Optimal potentials for Schrödinger operators
[Potentiels optimaux pour les opérateurs de Schrödinger]
Journal de l’École polytechnique — Mathématiques, Tome 1 (2014), pp. 71-100.

Nous considérons l’opérateur de Schrödinger -Δ+V(x) sur H 0 1 (Ω), où Ω est un domaine fixé de d . Nous étudions certains problèmes d’optimisation pour lesquels un potentiel optimal V0 doit être déterminé dans une certaine classe admissible et pour certains critères d’optimisation tels que l’énergie ou les valeurs propres de Dirichlet.

We consider the Schrödinger operator -Δ+V(x) on H 0 1 (Ω), where Ω is a given domain of d . Our goal is to study some optimization problems where an optimal potential V0 has to be determined in some suitable admissible classes and for some suitable optimization criteria, like the energy or the Dirichlet eigenvalues.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.4
Classification : 49J45, 35J10, 49R05, 35P15, 35J05
Keywords: Schrödinger operators, optimal potentials, spectral optimization, capacity
Mot clés : Opérateurs de Schrödinger, potentiels optimaux, optimisation spectrale, capacité
Giuseppe Buttazzo 1 ; Augusto Gerolin 1 ; Berardo Ruffini 2 ; Bozhidar Velichkov 1

1 Dipartimento di Matematica, Università di Pisa Largo B. Pontecorvo 5, 56127 Pisa, Italy
2 Laboratoire Jean Kuntzmann, Université de Grenoble BP 53, 38041 Grenoble Cedex 9, France
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2014__1__71_0,
     author = {Giuseppe Buttazzo and Augusto Gerolin and Berardo Ruffini and Bozhidar Velichkov},
     title = {Optimal potentials for {Schr\"odinger~operators}},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {71--100},
     publisher = {\'Ecole polytechnique},
     volume = {1},
     year = {2014},
     doi = {10.5802/jep.4},
     zbl = {1306.49018},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.4/}
}
TY  - JOUR
AU  - Giuseppe Buttazzo
AU  - Augusto Gerolin
AU  - Berardo Ruffini
AU  - Bozhidar Velichkov
TI  - Optimal potentials for Schrödinger operators
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2014
SP  - 71
EP  - 100
VL  - 1
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.4/
DO  - 10.5802/jep.4
LA  - en
ID  - JEP_2014__1__71_0
ER  - 
%0 Journal Article
%A Giuseppe Buttazzo
%A Augusto Gerolin
%A Berardo Ruffini
%A Bozhidar Velichkov
%T Optimal potentials for Schrödinger operators
%J Journal de l’École polytechnique — Mathématiques
%D 2014
%P 71-100
%V 1
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.4/
%R 10.5802/jep.4
%G en
%F JEP_2014__1__71_0
Giuseppe Buttazzo; Augusto Gerolin; Berardo Ruffini; Bozhidar Velichkov. Optimal potentials for Schrödinger operators. Journal de l’École polytechnique — Mathématiques, Tome 1 (2014), pp. 71-100. doi : 10.5802/jep.4. https://jep.centre-mersenne.org/articles/10.5802/jep.4/

[1] H. W. Alt & L. A. Caffarelli - “Existence and regularity for a minimum problem with free boundary”, J. Reine Angew. Math. 325 (1981), p. 105-144 | MR | Zbl

[2] M. S. Ashbaugh & E. M. Harrell - “Maximal and minimal eigenvalues and their associated nonlinear equations”, J. Math. Phys. 28 (1987) no. 8, p. 1770-1786 | DOI | MR | Zbl

[3] T. Briançon & J. Lamboley - “Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints”, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) no. 4, p. 1149-1163 | DOI | Numdam | MR | Zbl

[4] D. Bucur & G. Buttazzo - Variational methods in shape optimization problems, Progress in Nonlinear Differential Equations and their Applications, vol. 65, Birkhäuser Boston, Inc., Boston, MA, 2005 | MR | Zbl

[5] D. Bucur & G. Buttazzo - “On the characterization of the compact embedding of Sobolev spaces”, Calc. Var. Partial Differential Equations 44 (2012) no. 3-4, p. 455-475 | DOI | MR | Zbl

[6] D. Bucur, G. Buttazzo & B. Velichkov - “Spectral optimization problems for potentials and measures”, Preprint available at http://cvgmt.sns.it | Zbl

[7] G. Buttazzo - Semicontinuity, relaxation and integral representation in the calculus of variations, Pitman Research Notes in Mathematics Series, vol. 207, Longman Scientific & Technical, Harlow, 1989 | MR | Zbl

[8] G. Buttazzo - “Spectral optimization problems”, Rev. Mat. Univ. Complut. Madrid 24 (2011) no. 2, p. 277-322 | DOI | MR | Zbl

[9] G. Buttazzo & G. Dal Maso - “Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions”, Appl. Math. Optim. 23 (1991) no. 1, p. 17-49 | DOI | MR | Zbl

[10] G. Buttazzo & G. Dal Maso - “An existence result for a class of shape optimization problems”, Arch. Rational Mech. Anal. 122 (1993) no. 2, p. 183-195 | DOI | MR | Zbl

[11] G. Buttazzo, N. Varchon & H. Zoubairi - “Optimal measures for elliptic problems”, Ann. Mat. Pura Appl. (4) 185 (2006) no. 2, p. 207-221 | DOI | MR | Zbl

[12] E. A. Carlen, R. L. Frank & E. H. Lieb - “Stability estimates for the lowest eigenvalue of a Schrödinger operator”, Geom. Funct. Anal. 24 (2014) no. 1, p. 63-84 | DOI | Zbl

[13] G. Dal Maso - An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1993 | DOI | MR | Zbl

[14] G. Dal Maso & U. Mosco - “Wiener’s criterion and Γ-convergence”, Appl. Math. Optim. 15 (1987) no. 1, p. 15-63 | DOI | MR | Zbl

[15] H. Egnell - “Extremal properties of the first eigenvalue of a class of elliptic eigenvalue problems”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987) no. 1, p. 1-48 | Numdam | MR | Zbl

[16] M. Essén - “On estimating eigenvalues of a second order linear differential operator”, in General inequalities, 5 (Oberwolfach, 1986), Internat. Schriftenreihe Numer. Math., vol. 80, Birkhäuser, Basel, 1987, p. 347-366 | MR | Zbl

[17] L. C. Evans - Partial differential equations, Graduate Texts in Math., vol. 19, American Mathematical Society, Providence, RI, 2010

[18] L. C. Evans & R. F. Gariepy - Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992 | Zbl

[19] D. Gilbarg & N. S. Trudinger - Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001 | Zbl

[20] E. M. Harrell - “Hamiltonian operators with maximal eigenvalues”, J. Math. Phys. 25 (1984) no. 1, p. 48-51, Erratum: J. Math. Phys. 27 (1986) no. 1, p. 419 | DOI | MR | Zbl

[21] A. Henrot - “Minimization problems for eigenvalues of the Laplacian”, J. Evol. Equ. 3 (2003) no. 3, p. 443-461 | MR | Zbl

[22] A. Henrot - Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006 | Zbl

[23] A. Henrot & M. Pierre - Variation et optimisation de formes. Une analyse géométrique, Mathématiques & Applications (Berlin), vol. 48, Springer, Berlin, 2005 | Zbl

[24] G. Talenti - “Estimates for eigenvalues of Sturm-Liouville problems”, in General inequalities, 4 (Oberwolfach, 1983), Internat. Schriftenreihe Numer. Math., vol. 71, Birkhäuser, Basel, 1984, p. 341-350 | MR | Zbl

Cité par Sources :