The tame automorphism group of an affine quadric threefold acting on a square complex
Journal de l’École polytechnique — Mathématiques, Volume 1 (2014), pp. 161-223.

We study the group Tame(SL 2 ) of tame automorphisms of a smooth affine 3-dimensional quadric, which we can view as the underlying variety of SL 2 (). We construct a square complex on which the group admits a natural cocompact action, and we prove that the complex is CAT(0) and hyperbolic. We propose two applications of this construction: We show that any finite subgroup in Tame(SL 2 ) is linearizable, and that Tame(SL 2 ) satisfies the Tits alternative.

Nous étudions le groupe Tame(SL 2 ) des automorphismes modérés d’une quadrique affine lisse de dimension 3, que l’on peut choisir comme étant la variété sous-jacente à SL 2 (). Nous construisons un complexe carré sur lequel ce groupe agit naturellement de façon cocompacte, et nous montrons que ce complexe est CAT(0) et hyperbolique. Nous proposons ensuite deux applications de cette construction : nous montrons que tout sous-groupe fini de Tame(SL 2 ) est linéarisable, et que Tame(SL 2 ) satisfait l’alternative de Tits.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.8
Classification: 14J50, 14R20, 20F65
Keywords: Automorphism group, affine quadric, cube complex, Tits alternative
Mot clés : Groupe d’automorphismes, quadrique affine, complexe cubique, alternative de Tits

Cinzia Bisi 1; Jean-Philippe Furter 2; Stéphane Lamy 3

1 Dipartimento Matematica ed Informatica, Universitá di Ferrara Via Machiavelli n.35, 44121 Ferrara, Italy
2 Laboratoire MIA, Université de La Rochelle Avenue Michel Crépeau, 17000 La Rochelle, France
3 Institut de Mathématiques de Toulouse, Université Paul Sabatier 118 route de Narbonne, 31062 Toulouse Cedex 9, France
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2014__1__161_0,
     author = {Cinzia Bisi and Jean-Philippe Furter and St\'ephane Lamy},
     title = {The tame automorphism group of an affine quadric threefold acting on a square complex},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {161--223},
     publisher = {\'Ecole polytechnique},
     volume = {1},
     year = {2014},
     doi = {10.5802/jep.8},
     mrnumber = {3322787},
     zbl = {1320.14059},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.8/}
}
TY  - JOUR
AU  - Cinzia Bisi
AU  - Jean-Philippe Furter
AU  - Stéphane Lamy
TI  - The tame automorphism group of an affine quadric threefold acting on a square complex
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2014
SP  - 161
EP  - 223
VL  - 1
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.8/
DO  - 10.5802/jep.8
LA  - en
ID  - JEP_2014__1__161_0
ER  - 
%0 Journal Article
%A Cinzia Bisi
%A Jean-Philippe Furter
%A Stéphane Lamy
%T The tame automorphism group of an affine quadric threefold acting on a square complex
%J Journal de l’École polytechnique — Mathématiques
%D 2014
%P 161-223
%V 1
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.8/
%R 10.5802/jep.8
%G en
%F JEP_2014__1__161_0
Cinzia Bisi; Jean-Philippe Furter; Stéphane Lamy. The tame automorphism group of an affine quadric threefold acting on a square complex. Journal de l’École polytechnique — Mathématiques, Volume 1 (2014), pp. 161-223. doi : 10.5802/jep.8. https://jep.centre-mersenne.org/articles/10.5802/jep.8/

[AFK + 13] I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch & M. Zaidenberg - “Flexible varieties and automorphism groups”, Duke Math. J. 162 (2013) no. 4, p. 767-823 | DOI | MR | Zbl

[Ale95] J. Alev - “A note on Nagata’s automorphism”, in Automorphisms of affine spaces (Curaçao, 1994), Kluwer Acad. Publ., Dordrecht, 1995, p. 215-221 | DOI | MR | Zbl

[AOS12] F. Ardila, M. Owen & S. Sullivant - “Geodesics in CAT (0) cubical complexes”, Adv. in Appl. Math. 48 (2012) no. 1, p. 142-163 | MR | Zbl

[BH99] M. R. Bridson & A. Haefliger - Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319, Springer-Verlag, Berlin, 1999 | MR | Zbl

[BŚ99] W. Ballmann & J. Świątkowski - “On groups acting on nonpositively curved cubical complexes”, Enseign. Math. (2) 45 (1999) no. 1-2, p. 51-81 | MR | Zbl

[Can11] S. Cantat - “Sur les groupes de transformations birationnelles des surfaces”, Ann. of Math. (2) 174 (2011) no. 1, p. 299-340 | DOI | MR | Zbl

[CL13] S. Cantat & S. Lamy - “Normal subgroups in the Cremona group”, Acta Math. 210 (2013) no. 1, p. 31-94, With an appendix by Yves de Cornulier | MR | Zbl

[Din12] T.-C. Dinh - “Tits alternative for automorphism groups of compact Kähler manifolds”, Acta Math. Vietnamatica 37 (2012) no. 4, p. 513-529 | Zbl

[dlH83] P. de la Harpe - “Free groups in linear groups”, Enseign. Math. (2) 29 (1983) no. 1-2, p. 129-144 | MR | Zbl

[Fru73] M. A. Frumkin - “A filtration in the three-dimensional Cremona group”, Mat. Sb. (N.S.) 90(132) (1973), p. 196-213, 325 | MR | Zbl

[Fur83] M. Furushima - “Finite groups of polynomial automorphisms in C n , Tohoku Math. J. (2) 35 (1983) no. 3, p. 415-424 | DOI | MR

[GD77] M. H. Gizatullin & V. I. Danilov - “Automorphisms of affine surfaces. II”, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977) no. 1, p. 54-103 | MR

[Kam79] T. Kambayashi - “Automorphism group of a polynomial ring and algebraic group action on an affine space”, J. Algebra 60 (1979) no. 2, p. 439-451 | DOI | MR | Zbl

[Kur10] S. Kuroda - “Shestakov-Umirbaev reductions and Nagata’s conjecture on a polynomial automorphism”, Tohoku Math. J. (2) 62 (2010) no. 1, p. 75-115 | DOI | MR | Zbl

[Lam01] S. Lamy - “L’alternative de Tits pour Aut [ 2 ], J. Algebra 239 (2001) no. 2, p. 413-437 | MR

[Lam13] S. Lamy - “On the genus of birational maps between 3-folds” (2013), arXiv:1305.2482

[LV13] S. Lamy & S. Vénéreau - “The tame and the wild automorphisms of an affine quadric threefold.”, J. Math. Soc. Japan 65 (2013) no. 1, p. 299-320 | DOI | MR | Zbl

[Pan99] I. Pan - “Une remarque sur la génération du groupe de Cremona”, Bol. Soc. Brasil. Mat. (N.S.) 30 (1999) no. 1, p. 95-98 | DOI | Zbl

[Pap95] P. Papasoglu - “Strongly geodesically automatic groups are hyperbolic”, Invent. Math. 121 (1995) no. 2, p. 323-334 | MR | Zbl

[PV91] I. Pays & A. Valette - “Sous-groupes libres dans les groupes d’automorphismes d’arbres”, Enseign. Math. (2) 37 (1991) no. 1-2, p. 151-174 | MR | Zbl

[Ser77a] J.-P. Serre - Arbres, amalgames, SL 2 , Astérisque, vol. 46, Société Mathématique de France, Paris, 1977 | MR

[Ser77b] J.-P. Serre - Cours d’arithmétique, Presses Universitaires de France, Paris, 1977 | Zbl

[Wis12] D. T. Wise - From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geometry, CBMS Regional Conference Series in Mathematics, vol. 117, American Mathematical Society, Providence, RI, 2012 | MR | Zbl

[Wri92] D. Wright - “Two-dimensional Cremona groups acting on simplicial complexes”, Trans. Amer. Math. Soc. 331 (1992) no. 1, p. 281-300

[Wri13] D. Wright - “The Amalgamated Product Structure of the Tame Automorphism Group in Dimension Three” (2013), arXiv:1310.8325 | DOI | MR | Zbl

Cited by Sources: