Let be a triangulable compact manifold. We prove that, among closed subgroups of (the identity component of the group of homeomorphisms of ), the subgroup consisting of volume preserving elements is maximal.
Soit une variété triangulable compacte. Nous montrons que, parmi les sous-groupes de (composante connexe de l’identité du groupe des homéomorphismes de ), le sous-groupe des homéomorphismes préservant le volume est maximal.
Accepted:
Published online:
DOI: 10.5802/jep.7
Keywords: Transformation groups, homeomorphisms, maximal closed subgroups
Mot clés : Groupes de transformations, homéomorphismes, sous-groupes fermés maximaux
Frédéric Le Roux 1
@article{JEP_2014__1__147_0, author = {Fr\'ed\'eric Le Roux}, title = {On closed subgroups of the group of homeomorphisms of a manifold}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {147--159}, publisher = {\'Ecole polytechnique}, volume = {1}, year = {2014}, doi = {10.5802/jep.7}, mrnumber = {3322786}, zbl = {1309.57027}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.7/} }
TY - JOUR AU - Frédéric Le Roux TI - On closed subgroups of the group of homeomorphisms of a manifold JO - Journal de l’École polytechnique — Mathématiques PY - 2014 SP - 147 EP - 159 VL - 1 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.7/ DO - 10.5802/jep.7 LA - en ID - JEP_2014__1__147_0 ER -
%0 Journal Article %A Frédéric Le Roux %T On closed subgroups of the group of homeomorphisms of a manifold %J Journal de l’École polytechnique — Mathématiques %D 2014 %P 147-159 %V 1 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.7/ %R 10.5802/jep.7 %G en %F JEP_2014__1__147_0
Frédéric Le Roux. On closed subgroups of the group of homeomorphisms of a manifold. Journal de l’École polytechnique — Mathématiques, Volume 1 (2014), pp. 147-159. doi : 10.5802/jep.7. https://jep.centre-mersenne.org/articles/10.5802/jep.7/
[Bes04] - “Questions in geometric group theory, collected by M. Bestvina” (2004), http://www.math.utah.edu/~bestvina/eprints/questions-updated.pdf
[Bro62] - “A mapping theorem for untriangulated manifolds”, in Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962, p. 92-94 | Zbl
[Fat80] - “Structure of the group of homeomorphisms preserving a good measure on a compact manifold”, Ann. Sci. École Norm. Sup. (4) 13 (1980) no. 1, p. 45-93 | DOI | Numdam | MR | Zbl
[Ghy01] - “Groups acting on the circle”, Enseign. Math. (2) 47 (2001) no. 3-4, p. 329-407 | MR | Zbl
[GM06] - “Classification of continuously transitive circle groups”, Geom. Topol. 10 (2006), p. 1319-1346 | DOI | MR | Zbl
[GP75] - “A proof of the homeomorphism of Lebesgue-Stieltjes measure with Lebesgue measure”, Proc. Amer. Math. Soc. 52 (1975), p. 196-198 | DOI | MR | Zbl
[Kir69] - “Stable homeomorphisms and the annulus conjecture”, Ann. of Math. (2) 89 (1969), p. 575-582 | DOI | MR | Zbl
[KT13] - “Homogeneous transformation groups of the sphere” (2013), arXiv:1309.0179v1
[OU41] - “Measure-preserving homeomorphisms and metrical transitivity”, Ann. of Math. (2) 42 (1941), p. 874-920 | DOI | MR | Zbl
[Qui82] - “Ends of maps. III. Dimensions and ”, J. Differential Geom. 17 (1982) no. 3, p. 503-521 | DOI | MR | Zbl
Cited by Sources: