Homogenization of periodic graph-based elastic structures
Journal de l’École polytechnique — Mathématiques, Volume 5 (2018), pp. 259-288.

In the framework of Γ-convergence and periodic homogenization of highly contrasted materials, we study cylindrical structures made of one material and voids. Interest in high contrast homogenization is growing rapidly but assumptions are generally made in order to remain in the framework of classical elasticity. On the contrary, we obtain homogenized energies taking into account second gradient (i.e., strain gradient) effects. We first show that we can reduce the study of the considered structures to discrete systems corresponding to frame lattices. Our study of such lattices differs from the literature in the fact that we take into account the different orders of magnitude of the extensional and flexural stiffnesses. This allows us to consider structures which would have been floppy when considering only extensional stiffness and completely rigid when considering flexural stiffnesses of the same order of magnitude than the extensional ones. To our knowledge, this paper provides the first rigorous homogenization result in continuum mechanics with a complete second gradient limit energy.

Nous étudions, dans le cadre de la Γ-convergence et de l’homogénéisation périodique de matériaux fortement contrastés, des structures cylindriques constituées d’un unique matériau élastique linéaire et de vide. L’intérêt actuel pour l’homogénéisation à fort contraste est important mais en général des hypothèses ad hoc sont faites de manière à obtenir un modèle limite qui reste dans le cadre de l’élasticité classique. Nous cherchons, au contraire, à obtenir des énergies homogénéisées prenant en compte des effets de second gradient du déplacement (ou, de manière équivalente, de gradient de la déformation). Nous montrons d’abord que l’étude des structures considérées peut se réduire à l’étude de systèmes discrets correspondant à des réseaux périodiques de nœuds liés par des interactions élastiques. Notre étude de tels réseaux diffère de celles que l’on peut trouver dans la littérature par le fait que nous prenons en compte la différence d’ordre de grandeur des raideurs à l’extension et à la flexion des éléments élancés qui relient les nœuds du réseau. Cela nous permet de traiter des structures qui auraient été mobiles si l’on avait négligé les raideurs en flexion et complètement rigides si l’on avait considéré qu’elles étaient du même ordre de grandeur que les raideurs en extension. À notre connaissance, cette étude est le premier résultat rigoureux d’homogénéisation dans lequel l’énergie limite peut dépendre de toutes les composantes du second gradient du déplacement.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.70
Classification: 35B27, 35J30
Keywords: Periodic homogenization, Gamma-convergence, strain gradient
Mot clés : Homogénéisation périodique, Gamma-convergence, modèle de second gradient

Houssam Abdoul-Anziz 1; Pierre Seppecher 2

1 IMATH, Université de Toulon CS 60584, 83041 Toulon, France
2 Université d’Aix Marseille, CNRS, LMA Marseille, France and IMATH, Université de Toulon CS 60584, 83041 Toulon, France
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2018__5__259_0,
     author = {Houssam Abdoul-Anziz and Pierre Seppecher},
     title = {Homogenization of periodic graph-based elastic structures},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {259--288},
     publisher = {\'Ecole polytechnique},
     volume = {5},
     year = {2018},
     doi = {10.5802/jep.70},
     zbl = {06988580},
     mrnumber = {3749197},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.70/}
}
TY  - JOUR
AU  - Houssam Abdoul-Anziz
AU  - Pierre Seppecher
TI  - Homogenization of periodic graph-based elastic structures
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2018
SP  - 259
EP  - 288
VL  - 5
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.70/
DO  - 10.5802/jep.70
LA  - en
ID  - JEP_2018__5__259_0
ER  - 
%0 Journal Article
%A Houssam Abdoul-Anziz
%A Pierre Seppecher
%T Homogenization of periodic graph-based elastic structures
%J Journal de l’École polytechnique — Mathématiques
%D 2018
%P 259-288
%V 5
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.70/
%R 10.5802/jep.70
%G en
%F JEP_2018__5__259_0
Houssam Abdoul-Anziz; Pierre Seppecher. Homogenization of periodic graph-based elastic structures. Journal de l’École polytechnique — Mathématiques, Volume 5 (2018), pp. 259-288. doi : 10.5802/jep.70. https://jep.centre-mersenne.org/articles/10.5802/jep.70/

[1] H. Abdoul-Anziz & P. Seppecher - “Strain gradient and generalized continua obtained by homogenizing frame lattices” (2017), in preparation | Zbl

[2] E. C. Aifantis - “On the role of gradients in the localization of deformation and fracture”, Internat. J. Engrg. Sci. 30 (1992) no. 10, p. 1279-1299 | DOI | Zbl

[3] E. C. Aifantis - “Strain gradient interpretation of size effects”, Internat. J. Fracture 95 (1999) no. 1, p. 299-314 | DOI

[4] J.-J. Alibert & A. Della Corte - “Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof”, Z. Angew. Math. Phys. 66 (2015) no. 5, p. 2855-2870 | DOI | MR | Zbl

[5] J.-J. Alibert, P. Seppecher & F. dell’Isola - “Truss modular beams with deformation energy depending on higher displacement gradients”, Math. Mech. Solids 8 (2003) no. 1, p. 51-73 | DOI | MR | Zbl

[6] G. Allaire - “Homogenization and two-scale convergence”, SIAM J. Math. Anal. 23 (1992) no. 6, p. 1482-1518 | DOI | MR | Zbl

[7] G. Allaire, M. Briane & M. Vanninathan - “A comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures”, SeMA J. 73 (2016) no. 3, p. 237-259 | DOI | MR | Zbl

[8] I. Babuška & S. Sauter - “Algebraic algorithms for the analysis of mechanical trusses”, Math. Comput. 73 (2004) no. 248, p. 1601-1622 | DOI | MR | Zbl

[9] G. Barbagallo, A. Madeo, I. Azehaf, I. Giorgio, F. Morestin & P. Boisse - “Bias extension test on an unbalanced woven composite reinforcement: Experiments and modeling via a second-gradient continuum approach”, J. Composite Materials 51 (2017) no. 2, p. 153-170 | DOI

[10] G. Barbagallo, A. Madeo, F. Morestin & P. Boisse - “Modelling the deep drawing of a 3D woven fabric with a second gradient model”, Math. Mech. Solids 22 (2017) no. 11, 2165–2179 pages | DOI | MR | Zbl

[11] M. Bellieud - “Homogenization of stratified elastic composites with high contrast”, SIAM J. Math. Anal. 49 (2017) no. 4, p. 2615-2665 | DOI | MR | Zbl

[12] M. Bellieud & G. Bouchitté - “Homogenization of a soft elastic material reinforced by fibers”, Asymptotic Anal. 32 (2002) no. 2, p. 153-183 | MR | Zbl

[13] M. Bellieud, G. Geymonat & F. Krasucki - “Asymptotic analysis of a linear isotropic elastic composite reinforced by a thin layer of periodically distributed isotropic parallel stiff fibres”, J. Elasticity 122 (2016) no. 1, p. 43-74 | DOI | MR | Zbl

[14] M. Bellieud & I. Gruais - “Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non-local effects. Memory effects”, J. Math. Pures Appl. (9) 84 (2005) no. 1, p. 55-96 | DOI | MR | Numdam | Zbl

[15] G. Bouchitté, G. Buttazzo & I. Fragalà - “Mean curvature of a measure and related variational problems”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997) no. 1-2, p. 179-196 | Numdam | MR | Zbl

[16] G. Bouchitté & I. Fragalà - “Homogenization of elastic thin structures: a measure-fattening approach”, J. Convex Anal. 9 (2002) no. 2, 339–362 pages | MR | Zbl

[17] G. Bouchitté & I. Fragalà - “Homogenization of thin structures by two-scale method with respect to measures”, SIAM J. Math. Anal. 32 (2006) no. 6, 1198–1226 pages | MR

[18] C. Boutin - “Microstructural effects in elastic composites”, Internat. J. Solids Structures 33 (1996) no. 7, p. 1023-1051 | DOI | Zbl

[19] A. Braides - Γ-convergence for beginners, Oxford Lecture Series in Math. and its Appl., vol. 22, Oxford University Press, Oxford, 2002 | MR | Zbl

[20] A. Braides & M. S. Gelli - “Limits of discrete systems with long-range interactions”, J. Convex Anal. 9 (2002) no. 2, p. 363-399 | MR | Zbl

[21] M. Briane & M. Camar-Eddine - “Homogenization of two-dimensional elasticity problems with very stiff coefficients”, J. Math. Pures Appl. (9) 88 (2007) no. 6, p. 483-505 | DOI | MR | Zbl

[22] M. Camar-Eddine & P. Seppecher - “Closure of the set of diffusion functionals with respect to the Mosco-convergence”, Math. Models Methods Appl. Sci. 12 (2002) no. 08, p. 1153-1176 | DOI | MR | Zbl

[23] M. Camar-Eddine & P. Seppecher - “Determination of the closure of the set of elasticity functionals”, Arch. Rational Mech. Anal. 170 (2003) no. 3, p. 211-245 | DOI | MR | Zbl

[24] P. Casal - “La théorie du second gradient et la capillarité”, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), 1571–1574 pages | MR | Zbl

[25] G. A. Chechkin, V. V. Jikov, D. Lukkassen & A. L. Piatnitski - “On homogenization of networks and junction”, Asymptotic Anal. 30 (2002), 61–280 pages | MR | Zbl

[26] G. A. Chechkin, A. L. Piatnitski & A. S. Shamaev - Homogenization: methods and applications, Transl. Math. Monographs, American Mathematical Society, Providence, RI, 2007 | DOI | Zbl

[27] G. Dal Maso - An Introduction to Γ-convergence, Progress in nonlinear differential equations and their applications, Birkhäuser, Boston, 1993 | Zbl

[28] F. dell’Isola, U. Andreaus & L. Placidi - “At the origins and in the vanguard of peri-dynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola”, Math. Mech. Solids 20 (2014) no. 8, p. 887-928 | DOI | Zbl

[29] F. dell’Isola & P. Seppecher - “Edge contact forces and quasi-balanced power”, Meccanica 32 (1997) no. 1, p. 33-52 | DOI | MR | Zbl

[30] A. C. Eringen - Microcontinuum field theories: II. Fluent media, Springer-Verlag, New York, 2001 | Zbl

[31] S. Forest - “Homogenization methods and the mechanics of generalized continua”, in Geometry, continua and microstructure (G. Maugin, ed.), Travaux en Cours, vol. 60, Hermann, Paris, 1999, p. 35-48

[32] G. G. Giusteri - “The multiple nature of concentrated interactions in second-gradient dissipative liquids”, Z. Angew. Math. Phys. 64 (2013) no. 2, p. 371-380 | MR | Zbl

[33] S. Gonella & M. Ruzzene - “Homogenization and equivalent in-plane properties of two-dimensional periodic lattices”, Internat. J. Solids Structures 45 (2008), p. 2897-2915 | DOI | Zbl

[34] H. Gouin - “Utilization of the second gradient theory in continuum mechanics to study the motion and thermodynamics of liquid-vapor interfaces”, in Physicochemical hydrodynamics, Part E (M. Velarde, ed.), NATO ASI Series, vol. 174, Springer, Boston, MA, 1988, p. 667-682 | DOI

[35] A. Madeo, M. Ferretti, F. dell’Isola & P. Boisse - “Thick fibrous composite reinforcements behave as special second-gradient materials: three-point bending of 3D interlocks”, Z. Angew. Math. Phys. 66 (2015) no. 4, p. 2041-2060 | DOI | MR | Zbl

[36] P.-G. Martinsson & I. Babuška - “Homogenization of materials with periodic truss or frame micro-structures”, Math. Models Methods Appl. Sci. 17 (2007) no. 5, p. 805-832 | DOI | MR | Zbl

[37] P.-G. Martinsson & I. Babuška - “Mechanics of materials with periodic truss or frame micro-structures”, Arch. Rational Mech. Anal. 185 (2007) no. 2, p. 201-234 | DOI | MR | Zbl

[38] M. Mazière & S. Forest - “Strain gradient plasticity modeling and finite element simulation of Lüders band formation and propagation”, Contin. Mech. Thermodyn. 27 (2015) no. 1-2, p. 83-104 | DOI | Zbl

[39] N. Meunier, O. Pantz & A. Raoult - “Elastic limit of square lattices with three-point interactions”, Math. Models Methods Appl. Sci. 22 (2012) no. 11, art. no. 1250032 | DOI | MR | Zbl

[40] R. D. Mindlin - “Influence of couple-stresses on stress concentrations”, Experiment. Mech. 3 (1962) no. 6, p. 756-757

[41] R. D. Mindlin - “Second gradient of strain and surface-tension in linear elasticity”, Internat. J. Solids Structures 1 (1965) no. 4, p. 417-438 | DOI

[42] R. D. Mindlin & H. F. Tiersten - “Effects of couple-stresses in linear elasticity”, Arch. Rational Mech. Anal. 11 (1962) no. 1, p. 415-448 | DOI | MR | Zbl

[43] G. Nguetseng - “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal. 20 (1989) no. 3, p. 608-623 | DOI | MR | Zbl

[44] O. A. Oleinik, A. S. Shamaev & G. A. Yosifian - Mathematical problems in elasticity and homogenization, Studies in Mathematics and its Applications, vol. 26, North-Holland Publishing Co., Amsterdam, 1992 | MR | Zbl

[45] M. Ostoja-Starzewski - “Lattice models in micromechanics”, Appl. Mech. Rev. 55 (2002) no. 1, p. 35-60 | DOI | Zbl

[46] S. E. Pastukhova - “Homogenization of problems of elasticity theory on periodic box and rod frames of critical thickness”, J. Math. Sci. 130 (2005) no. 5, p. 4954-5004 | MR | Zbl

[47] C. Pideri & P. Seppecher - “A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium”, Contin. Mech. Thermodyn. 9 (1997) no. 5, p. 241-257 | DOI | MR | Zbl

[48] C. Polizzotto & G. Borino - “A thermodynamics-based formulation of gradient-dependent plasticity”, European J. Mech. A Solids 17 (1998) no. 5, p. 741-761 | DOI | MR | Zbl

[49] A. Raoult, D. Caillerie & A. Mourad - “Elastic lattices: equilibrium, invariant laws and homogenization”, Ann. Univ. Ferrara Sez. VII 54 (2008) no. 2, p. 297-318 | DOI | MR | Zbl

[50] G. Sciarra, F. dell’Isola & O. Coussy - “Second gradient poromechanics”, Internat. J. Solids Structures 44 (2007) no. 20, p. 6607-6629 | DOI | MR | Zbl

[51] P. Seppecher - “Moving contact lines in the Cahn-Hilliard theory”, Internat. J. Engrg. Sci. 34 (1996) no. 9, p. 977-992 | DOI | MR | Zbl

[52] P. Seppecher, J.-J. Alibert & F. dell’Isola - “Linear elastic trusses leading to continua with exotic mechanical interactions”, J. Phys.: Conf. Series 319 (2011) no. 1, art. no. 012018

[53] V. P. Smyshlyaev & K. D. Cherednichenko - “On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media”, J. Mech. Phys. Solids 48 (2000), p. 1325-1357 | DOI | MR | Zbl

[54] R. A. Toupin - “Elastic materials with couple-stresses”, Arch. Rational Mech. Anal. 11 (1962) no. 1, p. 385-414 | DOI | MR | Zbl

[55] R. A. Toupin - “Theories of elasticity with couple-stress”, Arch. Rational Mech. Anal. 17 (1964) no. 2, p. 85-112 | DOI | MR | Zbl

[56] N. Triantafyllidis & E. C. Aifantis - “A gradient approach to localization of deformation. I. Hyperelastic materials”, J. Elasticity 16 (1986) no. 3, p. 225-237 | DOI | MR | Zbl

[57] Y. Yang & A. Misra - “Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity”, Internat. J. Solids Structures 49 (2012) no. 18, p. 2500-2514 | DOI

[58] V. V. Zhikov - “Homogenization of elasticity problems on singular structures”, Izvestiya: Mathematics 66 (2002) no. 2, 299 pages | Zbl

[59] V. V. Zhikov & S. E. Pastukhova - “Homogenization for elasticity problems on periodic networks of critical thickness”, Sbornik: Mathematics 194 (2003) no. 5, 697 pages | Zbl

Cited by Sources: