sympc(M,∂;ω, θ)
λsk,1

//

��

πk−1 Contc(M × R, ∂; ker(θ − dz))

��

πk Diffc(M,∂)
λk,1

// πk−1 Diffc(M × R, ∂),

where the vertical maps are induced by the natural inclusions.
(2) There exists a contact–symplectic Gromoll map

λc
1,1 : π1 Contc(M,∂; kerα) −→ π0 Sympc(M × R, ∂; etα)
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such that the following diagram commutes:

πk Contc(N, ∂; ker(α))
λc
k,1

//

��

πk−1 Sympc(N × R, ∂; etα)

��

πk Diffc(N, ∂)
λk,1

// πk−1 Diffc(N × R, ∂),

where the vertical maps are induced by the natural inclusions. �

Composing the contact and symplectic Gromoll maps alternately, one obtains:
(a) For an odd number 2`+ 1 ∈ N,

λck,2`+1 : πk Contc(N, ∂; kerα) −→ πk−2`−1 Sympc(M × R2`+1, ∂; θ(α)),

where θ(α) denotes the Liouville stabilization of the contact form α, and

λsk,2`+1 : πk Sympc(M,∂; θ) −→ πk−2`−1 Contc(N × R2`+1, ∂;α(θ)),

where α(θ) denotes the contact stabilization of the Liouville form θ.
(b) For an even number 2` ∈ N,

λck,2` : πk Contc(N, ∂; kerα) −→ πk−2` Contc(N × R2`, ∂; α̃),

where α̃ denotes the contact stabilization of the contact form α, and

λsk,2` : πk Sympc(M,∂; θ) −→ πk−2` Sympc(M × R2`, ∂; θ̃),

where θ̃ denotes the Liouville stabilization of the Liouville form θ.

Remark 3.5. — Given a loop of contactomorphisms {ηt}, the scaling argument in
Proposition 3.1 suggests the following question: is the minimum length in R of the
image of the support of a symplectic representative of η̃ an interesting invariant?
The methods of the proof yield a naive such length of at most max(p,t)∈M×R (−DFp|t)
for each path, and zero in the case of a loop of strict contactomorphisms.

By analysing the terms of Equation 3.5 in the proof of Proposition 3.3 more
carefully, one gets analogous bounds involving the correction functions ft, where
φ∗t θ = θ + dft. In more generality, one could ask about the minimal volume that
can be achieved by representatives of a class in the groups πk Symp and πk Cont. �

4. Proofs of Theorems 1.1 and 1.2

Let us give the geometric construction underlying the proof of Theorem 1.1 in a
nutshell.

We start with an almost complex diffeomorphism of R4n representing the smooth
mapping class of the Kervaire sphere, which by Proposition 2.7 can be assumed to
preserve the distance to the origin and act as the identity in a neighborhood of the
origin and infinity. Moreover, the associated loop of diffeomorphisms of the spheres
S4n−1 is realised by a loop of almost-contact diffeomorphisms. We next show there is
an overtwisted contact structure on the sphere S4n−1 such that this loop of almost-
contact diffeomorphisms is realised by a loop of contactomorphisms. We then upgrade
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this loop of contactomorphisms to a symplectomorphism of the symplectization using
Proposition 3.1.

Remark 4.1. — The resulting symplectic structure is non–standard but, as we shall
further discuss in Section 5, it has appeared in the symplectic topology literature
before. �

4.1. Loop of contactomorphisms. — Let us focus on the first step. Consider the
almost contact structure (S4n−1, Jst) induced by the restriction Jst|S4n−1 of the stan-
dard almost complex structure on S4n−1× [0.1, 0.9] ⊆ D4n. By Proposition 2.7, there
exists an almost complex diffeomorphism µ ∈ Diff(D4n, ∂; Jst) such that

(a) [µ] ∈ π0 Diff(D4n, ∂) is the clutching map for the Kervaire sphere.
(b) µ(S4n−1 × {t}) = S4n−1 × {t},∀ t ∈ (0, 1).

(c) µ|Op({0}) = id and µt := µ|S4n−1×{t} is compactly supported away from the
disks

∆× {t} ⊆ S4n−1 × {t},
where ∆ ∼= D4n−1 ⊆ S4n−1 is a fixed small disk independent of t ∈ (0, 1).

Moreover, by Property II in Proposition 2.7 each µt is an almost contactomorphism;
more precisely, there exists a smooth (s, t)–parametric family of almost-contact struc-
tures ξ′t,s satisfying

ξ′t,0 = ξst; ξ′t,1 = (µt)∗ξst; ξ′t,s = ξst for all t ∈ Op({0} ∪ {1}).

The maps µt belong to the compactly supported subgroup Diff(D4n−1, ∂; Jst) ⊆
Diff(S4n−1; Jst) by the above properties, where D4n−1 = S4n−1 r ∆, and satisfy
µt = id for t ∈ (0, 0.1]∪ [0.9, 1). Examining Property II in Proposition 2.7, we see that
for all t and s,

ξ′t,s|∆ = ξst|∆.
Thus the maps {µt} together with the data of the family ξ′t,s define a homotopy

class [µt] ∈ π1 Diff(D4n−1, ∂; Jst) of loops of almost contact maps.
Now consider a slightly larger disc embedding D4n−1⊂S4n−1, where we now assu-

me we picked an embedding and a metric such that D4n−1 has radius one, and

∪t∈[0,1] supp(µt) ⊂ D4n−1(0.9) and D4n−1 rD4n−1(0.9) ⊂ ∆.

Equip D4n−1 with the unique overtwisted contact structure ξot which is standard
on a neighbourhood of ∂D4n−1 and lies in the same almost contact class as the
structure induced by Jst. In addition, choose the contact structure such that the
shell D4n−1(0.95) r D4n−1(0.9) contains an overtwisted disc. In this case, the loop
of contact structures (µt)∗(ξot) consists of overtwisted contact structures sharing a
fixed embedded overtwisted disk in the shell regionD4n−1(0.95)rD4n−1(0.9) since the
almost contactomorphisms µt are supported away from the overtwisted disc. Inserting
overtwisted discs in D4n−1(0.95) rD4n−1(0.9), the two-parameter family of almost-
contact structures ξ′t,s can be modified to a family ξ′′t,s such that:

ξ′′t,0 = ξot; ξ
′′
t,1 = (µt)∗ξot; ξ

′′
s,t = ξot ∀ t ∈ Op({0}∪{1}); ξ′′t,s|∆∩D4n−1 = ξot|∆∩D4n−1 .
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By [3, Th. 1.2], applied relative to a fixed neighbourhood Op(∂D4n−1), there exists
a smooth, two-parameter family of contact structures {ξt,s}s∈[0,1] such that for all t,

ξt,0 = ξot; ξt,1 = (µt)∗(ξot); ξs,t = ξot ∀ t ∈ Op({0} ∪ {1}).

Note that in general the homotopy must be non–trivial in a neighbourhood of
the overtwisted disk and thus in the region D4n−1(0.95) rD4n−1(0.9), but it will be
constant on a neighbourhood of the boundary: that is, for all t and s we have

ξt,s|Op(∂D4n−1) = ξot|Op(∂D4n−1) = ξst|Op(∂D4n−1).

For each fixed t ∈ [0, 1], the isotopy of contact structures produces, by using
Gray’s stability theorem, a path of compactly supported diffeomorphisms {gt,s}s∈[0,1]

of D4n−1 such that

(gt,s)∗ξt,s = ξot, gt,s|Op(∂D4n−1) = id ∀ (t, s) ∈ [0, 1]2, gt,s = id ∀ t ∈ Op({0} ∪ {1}).

In particular, we obtain the two equalities

gt,0 = id, (gt,1 ◦ µt)∗ξot = ξot, ∀ t ∈ [0, 1],

and thence Gt = {gt,1 ◦µt}t∈[0,1] defines a path of contactomorphisms for the contact
structure (D4n−1, ∂; ξot), and a homotopy class

[Gt] ∈ π1 Cont(D4n−1, ∂; ξot) ⊆ π1 Cont(S4n−1; ξot).

Observe that the path {Gt} is smoothly isotopic to {µt} because gt,1 is the time-1
flow of a vector field, and thus [Gt] = [µt] ∈ π1 Diff(D4n−1, ∂; Jst) maps to the class of
the Kervaire sphere in π0 Diff(D4n, ∂; Jst). This establishes the core of the argument.

Proof of Theorem 1.1. — By applying Proposition 3.1 to the loop of contactomor-
phisms {Gt}t∈[0,1] constructed in the previous subsection and the symplectization
of the overtwisted contact manifold (D4n−1, ξot) we obtain the statement of Theo-
rem 1.1. �

Remark 4.2. — Let n > 3. The Gromoll map

λ1,1 : π1 Diff(D2n−1, ∂) −→ π0 Diff(D2n, ∂)

is surjective; see [10, Cor. 2.3]. Fix
– a class [f ] ∈ π0 Diff(D2n, ∂)

– and a lift [{ft}] ∈ π1 Diff(D2n−1, ∂).
Then if [{ft}] lies in the image of the forgetful map

π1 Diff(D2n−1, ∂; J) −→ π1 Diff(D2n−1, ∂),

one can apply the arguments in this section to upgrade [{ft}] to a path [{f̃t}] ∈
π1 Cont(D2n−1, ∂; ξot), and in turn a representative for f in Symp(D2n, ∂; d(etαot)).
We remark that for any class in ker(π1 Diff(D2n−1, ∂; J)→ π0 Diff(D2n, ∂)), our con-
struction yields a smoothly trivial symplectomorphism which may or may not be
symplectically trivial (or even trivial as an almost complex map).
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Remark 4.3. — Our construction associates a compactly supported symplectomor-
phism fA to any element of π2n U(n) ∼= Z/(2n)!, say with representative A : R2n →
U(n). Set Ar(x) = (A(x))r. One can check that fAr is Hamiltonian isotopic to (fA)r.
(One strategy is to deform Ar to a representative given by r copies of A on r disjoint
balls in the domain, and follow the steps of the above construction.) On the other
hand, picking a null-homotopy from A(2n)! to the identity and following the above
steps, one can now see that f (2n)!

A is Hamiltonian isotopic to the identity. (Formally,
one would use parametric versions of e.g. Proposition 2.7.) Therefore, the map of
Theorem 1.1 has order at most (2n)! in π0 Symp(D4k, ∂;ωot).

4.2. 3- and 5-dimensional families of contactomorphisms. — Following the argu-
ment in the previous Subsection 4.1, starting from the 3 and 5–dimensional families
of almost contactomorphisms of Proposition 2.9, we obtain the following result:

Proposition 4.4. — For n > 3 odd, there are classes

[Ht] ∈ π3 Contc(R4n−3; ξot) and [Kt] ∈ π5 Contc(R4n−5; ξot)

such that under the composition

π3 Contc(R4n−3; ξot) −→ π3 Diffc(R4n−3) −→ π0 Diffc(R4n),

where the first is induced by inclusion, and the second is a Gromoll map, the class [Ht]

maps to the clutching map for the Kervaire sphere, and similarly for [Kt]. In partic-
ular, for any odd n such that n /∈ {1, 3, 7, 15, 31}, the homotopy groups

π3 Contc(R4n−3; ξot) and π5 Contc(R4n−5; ξot)

are non-trivial. �

A straightforward consequence of Propositions 4.4 and 3.4 is the following:

Corollary 4.5. — Consider (R2n, ωot), the symplectization of the overtwisted contact
manifold (R2n−1, kerαot). For all odd n with n /∈ {1, 3, 7, 15, 31}, the homotopy groups

π2 Sympc(R4n−2;ωot) and π4 Sympc(R4n−4;ωot)

are non-trivial. �

Theorem 1.2 follows directly from the previous two results. Browder [5] proved that
any h-space with non-trivial second homotopy group does not have the homotopy type
of a finite cell complex, and Hubbuck [24] proved that any homotopy-commutative
h-space which is homotopy equivalent to a finite cell complex has vanishing homotopy
groups in all degrees > 2.

Corollary 4.6. — For all odd n with n /∈ {1, 3, 7, 15, 31}, each of the spaces

Sympc(R4n−2;ωot), Contc(R4n−3; ξot),

Sympc(R4n−4;ωot), Contc(R4n−5; ξot),

does not have the homotopy type of a finite-dimensional cell complex.
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5. Concluding Remarks

This section collects some supplementary material. First, we discuss the symplec-
tic structure obtained by symplectizing an overtwisted contact structure. Then, we
globalize the construction in the previous section by implementing it inside a general
symplectic cobordism. Finally, we mention some facets of the problem in relation to
the standard symplectic structure on Euclidean space.

5.1. Overtwisted Symplectizations. — Recall that a Weinstein structure (X, θ, Z)

on an exact symplectic manifold (X,ω = dθ) is a (complete) Liouville vector field Z,
LZ(ω) = ω, which is gradient-like for an exhausting Morse function on X.

Proposition 5.1. — Let (R2n−1, ξot) be an overtwisted contact structure, let
S (R2n−1, ξot) be its symplectization and n>3. Then S (R2n−1, ξot) does not support
a Weinstein structure.

Proof. — Via translation, in a symplectization, any compact subset can be displaced
from itself by a conformally symplectic isotopy, which indeed conformally rescales the
primitive of the symplectic form. It follows that a closed exact Lagrangian submanifold
in a symplectization can be displaced from itself through a path of exact Lagrangian
submanifolds. Any such path of closed exact Lagrangians can be embedded into the
flow of a global Hamiltonian isotopy. On the other hand, in a Weinstein manifold a
closed exact Lagrangian submanifold is never Hamiltonian displaceable since its self-
Floer cohomology is well-defined and non-vanishing, cf. [15, 36]. It therefore suffices
to construct a closed exact Lagrangian in S (R2n−1, ξot).

Consider the Legendrian unknot Λ0 ⊆ (R2n−1, ker(e1αot)) at the contact level of
unit height, and note that in the concave piece of the symplectization {t 6 1} ⊆
S (Op(Λ0), ξst) of a Darboux neighborhood (Op(Λ0), ξst) of this Legendrian Λ0 there
exists an embedded exact Lagrangian disk L− = D0 which bounds the Legendrian
unknot Λ0. Simultaneously, the contact structure (R2n−1, ker(e1αot)) is overtwisted
and thus the Legendrian unknot Λ0 is also a loose Legendrian [3, 9]. The existence
h–principle for exact Lagrangian embeddings with concave Legendrian boundary [14]
now implies that there exists a exact Lagrangian L+ ⊆ {t > 1} ⊆ (R2n−1, ker(e1αot))

with boundary Λ0. This constructs an exact Lagrangian embedding L = L− ∪Λ0
L+

inside the symplectization of any overtwisted contact structure. �

5.2. Globalisation to symplectic cobordisms. — A Weinstein cobordism (M,λ,Z)

comprises an exact symplectic manifold (M,dλ) with boundary components ∂+M

and ∂−M , and a Liouville vector field Z which is inwards-pointing along ∂−M and
outwards-pointing along ∂+M . (The vector field should be gradient-like for a Morse
function which is constant on the boundary components.) The construction of sym-
plectic structures with symplectic exotic mapping classes detailed in Section 4 can
be implanted in a local manner into the concave end of a 2n–dimensional symplec-
tic cobordism (X,ω). Indeed, it suffices to use the following Weinstein cobordism
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(M,λ,Z) which interpolates, as a smooth concordance, between an overtwisted con-
tact structure (S2n−1, ξot) in the concave end and the standard contact structure
(S2n−1, ξst).

Proposition 5.2 ([9]). — Suppose that n > 3. Then there is a Weinstein structure
(M,λ,Z) on the smoothly trivial cobordism M ∼= [0, 1]× S2n−1 such that (∂+M,λ) ∼=
(S2n−1, ξst) and (∂−M, ker(λ)) is the unique overtwisted contact sphere in the almost
contact class of ξst.

This Weinstein cobordism (M,λ,Z) can be implanted in any symplectic cobordism
(X,ω) by performing a vertical connected sum with a piece of the symplectization
of the non–empty concave end (∂−X,λ−). For a closed symplectic manifold (X̃, ω),
corresponding to the case where the concave end is empty, we can remove a Dar-
boux ball and obtain a symplectic cobordism (X,ω) whose concave end (∂−X,λ−)

is contactomorphic to the standard contact sphere (S2n−1, ξst). Then, the Weinstein
cobordism (M,λ,Z) can be concatenated and yields a symplectic structure

(X,ωot) := (M,λ,Z) ∪(S2n−1,ξst) ((X̃, ω) r (D2n, λst))

with a conical singularity at the concave end (∂−M,λ).
These symplectic structures (X,ωot) have a unique concave overtwisted end or,

equivalently, a conical symplectic singularity modelled on an overtwisted sphere. Such
conical symplectic structures have appeared in symplectic topology before: they play
an essential role in the h–principle for symplectic cobordisms [13], since the h–principle
fails unless the singularities are allowed [20, 30]; and overtwisted conical ends are the
model for the singularities of near–symplectic structures [2, 37].

The inertia group of an n-manifold N is the subgroup of exotic n-spheres Σ for
which N#Σ is diffeomorphic to N . Consider the map

ic : Diffc(M) −→ Diffc(X)

induced by the inclusion i : (M,λ,Z)→ (X,ωot). The diffeomorphisms f ∈ Diffc(M)

constructed in Section 4 have non-trivial image [ic(f)] ∈ π0 Diffc(X) when the Ker-
vaire sphere is smoothly exotic and does not lie in the inertia group of X × S1.

Lemma 5.3. — Let (X,ω) = (Σ1 × · · · ×Σn, ω1 ⊕ · · · ⊕ ωn) be the product of compact
symplectic surfaces (Σi, ωi), 1 6 i 6 n, each one of arbitrary genus. The inertia group
I(X × S1) vanishes.

Proof. — The inertia group I(X × S1) equals the group of smooth mapping classes
on X which are supported in a disk and are pseudo–isotopic to the identity [29,
Prop. 1]. Consequently, I(X × S1) is contained in the inertia group of any manifold
containing X in codimension 1 [17, Th. 4.1]. Thus I(X ×S1) ⊆ I(S2n+1) = 0, thanks
to the embedding X ⊆ S2n+1. (When each Σi has genus at most 1, the result was
known from [34].) �

In particular, we obtain smoothly non-trivial symplectomorphisms of “punctured”
symplectic structures on tori and products of 2-spheres.
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5.3. The standard symplectic structure. — A natural question is whether one can
use the Milnor-Munkres description of the clutching map of the Kervaire sphere to
find a representative for it that is a symplectomorphism for the standard symplectic
form; this remains open.

There exist representatives for the generator of π2n U(n) with large amounts of
symmetry, e.g. coming from Samelson products [4]; explicit formulae are given in [32].
Before launching herself into calculations, the curious reader should note that for these
representatives we have checked that the linear interpolation between the standard
symplectic form and its pullback is not a path of symplectic forms.

We conclude with three remarks, whose proofs we only outline, given that they
pertain to non-trivial symplectomorphisms of (D2k, ωst) which are not known to exist.

Remark 5.4. — Let φ ∈ Symp(D2k, ∂;ωst).
(1) There is a well-defined canonically Z-graded Floer cohomology group HF ∗(φ),

see [35, 31, 38]. We claim this is necessarily isomorphic to HF ∗(id), hence of rank 1

and concentrated in degree zero. Indeed, one can implant the graph of φ into the
zero-section of T ∗S2k to obtain an exact Lagrangian submanifold Lφ which is Floer-
theoretically isomorphic to the zero-section [16], and then argue that HF ∗(φ) appears
as a summand in HF ∗(S2k, Lφ).

(2) If φ exists, it yields a non-trivial element in π0 Symp(T 2k, ωst), by Lemma
5.3. On the other hand, from the arguments of [1, §9] and Orlov’s classification of
autoequivalences of derived categories of abelian varieties, one sees that this symplec-
tomorphism acts trivially on the (unobstructed or full) Fukaya category DπF(T 2k).
This gives a strong sense in which φ would be invisible to classical Floer theory.

(3) If φ has image equal to the Kervaire sphere under the map

π0 Symp(D2k, ∂;ωst) −→ π0 Diff(D2k, ∂),

and if k is even and 2k + 1 6= 2j − 3, there are counterexamples to the “nearby La-
grangian conjecture”. Indeed, either Lφ ⊂ T ∗S2k provides a counterexample, or, by
using a suspension of a Hamiltonian isotopy from Lφ to the zero-section, one can
construct a Lagrangian embedding Σ[φ]◦u2 ↪→ T ∗S2k+1 for some u ∈ Diff(D2k, ∂)

(compare to [12]; the unknown reparametrization map u arises from the fact that the
isotopy to the zero-section need not be one of parametrized Lagrangians). The dimen-
sion constraints on k imply [7, Th. 1.1] that the Kervaire sphere has no square root
in Θ2k+1, hence Σ[φ]◦u2 is exotic. This connects the existence question considered in
this paper to the nearby Lagrangian conjecture, which has seen much recent activity.
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Appendix: Exotic diffeomorphisms and overtwisted contact structures
by Sylvain Courte

In this appendix we prove a refinement of Theorem 1.1, see Theorem 9 below. This
note is self-contained but the main idea is similar: We use the flexibility properties
of overtwisted contact structures to reduce to a topological problem. The latter is
then solved in full generality, as Lemma 2.4 suggested that it was possible. Section A
presents well known material concerning contact and symplectic diffeomorphisms and
Section B contains our main result.

Here are a few conventions and notations. A manifold M has empty boundary
unless otherwise stated. The group of compactly supported diffeomorphisms of M is
denoted Dc(M). The spaces of structures or of diffeomorphisms to be considered in
this text are always equipped with the strong C∞-topology. We denote by Ωkc (M) the
space of compactly supported k-forms on M . A Serre fibration is a continuous map
having the homotopy lifting property with respect to the closed disk Dk for all k > 0,
it need not be surjective. Contact structures are cooriented.

A. Generalities on contact and symplectic diffeomorphisms

A.1. Contact structures. — Let (M, ξ) be a contact manifold. The group Dc(M)

acts on the space Cc(M ; ξ) of contact structures that agree with ξ outside of a compact
set by pullback. Gray’s stability can be formulated as follows (see [18, Lem. 1.1]).

Lemma 1. — The map Dc(M) → Cc(M ; ξ) defined by φ 7→ φ∗ξ is a Serre fibration
whose fiber over ξ is the group Dc(M ; ξ) of contact diffeomorphisms.

The formal (or homotopical) analogue of a contact structure is called an almost
contact structure, it consists in a hyperplane field ξ together with a non-degenerate
skew-symmetric pairing ξ × ξ → TM/ξ. For a genuine contact structure, this pairing
is given by the curvature. Given an almost contact structure ξ (we shall abusively
forget the pairing in the notation), the group Dc(M) also acts on the space C f

c (M ; ξ)

of almost contact structures that agree with ξ outside of a compact set by pullback.
Here we have to use the mapping path space construction to get a Serre fibration: we
replace Dc(M) by the homotopy equivalent space of couples (φ, ζ), where φ ∈ Dc(M)

and (ζt)t∈[0,1] is a path in C f
c (M ; ξ) with ζ0 = φ∗ξ, and consider the Serre fibration

(φ, ζ) 7→ ζ1. The fiber over ξ is denoted Df
c (M ; ξ) and its elements may be called

almost contact diffeomorphisms.
If ξ is a genuine contact structure, these fibrations are related to each other by

forgetful maps. It is a difficult question in general to determine the difference between
almost contact and genuine contact diffeomorphisms. However in the case where ξ
is overtwisted (see [3]), the situation is much better, as attested for example by the
following proposition.

J.É.P. — M., 2018, tome 5



Symplectomorphisms of exotic discs 311

Proposition 2. — Let (M, ξ) be an overtwisted contact manifold of dimension
2n − 1 > 3 which is connected and non-compact. The forgetful map πkDc(M ; ξ) →
πkDf

c (M ; ξ) is surjective for all k > 0.

Proof. — Let D ⊂M be an overtwisted disc and (φt, ζt,s)t∈Dk,s∈[0,1] be representing
an element of πkDf

c (M ; ξ), namely ζt,0 = φ∗t ξ, ζt,1 = ξ and (φt, ζt,s) = (id, ξ) for
t ∈ ∂Dk and also outside of a compact set for all (t, s).

Assume for a moment that, near D, φt = id and ζt,s = ξ. Borman-Eliashberg-
Murphy’s theorem [3, Th. 1.2] then says that ζt,s is homotopic to a family ξt,s of
contact structures, relative to (t, s) ∈ ∂(Dk× [0, 1]), to D and to the complement of a
compact set. By Lemma 1, we get a family θt,s ∈ Dc(M) such that θt,1 = id, θt,s = id

for s ∈ ∂Dk and (θt,s)
∗ξt,s = ξ. Then φt ◦ θt,0 ∈ Dc(M ; ξ) represents the required lift.

The general case can be reduced to the previous one by the following trick which
makes use of the non-compactness hypothesis. Let T be the image of a proper em-
bedding of [0,+∞) × D2n−2 which contains D in its interior and pick a compactly
supported isotopy (ψu)u∈[0,1] such that ψ0 = id and ψ1(T ) is disjoint from the support
of the diffeomorphisms φt. Consider then φut = ψ−1

u ◦ φt ◦ ψu, which satisfies φ1
t = id

near T (and in particular near D). We turn the diffeomorphisms φ1
t into elements of

Df
c (M ; ξ) by equipping them with the path (ζ1

t,s)s∈[0,1] obtained by concatenating the
paths ((φ1−u

t )∗ξ)u∈[0,1] and (ζt,s)s∈[0,1]. To reduce to the previous case, the last thing
to do is to deform the path ζ1

t,s near T so that it is constant equal to ξ there. There is
no obstruction to do it: we have ζ1

t,s = ξ in [L,+∞)×D2n−2 for L large enough, and
ζ1
t,s = ξ for s = 0, 1 or t ∈ ∂Dk so we can deform ζ1

t,s relative to s = 0, 1 and relative to
t ∈ ∂Dk so that ζ1

t,s = ξ on T (by retracting T progressively on [L,+∞)×D2n−2). �

A.2. Symplectic structures. — Let (W,ω) be a symplectic manifold such that ω is
exact. The group Dc(W ) acts on the space Sc(W ;ω) of symplectic structures of the
form ω+ dθ with θ ∈ Ω1

c(W ) by pullback. Moser’s stability can also be formulated as
a Serre fibration statement.

Lemma 3. — The map Dc(W )→ Sc(W ;ω) defined by φ 7→ φ∗ω is a Serre fibration,
whose fiber over ω is the group Dc(W ;ω) of symplectic diffeomorphisms.

A.3. Pseudo-isotopy and symplectization. — Let M be a manifold. We use the fol-
lowing terminology to discuss different regions of R×M :

– near the positive end = in {(t, x) | t > f(x)} for some function f : M → R,
– near the negative end = in {(t, x) | t 6 f(x)} for some function f : M → R,
– near the vertical end = in R× (M rK) for some compact set K ⊂M .

Let X denote the vector field ∂/∂t on R ×M . Observe that the above notions de-
pend only on the projection R ×M → M and not on the splitting. We denote by
Ωk+(R ×M) the space of k-forms which vanish near the negative and vertical ends.
The group D+(R×M) of diffeomorphisms which are the identity near the vertical and
negative ends and preserve X near the positive end is an incarnation of the pseudo-
isotopy group of M . Cerf’s pseudo-isotopy theorem (see [10]) says that this group is
connected if M is simply-connected and of dimension at least 5. Any diffeomorphism
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φ ∈ D+(R ×M) is of the form (t, x) 7→ (t + f(x), φ+(x)) near the positive end for
some φ+ ∈ Dc(M) and some f ∈ Ω0

c(M). Thus there is a map D+(R×M)→ Dc(M)

defined by φ 7→ φ+.

Lemma 4. — The map D+(R ×M) → Dc(M) is a Serre fibration and the inclusion
of Dc(R×M) in the fiber over the identity map is a weak homotopy equivalence.

Proof. — We only indicate the proof of the homotopy lifting property for a point
since the proof is identical for a closed disk Dk. A similar comment applies to other
proofs in the sequel.

Let (ψs)s∈[0,1] ∈ Dc(M), ψ0 = id. Consider the lift (t, x) 7→ (t, ψs(x)) and cut off
the corresponding vector field near the negative end to get the required lift Ψs ∈
D+(R×M).

The fiber over the identity map, denoted F , consists in diffeomorphisms φ which
are of the form φ(t, x) = (t + f(x), x) near the positive end for some f ∈ Ω0

c(M).
Consider φs(t, x) = (t+ f(x)− sρ(t, x)f(x), x), where ρ is a function on R×M which
equals 1 near the positive end and 0 elsewhere. It is a diffeomorphism as long as
1− f∂ρ/∂t > 0. This condition can be guaranteed by taking ρ increasing sufficiently
slowly in the t-direction. Hence φs provides a path in F joining φ0 to φ1 ∈ Dc(R×M).
More generally, for any continuous map (Dn, ∂Dn) → (F,Dc(R × M)), the same
formula (with suitable ρ) will deform it among such maps and relative to ∂Dn into a
map Dn → Dc(R ×M). Hence, the inclusion Dc(R ×M) → F is a weak homotopy
equivalence. �

Let us now discuss the symplectic analogue of the above (compare [11, §14.5]). Let
(M, ξ) be a contact manifold and SM its symplectization, namely the set of β ∈ T∗M

such that kerβ = ξ (as cooriented hyperplanes). Sections of the projection SM →M

correspond to contact forms α for ξ and induce splittings SM = R ×M for which
the canonical Liouville form writes λ = etα, the corresponding symplectic form is
ω = d(etα) and the corresponding Liouville vector field is X = ∂/∂t. Consider the
space S+(SM ;ω) of symplectic structures of the form ω + dθ, where θ ∈ Ω1

+(SM)

satisfies Xydθ = θ near the positive end. Note that X is then a Liouville vector field
for ω + dθ near the positive end, and thus induces a contact structure on M (seen
as a section near the positive end). We thus get a map S+(SM ;ω)→ Cc(M ; ξ). The
group D+(SM) acts on S+(SM ;ω) by pullback, and we consider the map D+(SM)→
S+(SM ;ω) defined by φ 7→ φ∗ω, whose fiber over ω is denoted D+(SM ;ω). Observe
that the composition D+(SM ;ω)→ D+(SM)→ Dc(M) takes values in the subgroup
Dc(M ; ξ). The following commutative diagram sums up the situation:

(A.1)

Dc(SM ;ω) //

��

D+(SM ;ω) //

��

Dc(M ; ξ)

��

Dc(SM) //

��

D+(SM) //

��

Dc(M)

��

Sc(SM ;ω) // S+(SM ;ω) // Cc(M ; ξ).
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Lemma 5

(1) The map S+(SM ;ω) → Cc(M ; ξ) is a Serre fibration and the inclusion of
Sc(SM ;ω) in the fiber over ξ is a weak homotopy equivalence.

(2) The map D+(SM) → S+(SM ;ω) is a Serre fibration whose fiber over ω is
D+(SM ;ω).

(3) The map D+(SM ;ω) → Dc(M ; ξ) is a Serre fibration whose fiber over the
identity map is precisely Dc(SM ;ω).

Proof

(1) Let (ξs)s∈[0,1] be a path in Cc(M ; ξ) and ω0 ∈ S+(SM ;ω) inducing ξ0. By
Lemma 1, we find φs ∈ Dc(M) such that φ0 = id and φ∗sξ0 = ξs. By lemma 4, we
may lift φs to a path Φs ∈ D+(SM) and Φ∗sω0 is then the required lift of ξs.

Let F be the fiber over ξ and ω0 ∈ F . Fix a splitting SM = R×M induced by a
contact form α. Then ω0 writes d(etefα) near the positive end for some f ∈ Ω0

c(M).
We pick a function ρ : SM → [0, 1] equal to 1 near the positive end and vanishing
elsewhere. Then the formula (d(etef−sρfα))s∈[0,1] defines a path in F , as long as
1− f∂ρ/∂t > 0, joining ω0 to an element of Sc(SM ;ω). As in the proof of Lemma 4,
this ensures that the inclusion Sc(SM ;ω)→ F is a weak homotopy equivalence.

(2) Let (ωs)s∈[0,1] be a path in S+(SM ;ω) and Φ ∈ Dc(SM) such that ω0 = Φ∗ω.
Consider the contact structure ξs ∈ Cc(M ; ξ) induced by ωs near the positive end. By
Lemma 1, we find ψs ∈ Dc(M) such that ψ0 = id and ψ∗sξ0 = ξs. These diffeomor-
phisms lift to diffeomorphisms Ψs ∈ D+(SM) such that Ψ0 = id and Ψ∗sω0 = ωs near
the positive end (since contact diffeomorphisms lift to equivariant symplectic diffeo-
morphisms of the symplectization). By Lemma 3, we find Θs ∈ Dc(SM) such that
Θ0 = id and (Ψ−1

s )∗ωs = Θ∗sω0 on the whole SM . Then Φ ◦ Θs ◦ Ψs is the required
lift of ωs.

(3) Let (ψs)s∈[0,1] ∈ Dc(M ; ξ) and Ψ0 ∈ D+(SM ;ω) inducing ψ0 near the positive
end. Consider the equivariant symplectic isotopy of SM lifting the contact isotopy
ψs ◦ ψ−1

0 , and then cut off its generating hamiltonian near the negative end to get
Φs ∈ D+(SM ;ω) with Φ0 = id and Φs inducing ψs ◦ψ−1

0 near the positive end. Then
Ψs = Φs ◦Ψ0 is the required lift of ψs.

Let Φ ∈ D+(SM ;ω) induce the identity near the positive end. Recall Φ preservesX
and ω near the positive end, hence it has to coincide with the identity map there. �

According to Lemmas 1, 3, 4 and 5, the horizontal and vertical sequences of (A.1)
are all Serre fibration sequences and we have their corresponding long exact sequences
of homotopy groups at our disposal.

Remark 6. — There is a similar diagram of Serre fibrations concerning the contac-
tization of an exact symplectic manifold. We will not need it here, so we leave the
interested reader to figure out the details of it.
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B. Application to exotic diffeomorphisms of Euclidean space

B.1. Topological input. — Let F be a framing of Rm (i.e., a trivialization of its
tangent bundle). The group Dc(Rm) acts on the space Fc(Rm;F ) of framings that
agree with F outside of a compact set by pullback, namely (φ∗F ′)x = dφ−1 ◦ F ′φ(x).
This gives a morphism

αm : π0Dc(Rm) −→ π0Fc(Rm;F ) ' πm SO(m).

In [26], Kervaire and Milnor proved that all homotopy spheres are stably parallelizable
and this implies that s ◦ α = 0, where s : πm SO(m) → πm SO is the stabilization
map. The following stronger statement follows from the results of Burghelea-Lashof
in [8].

Theorem 7 (Burghelea-Lashof). — The morphism αm vanishes for all m.

Consider the space F+(R×Rm;F ) of framings of R×Rm that agree with (the stabi-
lization of) F near the negative and vertical ends and areX-invariant near the positive
end. We have a restriction map near the positive end F+(R×Rm;F )→ F 1

c (Rm;F ),
where F 1

c (Rm;F ) is the space of trivializations of TRm ⊕ ε1 which agree with (the
stabilization of) F outside of a compact set (here, ε1 denotes a trivial real line bundle).
This map is a Serre fibration with fiber Fc(R × Rm;F ). The space F+(R × Rm;F )

is contractible since it can be seen as the space of paths in F 1
c (Rm;F ) with start-

ing point F and free end point. Hence, the connexion morphisms πkF 1
c (Rm;F ) →

πk−1Fc(R × Rm;F ) are isomorphisms. The group Dc(Rm) also acts on F 1
c (Rm;F )

by the formula (φ∗F ′)x = (dφ−1 ⊕ id) ◦ F ′φ(x). We obtain the commutative diagram

π1Dc(Rm) //

��

π0Dc(Rm+1)

0
��

π1F 1
c (Rm;F )

∼ // π0Fc(Rm+1;F ),

from which we deduce that the map π1Dc(Rm)→ π1F 1
c (Rm;F ) is also zero.

A trivialization of TRm ⊕ ε1 induces an almost contact structure on Rm, and all
almost contact structures arise in this way since Rm is contractible. Hence the map
Dc(R2n−1)→ C f

c (R2n−1; ξ) factors through the map Dc(R2n−1)→ F 1
c (R2n−1;F ) for

some framing F inducing ξ and we get the following corollary.

Corollary 8. — Let ξ be an almost contact structure on R2n−1. Then the map
πkDc(R2n−1)→ πkC f

c (R2n−1; ξ) is zero for k = 0, 1.

B.2. Main theorem

Theorem 9. — Let n > 3, ξ be an overtwisted contact structure on R2n−1 and
SR2n−1 = R2n its symplectization with symplectic form ω.

(1) The map πkDc(R2n−1; ξ)→ πkDc(R2n−1) is surjective for k = 0, 1.
(2) The map π0Dc(R2n;ω)→ π0Dc(R2n) is surjective.
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Proof of Theorem 9

(1) It follows directly from Proposition 2 and Corollary 8.
(2) The long exact sequences of homotopy groups associated to (A.1) yield the

following commutative diagram:

π1Dc(R2n−1; ξ) //

����

π0Dc(R2n;ω)

��

π1Dc(R2n−1) // // π0Dc(R2n) // π0D+(R2n).

Cerf’s pseudo-isotopy theorem says that π0D+(R2n) vanishes and hence the bottom-
left horizontal arrow is surjective. The claim then follows from the previous point. �
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