For a smooth complex projective variety, the rank of the Néron-Severi group is bounded by the Hodge number . Varieties with have interesting properties, but are rather sparse, particularly in dimension . We discuss in this note a number of examples, in particular those constructed from curves with special Jacobians.
Le rang du groupe de Néron-Severi d’une variété projective lisse complexe est borné par le nombre de Hodge . Les variétés satisfaisant à ont des propriétés intéressantes, mais sont assez rares, particulièrement en dimension . Dans cette note nous analysons un certain nombre d’exemples, notamment ceux construits à partir de courbes à jacobienne spéciale.
Accepted:
Published online:
DOI: 10.5802/jep.5
Keywords: Algebraic surfaces, Picard group, Picard number, curve correspondences, Jacobians
Mot clés : Surfaces algébriques, groupe de Picard, nombre de Picard, correspondances de courbes, jacobiennes
Arnaud Beauville 1
@article{JEP_2014__1__101_0, author = {Arnaud Beauville}, title = {Some surfaces with maximal {Picard} number}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {101--116}, publisher = {\'Ecole polytechnique}, volume = {1}, year = {2014}, doi = {10.5802/jep.5}, mrnumber = {3322784}, zbl = {1326.14080}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.5/} }
TY - JOUR AU - Arnaud Beauville TI - Some surfaces with maximal Picard number JO - Journal de l’École polytechnique — Mathématiques PY - 2014 SP - 101 EP - 116 VL - 1 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.5/ DO - 10.5802/jep.5 LA - en ID - JEP_2014__1__101_0 ER -
Arnaud Beauville. Some surfaces with maximal Picard number. Journal de l’École polytechnique — Mathématiques, Volume 1 (2014), pp. 101-116. doi : 10.5802/jep.5. https://jep.centre-mersenne.org/articles/10.5802/jep.5/
[Adl81] - “Some integral representations of and their applications”, J. Algebra 72 (1981) no. 1, p. 115-145 | DOI | MR
[Aok83] - “On Some Arithmetic Problems Related to the Hodge Cycles on the Fermat Varieties”, Math. Ann. 266 (1983) no. 1, p. 23-54, Erratum: ibid. 267 (1984) no. 4, p. 572 | DOI | MR | Zbl
[BD85] - “La variété des droites d’une hypersurface cubique de dimension ”, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985) no. 14, p. 703-706 | Zbl
[BE87] - “Configurations de coniques et surfaces avec un nombre de Picard maximum”, Math. Z. 194 (1987) no. 2, p. 245-258 | DOI | MR | Zbl
[Bea13] - “A tale of two surfaces” (2013), arXiv:1303.1910, to appear in the ASPM volume in honor of Y. Kawamata
[Cat79] - “Surfaces with and their period mapping”, in Algebraic geometry (Copenhagen, 1978), Lect. Notes in Math., vol. 732, Springer, Berlin, 1979, p. 1-29 | DOI | Zbl
[CG72] - “The intermediate Jacobian of the cubic threefold”, Ann. of Math. (2) 95 (1972), p. 281-356 | DOI | MR | Zbl
[DK93] - “Polar covariants of plane cubics and quartics”, Advances in Math. 98 (1993) no. 2, p. 216-301 | DOI | MR | Zbl
[FSM13] - “Parametrization of the box variety by theta functions” (2013), arXiv:1303.6495 | Zbl
[Gri69] - “On the periods of certain rational integrals. I, II”, Ann. of Math. (2) 90 (1969), p. 460-495 & 496-541 | DOI | MR | Zbl
[HN65] - “Existence of curves of genus two on a product of two elliptic curves”, J. Math. Soc. Japan 17 (1965), p. 1-16 | DOI | MR | Zbl
[Hof91] - “On positive definite Hermitian forms”, Manuscripta Math. 71 (1991) no. 4, p. 399-429 | DOI | MR | Zbl
[Kat75] - “On the structure of singular abelian varieties”, Proc. Japan Acad. 51 (1975) no. 4, p. 224-228 | DOI | MR | Zbl
[Lan75] - “Produkte elliptischer Kurven”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1975) no. 8, p. 95-108 | MR | Zbl
[LB92] - Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften, vol. 302, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
[Liv81] - On certain covers of the universal elliptic curve, Harvard University, 1981, Ph.D. Thesis ProQuest LLC, Ann Arbor, MI | MR
[Per82] - “Horikawa surfaces with maximal Picard numbers”, Math. Ann. 259 (1982) no. 3, p. 287-312 | DOI | MR | Zbl
[Rou09] - “The Fano surface of the Klein cubic threefold”, J. Math. Kyoto Univ. 49 (2009) no. 1, p. 113-129 | DOI | MR | Zbl
[Rou11] - “Fano surfaces with 12 or 30 elliptic curves”, Michigan Math. J. 60 (2011) no. 2, p. 313-329 | DOI | MR | Zbl
[Sch11] - “Quintic surfaces with maximum and other Picard numbers”, J. Math. Soc. Japan 63 (2011) no. 4, p. 1187-1201 | DOI | MR | Zbl
[Shi69] - “Elliptic modular surfaces. I”, Proc. Japan Acad. 45 (1969), p. 786-790 | DOI | MR | Zbl
[Shi79] - “The Hodge conjecture for Fermat varieties”, Math. Ann. 245 (1979) no. 2, p. 175-184 | DOI | MR | Zbl
[Shi81] - “On the Picard number of a Fermat surface”, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981) no. 3, p. 725-734 (1982) | MR | Zbl
[Sil94] - Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Math., vol. 151, Springer-Verlag, New York, 1994 | DOI | MR | Zbl
[ST10] - “The surface parametrizing cuboids” (2010), arXiv:1009.0388
[Tod80] - “Surfaces of general type with and . I”, Ann. Sci. École Norm. Sup. (4) 13 (1980) no. 1, p. 1-21 | DOI | Numdam | MR | Zbl
[Tod81] - “A construction of surfaces with , and . Counterexamples of the global Torelli theorem”, Invent. Math. 63 (1981) no. 2, p. 287-304 | DOI | MR
Cited by Sources: