[Régularité partielle et potentiels]
Nous relions la théorie classique de la régularité partielle des systèmes elliptiques à la théorie du potentiel non linéaire d’équations éventuellement dégénérées. Plus précisément, nous donnons une version en théorie du potentiel des critères classiques d’
We connect classical partial regularity theory for elliptic systems to Nonlinear Potential Theory of possibly degenerate equations. More precisely, we find a potential theoretic version of the classical
Accepté le :
Publié le :
DOI : 10.5802/jep.35
Keywords: Partial regularity, elliptic system, nonlinear potential theory,
Mots-clés : Régularité partielle, système elliptique, théorie du potentiel non linéaire,
Tuomo Kuusi 1 ; Giuseppe Mingione 2

@article{JEP_2016__3__309_0, author = {Tuomo Kuusi and Giuseppe Mingione}, title = {Partial regularity and potentials}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {309--363}, publisher = {ole polytechnique}, volume = {3}, year = {2016}, doi = {10.5802/jep.35}, zbl = {1373.35065}, mrnumber = {3541851}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.35/} }
TY - JOUR AU - Tuomo Kuusi AU - Giuseppe Mingione TI - Partial regularity and potentials JO - Journal de l’École polytechnique — Mathématiques PY - 2016 SP - 309 EP - 363 VL - 3 PB - ole polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.35/ DO - 10.5802/jep.35 LA - en ID - JEP_2016__3__309_0 ER -
Tuomo Kuusi; Giuseppe Mingione. Partial regularity and potentials. Journal de l’École polytechnique — Mathématiques, Tome 3 (2016), pp. 309-363. doi : 10.5802/jep.35. https://jep.centre-mersenne.org/articles/10.5802/jep.35/
[1] - “A regularity theorem for minimizers of quasiconvex integrals”, Arch. Rational Mech. Anal. 99 (1987) no. 3, p. 261-281 | DOI | MR
[2] - Function spaces and potential theory, Grundlehren Math. Wiss., vol. 314, Springer-Verlag, Berlin, 1996 | MR
[3] - “Continuity properties of solutions to the
[4] - “Riesz potential estimates for a general class of quasilinear equations”, Calc. Var. Partial Differential Equations 53 (2015) no. 3-4, p. 803-846 | DOI | MR | Zbl
[5] - “A sharp estimate à la Calderón-Zygmund for the
[6] - “Nonlinear potentials, local solutions to elliptic equations and rearrangements”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 10 (2011) no. 2, p. 335-361 | MR | Zbl
[7] - “Global Lipschitz regularity for a class of quasilinear elliptic equations”, Comm. Partial Differential Equations 36 (2011) no. 1, p. 100-133 | MR | Zbl
[8] - “Global boundedness of the gradient for a class of nonlinear elliptic systems”, Arch. Rational Mech. Anal. 212 (2014) no. 1, p. 129-177 | DOI | MR | Zbl
[9] - “Borderline estimates for fully nonlinear elliptic equations”, Comm. Partial Differential Equations 39 (2014) no. 3, p. 574-590 | MR | Zbl
[10] - “Frontiere orientate di misura minima”, Sem. di Mat. de Scuola Norm. Sup. Pis. (1960-61), p. 1-56 | Zbl
[11] - “The
[12] - “Regularity for degenerate elliptic problems via
[13] - “Local Lipschitz regularity for degenerate elliptic systems”, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010) no. 6, p. 1361-1396 | DOI | Numdam | MR | Zbl
[14] - Parabolic systems with polynomial growth and regularity, Mem. Amer. Math. Soc., vol. 214, no. 1005, American Mathematical Society, 2011 | Zbl
[15] - “Partial continuity for elliptic problems”, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008) no. 3, p. 471-503 | DOI | Numdam | MR | Zbl
[16] - “Partial regularity for minimisers of certain functionals having nonquadratic growth”, Ann. Mat. Pura Appl. (4) 155 (1989), p. 1-24 | DOI | MR | Zbl
[17] - Introduction to regularity theory for nonlinear elliptic systems, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1993 | Zbl
[18] - “Remarks on the regularity of the minimizers of certain degenerate functionals”, Manuscripta Math. 57 (1986) no. 1, p. 55-99 | DOI | MR | Zbl
[19] - Direct methods in the calculus of variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003 | DOI | Zbl
[20] - “Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasi-lineari”, Arch. Rational Mech. Anal. 31 (1968) no. 3, p. 173-184 | DOI | Zbl
[21] - “Regularity of differential forms minimizing degenerate elliptic functionals”, J. reine angew. Math. 431 (1992), p. 7-64 | MR | Zbl
[22] - “Thin sets in nonlinear potential theory”, Ann. Inst. Fourier (Grenoble) 33 (1983) no. 4, p. 161-187 | DOI | Numdam | MR | Zbl
[23] - Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993 | Zbl
[24] - “Degenerate elliptic equations with measure data and nonlinear potentials”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992) no. 4, p. 591-613 | Numdam | MR | Zbl
[25] - “The Wiener test and potential estimates for quasilinear elliptic equations”, Acta Math. 172 (1994) no. 1, p. 137-161 | MR | Zbl
[26] - “A note on the Wolff potential estimate for solutions to elliptic equations involving measures”, Adv. Calc. Var. 3 (2010) no. 1, p. 99-113 | MR | Zbl
[27] - “The singular set of minima of integral functionals”, Arch. Rational Mech. Anal. 180 (2006) no. 3, p. 331-398 | DOI | MR | Zbl
[28] - “Partial regularity of strong local minimizers in the multi-dimensional calculus of variations”, Arch. Rational Mech. Anal. 170 (2003) no. 1, p. 63-89 | DOI | MR | Zbl
[29] - “Partial regularity results for minimizers of quasiconvex functionals of higher order”, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002) no. 1, p. 81-112 | DOI | Numdam | MR | Zbl
[30] - “Nonlinear vectorial potential theory”, to appear in J. Eur. Math. Soc. (JEMS) | Zbl
[31] - “Universal potential estimates”, J. Funct. Anal. 262 (2012) no. 10, p. 4205-4269 | DOI | MR | Zbl
[32] - “Linear potentials in nonlinear potential theory”, Arch. Rational Mech. Anal. 207 (2013) no. 1, p. 215-246 | DOI | MR | Zbl
[33] - “Borderline gradient continuity for nonlinear parabolic systems”, Math. Ann. 360 (2014) no. 3-4, p. 937-993 | DOI | MR | Zbl
[34] - “Guide to nonlinear potential estimates”, Bull. Math. Sci. 4 (2014) no. 1, p. 1-82 | MR | Zbl
[35] - “A nonlinear Stein theorem”, Calc. Var. Partial Differential Equations 51 (2014) no. 1-2, p. 45-86 | DOI | MR | Zbl
[36] - “The continuity at a boundary point of the solutions of quasi-linear elliptic equations”, Vestnik Leningrad Univ. Math. 25 (1970) no. 13, p. 42-55 | MR
[37] - “A nonlinear potential theory”, Uspehi Mat. Nauk 27 (1972) no. 6, p. 67-138 | MR
[38] - “The singular set of solutions to non-differentiable elliptic systems”, Arch. Rational Mech. Anal. 166 (2003) no. 4, p. 287-301 | DOI | MR | Zbl
[39] - “Regularity of minima: an invitation to the dark side of the calculus of variations”, Appl. Math. 51 (2006) no. 4, p. 355-426 | MR | Zbl
[40] - “Gradient potential estimates”, J. Eur. Math. Soc. (JEMS) 13 (2011) no. 2, p. 459-486 | MR | Zbl
[41] - “Partial regularity results for non-linear elliptic systems”, J. Math. Mech. 17 (1967/1968), p. 649-670 | MR
[42] - “Quasilinear and Hessian equations of Lane-Emden type”, Ann. of Math. (2) 168 (2008) no. 3, p. 859-914 | DOI | MR | Zbl
[43] - “Singular quasilinear and Hessian equations and inequalities”, J. Funct. Anal. 256 (2009) no. 6, p. 1875-1906 | DOI | MR | Zbl
[44] - “Regularity theorems for degenerate quasiconvex energies with
[45] - “Régularité de solutions de problèmes nonlinéaires”, C. R. Acad. Sci. Paris Sér. A-B 282 (1976) no. 23, p. A1351-A1354
[46] - “On the weak continuity of elliptic operators and applications to potential theory”, Amer. J. Math. 124 (2002) no. 2, p. 369-410 | DOI | MR
[47] - “Regularity for a class of non-linear elliptic systems”, Acta Math. 138 (1977) no. 3-4, p. 219-240 | DOI | MR | Zbl
[48] - “Degenerate quasilinear elliptic systems”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7 (1968), p. 184-222 | MR
- - “Measure data systems with Orlicz growth”, Annali di Matematica Pura ed Applicata (1923 -) 204 (2025) no. 1, p. 407 | DOI:10.1007/s10231-024-01489-1
- - “Quasiconvex Functionals of (p, q)-Growth and the Partial Regularity of Relaxed Minimizers”, Archive for Rational Mechanics and Analysis 248 (2024) no. 5 | DOI:10.1007/s00205-024-02013-8
- - “Singular elliptic measure data problems with irregular obstacles”, Nonlinear Analysis 245 (2024), p. 113559 | DOI:10.1016/j.na.2024.113559
- - “Partial regularity and nonlinear potential estimates for Stokes systems with super-quadratic growth”, Science China Mathematics 67 (2024) no. 7, p. 1525 | DOI:10.1007/s11425-022-2137-x
- - “Wolff potentials and measure data vectorial problems with Orlicz growth”, Calculus of Variations and Partial Differential Equations 62 (2023) no. 2 | DOI:10.1007/s00526-022-02402-5
- - “Borderline Global Regularity for Nonuniformly Elliptic Systems”, International Mathematics Research Notices 2023 (2023) no. 20, p. 17324 | DOI:10.1093/imrn/rnac283
- - “Singular multiple integrals and nonlinear potentials”, Journal of Functional Analysis 285 (2023) no. 2, p. 109952 | DOI:10.1016/j.jfa.2023.109952
- - “Potential estimates for fully nonlinear elliptic equations with bounded ingredients”, Mathematics in Engineering 5 (2023) no. 3, p. 1 | DOI:10.3934/mine.2023063
- - “A limiting case in partial regularity for quasiconvex functionals”, Mathematics in Engineering 6 (2023) no. 1, p. 1 | DOI:10.3934/mine.2024001
- - “Potential estimates for elliptic measure data problems with irregular obstacles”, Mathematische Annalen 387 (2023) no. 1-2, p. 745 | DOI:10.1007/s00208-022-02471-z
- - “Quasiconvexity and partial regularity via nonlinear potentials”, Journal de Mathématiques Pures et Appliquées 163 (2022), p. 11 | DOI:10.1016/j.matpur.2022.05.001
- - “Partial regularity for symmetric quasiconvex functionals on BD”, Journal de Mathématiques Pures et Appliquées 145 (2021), p. 83 | DOI:10.1016/j.matpur.2020.09.005
- - “Fractional differentiability results for nonlinear measure data problems with coefficients in Cγα”, Journal of Differential Equations 270 (2021), p. 390 | DOI:10.1016/j.jde.2020.08.006
- - “Potential estimates for elliptic systems with subquadratic growth”, Journal de Mathématiques Pures et Appliquées 131 (2019), p. 193 | DOI:10.1016/j.matpur.2019.02.012
- - “Nonlinear Potential Theory of elliptic systems”, Nonlinear Analysis 138 (2016), p. 277 | DOI:10.1016/j.na.2015.12.022
Cité par 15 documents. Sources : Crossref