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PARTIAL REGULARITY AND POTENTIALS

by Tuomo Kuusi & Giuseppe Mingione

Abstract. — We connect classical partial regularity theory for elliptic systems to Nonlinear
Potential Theory of possibly degenerate equations. More precisely, we find a potential theoretic
version of the classical ε-regularity criteria leading to regularity of solutions of elliptic systems.
For non-homogenous systems of the type −div a(Du) = f , the new ε-regularity criteria involve
both the classical excess functional of Du and optimal Riesz type and Wolff potentials of the
right hand side f . When applied to the homogenous case −div a(Du) = 0 such criteria recover
the classical ones in partial regularity. As a corollary, we find that the classical and sharp
regularity results for solutions to scalar equations in terms of function spaces for f extend
verbatim to general systems in the framework of partial regularity, i.e. optimal regularity of
solutions outside a negligible, closed singular set. Finally, the new ε-regularity criteria still allow
to provide estimates on the Hausdorff dimension of the singular sets.

Résumé (Régularité partielle et potentiels). — Nous relions la théorie classique de la régularité
partielle des systèmes elliptiques à la théorie du potentiel non linéaire d’équations éventuel-
lement dégénérées. Plus précisément, nous donnons une version en théorie du potentiel des
critères classiques d’ε-régularité de solutions des systèmes elliptiques. Pour les systèmes non
homogènes du type −div a(Du) = f , les nouveaux critères d’ε-régularité font intervenir à la fois
la fonctionnelle classique d’excès de Du et de type de Riesz optimal et les potentiels de Wolff
du membre de droite f . Appliqués au cas homogène −div a(Du) = 0, ces critères redonnent les
critères classiques en théorie de la régularité partielle. Comme corollaire, nous montrons que
les résultats classiques et précisés de régularité pour les solutions d’équations scalaires en terme
d’espaces de fonctions pour f s’étendent mot pour mot aux systèmes généraux dans le cadre de
la régularité partielle, à savoir la régularité partielle des solutions hors d’un ensemble singulier
fermé négligeable. Enfin, ces nouveaux critères d’ε-régularité permettent encore d’obtenir des
estimée sur la dimension de Hausdorff des ensembles singuliers.
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310 T. Kuusi & G. Mingione

1. Introduction and results

The purpose of this paper is to establish significant connections between the classi-
cal theory of partial regularity for general nonlinear elliptic systems and the Nonlinear
Potential Theory of possibly degenerate quasilinear equations initiated in the funda-
mental papers of Mazya and Havin [36, 37]. The ultimate goal is to find, for solutions
to non-homogeneous, potentially degenerate elliptic systems of the type

(1.1) − div a(Du) = f in Ω ⊂ Rn,

new local ε-regularity criteria guaranteeing the local continuity of Du. Such criteria
are formulated both in terms of the classical excess type functionals of the gradient
E(·) and in terms of Riesz type potentials If1,q of the right hand side f . See (1.17)
below, and (1.7) and (1.13) for the definitions of E(·) and If1,q, respectively. These
potentials, that are actually Wolff potentials, are of the same type of the ones classi-
cally considered in Nonlinear Potential Theory for equations and elliptic systems with
quasi diagonal structure [3, 4, 9, 23, 24, 25, 24, 26, 31, 33, 35, 30, 42, 43, 46]. As a
corollary, we obtain local gradient regularity criteria which are sharp in terms of the
function spaces the right hand side datum f is prescribed to belong to. Finally, the
ε-regularity criteria obtained for solutions to (1.1) recover, in the case f ≡ 0, those
available in the classical partial regularity theory for solutions to homogeneous elliptic
systems of the type

(1.2) − div a(Du) = 0.

For the notation used in this paper we immediately refer to Section 2 below.

1.1. Classical Partial Regularity theory. — In the following, the vector field
a : RN×n → RN×n appearing in (1.1)–(1.2) is assumed to be C1-regular satisfying
the following ellipticity and growth assumptions:

(1.3)



|a(z)|+ |∂a(z)||z| 6 L|z|p−1

ν|z|p−2|ξ|2 6 〈∂a(z)ξ, ξ〉

|∂a(z2)− ∂a(z1)| 6 Lµ
(
|z2 − z1|
|z1|+ |z2|

)
(|z1|+ |z2|)p−2,

for every choice of z, z1, z2, ξ ∈ RN×n, |z1|+ |z2| 6= 0. Here n,N > 2, 0 < ν 6 L, and
µ : R+ → [0, 1] is a modulus of continuity i.e. a bounded, concave, and non-decreasing
function such that µ(0) = 0. In the rest of the paper we shall always assume that

(1.4) p > 2.

As it is clear from the above assumptions, we are allowing the vector field a(·) to be
degenerate elliptic at the origin. Specifically, we assume that a(·) is asymptotically
close to the p-Laplacean operator at the origin in the sense that the limit

(1.5) lim
t→0

a(tz)

tp−1
= |z|p−2z

J.É.P. — M., 2016, tome 3
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holds locally uniformly with respect to z ∈ RN×n. This means that there exists a
function η : (0,∞)→ (0,∞) with the property

(1.6) |z| 6 η(s) =⇒
∣∣a(z)− |z|p−2z

∣∣ 6 s|z|p−1 for every z ∈ RN×n and s > 0.

The systems in (1.1)–(1.2) do not have any special additional structure. For instance,
they are not of quasi-diagonal structure i.e. a(z) cannot be put in the form a(z) ≡
g(|z|)z as required by Uhlenbeck theory of everywhere regularity [47]. Under such
assumptions only partial regularity can be proved, that is, Hölder continuity of the
gradient outside a closed negligible set. Let us briefly recall the basics of this theory
for the situation we are considering. The regular set of the solutions u to (1.2) is
naturally defined as

Reg (u) ≡ Ωu :=
{
x ∈ Ω : there exists an

open subset Ωx ⊂ Ω such that Du ∈ C0(Ωx;RN×n)
}
,

and it can be proved it has full measure |Ω r Ωu| = 0. Obviously, this is an open
subset of Ω and actually Du is locally Hölder continuous in Ωu. The regular set Ωu
admits an integral characterization through the excess functional

(1.7) E(Du,B) :=

(∫
B

|(Du)B |p−2|Du− (Du)B |2 + |Du− (Du)B |p dx
)1/p

.

The main point of partial regularity is that it relies on so called ε-regularity criteria.
This means that there exists a universal threshold quantity ε ≡ ε(n,N, p, ν, L) such
that x0 ∈ Reg (u) iff there exists a ball Br(x0) ⊂ Ω such that

(1.8) E (Du,Br(x0)) < ε.

For results of this type under the structure assumptions (1.3) see for instance [12, 15].
Partial regularity is a classical topic, dating back to the pioneering contributions of
DeGiorgi [10], Giusti & Miranda [20] and Morrey [41]. It extends to integral func-
tionals of the Calculus of Variations [1, 12, 17, 19, 27, 28, 44]. We refer to the survey
paper [39] for an updated overview of the subject. We now want to put Partial Regu-
larity in the context of Nonlinear Potential Theory, and vice-versa. For this we recall
a few basic concepts in the next section.

1.2. Nonlinear Potential Theory. — The aim of Nonlinear Potential Theory is to
provide a satisfying description of fine properties of solutions to nonlinear, possibly
degenerate equations, resembling as much as possible the ones of harmonic functions.
In particular, the classical pointwise gradient estimates for solutions to the Poisson
equation −4u = µ can be recast for solutions to quasilinear, possibly degenerate
equations of the type

(1.9) − div a(Du) = f.

Here f denotes in the most general case a Borel measure with finite total mass. In
this case, when referring to the gradient of solutions, Riesz potentials come into the

J.É.P. — M., 2016, tome 3



312 T. Kuusi & G. Mingione

play:

If1 (x0, r) :=

∫ r

0

|f |(B%(x0))

%n−1

d%

%
.

Pointwise estimates for solutions u can be instead produced by using the nonlinear
Wolff potential W µ

1,p as first shown in [25], where

(1.10) W f
β,p(x0, r) :=

∫ r

0

( |f |(B%(x0))

%n−βp

)1/(p−1) d%

%
, β > 0.

Wolff potentials have been first introduced in [37]; important results are in [22]. Let
us for instance recall two results proved in [32] (see also [40]). Let u ∈ W 1,p(Ω) be a
weak solution to the equation in (1.9) under assumptions (1.3)–(1.4); there exists a
constant c depending only on n, p, ν, L such that

(1.11) |Du(x0)|p−1 . If1 (x0, r) +

(∫
Br(x0)

|Du| dx
)p−1

holds whenever Br(x0) ⊂ Ω and the right hand side is finite. A crucial point here,
which is bound to reproduce in the nonlinear setting a classical linear potential theory
criterion, is that the finiteness of the right hand of (1.11) implies that Du admits a
precise representative at x0. This means that the limit in (1.18) below exists and
thereby defines the pointwise value of Du at x0. Moreover, if

lim
%→0

If1 (x, %) = 0 locally uniformly in Ω w.r.t. x,

then Du is continuous in Ω. When turning to equations different from the one in
(1.9), it happens that a theory including right-hand side data being measures is not
available. In this case modified Riesz type potentials I1,q come into the play. These
are nonlinear potentials of the type in (1.10) with the same homogeneity and scaling,
and ultimately, mapping properties of the classical Riesz potential I1. The difference
is that they are defined on functions having a certain degree of integrability rather
than measures. Such degree of integrability relates to the admissible right-hand sides
of the operator considered. An instance of their use is provided in [9], where fully
nonlinear equations of the type

(1.12) F (D2u) = f

are considered. Such equations allow good regularity theory in the setting of viscosity
solutions only in the case f ∈ Lq, for some q very close to n. Standard Riesz poten-
tials If1 acting on measures are therefore ruled out. To overcome this problem the
basic observation is that Hölder inequality allows to define by homogeneity a new
related potential If1,q as follows:

If1 (x0, r) ≈
∫ r

0

∫
B%(x0)

|f | dx d%

6
∫ r

0

(
%q
∫
B%(x0)

|f |q dx
)1/q

d%

%

=: If1,q(x0, r).

(1.13)
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The newly defined Riesz type potential If1,q is actually a Wolff potential in the sense
that the following identity holds:

(1.14) If1,q(x0, r) = |B1|−1/qW
|f |q
q/(q+1),q+1(x0, r).

A precise analog of estimate (1.11), that is,

(1.15) |Du(x0)| . If1,q(x0, r) +

(∫
Br(x0)

|Du|γ dx
)1/γ

,

now holds for solutions to (1.12), for some γ > n, together with the characterization
of Lebesgue points of Du via finiteness of If1,q. Estimate (1.15) allows to control Du
via If1,q exactly as it happens for solutions to equations as in (1.9) via If1 and formula
(1.11). Regularity in the relevant classes of rearrangement invariant functions spaces
for Du then follows via the mapping properties of the operator X 3 f 7→ If1,q ∈ Y .
These properties can be reconstructed via (1.14) since those of the Wolff potential are
known [2, 6, 37], and are similar to those of the classical Riesz potential I1. The only
difference is the that largest space on which I1,q is acting on is not any longer L1 but,
obviously, Lq. For more details we again refer to [9].

1.3. Main results. — In this section we show how to connect partial regularity and
Nonlinear Potential Theory; this is done using modified Riesz potentials as defined in
(1.13). The key idea, leading to optimal potential estimates for general elliptic systems,
is to match smallness conditions of the type in (1.8) with similar smallness conditions
on potentials. We shall therefore consider non-homogeneous elliptic systems of the
type (1.1), where a(·) satisfies (1.3)–(1.5), f : Ω→ RN . For such systems an existence
theory of problems with (vector valued) measure data f is not available and therefore
the initial assumption we make on f is

(1.16) f ∈ Lq(Ω;RN ), where 2 > q >


2n

n+ 2
if n > 2

3/2 if n = 2.

Eventually we consider f ∈ Lq(Rn;RN ) by letting f ≡ 0 outside Ω. Notice that the
above lower bound on q implies that f ∈ (W 1,p)′ and therefore solutions to (1.1) can
be found by standard monotonicity methods in W 1,p. We are therefore in the realm
of traditional energy solutions. The first result is the following:

Theorem 1.1. — Let u ∈ W 1,p(Ω;RN ) be a solution to (1.1) under assumptions
(1.3)–(1.5) and (1.16), and let Br(x0) ⊂ Ω be a ball. There exists a number ε ≡
ε(n,N, p, ν, L, µ(·), η(·)) > 0 such that if

(1.17) E (Du,Br(x0)) +
[
If1,q(x0, r)

]1/(p−1)

< ε,

then the limit

(1.18) lim
%→0

(Du)B%(x0) =: Du(x0)

J.É.P. — M., 2016, tome 3



314 T. Kuusi & G. Mingione

exists and defines the precise representative of Du at x0. Moreover, the local oscillation
estimate

(1.19) |Du(x0)− (Du)B%(x0)| 6 c
[
If1,q(x0, %)

]1/(p−1)

+ cE (Du,B%(x0))

holds for every concentric ball B%(x0) ⊂ Br(x0), where the constant c depends only
on n,N, p, ν, L, µ(·), η(·).

Requiring condition (1.17) is very close to (1.8), because if If1,q(x0, r) is finite at x0,
then If1,q(x0, %) can be made arbitrarily small by taking % 6 r small enough. This
is in fact the key observation to prove the sharp partial regularity result of the next
theorem, together with a characterization of the singular set, which is similar to the
one for homogeneous systems (1.8).

Theorem 1.2. — Let u ∈W 1,p(Ω;RN ) be a solution to (1.1) under assumptions (1.3)–
(1.5) and (1.16). If

(1.20) lim
%→0

If1,q(x, %) = 0 locally uniformly in Ω w.r.t. x,

then there exists an open subset Ωu ⊂ Ω such that

(1.21) |Ω r Ωu| = 0 and Du ∈ C0(Ωu;RN×n).

Moreover, there exists a positive constant εs and a positive radius %s, such that

(1.22) Ωu =
{
x ∈ Ω : ∃ B%(x) b Ω with % 6 %s : E(Du,B%(x)) < εs

}
.

The constant εs depends only on n,N, p, ν, L, µ(·) and η(·), while %s depends on the
same parameters and additionally on the rate of convergence in (1.20).

Notice that estimate (1.19) in particular implies the potential estimate

|Du(x0)|p−1 6 cIf1,q(x0, r) + c

(∫
Br(x0)

|Du|p dx
)(p−1)/p

,

which is analogous to the one in (1.11). More in general we see that Theorems 1.1–1.2
draw a precise partial regularity analog of the results in Section 1.2.

Theorem 1.2 allows to transport to the setting of partial regularity the classical
Lorentz space borderline criterion for Lipschitz continuity of solutions and, eventually,
for gradient continuity. This has been the object of intensive investigation over the
last years and has been previously established for equations and for systems with
quasi diagonal structure in [7, 8, 9, 13, 32, 35]. No result was available for general
elliptic systems.

Theorem 1.3. — Let u ∈W 1,p(Ω;RN ) be a solution to (1.1) under assumptions (1.3)–
(1.5). If

(1.23) f ∈ L(n, 1) holds locally in Ω,

then (1.21) holds with the open subset Ωu described in (1.22).

J.É.P. — M., 2016, tome 3
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We just recall here that (1.23) means that∫ ∞
0

|{x ∈ Ω̃ : |f(x)| > λ}|1/n dλ <∞

holds for every open subset Ω̃ b Ω. Further estimates and corollaries in various
function spaces can be then obtained by using mapping properties of potentials; see
for instance [3, 6].

A preliminary step in the proof of the above results gives a VMO-criterion for the
gradient, again leading to further partial regularity results.

Theorem 1.4. — Let u ∈W 1,p(Ω;RN ) be a solution to (1.1) under assumptions (1.3)–
(1.5) and (1.16). If

(1.24) lim
%→0

%q
∫
B%(x)

|f |q dy = 0

holds locally uniformly in Ω with respect to x, then there exists an open subset Ωu ⊂ Ω

such that

(1.25) |Ω r Ωu| = 0 and Du ∈ VMOloc(Ωu;RN×n).

A characterization of Ωu as in (1.22) holds for different values εs and %s, with the
dependence as in Theorem 1.2 and on the rate of convergence in (1.24).

The previous result reproduces the sharp criteria for VMO-regularity of the gra-
dient available in the scalar case, both for quasilinear and fully-nonlinear equations;
see for instance [9] and references therein. The parallel can be pushed further, mixing
ε-regularity criteria and different borderline cases.

Theorem 1.5. — Let u ∈W 1,p(Ω;RN ) be a solution to (1.1) under assumptions (1.3)–
(1.5) and (1.16). There exists a number ε∗, depending only on n,N, p, ν, L, µ(·) and
η(·) such that, if

(1.26) sup
B%⊂Ω

%q
∫
B%

|f |q dy < ε∗,

then there exists an open subset Ωu ⊂ Ω such that

(1.27) |Ω r Ωu| = 0 and Du ∈ BMOloc(Ωu;RN×n).

The set Ωu can be again characterized as in (1.22). In particular, this holds if
f ∈M n(Ω) ≡ L(n,∞)(Ω) and

(1.28) ‖f‖Mn(Ω) := sup
λ>0

λ|{x ∈ Ω : |f(x)| > λ}|1/n <
( |B1|

4

)1/n

ε
1/q
∗ .

The so-called singular set Ω r Ωu is not only negligible, but actually an estimate
on its Hausdorff dimension dimH (Ω r Ω) can be provided in the case of Theorems
1.2, 1.3, 1.4 and 1.5. This is possible thanks to the characterization of Ωu given in
(1.22). The result follows by a gradient differentiability argument in fractional Sobolev
spaces. It is in the following:

J.É.P. — M., 2016, tome 3
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Theorem 1.6. — Let u ∈W 1,p(Ω;RN ) be a solution to (1.1) under assumptions (1.3)–
(1.5) and (1.16); assume in addition that f ∈ L

p/(p−1)
loc (Ω;RN ). In the situation of

Theorems 1.2, 1.3, 1.4 and 1.5 we then have that the Hausdorff dimension of the
singular set can be estimated as follows:

(1.29) dimH (Ω r Ωu) 6 n− p

p− 1
.

Remark 1.1. — We observe that, when p is large enough, the integrability assumption
f ∈ Lp/(p−1)

loc (Ω;RN ) considered in the above theorem is not really an additional one
with respect to the previously considered integrability in (1.16). Specifically, it is
implied by (1.16) in the case p > 2∗ = 2n/(n+ 2), for n > 2, and p > 3 when n = 2.
The last number is the Sobolev conjugate exponent of 2. We also notice that assuming
some more regularity of f it is possible to get improved estimates for the singular set;
see Remark 6.1 and (6.84) below.

We finally propose a different, more technical version of Theorem 1.1, which is
anyway significant in the setting of classical partial regularity. Indeed, for systems
as in (1.2) the local regularity properties of the solutions are usually expressed via
a non-linear vector field of the gradient, which encodes the degeneracy properties of
the system, that is,

(1.30) V (Du) := |Du|(p−2)/2Du.

As a matter of fact, the following equivalence between the excess functional defined
in (1.7) and the natural one involving the quantity in (1.30)

(1.31) [E (Du,B)]p/2 ≈ Ẽ (Du,B)

where

(1.32) Ẽ(Du,B) :=

(∫
B

|V (Du)− (V (Du))B |2 dx
)1/2

.

For this fact see Section 2.3 below. We then have

Theorem 1.7. — Let u ∈ W 1,p(Ω;RN ) be a solution to (1.1) under assumptions
(1.3)–(1.5) and (1.16), and let Br(x0) ⊂ Ω be a ball. There exists a number ε̃ ≡
ε̃(n,N, p, ν, L, µ(·), η(·)) > 0 such that if

(1.33) Ẽ (Du,Br(x0)) +
[
If1,q(x0, r)

]p/[2(p−1)]

< ε̃

holds, then the following limit exists

(1.34) lim
%→0

(V (Du))B%(x0) =: V (Du)(x0).

Moreover, the precise representative of the composition of V (·) and Du at x0 defined
in (1.34) coincides with the composition of V (·) with the precise representative of Du
at x0 defined in (1.18), i.e.

(1.35) V (Du)(x0) = V (Du(x0)).

J.É.P. — M., 2016, tome 3
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Finally, the local oscillation estimate

(1.36) |V (Du(x0))− (V (Du))B%(x0)| 6 c
[
If1,q(x0, %)

]p/[2(p−1)]

+ cẼ (Du,B%(x0))

holds for every concentric ball B%(x0) ⊂ Br(x0) where the constant c depends only on
n,N, p, ν, L, µ(·), η(·).

We conclude this section by spending a few words on the techniques used and
briefly describing the organization of the paper. In Section 2 we collect a few technical
preliminaries. In Sections 3 and 4 we implement the local linearization procedures,
which are necessary to get partial regularity results for solutions. Decay estimates
for the excess functionals are obtained; we pay special attention in tracing back the
dependence of the inequalities on the natural additional terms stemming from the
right-hand side datum f in (1.1). At this stage a careful proof is needed in order to
get estimates with a dependence of the constants that eventually allow to implement
suitable iteration procedures. To achieve the final results we use a few compactness
lemmas of harmonic approximation type (see Section 2.4 below). At this stage the
combined ε-regularity condition involving both the excess functional E(·) and the
potential If1,q appearing in (1.17) comes into the play to guarantee the conditions for
the excess decay. In Section 5 we start combining the excess decay lemmas in order to
get pointwise BMO and VMO estimates for the gradient of solutions. These provide
the proof of Theorem 1.4 and a preliminary step for the proof of Theorems 1.1–1.3.
The final Section 6 contains the proof of the remaining results; these are based on a
rather careful combination of the excess decay estimates obtained in Sections 3 and 4
and on the preliminary VMO-regularity criteria established in Section 5.

Acknowledgments. — The authors wish to thank the referees for the extremely careful
reading of a first version of the paper, and for the many remarks that eventually led
to a much improved presentation. Part of this paper was written while the second
author was hosted by FIM-ETH Zürich as Nachdiplom lecturer; he wishes to thank
the whole department for the nice atmosphere and the friendly environment.

2. Notation, preliminaries

2.1. Notation. — We start fixing a few basic notation. Starting from (1.1), Ω ⊂ Rn

will always denote an open subset, and we shall always be dealing with the multi-
dimensional case n > 2. In this paper constants are denoted by c; these are larger
or equal than one and can change their precise value in different occurrences. Rele-
vant dependence on parameters will be indicated using parentheses. For instance, a
constant c depending only on other quantities indicated by n,N, p, ν, L is denoted by
c ≡ c(n,N, p, ν, L); dependence on additional parameters can be indicated occasion-
ally with no parameters. In the following Br(x0) := {x ∈ Rn : |x− x0| < r} denotes
the open ball with center x and radius r > 0. When not important, or it is clear
from the context, we shall omit denoting the center as follows: Br ≡ Br(x0). We shall
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318 T. Kuusi & G. Mingione

often abbreviate B1 ≡ B1(0). With O ⊂ Rn being a measurable subset with positive
measure, and with g : O → Rk, k > 1, being a measurable map, we shall denote by

(g)O ≡
∫

O

g dx :=
1

|O|

∫
O

g(x) dx

its integral average; here |O| denotes the Lebesgue measure of O. In the rest of the
paper we shall use several times the following elementary property of integral averages:

(2.1)
(∫

O

|g − (g)O |γ dx
)1/γ

6 2

(∫
O

|g − z|γ dx
)1/γ

,

whenever z ∈ RN×n and γ > 1; when γ = 2 the constant 2 can be replaced by 1.
Finally, with q > 1, its conjugate will be defined as q′ = q/(q − 1).

2.2. Various technical results. — The following is a standard algebraic lemma; see
for instance [21] for the proof.

Lemma 2.1. — For every s > −1/2 we have

1

c
(|z1|2 + |z0|2)s 6

∫ 1

0

|z1 + t(z1 − z0)|2s dt 6 c(|z1|2 + |z0|2)s

for any z0, z1 ∈ RN×n and a constant c ≡ c(s).

Assume now that u ∈ L2(B%(x0);RN ) and denote by `x0,% the unique affine func-
tion realizing

`x0,% 7→ min
`

∫
B%(x0)

|u− `|2 dx

amongst all the affine functions `. We have `x0,%(x) = ux0,% +D`x0,%(x− x0) where

D`x0,% =
n+ 2

%2

∫
B%(x0)

u(x)⊗ (x− x0) dx.

Then, the following properties hold (see for instance [29]):

Lemma 2.2. — Let p > 2. There exists a constant c ≡ c(n, p) such that the following
assertions hold: for every u ∈ Lp(B%(x0);RN ) it holds that

(2.2) |D`x0,% −D`x0,τ%|p 6
c

(τ%)p

∫
Bτ%(x0)

|u− `x0,%|p dx.

Moreover, for every u ∈W 1,p(B%(x0);RN ) it holds

(2.3) |D`x0,% − (Du)B% |p 6 c
∫
B%(x0)

|Du− (Du)B% |p dx.

We still have the following lemma:

Lemma 2.3. — Let p > 2; there exists a constant c ≡ c(n,N, p) such that∫
B%(x0)

|u− `x0,%|p dx 6 c
∫
B%(x0)

|u− `|p dx,

where ` varies amongst affine functions.
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Proof. — The result is classical and relies on the fact that on a finite vector spaces
all norms are equivalent (in this case the space is given by the set of affine functions).
We report the simple proof for completeness. We observe that by a standard scaling
argument we can reduce ourselves to the case B%(x0) ≡ B1. Then, we have(∫

B1

|u− `0,1|p dx
)1/p

6

(∫
B1

|u− `|p dx
)1/p

+

(∫
B1

|`0,1 − `|p dx
)1/p

.

In turn, we have, using the minimality property of `0,1 and the finite dimension
argument mentioned above we have(∫

B1

|`0,1 − `|p dx
)1/p

6 c

(∫
B1

|`0,1 − `|2 dx
)1/2

6 c

(∫
B1

|u− `0,1|2 dx
)1/2

+ c

(∫
B1

|u− `|2 dx
)1/2

6 2c

(∫
B1

|u− `|2 dx
)1/2

6 2c

(∫
B1

|u− `|p dx
)1/p

.

The assertion of the lemma follows combining the content of the last two displays. �

2.3. Excess functionals. — In the following we shall several times use the excess
functional given by

(2.4) E(Du, z0, B) :=

(∫
B

[
|z0|p−2|Du− z0|2 + |Du− z0|p

]
dx

)1/p

,

where z0 ∈ RN×n and B ⊂ Ω is a ball. In the case z0 ≡ (Du)B we shall simply denote
E(Du, (Du)B , B) ≡ E(Du,B), in fact recovering the notation fixed in (1.7). We shall
widely use the map V : RN×n → RN×n defined by

(2.5) V (z) := |z|(p−2)/2z.

The inequality

(2.6) 1

c
(|z1|+ |z2|)p−2|z1 − z2|2 6 |V (z1)− V (z2)|2 6 c(|z1|+ |z2|)p−2|z1 − z2|2,

holds whenever z1, z2 ∈ RN×n and for a constant c depending only on n,N, p. This
in turn implies that the map V (·) is locally bi-Lipschitz regular. For the proof we
for instance refer to [21]. We now collect a few consequences of these definitions and
facts. Starting from the map V (·) introduced in (2.5), with B ⊂ Ω we define the new
excess type functional

(2.7) E(Du,B) :=

(∫
B

|V (Du)− V ((Du)B)|2 dx
)1/2

,

which is obviously related to the one defined in (1.32) and to the original excess
functional E(·) defined in (1.7). It turns out that all these functionals are equivalent,

J.É.P. — M., 2016, tome 3



320 T. Kuusi & G. Mingione

thereby substantiating the claim made in (1.31). Indeed observe that as an immediate
consequence of (2.6) we have that

(2.8) [E(Du,B)]p/2

c
6 E(Du,B) 6 c[E(Du,B)]p/2

holds for a constant c ≡ c(n,N, p). On the other hand the inequality

(2.9) Ẽ(Du,B) 6 E(Du,B)

is a direct consequence of (2.1) and the remark in the subsequent line. The last
inequality is

(2.10) E(Du,B) 6 cẼ(Du,B)

and again holds for a constant c ≡ c(n,N, p). For this we refer to [18, (2.6)].

2.4. Harmonic type approximation lemmas. — In this section we report a few basic
properties of A-harmonic maps, i.e. solutions to elliptic systems with constants coef-
ficients, and together with compactness lemmas yield approximation properties. We
then do the same in the case of p-harmonic maps.

Let us consider a bilinear form A defined on RN×n satisfying conditions

(2.11) |A | 6 L and ν|ξ|2 6 A (ξ, ξ) for every ξ ∈ RN×n.

We shall say that a map h ∈W 1,2(Ω;RN ) is an A -harmonic map in Ω provided∫
Ω

A (Dh,Dϕ) dx = 0 for every ϕ ∈ C∞0 (Ω;RN ).

We then have the following different version of the A-harmonic approximation lemma;
it can be easily obtained by the similar A -caloric one build for the parabolic case in
[14, Chap. 3].

Lemma 2.4 (A -harmonic approximation). — For each ν, L, ε>0, p>1 and d∈ (0, 1],
there exists a positive number δ ∈ (0, 1), depending on n,N, ν, L, ε, but not on d,
with the following property: Assume that A is a bilinear form on RN×n satisfying
conditions (2.11) and moreover, assume that % > 0, and w ∈W 1,2(B%;RN ), with∫

B%

|Dw|2 dx+ dp−2

∫
B%

|Dw|p dx 6 1

is approximatively A -harmonic in the sense that

(2.12)

∣∣∣∣∣
∫
B%

A (Dw,Dϕ) dx

∣∣∣∣∣ 6 δ‖Dϕ‖L∞(B%)

holds for every ϕ ∈ C∞0 (B%,RN ). Then there exists an A -harmonic function
h ∈W 1,2(B%;RN ) such that∫

B3%/4

|Dh|2 dx+ dp−2

∫
B3%/4

|Dh|p dx 6 82np
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and ∫
B3%/4

∣∣∣w − h
%

∣∣∣2 + dp−2
∣∣∣w − h

%

∣∣∣p dx 6 ε.
A fundamental result of Uraltseva [48] and Uhlenbeck [47] states that the gradient

of p-harmonic maps h – that is, solutions to (2.13) below – are locally Hölder contin-
uous. This can be quantified in a precise way as proved in [16, 18]. The result is in
the following:

Theorem 2.1. — There exist constants c > 1 and α ∈ (0, 1), depending only on n, N
and p > 1 with the following property: Whenever h ∈W 1,p(Ω;RN ) solves

(2.13)
∫

Ω

|Dh|p−2〈Dh,Dϕ〉 dx = 0 for all ϕ ∈ C∞0 (Ω;RN ),

and BR(x0) ⊂ Ω then, for any 0 < r 6 R the following estimates hold:

(2.14) sup
BR/2(x0)

|Dh|p 6 c
∫
BR(x0)

|Dh|p dx

and

(2.15) E(Dh,Br(x0)) 6 c
( r
R

)α
E(Dh,BR(x0)),

where E(·) has been defined in (1.7).

The next results now tells that almost p-harmonic maps can be approximated via
compactness methods by genuine p-harmonic maps exactly as almost harmonic maps
can be approximated by genuine harmonic maps. In the case p = 2, the next lemma
is classical and has been first used by DeGiorgi in his proof of regularity of minimal
surfaces [10].

Lemma 2.5 (p-harmonic approximation lemma [11]). — Let p > 2. For every ε > 0

and p1 < p there exists a positive constant δ ∈ (0, 1], depending only on n,N, p, p1

and ε, such that the following is true: Whenever w ∈W 1,p(B%;RN ) with

(2.16)
∫
B%

|Dw|p dx 6 1

is approximatively p-harmonic in the sense that∣∣∣∣ ∫
B%

|Dw|p−2〈Dw,Dϕ〉 dx
∣∣∣∣ 6 δ ‖Dϕ‖L∞(B%)

holds for every ϕ∈C∞0 (B%;RN ), then there exists a p-harmonic map h∈W 1,p(B%;RN )

such that ∫
B%

|Dh|p dx 6 1 and
∫
B%

|Dw −Dh|p1 dx 6 ε.
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3. Decay estimates in the non-degenerate case

We a start with a suitable variant of a classical energy estimate.

Proposition 3.1 (Caccioppoli inequality). — Let u ∈ W 1,p(Ω;RN ) be weak solution
to the system (1.1) under assumptions (1.3)–(1.5) and (1.16). There exists a constant
c ≡ c(n,N, p, ν, L) such that for every ball B%(x0) ⊂ Ω, u0 ∈ RN , z0 ∈ RN×n r {0},
the inequality

(3.1)
∫
B%/2

[
|z0|p−2|Du− z0|2 + |Du− z0|p

]
dx

6 c
∫
B%

[
|z0|p−2

∣∣∣u− `
%

∣∣∣2 +
∣∣∣u− `
%

∣∣∣p] dx+
c

|z0|p−2

(
%q
∫
B%

|f |q dx
)2/q

holds for a constant c ≡ c(n, p, ν, L), where `(x) = u0 + 〈z0, x − x0〉 and q is the
number defined in (1.16).

Proof. — We start re-writing the weak formulation of (1.1) as

(3.2)
∫

Ω

∫ 1

0

〈∂a(z0 + t(Du− z0))(Du− z0), Dϕ〉 dt dx

=

∫
Ω

〈a(Du)− a(z0), Dϕ〉 dx =

∫
Ω

〈f, ϕ〉 dx

for every ϕ ∈ C∞0 (Ω;RN×n). We choose a standard cut-off function φ ∈ C∞0 (B%) such
that 0 6 φ 6 1, φ ≡ 1 on B%/2 and |Dφ| 6 10/%. We take as a test function set
ϕ = φ2(u − `). By using the growth and ellipticity assumptions in (1.3)1,2 together
with standard manipulations we get∫

Ω

∫ 1

0

φ2|z0 + t(Du− z0)|p−2|Du− z0|2 dt dx

6 c
∫

Ω

∫ 1

0

φ|z0 + t(Du− z0)|p−2|Du− z0| |u− `| |Dφ| dt dx

+ c

∫
Ω

φ2|f | |u− `| dx.

Thanks to Lemma 2.1 we have∫ 1

0

|z0 + t(Du− z0)|p−2 dt ≈ (|z0|+ |Du− z0|)p−2 ≈ (|z0|+ |Du|)p−2,

where the implied constant only depends on n,N, p, ν, L. Therefore, by using Young’s
inequality in a standard way we get

(3.3)
∫
B%

φ2
[
|z0|p−2|Du− z0|2 + |Du− z0|p

]
dx

6 c
∫
B%

[
|z0|p−2

∣∣∣u− `
%

∣∣∣2 +
∣∣∣u− `
%

∣∣∣p] dx+ c

∫
B%

φ|f | |u− `| dx.
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Notice than in order to re-absorb the p-terms we have used the fact that φp 6 φ2

since 0 6 φ 6 1. The main task is now to estimate the last integral in the above
display. By using Hölder inequality we have∫

B%

φ|f ||u− `| dx 6
(
%q
∫
B%

|f |q dx
)1/q(∫

B%

∣∣∣φ(u− `)
%

∣∣∣q′ dx)1/q′

.

We now recall some standard notation. In the following 2∗ denotes the usual Sobolev
conjugate exponent (i.e. 2∗ = 2n/(n − 2) for n > 2 and 2∗ = any number larger
than one otherwise) and (2∗)′ = 2∗/(2∗ − 1). In particular observe that in the case
n > 2 we have (2∗)′ = 2n/(n + 2) and that in the case n = 2 we can pick 2∗ large
enough in order to have (2∗)′ 6 3/2. In any case we conclude that (2∗)′ 6 q, where q
has been defined in (1.16), and therefore we have that 2∗ > q′. Using this last fact,
continuing from the last display we have, by Sobolev and Young inequalities, and for
every σ ∈ (0, 1), we have

(3.4)
∫
B%

φ|f | |u− `| dx 6
(
%q
∫
B%

|f |q dx
)1/q(∫

B%

∣∣∣φ(u− `)
%

∣∣∣2∗ dx)1/2∗

6

(
%q
∫
B%

|f |q dx
)1/q(∫

B%

φ2|Du−D`|2 dx+

∫
B%

|Dφ|2|u− `|2 dx
)1/2

6
1

σ|z0|p−2

(
%q
∫
B%

|f |q dx
)2/q

+ c

∫
B%

|z0|p−2
∣∣∣u− `
%

∣∣∣2 dx+ σ

∫
B%

φ2|z0|p−2|Du− z0|2 dx.

Connecting this last inequality with the one in (3.3) and choosing σ≡σ(n,N, p, ν, L)

small enough in order to re-absorb the last integral in (3.4) in the left hand side
of (3.3), we obtain (3.1). The proof is complete. �

The next result is concerned with a classical self-improving property of solutions
to elliptic systems. The point here is to gain the right explicit dependence on the
additional terms containing the assigned datum f .

Proposition 3.2 (Reverse Hölder inequality). — Let u∈W 1,p(Ω;RN ) be weak solution
to the system (1.1) under assumptions (1.3)–(1.5) and (1.16). There exists a higher
integrability exponent p2 ≡ p2(n,N, p, ν, L) > p, such that Du ∈ Lp2loc(Ω;RN×n). More-
over, the following reverse Hölder type inequality

(3.5)
(∫

B%/2

|Du|p2 dx
)1/p2

6 c

(∫
B%

|Du|p dx
)1/p

+ c

(
%q
∫
B%

|f |q dx
)1/[q(p−1)]

holds for a constant c ≡ c(n,N, p, ν, L), whenever B% ⊂ Ω is a ball.

Proof. — First of all, let us observe that by a simple scaling argument we can reduce
to the case we are proving (3.5) in the case B% ≡ B%(x0) ≡ B1. This follows by
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considering the new maps

ũ(x) :=
u(x0 + %x)

%
and f̃(x) := %f(x0 + %x), x ∈ B1,

and solving − div a(Dũ) = f̃ in B1. Applying the proposition to ũ, f̃ and scaling
back to u, f we get the general case. Therefore, from now on, we consider the case
B% ≡ B1 and the new maps ũ and f̃ . Let us now take a ball B% ⊂ B1; we restart
from (3.3), that we apply with the special choice, u0 ≡ (ũ)B% and z0 ≡ 0, that is,
`(x) = ũ0 + 〈z0, x− x0〉 ≡ (ũ)B% . This means that we are dealing with the inequality

(3.6)
∫
B%

φ2|Dũ|p dx 6 c
∫
B%

∣∣∣ ũ− (ũ)B%
%

∣∣∣p dx+ c

∫
B%

|f̃ | |ũ− (ũ)B% | dx.

In the following we shall denote by p∗ the usual Sobolev conjugate exponent of p,
determined in the following sense. When p < n we have p∗ = np/(n − p), while
in the case p > n we then fix p∗ as a number larger than one and such that
(p∗)′ = p∗/(p∗ − 1) ∈ (1, 4/3]. In this way we have that q > (p∗)′ holds in any case,
where q has been defined in (1.16). By fixing σ ∈ (0, 1) and using Hölder, Sobolev-
Morrey and Young inequalities we have∫
B%

|f̃ | |ũ− (ũ)B% | dx 6
(
%(p∗)′

∫
B%

|f̃ |(p
∗)′ dx

)1/(p∗)′(∫
B%

∣∣∣ ũ− (ũ)B%
%

∣∣∣p∗ dx)1/p∗

6 c

(
%(p∗)′

∫
B%

|f̃ |(p
∗)′ dx

)1/(p∗)′(∫
B%

|Dũ|p dx
)1/p

6
c

σ1/(p−1)

(
%(p∗)′

∫
B%

|f̃ |(p
∗)′ dx

)p/[(p∗)′(p−1)]

+ σ

∫
B%

|Dũ|p dx.

We now observe that in any case we have

(3.7) p

(p∗)′(p− 1)
− 1 6

p

n(p− 1)
.

Indeed, when p < n the above relation follows with actually equality sign. Instead, in
the case p > n any value of p∗ > 1 works. We then manipulate as follows:(

%(p∗)′
∫
B%

|f̃ |(p
∗)′ dx

)p/[(p∗)′(p−1)]

6 c(n)

∫
B%

|Kf̃ |(p
∗)′ dx,

where

(3.8) K(p∗)′ :=

(∫
B1

|f̃ |(p
∗)′ dx

)p/[(p∗)′(p−1)]−1

,

and we have in fact used (3.7) and that % 6 1. By further denoting p∗ = np/(n+p) ∈
[1, p), using the last inequality in (3.6) we finally arrive, again using Sobolev inequal-
ity, at∫
B%/2

|Dũ|p dx 6 σ
∫
B%

|Dũ|p dx+ c

(∫
B%

|Dũ|p∗ dx
)p/p∗

+
c

σ1/(p−1)

∫
B%

|Kf̃ |(p
∗)′ dx,
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where the constant c depends only on n,N, p, ν, L. We are therefore able to apply
a well-known variant of Gehring’s lemma (see for instance [19, Cor. 6.1]) and find a
higher integrability exponent s ≡ s(n,N, p, ν, L) > 1 such that s 6 q/(p∗)′ and that
the following inequality:

(3.9)
(∫

B%/2

|Dũ|ps dx
)1/(ps)

6 c

(∫
B%

|Dũ|p dx
)1/p

+cK(p∗)′/p

(∫
B%

|f̃ |(p
∗)′s dx

)1/(ps)

holds whenever B% ⊂ B1; in particular, it holds for B% ≡ B1. By Hölder inequality,
from the definition of K in (3.8) we have

K(p∗)′/p 6

(∫
B1

|f̃ |(p
∗)′s dx

)1/[(p∗)′s(p−1)]−1/(ps)

.

Inserting the last inequality in (3.9) with B% ≡ B1, and using again Hölder inequality
(recall that (p∗)′s 6 q) to estimate the last integral, we obtain(∫

B1/2

|Dũ|ps dx
)1/(ps)

6 c

(∫
B1

|Dũ|p dx
)1/p

+ c

(∫
B1

|f̃ |q dx
)1/[q(p−1)]

.

that holds for a constant c ≡ c(n,N, p, ν, L). Now (3.5) follows with p2 := ps and
scaling back to u and f . �

In the next Proposition we exploit a linearization procedure that eventually will
allow us to apply the A -harmonic approximation lemma. The final outcome is the
distributional inequality (3.11) below; in the right-hand side we notice the appearance
of a term involving f , which is also appearing in the right-hand side of (3.1). To ease
the notation in the following we shall denote

(3.10) ω(t) := [µ (t)]
1/p

.

Proposition 3.1 (Linearization). — Let u ∈ W 1,p(Ω;RN ) be weak solution to the
system (1.1) under assumptions (1.3)–(1.5) and (1.16). There exists a constant
c ≡ c(n,N, p, L) such that for every ball B% ⊂ Ω and every z0 ∈ RN×n r {0} such
that E(Du, z0, B%) 6= 0, we have:

(3.11)
∣∣∣∣ ∫

B%

∂a(z0)

|z0|p−2

(
|z0|(p−2)/2 Du− z0

[E(Du, z0, B%)]p/2
, Dϕ

)
dx

∣∣∣∣
6 c

[
1 +

(E(Du, z0, B%)

|z0|

)(p−2)/2
]
ω
(E(Du, z0, B%)

|z0|

)
‖Dϕ‖L∞

+
c|z0|(2−p)/2

[E(Du, z0, B%)]p/2

(
%q
∫
B%

|f |q dx
)1/q

‖Dϕ‖L∞

for all ϕ ∈ C∞0 (B%;RN ), where q is the number defined in (1.16).
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Proof. — By a simple scaling argument there is no loss of generality in assuming that
|Dϕ| 6 1. We manipulate the identity in (3.2) in order to obtain

(3.12)
∣∣∣∣ ∫

B%

∂a(z0)(Du− z0, Dϕ) dx

∣∣∣∣
6

∣∣∣∣ ∫
B%

∫ 1

0

(∂a(z0)− ∂a(z0 + t(Du− z0))) (Du− z0, Dϕ) dtdx

∣∣∣∣
+

∣∣∣∣ ∫
B%

〈f, ϕ〉 dx
∣∣∣∣ := (I) + (II),

which is valid whenever ϕ ∈ C∞0 (B%). We use (1.3)3 in order to estimate the first
term appearing in the right hand side as follows:

|(I)| 6 c
∫
B%

|Du− z0|(|z0|+ |Du− z0|)p−2µ
( |Du− z0|

|z0|

)
dx

6 c
∫
B%

|Du− z0|p−1µ
( |Du− z0|

|z0|

)
dx

+ c

∫
B%

|z0|p−2|Du− z0|µ
( |Du− z0|

|z0|

)
dx

6 c

(∫
B%

|Du− z0|p dx
)(p−1)/p(∫

B%

µp
( |Du− z0|

|z0|

)
dx

)1/p

+ c|z0|(p−2)/2

(∫
B%

|z0|p−2|Du− z0|2 dx
)1/2

·
(∫

B%

µ2
( |Du− z0|

|z0|

)
dx

)1/2

6 cµ

(∫
B%

|Du− z0|
|z0|

dx

)1/p

[E(Du, z0, B%)]
p−1

+ c|z0|(p−2)/2µ

(∫
B%

|Du− z0|
|z0|

dx

)1/2

[E(Du, z0, B%)]
p/2

6 cµ
(E(Du, z0, B%)

|z0|

)1/p

[E(Du, z0, B%)]
p−1

+ c|z0|(p−2)/2µ
(E(Du, z0, B%)

|z0|

)1/2

[E(Du, z0, B%)]
p/2.

(3.13)

We observe that we have used Jensen’s inequality and the concavity of µ(·), and that
µ(·) 6 1 to estimate [µ(·)]2 6 µ(·) and [µ(·)]p 6 µ(·). We then continue to estimate

(II) 6
∫
B%

|f | dx‖ϕ‖L∞(B%) 6 c%
∫
B%

|f | dx ‖Dϕ‖L∞(B%)

6 c%
∫
B%

|f | dx 6 c
(
%q
∫
B%

|f |q dx
)1/q

.

(3.14)
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Using (3.13) and (3.14) in (3.12), dividing the resulting inequality by the quantity
|z0|(p−2)/2[E(Du, z0, B%)]

p/2 and finally recalling (3.10), we finally obtain (3.11) after
a few manipulations. �

Proposition 3.3. — Let u ∈W 1,p(Ω;RN ) be weak solution to the system (1.1) under
assumptions (1.3)–(1.5) and (1.16). For every τ ∈ (0, 1/4] there exist positive numbers
ε0 = ε0(n,N, p, ν, L, τ, µ(·)) > 0 and ε1 = ε1(n,N, p, ν, L, τ) > 0, such that if for a
ball B% ≡ B%(x0) ⊂ Ω the smallness conditions

(3.15) E (Du,B%) < ε0|(Du)B% |

and

(3.16)
(
%q
∫
B%

|f |q dx
)1/q

6 ε1|(Du)B% |(p−2)/2[E (Du,B%)]
p/2

are satisfied, then the following inequality holds:

(3.17) E (Du,Bτ%) 6 c0τ
2/pE (Du,B%)

for c0 ≡ c0(n,N, p, ν, L).

Proof. — Without loss of generality, we assume that E (Du,B%) > 0, otherwise
the assertion is trivial; for the same reason, in view of (3.15), we can assume that
|(Du)B% | > 0. We initially take ε0 ∈ (0, 1); moreover, again without loss of generality
we assume that the ball B% is centered at the origin; all the other balls in this proof
will be centered at the origin as well. We define the map

(3.18) w(x) := |(Du)B% |(p−2)/2 u(x)− 〈(Du)B% , x〉
[E (Du,B%)]p/2

for x ∈ B%, and

(3.19) d :=

[
E (Du,B%)

|(Du)B% |

]p/2
.

Notice that since we are initially assuming that ε0 6 1, we have that 0 < d 6 1. With
such definitions easy computations give∫
B%

|Dw|2 dx+ dp−2

∫
B%

|Dw|p dx

=

∫
B%
|(Du)B% |p−2|Du− (Du)B% |2 dx+ |Du− (Du)B% |p dx

[E (Du,B%)]
p 6 1.
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Moreover from Proposition 3.1 we have that (note that |(Du)B% | > 0)∣∣∣∣ ∫
B%

∂a((Du)B%)

|(Du)B% |p−2
(Dw,Dϕ) dx

∣∣∣∣
6 c

[
1 +

(E (Du,B%)

|(Du)B% |

)(p−2)/2
]
ω
(E (Du,B%)

|(Du)B% |

)
‖Dϕ‖L∞

+
c|(Du)B% |(2−p)/2

[E (Du,B%)]p/2

(
%q
∫
B%

|f |q dx
)1/q

‖Dϕ‖L∞

6 c [ω (ε0) + ε1] ‖Dϕ‖L∞

(3.20)

for all ϕ ∈ C∞0 (B%;RN ) and where c ≡ c(n,N, p, L). We have of course used inequal-
ities (3.15)–(3.16) in the last estimation. With

A :=
∂a((Du)B%)

|(Du)B% |p−2
,

let now ε > 0 to be chosen in a few lines, and determine δ = δ(n,N, ν, L, ε) ∈ (0, 1]

from Lemma 2.4.
Now we start determining positive numbers ε0 ≡ ε0(n,N, p, ν, L, µ(·), ε) and

ε1 ≡ ε1(n,N, p, ν, L, ε) in such a way that

(3.21) c [ω (ε0) + ε1] 6 δ.

Notice that later we shall put further restrictions on the size of ε0, ε1; they will
anyway always be determined in dependence of the final parameters announced in
the statement of the Proposition. With (3.20) and (3.21) we conclude that∣∣∣∣ ∫

B%

A (Dw,Dϕ) dx

∣∣∣∣ 6 δ‖Dϕ‖L∞
holds for all ϕ ∈ C∞0 (B%;RN ), as required in (2.12). We are therefore in position to
apply Lemma 2.4, that gives the existence of an A -harmonic map h ∈W 1,2(B%;RN ),
such that

(3.22)
∫
B3%/4

|Dh|2 dx+ dp−2

∫
B3%/4

|Dh|p dx 6 1

and

(3.23)
∫
B3%/4

∣∣∣w − h
%

∣∣∣2 dx+ dp−2

∫
B3%/4

∣∣∣w − h
%

∣∣∣p dx 6 ε.
We shall also use a few basic properties of solutions to linear elliptic systems with
constants coefficients to get estimates for h. Namely, the following inequality holds
for every choice of γ > 1:

(3.24) %γ sup
B%/2

|D2h|γ 6 c(n,N, ν, L, γ)

∫
B3%/4

|Dh|γ dx.
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See for instance [19, Chap. 10]. Taking τ ∈ (0, 1/4) to be chosen later, we now have∫
B2τ%

∣∣∣w(x)− h(0)−Dh(0)x

τ%

∣∣∣2 dx
6 c

∫
B2τ%

∣∣∣h(x)− h(0)−Dh(0)x

τ%

∣∣∣2 dx+ c

∫
B2τ%

∣∣∣w − h
τ%

∣∣∣2 dx
(3.23)
6 c(τ%)2 sup

B%/2

|D2h|2 +
cε

τn+2

(3.24)
6 cτ2

∫
B3%/4

|Dh|2 dx+
cε

τn+2

(3.22)
6 cτ2 +

cε

τn+2
.

(3.25)

As a consequence, the constant c in (3.25) depends only on n,N, p, ν, L. We now set

(3.26) ε = τn+2p.

Observe that this has the effect of fixing ε0, ε1 in (3.21) such that

ε0 ≡ ε0(n,N, p, ν, L, µ(·), τ) and ε1 ≡ ε1(n,N, p, ν, L, τ).

This choice of ε in (3.25) and the definition of w in (3.18) yield

(3.27)
∫
B2τ%

∣∣u(x)− (Du)B%x− |(Du)B% |(2−p)/2[E (Du,B%)]
p/2(h(0) +Dh(0)x)

∣∣2
(τ%)2

dx

6 cτ2|(Du)B% |2−p[E (Du,B%)]
p,

where the constant c ≡ c(n,N, p, ν, L). Similarly to (3.25) we have

dp−2

∫
B2τ%

∣∣∣w(x)− h(0)−Dh(0)x

τ%

∣∣∣p dx
6 cdp−2

∫
B2τ%

∣∣∣h(x)− h(0)−Dh(0)x

τ%

∣∣∣p dx+ cdp−2

∫
B2τ%

∣∣∣w − h
τ%

∣∣∣p dx
(3.23)
6 cdp−2(τ%)p sup

B%/2

|D2h|p +
cε

τn+p

(3.24)
6 cτpdp−2

∫
B3%/4

|Dh|p dx+
cε

τn+p

(3.22)
6 cτp +

cε

τn+p

(3.26)
6 cτp.

Scaling back to u we find

(3.28)
∫
B2τ%

∣∣u(x)− (Du)B%x− |(Du)B% |(2−p)/2[E (Du,B%)]
p/2(h(0) +Dh(0)x)

∣∣p
(τ%)p

dx

6 cd2−p|(Du)B% |(2−p)p/2[E (Du,B%)]
p2/2τp

= cτp[E (Du,B%)]
p 6 cτ2[E (Du,B%)]

p,
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where, in order to obtain the equality in the second-last line, we have used the very
definition of d in (3.19). The constant c still depends only on n,N, p, ν, L

With (3.27) and (3.28) at disposal, and denoting by `2τ% the unique affine function
such that

`2τ% 7→ min
`

∫
B2τ%

|u− `|2 dx

amongst all the affine functions `, we conclude with

(3.29)
∫
B2τ%

|(Du)B% |p−2
∣∣∣u− `2τ%

2τ%

∣∣∣2 +
∣∣∣u− `2τ%

2τ%

∣∣∣p dx 6 cτ2[E (Du,B%)]
p,

where c ≡ c(n,N, p, ν, L). Notice that we have used also Lemma 2.3. Using also the
definition of E (Du,B%) we have

|D`2τ%−(Du)B% | 6 |D`2τ% − (Du)B2τ% |+ |(Du)B2τ% − (Du)B% |
(2.3)
6 c

(∫
B2τ%

|Du− (Du)B2τ% |2 dx
)1/2

+

(∫
B2τ%

|Du− (Du)B% |2 dx
)1/2

6
c

τn/2

(∫
B%

|Du− (Du)B% |2 dx
)1/2

=
c

τn/2

(∫
B%

|(Du)B% |p−2|Du− (Du)B% |2 dx
)1/2

|(Du)B% |(2−p)/2

6
c(n)

τn/2

[
E (Du,B%)

|(Du)B% |

]p/2
|(Du)B% |,

so that, if ε0 is chosen such that

(3.30)
[
E (Du,B%)

|(Du)B% |

]p/2
6 εp/20 6

τn/2

8c(n)
,

holds, then we have

(3.31) |D`2τ% − (Du)B% | 6
|(Du)B% |

8
.

This information and (3.29) allows to conclude with

(3.32)
∫
B2τ%

|D`2τ%|p−2
∣∣∣u− `2τ%

2τ%

∣∣∣2 +
∣∣∣u− `2τ%

2τ%

∣∣∣p dx 6 cτ2[E (Du,B%)]
p,

yet with c ≡ c(n,N, p, ν, L). On the other hand we also observe that by (3.31) and
triangle inequality it follows

(3.33) |D`2τ%| > |(Du)B% | − |D`2τ% − (Du)B% | >
7|(Du)B% |

8
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so that, in particular, we have |D`2τ%| > 0. It follows∫
Bτ%

|D`2τ%|p−2|Du−D`2τ%|2dx+ inf
z∈RN×n

∫
Bτ%

|Du− z|p dx

(3.1)
6
∫
B2τ%

|D`2τ%|p−2
∣∣∣u− `2τ%

2τ%

∣∣∣2 +
∣∣∣u− `2τ%

2τ%

∣∣∣p dx
+

c

|D`2τ%|p−2

(
τ q%q

∫
B2τ%

|f |q dx
)2/q

(3.32)
6 cτ2[E (Du,B%)]

p +
c

|D`2τ%|p−2

(
τ q%q

∫
B2τ%

|f |q dx
)2/q

(3.33)
6 cτ2[E (Du,B%)]

p +
cτ2−2n/q

|(Du)B% |p−2

(
%q
∫
B%

|f |q dx
)2/q

.

(3.34)

We proceed estimating∫
Bτ%

|(Du)Bτ% |p−2|Du− (Du)Bτ% |2 dx

6 3p
∫
Bτ%

|D`τ% − (Du)Bτ% |p−2|Du− (Du)Bτ% |2 dx (=: (III))

+ 3p
∫
Bτ%

|D`2τ% −D`τ%|p−2|Du− (Du)Bτ% |2 dx (=: (IV))

+ 3p
∫
Bτ%

|D`2τ%|p−2|Du− (Du)Bτ% |2dx (=: (V)).

We start using Young’s inequality and (2.3) to obtain

(III) 6 c|D`τ% − (Du)Bτ% |p + c

∫
Bτ%

|Du− (Du)Bτ% |p dx

(2.3)
6 c

∫
Bτ%

|Du− (Du)Bτ% |p dx

(2.1)
6 c inf

z∈RN×n

∫
Bτ%

|Du− z|p dx

(3.34)
6 cτ2[E (Du,B%)]

p +
cτ2−2n/q

|(Du)B% |p−2

(
%q
∫
B%

|f |q dx
)2/q

.

for c ≡ c(n,N, p, ν, L). Similarly, we have

(IV) 6 c|D`2τ% −D`τ%|p + c

∫
Bτ%

|Du− (Du)Bτ% |p dx

(2.1),(2.2)
6 c

∫
B2τ%

∣∣∣u− `2τ%
2τ%

∣∣∣p dx+ c inf
z∈RN×n

∫
Bτ%

|Du− z|p dx

(3.32),(3.34)
6 cτ2[E (Du,B%)]

p +
cτ2−2n/q

|(Du)B% |p−2

(
%q
∫
B%

|f |q dx
)2/q

,

(3.35)
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where again it is c ≡ c(n,N, p, ν, L). Finally, by (2.1) and subsequent remark, we
obviously have

(V) 6 3p
∫
Bτ%

|D`2τ%|p−2|Du−D`2τ%|2dx,

and the term appearing on the right hand side has been already estimated in (3.34).
Combining the content of the last five displays with (3.34) we conclude that

(3.36) E (Du,Bτ%) 6 cτ
2/pE (Du,B%) +

cτ2/p−2n/(pq)

|(Du)B% |(p−2)/p

(
%q
∫
B%

|f |q dx
)2/(pq)

,

where c ≡ c(n,N, p, ν, L). We are now going to use the assumed condition (3.16)
again, putting a further, final restriction on the size of ε1. We have

cτ2/p−2n/(pq)

|(Du)B% |(p−2)/p

(
%q
∫
B%

|f |q dx
)2/(pq)

6 cτ2/p−2n/(pq)ε
2/p
1 E (Du,B%) .

Therefore, by choosing

(3.37) ε1 6
τ2n/(pq)

c
,

we finally get

cτ2/p−2n/(pq)

|(Du)B% |(p−2)/p

(
%q
∫
B%

|f |q dx
)2/(pq)

6 τ2/pE (Du,B%) .

Combining the last estimate with the one in (3.36) yields (3.17). As for the exact
dependence on the various parameters of ε0 and ε1, this can be reconstructed by
looking at the choices made in (3.21), (3.30) and (3.37). In particular, as already
noticed above, once ε is determined in (3.26), then this makes δ appearing in (3.21)
a function of n,N, p, ν, L and τ . This then reflects on the subsequent dependence on
ε0, ε1. The proof is complete. �

We then want to deal with the situation when (3.16) is not verified; for this we
premise a technical lemma that works for any map u.

Lemma 3.1. — Let u ∈ W 1,p(Ω;RN ) and Bτ% ⊂ B% ⊂ Ω be two concentric balls with
τ ∈ (0, 1). It holds that

(3.38) [E(Du,Bτ%)]
p/2 6

8p

τn/2
[E(Du,B%)]

p/2.

Proof. — We have

[E(Du,Bτ%)]
p/2

(2.1)
6

(∫
Bτ%

|(Du)Bτ% |p−2|Du− (Du)B% |2 dx
)1/2

+ 2p
(∫

Bτ%

|Du− (Du)B% |p dx
)1/2

6
4p

τn/2
[E(Du,B%)]

p/2 + 2p|(Du)B% − (Du)Bτ% |(p−2)/2

(∫
Bτ%

|Du− (Du)B% |2 dx
)1/2

.
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On the other hand, we have

|(Du)B%−(Du)Bτ% |(p−2)/2

(∫
Bτ%

|Du− (Du)B% |2 dx
)1/2

6

(∫
Bτ%

|Du− (Du)B% |p dx
)(p−2)/(2p)(∫

Bτ%

|Du− (Du)B% |p dx
)1/p

6
1

τn/2

(∫
B%

|Du− (Du)B% |p dx
)1/2

6
1

τn/2
[E(Du,B%)]

p/2.

Combining the content of the last two displays yields (3.38). �

Proposition 3.4. — Let u ∈W 1,p(Ω;RN ) be weak solution to the system (1.1) under
assumptions (1.3)–(1.5) and (1.16); let B% ≡ B%(x0) ⊂ Ω be a ball and assume that
(3.15) holds for some ε0 ∈ (0, 1) together with

(3.39)
(
%q
∫
B%

|f |q dx
)1/q

> ε1|(Du)B% |(p−2)/2[E (Du,B%)]
p/2

for some other ε1 ∈ (0, 1). Then the following inequality holds whenever τ ∈ (0, 1/4]:

(3.40) E (Du,Bτ%) 6
( 8

τn/p

)ε(p−2)/[2(p−1)]
0

ε
1/(p−1)
1

(
%q
∫
B%

|f |q dx
)1/[q(p−1)]

.

Proof. — By (3.39) we estimate(
%q
∫
B%

|f |q dx
)1/q

> ε1

[E (Du,B%)

ε0

](p−2)/2

[E (Du,B%)]
p/2

=
ε1

ε
(p−2)/2
0

[E (Du,B%)]
p−1,

and we get

(3.41) E (Du,B%) 6
ε

(p−2)/[2(p−1)]
0

ε
1/(p−1)
1

(
%q
∫
B%

|f |q dx
)1/[q(p−1)]

.

At this stage (3.40) follows using (3.38). �

4. Decay estimates in the degenerate case

In this section we deal with another situation in which a condition as in (3.15) is
not verified.

Proposition 4.1 (p-linearization). — Let u ∈ W 1,p(Ω;RN ) be weak solution to the
system (1.1) under assumptions (1.3)–(1.5) and (1.16). Assume that for a ball B% ≡
B%(x0) ⊂ Ω the inequality

(4.1) χ|(Du)B% | 6 E (Du,B%)

holds for some constant χ ∈ (0, 1]. It follows that

(4.2)
∫
B%

|Du|p dx 6 c(χ)[E (Du,B%)]
p,
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where

(4.3) c(χ) := 2p−1
(

1 +
1

χp

)
> 1.

Moreover, for every s > 0 we have that

(4.4)
∣∣∣∣ ∫

B%

〈|Du|p−2Du,Dϕ〉 dx
∣∣∣∣ 6 c[s{c(χ)[E (Du,B%)]

p}(p−1)/p

+
c(χ)[E (Du,B%)]

p

η(s)

]
‖Dϕ‖L∞ + c

(
%q
∫
B%

|f |q dx
)1/q

‖Dϕ‖L∞

holds for all ϕ ∈ C∞0 (B%;RN ), where the constant c depends on n,N, p, L and the
function η(·) has been defined in (1.6).

Proof. — By scaling we again assume that ‖Dϕ‖L∞ 6 1. We start observing that
(4.1) implies ∫

B%

|Du|p dx 6 2p−1

∫
B%

|Du− (Du)%|p dx+ 2p−1|(Du)%|p

6 2p−1
(

1 +
1

χp

)
[E (Du,B%)]

p.

Therefore, recalling (4.3), we conclude with (4.2). We next estimate∣∣∣∣ ∫
B%

〈|Du|p−2Du,Dϕ〉 dx
∣∣∣∣ 6 ∣∣∣∣ ∫

B%

〈a(Du)− |Du|p−2Du,Dϕ〉 dx
∣∣∣∣

+

∣∣∣∣ ∫
B%

〈f, ϕ〉 dx
∣∣∣∣ =: (VI) + (II)

for every ϕ ∈ C∞0 (B%). The term (II) can be estimate as the analogous term in (3.14).
As for (VI), we proceed by splitting the domain of integration; we have

1

|B%|

∣∣∣∣ ∫
B%∩{|Du|6η(s)}

〈a(Du)− |Du|p−2Du,Dϕ〉 dx
∣∣∣∣

6 s
∫
B%

|Du|p−1 dx 6 s

(∫
B%

|Du|p dx
)(p−1)/p

6 s{c(χ)[E (Du,B%)]
p}(p−1)/p,

where we have used (1.6) and (4.2). For the remaining piece we have
1

|B%|

∣∣∣∣ ∫
B%∩{|Du|>η(s)}

〈a(Du)− |Du|p−2Du,Dϕ〉 dx
∣∣∣∣ 6 c

|B%|

∫
B%∩{|Du|>η(s)}

|Du|p−1 dx

6
c

|B%|
∣∣B% ∩ {|Du| > η(s)}

∣∣1/p(∫
B%

|Du|p dx
)(p−1)/p

6
c

η(s)

∫
B%

|Du|p dx 6 cc(χ)[E (Du,B%)]
p

η(s)
.

Collecting the estimates in the last three displays, and recalling the estimate in (3.14)
for (II), finally yields (4.4) and the proof is complete. �
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We are now ready to prove the degenerate analog of Proposition 3.3, using a sort
of p-linearization. Notice that a crucial point in the following statement, and that
requires a delicate proof, is the fact that the constant c1 appearing in inequality (4.6)
below is independent of τ and χ, while only c2 is allowed to have such a dependence.
This is a crucial point when eventually combining Propositions 3.3–3.4 and 4.2 in
Sections 5 and 6.1 below.

Proposition 4.2. — Let u ∈W 1,p(Ω;RN ) be weak solution to the system (1.1) under
assumptions (1.3)–(1.5) and (1.16). For every τ ∈ (0, 1/4] and χ ∈ (0, 1] there exists a
positive number ε2 ≡ ε2(n,N, p, ν, L, τ, χ, η(·)) such that if for a ball B% ≡ B%(x0) ⊂ Ω

the inequality

(4.5) χ|(Du)B% | 6 E (Du,B%)

holds together with the smallness condition

(4.6) E (Du,B%) < ε2,

then

(4.7) E (Du,Bτ%) 6 c1τ
αE (Du,B%) + c2

(
%q
∫
B%

|f |q dx
)1/[q(p−1)]

holds too, where c1 ≡ c1(n,N, p, ν, L) and c2 ≡ c2(n,N, p, ν, L, τ, χ), and α ≡
α(n,N, p) is the exponent appearing in Theorem 2.1.

Proof. — Once again, without loss of generality we assume that x0 = 0 and that
E (Du,B%) > 0. Let us define the map

(4.8) w(x) :=
u(x)

λ

for x ∈ B%, and

(4.9) λ := {c(χ)[E (Du,B%)]
p}1/p +

1

ε3

(
%q
∫
B%

|f |q dx
)1/[q(p−1)]

,

where c(χ) has been defined in (4.3). Here ε3 ∈ (0, 1) is a number to be determined
in due course of the proof. By assumption (4.5) we are able to use (4.2)–(4.4), and
therefore we have

(4.10)
∫
B%

|Dw|p dx 6 1,

and

(4.11)
∣∣∣∣ ∫

B%

〈|Dw|p−2Dw,Dϕ〉 dx
∣∣∣∣ 6 c̃[s+

{c(χ)[E (Du,B%)]
p}1/p

η(s)
+ εp−1

3

]
‖Dϕ‖L∞

whenever ϕ ∈ C∞0 (B%) and where c̃ ≡ c̃(n,N, p, L). The reverse Hölder inequality
(3.5) in terms of w reads as(∫

B%/2

|Dw|p2 dx
)1/p2

6 c

(∫
B%

|Dw|p dx
)1/p

+
c

λ

(
%q
∫
B%

|f |q dx
)1/[q(p−1)]
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for p2 ≡ p2(n,N, p, ν, L) > p and c ≡ c(n,N, p, ν, L), so that (4.2) and the definition
of λ in (4.9) give

(4.12)
∫
B%/2

|Dw|p2 dx 6 c,

again with c ≡ c(n,N, p, ν, L). We now determine the exponent θ ∈ (0, 1) as

(4.13) 1

p
=

θ

p1
+

1− θ
p2

where p1 ∈ (1, p) is an exponent for which we plan to apply the p-harmonic approx-
imation Lemma 2.5. We keep p1 < p from now on fixed, and therefore we omit to
specify the dependence of the next constants on p1. Now let τ be as specified in the
statement and define

(4.14) ε =

(
τnp/2+p2α/2

2p[c(χ)]p/2

)p1/θp
.

We choose such ε in Lemma 2.5 and determine the corresponding δ ≡ δ(n,N, p, ε) ≡
δ(n,N, p, τ, χ) ∈ (0, 1]. We then fix s > 0 such that c̃s 6 δ/3, where c̃ has been
introduced in (4.11). Note the dependence s ≡ s(n,N, p, L, τ, χ). This fixes η(s) as
clarified in (1.6). We then determine ε2 ≡ ε2(n,N, p, L, τ, χ, η(·)) from (4.6) such that

c̃{c(χ)[E (Du,B%)]
p}1/p

η(s)
6
c̃{c(χ)εp2}1/p

η(s)
6
δ

3
.

Finally we pick ε3 ≡ ε3(n,N, p, ν, L, τ, χ) > 0 from (4.9) such that

(4.15) c̃ εp−1
3 6

δ

3
.

Using the content of the last three displays in (4.11) yields∣∣∣∣ ∫
B%

〈|Dw|p−2Dw,Dϕ〉 dx
∣∣∣∣ 6 δ‖Dϕ‖L∞

for any ϕ ∈ C∞0 (B%;RN ). This and (4.10) allow to apply the p-harmonic ap-
proximation Lemma 2.5; we therefore infer the existence of a p-harmonic function
h ∈W 1,p(B%;RN ) such that

(4.16)
∫
B%

|Dh|p dx 6 1

and

(4.17)
∫
B%

|Dw −Dh|p1 dx 6 ε (4.14)
=

(
τnp/2+p2α/2

2p[c(χ)]p/2

)p1/θp
.

Using (2.14) we deduce

(4.18)
∫
B%/2

|Dh|p2 dx 6 ‖Dh‖p2L∞(B%/2) 6 c

(∫
B%

|Dh|p dx
)p2/p (4.16)

6 c(n,N, p).
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By (4.13) we can interpolate as follows:∫
B%/2

|Dw −Dh|p dx 6
(∫

B%/2

|Dw −Dh|p1 dx
)θp/p1(∫

B%/2

|Dw −Dh|p2 dx
)(1−θ)p/p2

(4.17)
6

τnp/2+p2α/2

[c(χ)]p/2

(∫
B%/2

[|Dw|p2 + |Dh|p2 ] dx

)(1−θ)p/p2
.

Therefore, by using (4.12) and (4.18), recalling the definition of w in (4.8) and setting
h := λh (which is still a p-harmonic map), we conclude with

(4.19)
∫
B%/2

∣∣Du−Dh∣∣p dx 6 cλpτnp/2+p2α/2

[c(χ)]p/2

with c ≡ c(n,N, p, ν, L). We now estimate as follows:

[E (Du,Bτ%)]
p =

∫
Bτ%

|(Du)Bτ% |p−2
∣∣Du− (Du)Bτ%

∣∣2 +
∣∣Du− (Du)Bτ%

∣∣p dx
(2.1)
6 c

∫
Bτ%

|(Du)Bτ% |p−2
∣∣Du− (Dh)Bτ%

∣∣2 +
∣∣Du− (Dh)Bτ%

∣∣p dx
6 c

∫
Bτ%

|(Du)Bτ% |p−2
∣∣Dh− (Dh)Bτ%

∣∣2 +
∣∣Dh− (Dh)Bτ%

∣∣p dx
+ c

∫
Bτ%

|(Du)Bτ% |p−2
∣∣Du−Dh∣∣2 +

∣∣Du−Dh∣∣p dx (=: R1)

6 c
∫
Bτ%

|(Dh)Bτ% |p−2
∣∣Dh− (Dh)Bτ%

∣∣2 +
∣∣Dh− (Dh)Bτ%

∣∣p dx+ R1

+ c

∫
Bτ%

|(Du)Bτ% − (Dh)Bτ% |p−2
∣∣Dh− (Dh)Bτ%

∣∣2 dx
Young

6 c

∫
Bτ%

|(Dh)Bτ% |p−2
∣∣Dh− (Dh)Bτ%

∣∣2 +
∣∣Dh− (Dh)Bτ%

∣∣p dx+ cR1.

By using (2.15) we continue estimating

[E (Du,Bτ%)]
p

(2.15)
6 cτpα

∫
B%/2

|(Dh)B%/2 |
p−2

∣∣Dh− (Dh)B%/2
∣∣2 +

∣∣Dh− (Dh)B%/2
∣∣p dx

+ cR1

(2.1)
6 cτpα

∫
B%/2

|(Dh)B%/2 |
p−2

∣∣Du− (Du)B%/2
∣∣2 +

∣∣Du− (Du)B%/2
∣∣p dx

+ c

∫
B%/2

|(Dh)B%/2 |
p−2

∣∣Du−Dh∣∣2 + |Du−Dh|p dx (=: R2) + cR1

6 cτpα[E(Du,B%/2)]p + cR1 + R2

+ cτpα
∫
B%/2

|(Du)B%/2 − (Dh)B%/2 |
p−2

∣∣Du− (Du)B%/2
∣∣2 dx

Young

6 cτpα[E (Du,B%)]
p + cτpα

∫
B%/2

|Du−Dh|p dx+ cR1 + R2.
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We then estimate the terms R1,R2. The constant c depends only n,N, p. By using
Hölder’s inequality, (4.2) and (4.19), and yet recalling that τ ∈ (0, 1/4), we have

R1 6

(∫
Bτ%

|Du|p dx
)(p−2)/p(∫

Bτ%/2

∣∣Du−Dh∣∣p dx)2/p

+

∫
Bτ%

∣∣Du−Dh∣∣p dx
6

c

τn

(∫
B%

|Du|p dx
)(p−2)/p(∫

B%/2

∣∣Du−Dh∣∣p dx)2/p

+
c

τn

∫
B%/2

∣∣Du−Dh∣∣p dx
6

c

τn
{c(χ)[E (Du,B%)]

p}(p−2)/p
(λpτnp/2+p2α/2

[c(χ)]p/2

)2/p

+
c

τn

(λpτnp/2+p2α/2

[c(χ)]p/2

)
for a constant c depending only on n,N, p, ν, L. In order to estimate R2 we recall
(4.18) and that h = λh; then we use (4.19) to have

R2 6 cλ
p−2‖Dh‖p−2

L∞(B%/2)

(∫
B%/2

∣∣Du−Dh∣∣p dx)2/p

+ c

∫
B%/2

∣∣Du−Dh∣∣p dx
6 cλp−2

(λpτnp/2+p2α/2

[c(χ)]p/2

)2/p

+
cλpτnp/2+p2α/2

[c(χ)]p/2
.

Connecting the content of the last three inequalities, and again using (4.19), we then
obtain

[E (Du,Bτ%)]
p 6 cτpα[E (Du,B%)]

p

+
c

τn
{c(χ)[E (Du,B%)]

p}(p−2)/p
(λpτnp/2+p2α/2

[c(χ)]p/2

)2/p

+
c

τn

(λpτnp/2+p2α/2

[c(χ)]p/2

)
+ cλp−2

(λpτnp/2+p2α/2

[c(χ)]p/2

)2/p

,

with c ≡ c(n,N, p, ν, L). We now insert the value of λ from (4.9) in the above in-
equality, thereby getting, after a few lengthy but elementary manipulations and use
of Young’s inequality:

[E (Du,Bτ%)]
p 6 c3τ

pα[E (Du,B%)]
p + c4τ

pα[E (Du,B%)]
p−2

(
%q
∫
B%

|f |q dx
)2/[q(p−1)]

+ c4

(
%q
∫
B%

|f |q dx
)p/[q(p−1)]

6 (c3 + 1)τpα[E (Du,B%)]
p + (c4 + c

p/2
4 )

(
%q
∫
B%

|f |q dx
)p/[q(p−1)]

.

Here it is c3 ≡ c3(n,N, p, ν, L) and c4 ≡ c4(n,N, p, ν, L, τ, χ). Notice that such a
peculiar dependence of the constants occurs by the choice made in (4.15). The last
inequality easily yields (4.7) and the proof is complete. �
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5. Mean oscillation estimates and Theorems 1.4 and 1.5

Estimates in BMO and VMO for Du follow combining and iterating Propositions
3.3–3.4 and 4.2. Let us fix an exponent β such that

(5.1) 0 < β < min{2/p, α} =: αm.

We then consider the constants c0 and c1 appearing in the statements of Propositions
3.3 and 4.2, respectively; they both depend only on n,N, p, ν, L. We then determine
τ ≡ τ(n,N, p, ν, L, β) in such a way that

(5.2) (c0 + c1)ταm−β 6
1

4
.

With such a choice of τ we are able to determine the constants ε0 and ε1 from (3.15)
and (3.16), respectively, that are now functions of n,N, p, ν, L, β and µ(·) (only the
first actually depends on this last parameter). We next proceed applying Proposi-
tion 4.2 with the choice χ ≡ ε0 and with the one of τ made here. This determines
the constants ε2 and c2 again as functions of n,N, p, ν, L, β, µ(·) and η(·). We then
consider a ball Br ⊂ Ω such that

(5.3) E (Du,Br) < ε2

and

(5.4) sup
%6r

c5

(
%q
∫
B%

|f |q dx
)1/[q(p−1)]

6
ε2

4
,

where

(5.5) c5 :=

[
c2 +

( 8

τn/p

)ε(p−2)/[2(p−1)]
0

ε
1/(p−1)
1

]
.

We now turn our attention to Proposition 4.2; since (4.6) is now verified (actually
being (5.3)) we check whether (4.5) is verified too, that is, if ε0|(Du)Br |p 6 E (Du,Br)

holds. If this is the case we then apply Proposition 4.2 thereby getting the validity
of (4.7). If, on the other hand ε0|(Du)Br |p > E (Du,Br) holds, then we look at
Propositions 3.3–3.4 and we deduce that either (3.17) or (3.40) applies. In any case
we have proved the validity of the following estimate

(5.6) E (Du,Bτr) 6
τβ

4
E (Du,Br) + c5

(
rq
∫
Br

|f |q dx
)1/[q(p−1)]

,

where we have indeed applied (5.2) and the definition in (5.1). By further using (5.3)–
(5.4) in the above estimate we also deduce that E (Du,Bτr) < ε2 and this means, in
view of (5.4), that the above reasoning can be applied on the ball Bτr, so that (5.6)
holds with Br replaced by Bτr. Proceeding in this way on the next balls Bτjr, by
induction we conclude that

E (Du,Bτjr) < ε2 holds for every j > 0
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together with the estimate

E (Du,Bτj+1r) 6
τβ

4
E (Du,Bτjr) + c5

(
(τ jr)q

∫
Bτjr

|f |q dx
)1/[q(p−1)]

.

Iterating the above inequality yields

E (Du,Bτk+1r) 6 τ
β(k+1)E (Du,Br) + c5

k∑
j=0

(τβ)j−k
(

(τ jr)q
∫
Bτjr

|f |q dx
)1/[q(p−1)]

for every integer k > 0 and therefore

E (Du,Bτk+1r) 6 τ
β(k+1)E (Du,Br) + c sup

%6r

(
%q
∫
B%

|f |q dx
)1/[q(p−1)]

.

By a standard interpolation argument we can conclude that the following inequality
holds whenever t 6 r:

(5.7) E (Du,Bt) 6 c6
( t
r

)β
E (Du,Br) + c6 sup

%6r

(
%q
∫
B%

|f |q dx
)1/[q(p−1)]

,

again with c6 ≡ c6(n,N, p, ν, L, β, µ(·), η(·)). We have meanwhile proved the following
fact:

Proposition 5.1 (Pointwise BMO-estimate). — Let u ∈W 1,p(Ω;RN ) be weak solution
to the system (1.1) under assumptions (1.3)–(1.5) and (1.16), and let Br(x0) ⊂ Ω be
a ball. There exists a number ε∗ ≡ ε∗(n,N, p, ν, L, β, µ(·), η(·)) such that if

(5.8) E (Du,Br(x0)) + sup
%6r

(
%q
∫
B%(x0)

|f |q dx
)1/[q(p−1)]

< ε

holds for some ε such that 0 < ε 6 ε∗, then it also follows that

sup
%6r

E (Du,B%(x0)) < c6ε

for a constant c6 depending only on n,N, p, ν, L, β, µ(·) and η(·); moreover, inequal-
ity (5.7) holds.

