Uniform semigroup spectral analysis of the discrete, fractional and classical Fokker-Planck equations
[Analyse spectrale uniforme des équations de Fokker-Planck discrète, fractionnaire et classique]
Journal de l’École polytechnique — Mathématiques, Tome 4 (2017) , pp. 389-433.

Dans cet article, nous nous intéressons à l’analyse spectrale et au comportement asymptotique en temps long des semi-groupes associés aux équations de Fokker-Planck discrète, fractionnaire et classique dans des régimes où les opérateurs correspondants sont proches. Nous traitons successivement les modèles de Fokker-Planck discret et classique, puis fractionnaire et classique et enfin discret et fractionnaire. Dans chaque cas, nous démontrons des estimations spectrales uniformes en utilisant des arguments de perturbation et/ou d’élargissement.

In this paper, we investigate the spectral analysis and long time asymptotic convergence of semigroups associated to discrete, fractional and classical Fokker-Planck equations in some regime where the corresponding operators are close. We successively deal with the discrete and the classical Fokker-Planck model, the fractional and the classical Fokker-Planck model and finally the discrete and the fractional Fokker-Planck model. In each case, we prove uniform spectral estimates using perturbation and/or enlargement arguments.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jep.46
Classification : 47G20,  35B40,  35Q84
Mots clés : Équation de Fokker-Planck, laplacien fractionnaire, trou spectral, taux de convergence exponentiel, asymptotique en temps long, semi-groupe, dissipativité
@article{JEP_2017__4__389_0,
     author = {St\'ephane Mischler and Isabelle Tristani},
     title = {Uniform semigroup spectral analysis of the~discrete, fractional and classical {Fokker-Planck} equations},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {389--433},
     publisher = {\'Ecole polytechnique},
     volume = {4},
     year = {2017},
     doi = {10.5802/jep.46},
     mrnumber = {3623358},
     zbl = {06754331},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.46/}
}
Stéphane Mischler; Isabelle Tristani. Uniform semigroup spectral analysis of the discrete, fractional and classical Fokker-Planck equations. Journal de l’École polytechnique — Mathématiques, Tome 4 (2017) , pp. 389-433. doi : 10.5802/jep.46. https://jep.centre-mersenne.org/articles/10.5802/jep.46/

[1] K. Carrapatoso & S. Mischler - “Uniqueness and long time asymptotic for the parabolic-parabolic Keller-Segel equation” (2016), to appear in Comm. Partial Differential Equations, hal-01011361 | Zbl 1377.35134

[2] G. Egaña Fernández & S. Mischler - “Uniqueness and long time asymptotic for the Keller-Segel equation: the parabolic-elliptic case”, Arch. Rational Mech. Anal. 220 (2016) no. 3, p. 1159-1194 | Article | MR 3466844 | Zbl 1334.35358

[3] M. Escobedo, S. Mischler & M. Rodriguez Ricard - “On self-similarity and stationary problem for fragmentation and coagulation models”, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005) no. 1, p. 99-125 | Article | Numdam | MR 2114413 | Zbl 1130.35025

[4] I. Gentil & C. Imbert - “The Lévy-Fokker-Planck equation: Φ-entropies and convergence to equilibrium”, Asymptot. Anal. 59 (2008) no. 3-4, p. 125-138 | Zbl 1170.35337

[5] M. P. Gualdani, S. Mischler & C. Mouhot - “Factorization of non-symmetric operators and exponential H-Theorem” (2013), hal-00495786 | Zbl 06889665

[6] O. Kavian & S. Mischler - “The Fokker-Planck equation with subcritical confinement force” (2015), hal-01241680

[7] S. Mischler - “Semigroups in Banach spaces, factorisation and spectral analysis”, work in progress

[8] S. Mischler & C. Mouhot - “Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres”, Comm. Math. Phys. 288 (2009) no. 2, p. 431-502 | Article | MR 2500990 | Zbl 1178.82056

[9] S. Mischler & C. Mouhot - “Exponential stability of slowly decaying solutions to the kinetic-Fokker-Planck equation”, Arch. Rational Mech. Anal. 221 (2016) no. 2, p. 677-723 | Article | MR 3488535 | Zbl 1338.35430

[10] S. Mischler, C. Quiñinao & J. Touboul - “On a kinetic Fitzhugh-Nagumo model of neuronal network”, Comm. Math. Phys. 342 (2016) no. 3, p. 1001-1042 | Article | MR 3465438 | Zbl 1338.35001

[11] S. Mischler & J. Scher - “Spectral analysis of semigroups and growth-fragmentation equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016) no. 3, p. 849-898 | Article | MR 3489637 | Zbl 1357.47044

[12] S. Mischler & Q. Weng - “On a linear runs and tumbles equation”, Kinet. and Relat. Mod. 10 (2017) no. 3, p. 799-822, hal-01272429 | Article | MR 3591133 | Zbl 1357.35048

[13] C. Mouhot - “Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials”, Comm. Math. Phys. 261 (2006) no. 3, p. 629-672 | Article | MR 2197542 | Zbl 1113.82062

[14] I. Tristani - “Fractional Fokker-Planck equation”, Commun. Math. Sci. 13 (2015) no. 5, p. 1243-1260 | Article | MR 3344425 | Zbl 1328.35245

[15] I. Tristani - “Boltzmann equation for granular media with thermal force in a weakly inhomogeneous setting”, J. Funct. Anal. 270 (2016) no. 5, p. 1922-1970 | Article | MR 3452720 | Zbl 1330.76124

[16] J. Voigt - “A perturbation theorem for the essential spectral radius of strongly continuous semigroups”, Monatsh. Math. 90 (1980) no. 2, p. 153-161 | Article | MR 595321 | Zbl 0433.47022