Dans notre travail récent consacré aux équations de Boussinesq [15], on a établi la persistance de solutions avec température constante par morceaux le long d’interfaces à régularité höldérienne. On aborde ici la même question pour les équations de Navier-Stokes inhomogène satisfaites par un liquide visqueux incompressible à densité variable. On démontre que, dans le cas légèrement non homogène, les poches de densité avec régularité se propagent pour tout temps. Notre résultat est conséquence de la conservation de la régularité höldérienne le long des champs de vecteurs transportés par le flot de la solution. La preuve de ce dernier résultat repose sur des estimations de commutateur mettant en jeu des para-champs et des espaces de multiplicateurs. L’analyse est plus compliquée que dans [15], dans la mesure où le couplage entre les équations de la masse et de la vitesse dans les équations de Navier-Stokes inhomogène est quasilinéaire alors qu’il est linéaire pour les équations de Boussinesq.
In our recent work dedicated to the Boussinesq equations [15], we established the persistence of solutions with piecewise constant temperature along interfaces with Hölder regularity. We here address the same question for the inhomogeneous Navier-Stokes equations satisfied by a viscous incompressible and inhomogeneous fluid. We prove that, indeed, in the slightly inhomogeneous case, patches of densities with regularity propagate for all time. Our result follows from the conservation of Hölder regularity along vector fields moving with the flow. The proof of that latter result is based on commutator estimates involving para-vector fields, and multiplier spaces. The overall analysis is more complicated than in [15], since the coupling between the mass and velocity equations in the inhomogeneous Navier-Stokes equations is quasilinear while it is linear for the Boussinesq equations.
Accepté le :
Publié le :
DOI : 10.5802/jep.56
Keywords: Inhomogeneous Navier-Stokes equations, $\protect \mathcal{C}^{1, \varepsilon }$ density patch, striated regularity
Mot clés : Équations de Navier-Stokes inhomogène, poches de densité, régularité $\protect \mathcal{C}^{1, \varepsilon }$, régularité stratifiée
Raphaël Danchin 1 ; Xin Zhang 1
@article{JEP_2017__4__781_0, author = {Rapha\"el Danchin and Xin Zhang}, title = {On the persistence of {H\"older} regular patches of density for the inhomogeneous {Navier-Stokes} equations}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {781--811}, publisher = {\'Ecole polytechnique}, volume = {4}, year = {2017}, doi = {10.5802/jep.56}, zbl = {06754341}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.56/} }
TY - JOUR AU - Raphaël Danchin AU - Xin Zhang TI - On the persistence of Hölder regular patches of density for the inhomogeneous Navier-Stokes equations JO - Journal de l’École polytechnique — Mathématiques PY - 2017 SP - 781 EP - 811 VL - 4 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.56/ DO - 10.5802/jep.56 LA - en ID - JEP_2017__4__781_0 ER -
%0 Journal Article %A Raphaël Danchin %A Xin Zhang %T On the persistence of Hölder regular patches of density for the inhomogeneous Navier-Stokes equations %J Journal de l’École polytechnique — Mathématiques %D 2017 %P 781-811 %V 4 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.56/ %R 10.5802/jep.56 %G en %F JEP_2017__4__781_0
Raphaël Danchin; Xin Zhang. On the persistence of Hölder regular patches of density for the inhomogeneous Navier-Stokes equations. Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 781-811. doi : 10.5802/jep.56. https://jep.centre-mersenne.org/articles/10.5802/jep.56/
[1] - “Équation de Navier-Stokes avec densité et viscosité variables dans l’espace critique”, Rev. Mat. Iberoamericana 23 (2007) no. 2, p. 537-586 | DOI | Zbl
[2] - “Existence globale pour un fluide inhomogène”, Ann. Inst. Fourier (Grenoble) 57 (2007) no. 3, p. 883-917 | DOI | Numdam | Zbl
[3] - Boundary value problems in mechanics of nonhomogeneous fluids, Studies in Mathematics and its Applications, vol. 22, North-Holland Publishing Co., Amsterdam, 1990 | MR | Zbl
[4] - Fourier analysis and nonlinear partial differential equations, vol. 343, Springer Science & Business Media, 2011 | MR | Zbl
[5] - “Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires”, Ann. Sci. École Norm. Sup. (4) 14 (1981) no. 2, p. 209-246 | DOI | Numdam | Zbl
[6] - “Calcul paradifférentiel précisé et applications à des équations aux dérivées partielles non semi-linéaires”, Duke Math. J. 56 (1988) no. 3, p. 431-469 | DOI | MR | Zbl
[7] - “Persistance de structures géométriques dans les fluides incompressibles bidimensionnels”, Ann. Sci. École Norm. Sup. (4) 26 (1993) no. 4, p. 517-542 | DOI | Numdam | Zbl
[8] - “Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel”, J. Analyse Math. 77 (1999) no. 1, p. 27-50 | DOI | Zbl
[9] - “Persistance de structures géométriques et limite non visqueuse pour les fluides incompressibles en dimension quelconque”, Bull. Soc. math. France 127 (1999) no. 2, p. 179-228 | DOI | Numdam | Zbl
[10] - “Density-dependent incompressible viscous fluids in critical spaces”, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) no. 6, p. 1311-1334 | DOI | MR | Zbl
[11] - “A Lagrangian approach for the incompressible Navier-Stokes equations with variable density”, Comm. Pure Appl. Math. 65 (2012) no. 10, p. 1458-1480 | DOI | MR | Zbl
[12] - “Incompressible flows with piecewise constant density”, Arch. Rational Mech. Anal. 207 (2013) no. 3, p. 991-1023 | DOI | MR | Zbl
[13] - Critical functional framework and maximal regularity in action on systems of incompressible flows, Mém. Soc. Math. France (N.S.), vol. 143, Société Mathématique de France, Paris, 2015 | Zbl
[14] - “Inhomogeneous Navier–Stokes equations in the half-space, with only bounded density”, J. Functional Analysis 267 (2014) no. 7, p. 2371-2436 | DOI | MR | Zbl
[15] - “Global persistence of geometrical structures for the Boussinesq equation with no diffusion”, Comm. Partial Differential Equations 42 (2017) no. 1, p. 68-99 | DOI | MR | Zbl
[16] - “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math. 98 (1989) no. 3, p. 511-547 | DOI | MR | Zbl
[17] - “Global regularity of 2D density patches for inhomogeneous Navier-Stokes” (2016), arXiv:1612.08665 | Zbl
[18] - “Global well-posedness of incompressible inhomogeneous fluid systems with bounded density or non-Lipschitz velocity”, Arch. Rational Mech. Anal. 209 (2013) no. 2, p. 631-682 | DOI | MR | Zbl
[19] - The Navier-Stokes problem in the 21st century, CRC Press, Boca Raton, FL, 2016 | Zbl
[20] - “On the global regularity of three dimensional density patch for inhomogeneous incompressible viscous flow” (2016), arXiv:1606.05395
[21] - “Global regularities of two-dimensional density patch for inhomogeneous incompressible viscous flow with general density” (2016), arXiv:1604.07922
[22] - “On the global regularity of the two-dimensional density patch for inhomogeneous incompressible viscous flow”, Arch. Rational Mech. Anal. 220 (2016) no. 3, p. 937-981 | DOI | MR | Zbl
[23] - Mathematical topics in fluid mechanics. Vol. 1: Incompressible models, Oxford Lecture Series in Mathematics and its Applications, vol. 3, The Clarendon Press, Oxford University Press, New York, 1996 | Zbl
[24] - “Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density”, Comm. Partial Differential Equations 38 (2013) no. 7, p. 1208-1234 | DOI | MR | Zbl
[25] - “Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure”, SIAM J. Math. Anal. 21 (1990) no. 5, p. 1093-1117 | DOI | MR | Zbl
[26] - Theory of function spaces. II, Monographs in Mathematics, vol. 84, Birkhäuser Verlag, Basel, 1992 | MR | Zbl
Cité par Sources :