We continue to the

Proof of Theorem 1.4. — We shall in this proof use inequality (5.7), therefore when
dealing with the arguments developed before the statement of Proposition 5.1 we
shall always take β = min{1/p, α/2} in (5.1). Therefore the dependence of the var-
ious constants on β will disappear in all the constants involved and in particular
in c6, that will just depend only on n,N, p, ν, L, µ(·) and η(·). To start with, let
us notice that since we are proving local results, with no loss of generality we can
assume that (1.24) holds uniformly in the whole Ω. We first determine a radius
%1 ≡ %1(n,N, p, ν, L, β, µ(·), η(·)) > 0 such that

(5.9) sup
%6%1

c5

(
%q
∫
B%(x)

|f |q dy
)1/[q(p−1)]

<
ε2

4c6
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holds for every x ∈ Ω. We recall that ε2 has been determined in (5.3), that c5 has been
determined in (5.5) and c6 appears in (5.7); they all depend only on n,N, p, ν, L, β, µ(·)
and η(·). We now want to show that the set Ωu appearing in (1.25) can be character-
ized by

(5.10) Ωu =
{
x ∈ Ω : ∃ B%(x) b Ω with % 6 %1 : E(Du,B%(x)) < ε2/4c6

}
,

thereby fixing %s := %1 and εs := ε2/(4c6) in the statement of Theorem 1.4. We first
observe that |Ω r Ωu| = 0. Indeed let us consider the set

(5.11) Lu :=

{
x ∈ Ω : lim inf

%→0

∫
B%(x)

|V (Du)− (V (Du))B%(x)|2 dy = 0

}
which is such that |Ω r Lu| = 0 by standard Lebesgue theory. Then by (2.8)–(2.10)
we have

(5.12) Lu :=
{
x ∈ Ω : lim inf

%→0
E (Du,B%(x)) = 0

}
,

so that finally Lu ⊂ Ωu and finally |ΩrΩu| = 0 follows. Let us now consider x0 ∈ Ωu.
We can then find a radius %x0 6 %1 such that

(5.13) E
(
Du,B%x0 (x0)

)
<

ε2

4c6
.

By the absolute continuity of the integral and (5.13) we can then find a neighborhood
of x0, say O(x0), such that

(5.14) E
(
Du,B%x0 (x)

)
<

ε2

4c6
and B%x0 (x) b Ω hold for every x ∈ O(x0).

This proves that Ωu is an open set. It remains to prove that Du is locally VMO-
regular in Ωu. For this we start observing that (5.9) and (5.14) imply the validity
of (5.3)–(5.4) with Br ≡ B%x0 (x). Therefore the arguments developed in the proof
Proposition 5.1 apply, eventually leading to (5.7) that in this case reads

E (Du,Bt(x)) 6 c6
( t

%x0

)β
E
(
Du,B%x0 (x)

)
+ c6 sup

%6%x0

(
%q
∫
B%(x)

|f |q dy
)1/[q(p−1)]

for every x ∈ O(x0) and t 6 %x0 . Using (5.9) and (5.13) in the previous inequality we
have

(5.15) E (Du,Bs(x)) < ε2

for every s 6 %x0
and every x ∈ O(x0). Therefore, also recalling (5.9), the validity of

(5.3)–(5.4) this time follows Br ≡ Bs(x) for every s 6 %x0
and for every x ∈ O(x0).

The same arguments devised after (5.3) lead to (5.7) and therefore we conclude again
that

(5.16) E (Du,Bt(x)) 6 c6
( t
s

)β
+ c6 sup

%6s

(
%q
∫
B%(x)

|f |q dy
)1/[q(p−1)]

holds for every x ∈ O(x0) and whenever t 6 s 6 %x0
; notice that we have once again

used (5.15) to estimate the right-hand side. We now concentrate on O(x0) and we
essentially prove that Du has vanishing mean oscillations in O(x0) in the following
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stronger sense. We prove that for every σ ∈ (0, 1) there exists a radius rσ < %x0
such

that

(5.17) t 6 rσ =⇒ E (Du,Bt(x)) 6 σ for every x ∈ O(x0).

This fact will finally imply that Du ∈VMOloc(Ωu;RN×n) via a standard covering
argument. We are therefore left to prove the validity of (5.17). We start taking a
positive radius %2 6 %x0 still depending on n,N, p, ν, L, β, µ(·), η(·) and σ, such that

c6 sup
%6%2

(
%q
∫
B%(x)

|f |q dy
)1/[q(p−1)]

6
σ

2

holds whenever x ∈ Ω. We then finally choose the radius rσ 6 %2, again depending
on n,N, p, ν, L, β, µ(·), η(·) and σ, such that

c6

(rσ
%2

)β
6
σ

2
.

Using the last two inequalities in (5.16) with s=%2 and t6rσ yields E (Du,Bt(x))6σ.
We have therefore checked (5.17) and the proof is complete. �

By carefully examining the above proof it is not difficult to see that we have also
proved the following pointwise version of Theorem 1.4:

Proposition 5.2 (Pointwise VMO). — Let u ∈ W 1,p(Ω;RN ) be weak solution to the
system (1.1) under assumptions (1.3)–(1.5) and (1.16), and let Br(x0) ⊂ Ω be a ball.
There exists a number ε ≡ ε(n,N, p, ν, L, µ(·), η(·)) such that if

(5.18) E (Du,Br(x0)) +

(
sup
%6r

%q
∫
B%(x0)

|f |q dx
)1/[q(p−1)]

< ε

and

(5.19) lim
%→0

%q
∫
B%(x0)

|f |q dx = 0

hold, then

(5.20) lim
%→0

E (Du,B%(x0)) = 0.

Moreover, if (5.18)–(5.19) hold uniformly in an open subset O, then the convergence
in (5.20) happens to be uniform in O.

Proof of Theorem 1.5. — Theorem 1.5 now follows from Proposition 5.1 together with
the same localization argument used in the proof of Theorem 1.4 to prove that the
regular Ωu set is open and has full measure. Needless to say, condition (1.26) serves
to verify condition (5.8) on the set where the excess is small, and this allows to obtain
the characterization of the regular set Ωu as in (5.10). It just remains to prove the
criterion in (1.28). This follows recalling the well-known Hölder type inequality

(5.21) ‖f‖Lq(B) 6
( n

n− q

)1/n

|B|1/q−1/n‖f‖Mn(B),
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which holds for any ball B ⊂ Ω (here it is q < n); see Lemma 5.1 below for the proof.
Therefore, recalling the definition of q in (1.16), we have

%q
∫
B%(x)

|f |q dy 6
( 4

|B1|

)q/n
‖f‖qMn(Ω)

(1.28)
< ε∗,

so that (1.28) implies (1.26) and the proof is complete. �

For the sake of the reader we report the simple proof of inequality (5.21).

Lemma 5.1. — Let 1 6 q < t; if O is an open subset with positive measure, then the
Jensen type inequality

(5.22) ‖f‖Lq(O) 6
( t

t− q

)1/t

|O|1/q−1/t‖f‖M t(O)

holds.

Proof. — For λ0 > 0 to be chosen later, we have

‖f‖qLq(O) = q

∫ λ0

0

λq|{|f | > λ}| dλ
λ

+ q

∫ ∞
λ0

λq|{|f | > λ}| dλ
λ
.

In turn we estimate ∫ λ0

0

λq|{|f | > λ}| dλ
λ
6
λq0|O|
q

and ∫ ∞
λ0

λq|{|f | > λ}| dλ
λ
6 ‖f‖qM t(O)

∫ ∞
λ0

dλ

λ1+t−q =
‖f‖tM t(O)

(t− q)λt−q0

.

Connecting the content of the last three displays yields

‖f‖qLq(O) 6 λ
t
0|O|+

q‖f‖tM t(O)

(t− q)λt−q0

.

Recalling that we can assume ‖f‖Mq(O) > 0 (otherwise there is nothing to prove)
and minimizing with respect to λ0 the quantity appearing in the right-hand side of
the last display, we are led to the choice λ0 = ‖f‖M t(O)/|O|1/t, that finally allows us
to conclude with the Jensen type inequality in (5.22) and the proof is complete. �

6. Proof of the main results

In this Section we present the proof of the main results, i.e. Theorems 1.1–1.3. These
involve several steps, which are distributed in the next sections. The conclusions are
in the very last ones 6.8–6.10. For the following sections, we fix a ball Br(x0) which is
initially the one considered in the statements of Theorems 1.1–1.7. Unless otherwise
stated all the balls appearing through Sections 6.1–6.7 (Bj , B%, Br, Bτr and so on)
will be centered at x0. Needless to say, in the rest of the section u ∈W 1,p(Ω;RN ) is a
weak solution to the system (1.1) under assumptions (1.3)–(1.5) and (1.16). Moreover,
in order to avoid trivialities we shall always assume that If1,q(x0, r) <∞.
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6.1. Set-up of the parameters and basic alternatives. — With τ ∈ (0, 1/4) to be
chosen in a few lines, we set

rj := τ j+1r and Bj := Brj (x0), ∀ j ∈ N ∪ {0}, r−1 := r,

thereby defining a sequence of balls shrinking to x0:

· · ·Brj+1(x0) ≡ Bj+1 ⊂ Bj ≡ Brj (x0) · · · ⊂ B0 ≡ Bτr(x0) ⊂ Br(x0) ≡ B−1.

We then abbreviate as follows:

Ej := E
(
Du,Bj

)
, Aj := (Du)Bj for every j ∈ N ∪ {−1, 0}.

In order to determine the shrinking rate τ , we again look at Propositions 3.3–3.4 and
4.2 and follow the arguments developed in Section 5. We fix τ ∈ (0, 1/4) such that

(6.1) c0τ
2/p + c1τ

α 6
1

27
=⇒ τ ≡ τ(n,N, p, ν, L).

With this choice of τ we determine

(6.2) ε0 ≡ ε0(n,N, p, ν, L, µ(·)) and ε1 ≡ ε1(n,N, p, ν, L)

from Proposition 3.3. We then use χ ≡ ε0 in Proposition 4.2 and therefore determine

(6.3) ε2 ≡ ε2(n,N, p, ν, L, µ(·), η(·)) and c2 ≡ c2(n,N, p, ν, L, µ(·)).

We now assume that

(6.4) E (Du,Bτr) <
τn min{ε, ε2}

82p+1

and that

(6.5) c5 sup
s6τr

(
sq
∫
Bs

|f |q dx
)1/[q(p−1)]

6
τn min{ε, ε2}

82p+2

hold, where the constant c5 is defined in (5.5) with the current choice of ε0, ε1 and τ ,
and where ε ≡ ε(n,N, p, ν, L, µ(·), η(·)) has been introduced in Proposition 5.2. In the
next Section we verify conditions (6.4)–(6.5) so that for the rest of the proof we shall
always work with (6.4)–(6.5) being in force.

6.2. Verification of the smallness conditions. — Here we show that conditions
(6.4)–(6.5) can be verified by choosing the number ε appearing in (1.17) to be properly
small. This is indeed the moment where the smallness assumption (1.17) comes into
the play. Using the definition of the potential If1,q(x0, r), we have

∞∑
j=0

(
rqj

∫
Bj
|f |q dx

)1/q

6
∞∑
j=0

r
1−n/q
j

− log τ

∫ rj−1

rj

(
1

|B1|

∫
B%

|f |q dx
)1/q

d%

%

6
τ1−n/q

− log τ

∞∑
j=0

∫ rj−1

rj

(
%q
∫
B%

|f |q dx
)1/q

d%

%

6
If1,q(x0, r)

τ2n
.

(6.6)
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The above inequality readily implies that

sup
0<%6τr

(
%q
∫
B%

|f |q dx
)1/q

6
If1,q(x0, r)

τ2n+n/q−1

and that

(6.7) lim
%→0

%q
∫
B%

|f |q dx = 0.

On the other hand applying (3.38) we get

E(Du,Bτr) 6
82E(Du,Br)

τn/p
.

The inequalities in the last two displays suggest to take

(6.8) ε := min

{[τ3n+n/q−1 min{ε, ε2}
82p+4c5

]1/(p−1)

,
τn+2n/p min{ε, ε2}

82p+4

}
in (1.17). This choice allows to guarantee both (6.4) and (6.5). Recalling that τ , ε2

and ε have been introduced as numbers depending only on n,N, p, ν, L, µ(·) and η(·),
we are able to find the number ε finally appearing in (1.17) with the dependence on
the various parameters described in the statement of Theorem 1.1.

6.3. Basic alternatives. — A first consequence of (6.4)–(6.5), of (6.7) and of Propo-
sition 5.2 (applied to Bτr(x0) instead of Br(x0)) is that

(6.9) lim
s→0

E (Du,Bs) = 0.

We notice that (6.4) in particular implies that

(6.10) E (Du,Bτr) < ε2.

By (6.10), we are able to combine Propositions 3.3–3.4 and 4.2 with the choices of
the parameters described above, eventually arriving at

(6.11) E (Du,Bτ2r) 6
1

27
E (Du,Bτr) + c5

[
(τr)q

∫
Bτr

|f |q dx
]1/[q(p−1)]

.

The constant c5 is formally defined in (5.5) but now the values of τ, ε0, ε1, c2 are
determined in (6.1)–(6.3). Notice that we have indeed used (6.1). Using (6.4)–(6.5) in
(6.11) we get

E1 = E (Du,Bτ2r) < ε2

so that we can re-apply the same argument on Bτ2r instead of Bτr. Iterating the same
argument on the sequence of balls {Bj} yields

(6.12) Ej = E (Du,Bτj+1r) < ε2 for every j > 0.

Now, since (6.12) is verified on each ball Bj we can apply Propositions 3.3–3.4 and 4.2
on the same sequence of balls, thereby obtaining the following three alternatives:
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(A1) If

(6.13) Ej < ε0|Aj | and
(
rqj

∫
Bj
|f |q dx

)1/q

6 ε1|Aj |(p−2)/2E
p/2
j

are satisfied, then

(6.14) Ej+1 6
Ej
27

holds.

(A2) If

(6.15) Ej < ε0|Aj | and
(
rqj

∫
Bj
|f |q dx

)1/q

> ε1|Aj |(p−2)/2E
p/2
j

are satisfied, then

(6.16) Ej+1 6 c7

(
rqj

∫
Bj
|f |q dx

)1/[q(p−1)]

holds for a constant c7 ≡ c7(n,N, p, ν, L, µ(·)).

(A3) If

(6.17) Ej > ε0|Aj |

is satisfied, then

(6.18) Ej+1 6
Ej
27

+ c8

(
rqj

∫
Bj
|f |q dx

)1/[q(p−1)]

holds for a constant c8 ≡ c8(n,N, p, ν, L, µ(·), η(·)).

With ε0, ε1 and τ , and then the constants c7, c8, having been determined as quanti-
ties that are globally depending only on n,N, p, ν, L, µ(·), η(·), we start defining H1 as

(6.19) H1 := max
{ 88p

τnp
,

26

ε
p/2
0

}
and then H2 as

(6.20) H2 := max

{
(28c8)p+1H1, (2

8c7)p+1H1,
(220pH1

ε1

)p/[2(p−1)]
}
.

These choices again determine H1 and H2 with the following dependence on the
various parameters:

(6.21) H1 ≡ H1(n,N, p, ν, L, µ(·)) and H2 ≡ H2(n,N, p, ν, L, µ(·), η(·)).

With H1, H2 being fixed, we define the composite excess functional C(B) for every
ball B ⊂ Ω as

C(B) := |(Du)B |p/2 +H1[E(Du,B)]p/2,

and finally the non-homogeneous excess functional as

(6.22) F (x0, r) :=
82p64H1

τ2n
[E(Du,Br(x0))]p/2 +

H2

τ2n

[
If1,q(x0, r)

]p/[2(p−1)]

.
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Also recalling (6.9), it follows that

(6.23) lim
%→0

F (x0, %) = 0.

In the following we shall abbreviate

(6.24) Cj := C(Bj) = |Aj |p/2 +H1E
p/2
j for every j ∈ N ∪ {−1, 0}.

6.4. Inductive lemma. — This is the following:

Lemma 6.1. — With the notation established in Sections 6.1–6.3, suppose that λ is a
positive number and that for integers k > m > 0 the following inequalities

(6.25) Cj 6 λ, Cj+1 >
λ

16
∀ j ∈ {m, . . . , k}, Cm 6

λ

4
,

and

(6.26)
[ k∑
j=m

(
rqj

∫
Bj
|f |q dx

)1/q]p/[2(p−1)]

<
2λ

H2

hold. Then the inequalities

(6.27) Ck+1 6 λ,

(6.28)
k+1∑
j=m

E
p/2
j 6

λ

2H1

and

(6.29)
k+1∑
j=m

E
p/2
j 6 2Ep/2m +

27pλ(2−p)/p

ε1

k∑
j=m

(
rqj

∫
Bj
|f |q dx

)1/q

hold true, where ε1 ≡ ε1(n,N, p, ν, L) has been introduced in (6.2).

To prove the above lemma we need the following:

Lemma 6.2. — With the notation established in Section 6.1 the estimates

(6.30)
∣∣∣|Aj+1|p/2 − |Aj |p/2

∣∣∣ 6 8pE
p/2
j

τn/2

and

(6.31) E
p/2
j+1 6

8pE
p/2
j

τn

hold for every integer j > −1.
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Proof. — Estimate (6.31) is a direct consequence of (3.38). In order to prove (6.30)
we estimate∣∣∣|Aj+1|p/2 − |Aj |p/2

∣∣∣ 6 p (|Aj+1|+ |Aj |)(p−2)/2 |Aj+1 −Aj |

6 4p|Aj |(p−2)/2|Aj+1 −Aj |+ 4p|Aj+1 −Aj |p/2

6 4p|Aj |(p−2)/2

(∫
Bj+1

|Du− (Du)Bj |2 dx
)1/2

+ 4p
(∫

Bj+1

|Du− (Du)Bj |p dx
)1/2

6
4p

τn/2

(∫
Bj
|(Du)Bj |p−2|Du− (Du)Bj |2 dx

)1/2

+
4p

τn/2

(∫
Bj
|Du− (Du)Bj |p dx

)1/2

6
8pE

p/2
j

τn/2
,

and the proof is finished. �

Proof of Lemma 6.1. — The proof goes in several steps; with m 6 k fixed as in the
statement of the Lemma, the following arguments hold for an index j ∈ {m, . . . , k}.
We consider the alternatives (A1)–(A3) and their consequences.

Step 1: A preliminary estimate. — Using (6.30) and the definition of Cj gives∣∣∣|Aj+1|p/2 − |Aj |p/2
∣∣∣ 6 8pCj

τn/2H1
.

Using the first inequality in (6.25) and recalling the definition of H1 in (6.19), we then
conclude with

(6.32)
∣∣∣|Aj+1|p/2 − |Aj |p/2

∣∣∣ 6 λ

26
.

Step 2: (A3) cannot hold. — Indeed, we assume by contradiction that (6.17) holds.
This means that (6.18) holds too and therefore, using the elementary inequality

(x+ y)p/2 6 2
p−2
2 xp/2 + 2

p−2
2 yp/2 x, y > 0,

we can estimate

H1E
p/2
j+1

(6.18)
6

2
p−2
2 H1E

p/2
j

27p/2
+ 2

p−2
2 c

p/2
8 H1

(
rqj

∫
Bj
|f |q dx

)p/[2q(p−1)]

6
H1E

p/2
j

27
+

(2c8)p/2

2
H1

(
rqj

∫
Bj
|f |q dx

)p/[2q(p−1)]

(6.26)
6

H1E
p/2
j

27
+

(2c8)p/2H1

H2
λ

(6.20),(6.24)
6

Cj
27

+
λ

27

(6.25)
6

λ

26
.
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We again use the contradiction assumption (6.17) to infer

Aj
(6.17)
6

Ej
ε0
6

1

ε0

(Cj
H1

)2/p (6.25)
6

1

ε0

( λ

H1

)2/p (6.19)
6

( λ
26

)2/p

.

Therefore, by using the inequalities in the last two displays, we have

Cj+1 6
∣∣∣|Aj+1|p/2 − |Aj |p/2

∣∣∣+A
p/2
j +H1E

p/2
j+1 6

λ

26
+
λ

26
+
λ

26
<

λ

16
,

and this is impossible by the second inequality in (6.25). This means that (6.17)
cannot hold.

Step 3: Consequences of (A1)–(A2). — Here we prove that

(6.33) E
p/2
j+1 6

E
p/2
j

4
+

26pλ(2−p)/p

ε1

(
rqj

∫
Bj
|f |q dx

)1/q

holds for every j ∈ {m, . . . , k}. By the result of Step 1 and by the fact that the
index j considered was arbitrary, we conclude that under the assumption (6.25)–
(6.26) we have that Ej < ε0Aj holds for every j ∈ {m, . . . , k} and this means that for
each one of such indexes j one of the alternatives (A1)–(A2) holds. In the case (A1)
holds, that is, the second inequality in (6.13) is verified, then we simply conclude
with (6.14), that obviously implies (6.33). We are therefore left with the occurrence
of (A2), and ultimately with the validity of the second inequality in (6.15). We can
therefore estimate as follows:

H1E
p/2
j+1

(6.16)
6 c

p/2
7 H1

(
rqj

∫
Bj
|f |q dx

)p/[2q(p−1)]

(6.26)
6

2λc
p/2
7 H1

H2

(6.20)
6

λ

26
.

This last inequality and (6.32) finally gives

Cj+1 6
∣∣∣|Aj+1|p/2 − |Aj |p/2

∣∣∣+A
p/2
j +H1E

p/2
j+1 6 A

p/2
j +

λ

25
.

Recalling that in (6.25) we are assuming that Cj+1 > λ/16 we immediately find

(6.34) A
p/2
j >

λ

25
,

so that

E
p/2
j+1

(6.31)
6

8pE
p/2
j

τn

(6.15)
6

8pA
(2−p)/2
j

ε1

(
rqj

∫
Bj
|f |q dx

)1/q

(6.34)
6

26pλ(2−p)/p

ε1

(
rqj

∫
Bj
|f |q dx

)1/q

holds for every j ∈ {m, . . . , k}. This one again proves (6.33), that remains fully
established in any occurrence of the alternatives (A1)–(A3).
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Step 4: Proof of (6.27)–(6.29). — Summing inequalities (6.33) leads to
k+1∑

j=m+1

E
p/2
j 6

1

4

k∑
j=m

E
p/2
j +

26pλ(2−p)/p

ε1

k∑
j=m

(
rqj

∫
Bj
|f |q dx

)1/q

.

Reabsorbing terms and adding up Ep/2m to both sides of the resulting inequality yields
k+1∑
j=m

E
p/2
j 6

4E
p/2
m

3
+

26p+2λ(2−p)/p

3ε1

k∑
j=m

(
rqj

∫
Bj
|f |q dx

)1/q

,

which in turn implies (6.29). To proceed with the proof of (6.28) we have
k+1∑
j=m

E
p/2
j

(6.26)
6

4Cm
3H1

+
26p+2λ(2−p)/p

3ε1

22(p−1)/pλ2(p−1)/p

H
2(p−1)/p
2

(6.25)
6

λ

3H1
+

26p+4λ

3ε1H
2(p−1)/p
2

,

so that, recalling the choice of H2 in (6.20), we conclude with

(6.35)
k+1∑
j=m

E
p/2
j 6

5λ

12H1

which is particular implies (6.28). It remains to prove (6.27). For this we have

|Ak+1|p/2 6 |Am|p/2 +
∣∣∣|Ak+1|p/2 − |Am|p/2

∣∣∣
6 |Am|p/2 +

k∑
j=m

∣∣∣|Aj+1|p/2 − |Aj |p/2
∣∣∣

(6.30)
6 Cm +

8p

τn/2

k∑
j=m

E
p/2
j

(6.25),(6.35)
6

λ

4
+

8p5λ

12H1τn/2

(6.19)
6

λ

2
.

(6.36)

Using this last inequality and (6.35) we finally have that

Ck+1 = |Ak+1|p/2 +H1E
p/2
k+1 6 λ,

that is, (6.27), and the proof is complete. �

6.5. Non-zero gradient. — Here we proceed with the proof of Theorem 1.1. We first
treat the case whenDu(x0), which is still to be proved to exist as precise representative
of Du at x0, is non-zero, in a quantitative defined sense. This goes via two technical
lemmata; the first is the following:

Lemma 6.3. — Assume that

(6.37) λ

8
:= |A0|p/2 >

F (x0, r)

16
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holds. Then the estimate

(6.38)
∞∑
j=0

E
p/2
j 6

F (x0, r)

H1

is true and

(6.39) λ

16
6 |Aj |p/2 6 λ holds for every j > 0.

Proof. Step 1: A uniform lower bound. — We start proving that

(6.40) |Aj |p/2 >
|A0|p/2

2
holds for every j > 0,

which in fact implies the left-hand side inequality in (6.39) in view of (6.37). We
preliminary observe that

|A1|p/2 > |A0|p/2 −
∣∣∣|A1|p/2 − |A0|p/2

∣∣∣
(6.30)
> |A0|p/2 −

8pE
p/2
0

τn/2

(6.31)
> |A0|p/2 −

82p[E(Du,Br)]
p/2

τ2n

(6.22)
> |A0|p/2 −

F (x0, r)

64H1

(6.37)
>
|A0|p/2

2
.

In order to prove (6.40) we argue by contradiction, therefore assuming the existence
of a finite exit time index J > 2 such that

(6.41) |AJ |p/2 <
|A0|p/2

2
and |Aj |p/2 >

|A0|p/2

2
∀ j ∈ {0, . . . , J − 1}.

Step 2: An upper bound. — Here we prove the implication

(6.42) |Aj |p/2 >
|A0|p/2

2
for 0 6 j 6 J − 1 =⇒ Cj 6 λ for 0 6 j 6 J − 1.

We indeed prove by induction that

(6.43) Cj 6 λ holds for every j ∈ {0, . . . , J − 1}.

The starting inequality C0 6 λ (induction basis) is proved as follows:

C0 = |A0|p/2 +H1E
p/2
0

(3.38)
6 |A0|p/2 +

8pH1[E(Du,Br)]
p/2

τn/2

(6.22),(6.37)
6 |A0|p/2 +

F (x0, r)

64

(6.37)
6 2|A0|p/2

(6.37)
= λ/4.

(6.44)

Then we assume by induction that

Cj 6 λ holds for every j ∈ {0, . . . , k},
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and for a certain index k 6 J − 2, and prove that Ck+1 6 λ. In this respect, first
observe that[ ∞∑

j=0

(
rqj

∫
Bj
|f |q dx

)1/q ]p/[2(p−1)] (6.6)
6

[
If1,q(x0, r)

]p/[2(p−1)]

τpn/(p−1)

(6.22),p>2

6
F (x0, r)

H2
(6.45)

(6.37)
6

16|A0|p/2

H2

(6.37)
=

2λ

H2
.(6.46)

Next, by the very definition of Cj and the inductive assumption (6.41) it follows

(6.47) Cj > |Aj |p/2 >
|A0|p/2

2
=

λ

16
for every j ∈ {0, . . . , J − 1}.

Recalling (6.44), (6.46) and that k + 1 6 J − 1, we apply Lemma 6.1 with m = 0

and k being the number used here; this yields Ck+1 6 λ. This in turn completes the
proof of (6.43) by induction.

Step 3: Proof of (6.40) completed. — By (6.43), (6.44), (6.46) and (6.47) we can apply
Lemma 6.1 with m = 0 and k = J − 2. We then have

(6.48)
J−1∑
j=0

E
p/2
j

(6.28)
6

λ

2H1

(6.37)
6

4|A0|p/2

H1
,

so that ∣∣∣|AJ |p/2 − |A0|p/2
∣∣∣ 6 J−1∑

j=0

∣∣∣|Aj+1|p/2 − |Aj |p/2
∣∣∣

(6.30)
6

8p

τn/2

J−1∑
j=0

E
p/2
j

(6.48)
6

8p+1|A0|p/2

τn/2H1

(6.19)
6
|A0|p/2

4
,

and we can finally conclude with

|AJ |p/2 > |A0|p/2 −
∣∣∣|AJ |p/2 − |A0|p/2

∣∣∣ > |A0|p/2 −
|A0|p/2

4
=

3|A0|p/2

4
.

This is a contradiction to (6.41) and therefore (6.40) is proved.

Step 4: Completion of the proof. — With (6.40) being now verified, we can apply (6.42)
for every J and this leads to

Cj 6 λ holds for every j ∈ N ∪ {0}.

By the very definition of the numbers {Cj} this implies the right-hand side inequality
in (6.39) so that the validity of (6.39) is completely established. To complete the proof
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it remains to check (6.38). For this, observe that inequality (6.40) also implies that
Cj > λ/16 holds for every j ∈ N∪ {0}, and this together with (6.44), allows to apply
Lemma 6.1 with m = 0 and for every integer k. This gives

∞∑
j=0

E
p/2
j

(6.29)
6 2E

p/2
0 +

27pλ(2−p)/p

ε1

∞∑
j=0

(
rqj

∫
Bj
|f |q dx

)1/q

(6.37)
6 2E

p/2
0 +

210p[F (x0, r)]
(2−p)/p

ε1

∞∑
j=0

(
rqj

∫
Bj
|f |q dx

)1/q

(6.45)
6 2E

p/2
0 +

210pF (x0, r)

ε1H
2(p−1)/p
2

.

In turn, we continue estimating

E
p/2
0

(6.31)
6

8p[E(Du,Br)]
p/2

τn

(6.22)
6

τnF (x0, r)

8p+2H1
6
F (x0, r)

4H1

and
210pF (x0, r)

ε1H
2(p−1)/p
2

(6.20)
6

F (x0, r)

2H1
.

Connecting the inequalities in the last three displays yields (6.38) and the proof is
complete. �

We are now ready for the next

Lemma 6.4. — Assume that (6.37) holds. Then the limits in (1.18) and (1.34) exist
and (1.35) holds. Moreover, the inequalities

(6.49) |Du(x0)− (Du)Br(x0)| 6 c
[
If1,q(x0, r)

]1/(p−1)

+ cE (Du,Br(x0))

and

(6.50) |V (Du(x0))− (V (Du))Br(x0)| 6 c
[
If1,q(x0, r)

]p/[2(p−1)]

+ cẼ (Du,Br(x0))

hold for a constant c depending only on n,N, p, ν, L, µ(·) and η(·), where Ẽ(·) has been
defined in (1.32).

Step 1: Proof of (6.49) and assertions on Du. — Recalling (2.7), we define

Ej :=

(∫
Bj
|V (Du)− V ((Du)Bj )|2 dx

)1/2

for every integer j > −1, so that the inequalities in (2.8)–(2.10) imply that

(6.51)
(∫

Bj
|V (Du)− (V (Du))Bj |2 dx

)1/2

6 Ej 6 cE
p/2
j for every j > −1.

We now have, for every integer j > −1

|V ((Du)Bj+1)− V ((Du)Bj )| 6 |V ((Du)Bj+1)− (V (Du))Bj+1 |
+ |(V (Du))Bj+1 − (V (Du))Bj |+ |V ((Du)Bj )− (V (Du))Bj |.
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Then, by means of Jensen inequality we find

|V ((Du)Bj+1)− (V (Du))Bj+1 | 6
∫
Bj+1

|V (Du)− V ((Du)Bj+1)| dx

6 Ej+1

(6.51)
6 cE

p/2
j+1

(6.31)
6

c8pE
p/2
j

τn
= cE

p/2
j .

The constant c depends only on n,N, p, ν, L and this follows by (6.1). Similarly

(6.52) |V ((Du)Bj )− (V (Du))Bj | 6 cE
p/2
j .

and

|(V (Du))Bj+1 − (V (Du))Bj | 6
∫
Bj+1

|V (Du)− (V (Du))Bj | dx 6 cE
p/2
j .

Connecting the content of the last four displays yields

(6.53) |V ((Du)Bj+1)− V ((Du)Bj )| 6 cE
p/2
j ,

for every j > −1 and for a constant c depending only on n,N, p, ν, L. On the other
hand, by (6.39), we infer that

|Aj |2−p = |(Du)Bj |2−p 6
( λ

16

)2(2−p)/p

holds for every j > 0. Therefore, with integers 0 6 m 6 k− 1, we estimate as follows:

|(Du)Bk − (Du)Bm | 6
k−1∑
j=m

|(Du)Bj+1 − (Du)Bj |

(2.6)
6 c

k−1∑
j=m

|V ((Du)Bj+1)− V ((Du)Bj )|
(|(Du)Bj+1 |+ |(Du)Bj |)(p−2)/2

(6.53)
6 cλ(2−p)/p

∞∑
j=m

E
p/2
j(6.54)

(6.38)
6

cλ(2−p)/pF (x0, r)

H1

(6.21)
≡ cλ(2−p)/pF (x0, r),(6.55)

where c ≡ c(n,N, p, ν, L, µ(·)). This implies that {(Du)Bj} is a Cauchy sequence,
which in fact gives that the limit

lim
j→∞

(Du)Bj(x0) =: l ∈ RN×n

exists. It is then easy to see that this defines the whole limit in (1.18) and therefore
the precise representative of Du at x0, i.e. l = Du(x0). Indeed, for any positive % 6 τr
we get the integer j% > 1 which is such that τ j%+1r < % 6 τ j%r; thus, recalling that
the series in (6.54) converges, we have

(6.56) lim
%→0
|l − (Du)B%(x0)| 6 lim

j%→∞

(
|l − (Du)Bj% |+ τ−n/pEj%

)
= 0,
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and (1.18) follows. We now let k →∞ in (6.55) with m = 0, thereby getting

(6.57) |Du(x0)− (Du)Bτr(x0)| 6 cλ(2−p)/pF (x0, r)

and again

|Du(x0)− (Du)Br(x0)| 6 |Du(x0)− (Du)Bτr(x0)|+ |(Du)Br(x0) − (Du)Bτr(x0)|
(6.57)
6 cλ(2−p)/pF (x0, r) +

E (Du,Br(x0))

τn/p

(6.37)
6 c[F (x0, r)]

2/p + cE (Du,Br(x0))

(6.22)
6 c[F (x0, r)]

2/p.

In the above display the constant c depends only on n,N, p, ν, L and µ(·). The in-
equality above is nothing but (6.49) once we recall again the definition in (6.22) and
the dependence on the constants in (6.1) and (6.21).

Step 2: Proof of (6.50) and assertions on V (Du). — The proof is similar to the one in
Step 1. Indeed, with integers 0 6 m 6 k − 1 we have

|(V (Du))Bk − (V (Du))Bm | 6
k−1∑
j=m

|(V (Du))Bj+1 − (V (Du))Bj |

(6.53)
6 c

k−1∑
j=m

E
p/2
j 6 c

∞∑
j=m

E
p/2
j

(6.38)
6 cF (x0, r),

(6.58)

with c depending only on n,N, p, ν, L and µ(·). We conclude that {(V (Du))Bj} is a
Cauchy sequence, which in fact gives that the limit

lim
j→∞

(V (Du))Bj(x0) := lV ∈ RN×n

exists. We can now prove that the whole limit in (1.34) exists and coincides with lV
exactly as in Step 1. Indeed, observe that

|(V (Du))Br(x0) − (V (Du))Bτr(x0)| 6
Ẽ (Du,Br(x0))

τn/2

6 c[E (Du,Br(x0))]p/2 6 cF (x0, r),

(6.59)

while taking m = 0 and letting k →∞ in (6.58) we get the following analog of (6.57):

(6.60) |lV − (V (Du))Bτr(x0)| 6 cF (x0, r).

Then, with the same notation used for (6.56), and using a computation similar to the
one in (6.59), we have

lim
%→0
|lV − (V (Du))B%(x0)| 6 lim

j%→∞
|lV − (V (Du))Bj% |+ c lim

j%→∞
F (x0, rj%) = 0

and this proves that the limit in (1.34) equals lV ; recall (6.23). Moreover, (6.50)
follows by connecting (6.59) to (6.60) and recalling (2.10). Finally, the identity in
(1.35) follows directly from (6.52). �
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6.6. Reiteration on small scales. — We now want to see that the content of Lemma
6.4 can be actually replicated on smaller scales. We indeed have

Lemma 6.5. — Assume that

(6.61) |(Du)Bτ% |p/2 >
F (x0, %)

16

holds for some % 6 r. Then the limits in (1.18) and (1.34) exist and (1.35) holds.
Moreover, the inequalities

(6.62) |Du(x0)− (Du)B%(x0)| 6 c
[
If1,q(x0, %)

]1/(p−1)

+ cE (Du,B%(x0))

and

(6.63) |V (Du(x0))− (V (Du))B%(x0)| 6 c
[
If1,q(x0, %)

]p/[2(p−1)]

+ cẼ (Du,B%(x0))

hold for a constant c depending only on n,N, p, ν, L and η(·).

Proof. — To prove the lemma we basically have to show that the arguments developed
for Lemma 6.4 can be applied by replacing Br(x0) with B%(x0); then (6.62)–(6.63)
just follow from (6.49)–(6.50). For this we have to go back to the previous proofs and
single out the crucial conditions used to start the whole argument. These are given
by the convergence in (6.9), which is obviously satisfied independently of the starting
ball B%(x0), and by the initial smallness conditions (6.5) and (6.10), that we want
to be satisfied on the smaller scale Bτ%(x0) once they are satisfied on Bτr(x0). This
amounts to check that

(6.64) c5 sup
s6τ%

(
sq
∫
Bs

|f |q dx
)1/[q(p−1)]

6
τn min{ε, ε2}

82p+2

and

(6.65) E (Du,Bτ%) < ε2

are verified. Condition (6.64) trivially follows from (6.5) since % 6 r. As for (6.65),
iterated application of (6.4)–(6.5) in (6.11) gives

(6.66) Ej−1 ≡ E (Du,Bτjr) 6
τn min{ε, ε2}

82p+1

for every integer j > 1 (recall that B1 ≡ Br), in the same way as we already got
(6.12). Now, let us consider a number % 6 r as in the statement of the Lemma and
determine the integer j > 0 such that τ j+2r < τ% 6 τ j+1r; we have

[E(Du,Bτ%)]
p/2

(3.38)
6

8pE
p/2
j

τn
(6.66)
< ε2.

Notice that the application of (3.38) has been made with values of τ and % which are
obviously different from here. The above inequality, together with (6.66), means that
we have proved (6.65) for every % 6 r and the proof is complete. �
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6.7. Small gradients. — Here we treat the remaining case when (6.37) is not satis-
fied, and the system is potentially degenerate.

Lemma 6.6. — Assume that

(6.67) |A0|p/2 6
F (x0, r)

16
=:

λ

8

holds. Then the limits in (1.18) and (1.34) exist and (1.35) holds. Moreover, the
inequalities in (6.49) and (6.50) hold for a constant c depending only on n,N, p, ν, L
and η(·).

Proof. — With no loss of generality we consider the case when λ > 0, since otherwise
Du is constant in Br(x0) and there is nothing to prove. The rest of the proof goes in
three different steps.

Step 1: Existence of the limit in (1.18). — We can assume that

(6.68) 0 < s 6 r =⇒ |(Du)Bτs |p/2 6
F (x0, s)

16

holds, otherwise, if for some s 6 r the opposite inequality, i.e., (6.61), is verified, then
by Lemma 6.5 the limit in (1.18) exists and we are done. Now, observe that since
(6.68) holds for every s 6 r, by (6.9) it then follows

(6.69) lim
s→0

(Du)Bτs = 0 ∈ RN×n,

and once again the existence of the limit in (1.18) is proved. Notice that (6.69) and
(6.9) imply that (|Du|p)Bτs → 0 and s→ 0 and in turn this immediately gives that

lim
s→0

(V (Du))Bτs = 0 ∈ RN×n,

so that also (1.34) is proved together with (1.35). The rest of the proof is now dedicated
to establish estimates (6.49)–(6.50).

Step 2: Uniform bound. — Here we prove that

(6.70) Cj 6 λ holds for every j ∈ N

and argue by contradiction. By noting that
C0 = |A0|p/2 +H1E0

(6.68)
6

F (x0, r)

16
+

8p[E(Du,Br)]
p/2

τn

<
F (x0, r)

8

(6.67)
=

λ

4
,

(6.71)

we then define k := min{s ∈ N∪{0} : Cs+1 > λ} as the smallest integer (minus one)
for which (6.70) fails. Let us consider the set

Jk := {j ∈ N ∪ {0} : Cj 6 λ/4, j < k + 1} and m := max Jk.

Notice that Jk is non empty by (6.71). By the very definition ofm we have Cm 6 λ/4.
Also, notice that j ∈ {m + 1, . . . , k + 1} implies that Cj > λ/4 > λ/16 (recall also
the definition of k). Finally, by the same definition of k, we have that j ∈ {m, . . . , k}
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implies that Cj 6 λ. Conditions in (6.25) are therefore satisfied in the set of indexes
{m, . . . , k}. In view of an application of Lemma 6.1 it remains to check that (6.26)
is satisfied with the current choice of λ in (6.67). But this can be done exactly as
in (6.45). Lemma 6.1 therefore applies and yields Ck+1 6 λ, which contradicts the
fact that Ck+1 > λ. This finally implies (6.70).

Step 3: Decay estimate and completion. — We first prove the inequality

(6.72) sup
s6r
|(Du)Bs | 6 2[F (x0, r)]

2/p.

For this, we take s ∈ (0, τr] and determine k ∈ N ∪ {0} such that τk+2r < s 6
τk+1r =: rk. We get

|(Du)Bs | 6 |Ak|+ |(Du)Bs(x0) − (Du)Bk |

6 |Ak|+
1

τn

∫
Bk
|Du− (Du)Bk | dx

6 |Ak|+
1

τn

(∫
Bk
|Du− (Du)Bk |p dx

)1/p

(6.19)
6 |Ak|+H

2/p
1 Ek

6 2
(
|Ak|p/2 +H1E

p/2
k

)2/p

= 2C
2/p
k

(6.70)
6 2λ2/p

(6.67)
6 21−2/p[F (x0, r)]

2/p.

In the remaining case s ∈ (τr, r] we similarly have

|(Du)Bs | 6 |A0|+ |(Du)Bs − (Du)B0 |

6 |A0|+
2

τn

∫
Br

|Du− (Du)Br | dx

6 |A0|+
2E(Du,Br)

τ2n

6
[F (x0, r)]

2/p

28/p
+H

2/p
1 E(Du,Br)

6 2[F (x0, r)]
2/p.

Connecting the content of the last two displays yields the proof of (6.72). In turn,
(6.72) trivially implies

|(Du)Bs − (Du)Br | 6 4[F (x0, r)]
2/p.

and (6.49) follows letting s → 0 in the above inequality, also recalling the definition
in (6.22) and that in Step 1 we have proved that the limit in (1.18) exists. The proof
is complete. �

We finally can reiterate the above lemma on smaller scales as done in Section 6.6
for Lemmas 6.4–6.5.
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Lemma 6.7. — Assume that

(6.73) |(Du)Bτ% |p/2 6
F (x0, %)

16

holds for some % 6 r. Then the limits in (1.18) and (1.34) exist and (1.35) holds.
Moreover, the inequalities in (6.49) and (6.50) hold for a constant c depending only
on n,N, p, ν, L and η(·).

Proof. — The proof goes exactly as the one of Lemma 6.5. By the arguments devel-
oped there, and in particular observing that (6.65) holds, we can replicate Lemma 6.6
replacing Br(x0) by B%(x0) and the proof follows. �

6.8. Proof of Theorems 1.1 and 1.7. — The proof now follows from the content of
Sections 6.1–6.7. In particular, after determining the various quantities τ, ε0, ε1, ε2, ε

as in (6.1)–(6.3) and in Proposition 5.2, we determine the final smallness threshold
number ε appearing in (1.17) via the choice in (6.8). The result then follows by
matching the content of Lemmas 6.5 and 6.7. Notice that according to the above
scheme both the Theorems are proved using condition (1.17); on the other hand
this is in fact equivalent to a condition of the type in (1.33) via (2.8)–(2.9) so that
assumptions (1.17) and (1.33) are actually interchangeable.

6.9. Proof of Theorem 1.2. — We start considering the number ε that has been
determined in Theorem 1.1 and and the number ε determined in Proposition 5.2;
both of them depend only on n,N, p, ν, L, µ(·) and η(·). We then let

(6.74) εs := min{ε, ε}/2,

which inherits the same dependence on the parameters and fixes the choice of εs in
the statement of Theorem 1.2. Thanks to assumption (1.20), we determine a radius
%s such that

(6.75)
(

sup
%6%s

%q
∫
B%(x)

|f |q dx
)1/[q(p−1)]

+
[
If1,q(x, r)

]1/(p−1)

< εs

for every x ∈ Ω and r ∈ (0, %s); this fixes the choice of %s in the statement. Moreover,
we have that

(6.76) lim
%→0

%q
∫
B%(x)

|f |q dy = 0

holds locally uniformly in Ωu. Notice that this is possible since, as seen using (6.6)
with for instance rj ≡ r/2j , assumption (1.20) implies that (1.24) holds uniformly
with respect to x. As a consequence of this choice notice that the radius %s de-
pends only on n,N, p, ν, L, µ(·) and η(·) and on the rate of convergence in (1.20).
We then define Ωu exactly as in (1.22), with the current choice of εs in (6.74) and
(6.75), respectively. This set is larger then Lu defined in (5.12) and has there-
fore full measure. Consider now x0 ∈ Ωu; we can find a radius rx0

6 %s such

J.É.P. — M., 2016, tome 3



360 T. Kuusi & G. Mingione

that Brx0 (x0) b Ω and E
(
Du,Brx0 (x0)

)
< εs. Then, by the continuity of the func-

tion x 7→ E
(
Du,Brx0 (x)

)
, we have that there exists a small neighborhood of x0, call

it O(x0), such that

(6.77) E
(
Du,Brx0 (x)

)
< εs and B%x0 (x) b Ω hold for every x ∈ O(x0).

This shows that Ωu is an open subset. Let us prove that Du ∈ C0(O(x0);RN×n);
then the continuity of Du in Ωu follows by covering. By (6.75) and (6.77) and the
very definition of εs in (6.74), we find that

(6.78)


E
(
Du,Brx0 (x)

)
+
[
If1,q(x, r2)

]1/(p−1)

< ε

E
(
Du,Brx0 (x)

)
+

(
sup
%6r2

%q
∫
B%(x)

|f |q dy
)1/[q(p−1)]

< ε

hold for every x ∈ O(x0). Those in (6.78), together with the one in (6.76), are exactly
the conditions allowing to apply Theorem 1.1 and Proposition 5.2. Theorem 1.1 in
particular implies the fact that the limit in (1.18) exists for every point x ∈ O(x0),
thereby defining the almost precise representative Du(x) for every x ∈ O(x0). The
idea is now to prove that the limit in (1.18) is uniform. Specifically, we prove that
the continuous maps x 7→ (Du)Br(x), defined for every x ∈ O(x0) and r ∈ (0, r2),
are uniformly converging to Du(x) in O(x0) as r → 0; this immediately implies the
continuity of Du in O(x0). At this point this follows directly by estimate (1.19) since
both terms on the right hand side uniformly converges to zero. Indeed, the first terms
on the right hand side directly by assumption (1.20), while the second – the excess
term – is converging to zero uniformly with respect to x by the last assertion in
Proposition 5.2. The proof is complete.

6.10. Proof of Theorem 1.3. — This is a direct consequence of Theorem 1.2, since
assumption (1.23) implies the one in (1.20). For this we refer for instance to [9, 34].

6.11. Proof of Theorem 1.6. — We prove the estimate for the singular set Ω r Ωu
in the case of Theorem 1.2, the proof for the remaining ones is the same. We adopt
the point of view of [38, 27], where singular sets estimates have been obtained via
fractional differentiability of gradients of solutions. For this we recall that a map
g : Ω → RN×n belongs to the fractional Sobolev space Wσ,q

loc (Ω;RN×n) for σ ∈ (0, 1)

and q ∈ [1,∞) if and only if∫
Ω̃

|g|q dx+

∫
Ω̃

∫
Ω̃

|g(x)− g(y)|q

|x− y|n+σq
dx dy <∞

holds for every open subset Ω̃ b Ω. We next recall a classical fact from potential
theory (see for instance [38] for a short proof), that is,

(6.79) g ∈Wσ,q
loc (Ω;RN×n) =⇒ dimH (B1(g) ∪B2(g)) 6 n− σq

provided σq < n and where

(6.80) B1(g) :=
{
x ∈ Ω : lim sup

%→0
|(g)B%(x)| <∞

}
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and

(6.81) B2(g) :=

{
x ∈ Ω : lim inf

%→0

∫
B%(x)

|g − (g)B%(x)|q dy > 0

}
.

We next recall a classical estimate from [45], stating that

(6.82) Du ∈W
1−ε
p−1 ,p

loc (Ω;RN×n) for every ε ∈ (0, 1).

This result is proved in [45] under the assumption that f ∈ Lp/(p−1)
loc (Ω;RN ), which

is in fact also considered in Theorem 1.6. We just observe that, although the results
in [45] are stated for equations, the proofs still work in the case of the system (1.1)
considered under the only assumptions (1.3)1,2. This is a consequence of the fact that
the techniques are essentially based on a number of monotonicity properties that are
indeed implied by (1.3)1,2. To proceed, we have that (6.79) and (6.82), together with
the definitions in (6.80)–(6.81), give

(6.83) dimH (B1(Du) ∪B2(Du)) 6 n− p

p− 1
.

Again by the very definition of the sets B1(Du) and B2(Du), and the one of the excess
functional E(·) in (2.4), we have the inclusion (Ω rB1(Du)) ∩ (Ω rB2(Du)) ