Twisted limit formula for torsion and cyclic base change
Journal de l’École polytechnique — Mathématiques, Volume 4 (2017), pp. 435-471.

Let G be the group of complex points of a real semi-simple Lie group whose fundamental rank is equal to 1, e.g. G=SL 2 ()×SL 2 () or SL 3 (). Then the fundamental rank of G is 2, and according to the conjecture made in [3], lattices in G should have ‘little’ — in the very weak sense of ‘subexponential in the co-volume’ — torsion homology. Using base change, we exhibit sequences of lattices where the torsion homology grows exponentially with the square root of the volume. This is deduced from a general theorem that compares twisted and untwisted L 2 -torsions in the general base-change situation. This also makes uses of a precise equivariant ‘Cheeger-Müller Theorem’ proved by the second author [23].

Soit G le groupe des points complexes d’un groupe de Lie semi-simple réel dont le rang fondamental est égal à 1, par exemple G=SL 2 ()×SL 2 () ou SL 3 (). Alors le rang fondamental de G est égal à 2 et, selon la conjecture faite dans [3], les réseaux dans G devraient avoir « peu » — dans le sens très faible de « sous-exponentiel en le co-volume » — de torsion homologique. En utilisant le changement de base, nous exhibons des suites de réseaux le long desquelles la torsion homologique croît exponentiellement avec la racine carrée du volume. Ce comportement est déduit d’un théorème général qui compare les torsions L 2 tordues et non tordues dans la situation générale d’un changement de base. Nous utilisons également une version équivariante précise du « Théorème de Cheeger-Müller » démontrée par le second auteur [23].

Received:
Accepted:
Published online:
DOI: 10.5802/jep.47
Classification: 11F75, 11F70, 11F72, 58J52
Keywords: Homological torsion, limit multiplicities, base change
Mot clés : Torsion homologique, multiplicité limite, changement de base
Nicolas Bergeron 1; Michael Lipnowski 2

1 Université Pierre et Marie Curie, Institut de Mathématiques de Jussieu-Paris Rive Gauche 4 place Jussieu, 75252 Paris Cedex 05, France and Institut Universitaire de France
2 Department of Mathematics, University of Toronto 40 St. George St., Toronto, Ontario, M5S 2E4, Canada
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2017__4__435_0,
     author = {Nicolas Bergeron and Michael Lipnowski},
     title = {Twisted limit formula for torsion and cyclic~base change},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {435--471},
     publisher = {\'Ecole polytechnique},
     volume = {4},
     year = {2017},
     doi = {10.5802/jep.47},
     zbl = {1380.11075},
     mrnumber = {3646025},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.47/}
}
TY  - JOUR
AU  - Nicolas Bergeron
AU  - Michael Lipnowski
TI  - Twisted limit formula for torsion and cyclic base change
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2017
SP  - 435
EP  - 471
VL  - 4
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.47/
DO  - 10.5802/jep.47
LA  - en
ID  - JEP_2017__4__435_0
ER  - 
%0 Journal Article
%A Nicolas Bergeron
%A Michael Lipnowski
%T Twisted limit formula for torsion and cyclic base change
%J Journal de l’École polytechnique — Mathématiques
%D 2017
%P 435-471
%V 4
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.47/
%R 10.5802/jep.47
%G en
%F JEP_2017__4__435_0
Nicolas Bergeron; Michael Lipnowski. Twisted limit formula for torsion and cyclic base change. Journal de l’École polytechnique — Mathématiques, Volume 4 (2017), pp. 435-471. doi : 10.5802/jep.47. https://jep.centre-mersenne.org/articles/10.5802/jep.47/

[1] M. Abert, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raimbault & I. Samet - “On the growth of L 2 -invariants for sequences of lattices in Lie groups” (2012), arXiv:1210.2961

[2] D. Barbasch & H. Moscovici - “L 2 -index and the Selberg trace formula”, J. Funct. Anal. 53 (1983) no. 2, p. 151-201 | DOI | MR | Zbl

[3] N. Bergeron & A. Venkatesh - “The asymptotic growth of torsion homology for arithmetic groups”, J. Inst. Math. Jussieu 12 (2013) no. 2, p. 391-447 | DOI | MR | Zbl

[4] J.-M. Bismut & W. Zhang - An extension of a theorem by Cheeger and Müller, Astérisque, vol. 205, Société Mathématique de France, Paris, 1992, With an appendix by François Laudenbach | Numdam

[5] J.-M. Bismut & W. Zhang - “Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle”, Geom. Funct. Anal. 4 (1994) no. 2, p. 136-212 | DOI | MR | Zbl

[6] A. Borel, J.-P. Labesse & J. Schwermer - “On the cuspidal cohomology of S-arithmetic subgroups of reductive groups over number fields”, Compositio Math. 102 (1996) no. 1, p. 1-40 | Numdam | MR | Zbl

[7] A. Bouaziz - “Formule d’inversion d’intégrales orbitales tordues”, Compositio Math. 81 (1992) no. 3, p. 261-290 | MR | Zbl

[8] G. E. Bredon - Introduction to compact transformation groups, Pure and Applied Mathematics, vol. 46, Academic Press, New York-London, 1972 | MR | Zbl

[9] F. Calegari - “Blog post: torsion in the cohomology of co-compact arithmetic lattices”, http://galoisrepresentations.wordpress.com/2013/02/06/

[10] F. Calegari & M. Emerton - “Bounds for multiplicities of unitary representations of cohomological type in spaces of cusp forms”, Ann. of Math. (2) 170 (2009) no. 3, p. 1437-1446 | DOI | MR | Zbl

[11] F. Calegari & M. Emerton - “Mod-p cohomology growth in p-adic analytic towers of 3-manifolds”, Groups Geom. Dyn. 5 (2011) no. 2, p. 355-366 | DOI | MR | Zbl

[12] F. Calegari & A. Venkatesh - “A torsion Jacquet–Langlands correspondence” (2012), arXiv:1212.3847

[13] L. Clozel - “Changement de base pour les représentations tempérées des groupes réductifs réels”, Ann. Sci. École Norm. Sup. (4) 15 (1982) no. 1, p. 45-115 | DOI | Numdam | Zbl

[14] P. Delorme - “Théorème de Paley-Wiener invariant tordu pour le changement de base C/R, Compositio Math. 80 (1991) no. 2, p. 197-228 | MR | Zbl

[15] Harish-Chandra - “Harmonic analysis on real reductive groups. III. The Maass-Selberg relations and the Plancherel formula”, Ann. of Math. (2) 104 (1976) no. 1, p. 117-201 | DOI | MR | Zbl

[16] R. A. Herb & J. A. Wolf - “The Plancherel theorem for general semisimple groups”, Compositio Math. 57 (1986) no. 3, p. 271-355 | Numdam | MR | Zbl

[17] S. Illman - “Smooth equivariant triangulations of G-manifolds for G a finite group”, Math. Ann. 233 (1978) no. 3, p. 199-220 | DOI | MR | Zbl

[18] F. F. Knudsen & D. Mumford - “The projectivity of the moduli space of stable curves. I. Preliminaries on ‘det’ and ‘Div’”, Math. Scand. 39 (1976) no. 1, p. 19-55 | DOI | MR | Zbl

[19] J.-P. Labesse - “Pseudo-coefficients très cuspidaux et K-théorie”, Math. Ann. 291 (1991) no. 4, p. 607-616 | DOI | MR | Zbl

[20] J.-P. Labesse & J.-L. Waldspurger - La formule des traces tordue d’après le Friday Morning Seminar, CRM Monograph Series, vol. 31, American Mathematical Society, Providence, RI, 2013 | Zbl

[21] R. P. Langlands - Base change for GL (2), Annals of Mathematics Studies, vol. 96, Princeton University Press, Princeton, N.J., 1980 | MR

[22] M. Lipnowski - “Equivariant torsion and base change”, Algebra Number Theory 9 (2015) no. 10, p. 2197-2240 | DOI | MR | Zbl

[23] M. Lipnowski - “The equivariant Cheeger–Müller theorem on locally symmetric spaces”, J. Inst. Math. Jussieu 15 (2016) no. 1, p. 165-202, See also arXiv:1312.2543v2; version 2 has corrections that we refer to not appearing in the published JIMJ version | DOI | MR | Zbl

[24] J. Lott & M. Rothenberg - “Analytic torsion for group actions”, J. Differential Geom. 34 (1991) no. 2, p. 431-481 | DOI | MR | Zbl

[25] W. Lück - “Analytic and topological torsion for manifolds with boundary and symmetry”, J. Differential Geom. 37 (1993) no. 2, p. 263-322 | DOI | MR | Zbl

[26] W. Müller - “Analytic torsion and R-torsion for unimodular representations”, J. Amer. Math. Soc. 6 (1993) no. 3, p. 721-753 | DOI | MR | Zbl

[27] W. Müller & J. Pfaff - “On the asymptotics of the Ray-Singer analytic torsion for compact hyperbolic manifolds”, Internat. Math. Res. Notices (2013) no. 13, p. 2945-2983 | DOI | MR | Zbl

[28] M. Olbrich - “L 2 -invariants of locally symmetric spaces”, Doc. Math. 7 (2002), p. 219-237 | MR | Zbl

[29] J. Rohlfs - “Lefschetz numbers for arithmetic groups”, in Cohomology of arithmetic groups and automorphic forms (Luminy-Marseille, 1989), Lect. Notes in Math., vol. 1447, Springer, Berlin, 1990, p. 303-313 | DOI | MR | Zbl

[30] J. Rohlfs & B. Speh - “Lefschetz numbers and twisted stabilized orbital integrals”, Math. Ann. 296 (1993) no. 2, p. 191-214 | DOI | MR | Zbl

[31] M. H. Şengün - “On the integral cohomology of Bianchi groups”, Experiment. Math. 20 (2011) no. 4, p. 487-505 | DOI | MR | Zbl

[32] J.-P. Serre - Cohomologie galoisienne, Lect. Notes in Math., vol. 5, Springer-Verlag, Berlin, 1994 | MR | Zbl

Cited by Sources: