Some surfaces with maximal Picard number
Journal de l’École polytechnique — Mathématiques, Volume 1 (2014), pp. 101-116.

For a smooth complex projective variety, the rank ρ of the Néron-Severi group is bounded by the Hodge number h 1,1 . Varieties with ρ=h 1,1 have interesting properties, but are rather sparse, particularly in dimension 2. We discuss in this note a number of examples, in particular those constructed from curves with special Jacobians.

Le rang ρ du groupe de Néron-Severi d’une variété projective lisse complexe est borné par le nombre de Hodge h 1,1 . Les variétés satisfaisant à ρ=h 1,1 ont des propriétés intéressantes, mais sont assez rares, particulièrement en dimension 2. Dans cette note nous analysons un certain nombre d’exemples, notamment ceux construits à partir de courbes à jacobienne spéciale.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.5
Classification: 14J05, 14C22, 14C25
Keywords: Algebraic surfaces, Picard group, Picard number, curve correspondences, Jacobians
Mot clés : Surfaces algébriques, groupe de Picard, nombre de Picard, correspondances de courbes, jacobiennes

Arnaud Beauville 1

1 Laboratoire J.-A. Dieudonné, UMR 7351 du CNRS, Université de Nice Parc Valrose, F-06108 Nice cedex 2, France
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2014__1__101_0,
     author = {Arnaud Beauville},
     title = {Some surfaces with maximal {Picard} number},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {101--116},
     publisher = {\'Ecole polytechnique},
     volume = {1},
     year = {2014},
     doi = {10.5802/jep.5},
     mrnumber = {3322784},
     zbl = {1326.14080},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.5/}
}
TY  - JOUR
AU  - Arnaud Beauville
TI  - Some surfaces with maximal Picard number
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2014
SP  - 101
EP  - 116
VL  - 1
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.5/
DO  - 10.5802/jep.5
LA  - en
ID  - JEP_2014__1__101_0
ER  - 
%0 Journal Article
%A Arnaud Beauville
%T Some surfaces with maximal Picard number
%J Journal de l’École polytechnique — Mathématiques
%D 2014
%P 101-116
%V 1
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.5/
%R 10.5802/jep.5
%G en
%F JEP_2014__1__101_0
Arnaud Beauville. Some surfaces with maximal Picard number. Journal de l’École polytechnique — Mathématiques, Volume 1 (2014), pp. 101-116. doi : 10.5802/jep.5. https://jep.centre-mersenne.org/articles/10.5802/jep.5/

[Adl81] A. Adler - “Some integral representations of PSL 2 (𝔽 p ) and their applications”, J. Algebra 72 (1981) no. 1, p. 115-145 | DOI | MR

[Aok83] N. Aoki - “On Some Arithmetic Problems Related to the Hodge Cycles on the Fermat Varieties”, Math. Ann. 266 (1983) no. 1, p. 23-54, Erratum: ibid. 267 (1984) no. 4, p. 572 | DOI | MR | Zbl

[BD85] A. Beauville & R. Donagi - “La variété des droites d’une hypersurface cubique de dimension 4, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985) no. 14, p. 703-706 | Zbl

[BE87] J. Bertin & G. Elencwajg - “Configurations de coniques et surfaces avec un nombre de Picard maximum”, Math. Z. 194 (1987) no. 2, p. 245-258 | DOI | MR | Zbl

[Bea13] A. Beauville - “A tale of two surfaces” (2013), arXiv:1303.1910, to appear in the ASPM volume in honor of Y. Kawamata

[Cat79] F. Catanese - “Surfaces with K 2 =p g =1 and their period mapping”, in Algebraic geometry (Copenhagen, 1978), Lect. Notes in Math., vol. 732, Springer, Berlin, 1979, p. 1-29 | DOI | Zbl

[CG72] H. C. Clemens & P. A. Griffiths - “The intermediate Jacobian of the cubic threefold”, Ann. of Math. (2) 95 (1972), p. 281-356 | DOI | MR | Zbl

[DK93] I. Dolgachev & V. Kanev - “Polar covariants of plane cubics and quartics”, Advances in Math. 98 (1993) no. 2, p. 216-301 | DOI | MR | Zbl

[FSM13] E. Freitag & R. Salvati Manni - “Parametrization of the box variety by theta functions” (2013), arXiv:1303.6495 | Zbl

[Gri69] P. A. Griffiths - “On the periods of certain rational integrals. I, II”, Ann. of Math. (2) 90 (1969), p. 460-495 & 496-541 | DOI | MR | Zbl

[HN65] T. Hayashida & M. Nishi - “Existence of curves of genus two on a product of two elliptic curves”, J. Math. Soc. Japan 17 (1965), p. 1-16 | DOI | MR | Zbl

[Hof91] D. W. Hoffmann - “On positive definite Hermitian forms”, Manuscripta Math. 71 (1991) no. 4, p. 399-429 | DOI | MR | Zbl

[Kat75] T. Katsura - “On the structure of singular abelian varieties”, Proc. Japan Acad. 51 (1975) no. 4, p. 224-228 | DOI | MR | Zbl

[Lan75] H. Lange - “Produkte elliptischer Kurven”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1975) no. 8, p. 95-108 | MR | Zbl

[LB92] H. Lange & C. Birkenhake - Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften, vol. 302, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl

[Liv81] R. A. Livne - On certain covers of the universal elliptic curve, Harvard University, 1981, Ph.D. Thesis ProQuest LLC, Ann Arbor, MI | MR

[Per82] U. Persson - “Horikawa surfaces with maximal Picard numbers”, Math. Ann. 259 (1982) no. 3, p. 287-312 | DOI | MR | Zbl

[Rou09] X. Roulleau - “The Fano surface of the Klein cubic threefold”, J. Math. Kyoto Univ. 49 (2009) no. 1, p. 113-129 | DOI | MR | Zbl

[Rou11] X. Roulleau - “Fano surfaces with 12 or 30 elliptic curves”, Michigan Math. J. 60 (2011) no. 2, p. 313-329 | DOI | MR | Zbl

[Sch11] M. Schütt - “Quintic surfaces with maximum and other Picard numbers”, J. Math. Soc. Japan 63 (2011) no. 4, p. 1187-1201 | DOI | MR | Zbl

[Shi69] T. Shioda - “Elliptic modular surfaces. I”, Proc. Japan Acad. 45 (1969), p. 786-790 | DOI | MR | Zbl

[Shi79] T. Shioda - “The Hodge conjecture for Fermat varieties”, Math. Ann. 245 (1979) no. 2, p. 175-184 | DOI | MR | Zbl

[Shi81] T. Shioda - “On the Picard number of a Fermat surface”, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981) no. 3, p. 725-734 (1982) | MR | Zbl

[Sil94] J. H. Silverman - Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Math., vol. 151, Springer-Verlag, New York, 1994 | DOI | MR | Zbl

[ST10] M. Stoll & D. Testa - “The surface parametrizing cuboids” (2010), arXiv:1009.0388

[Tod80] A. N. Todorov - “Surfaces of general type with p g =1 and (K,K)=1. I”, Ann. Sci. École Norm. Sup. (4) 13 (1980) no. 1, p. 1-21 | DOI | Numdam | MR | Zbl

[Tod81] A. N. Todorov - “A construction of surfaces with p g =1, q=0 and 2(K 2 )8. Counterexamples of the global Torelli theorem”, Invent. Math. 63 (1981) no. 2, p. 287-304 | DOI | MR

Cited by Sources: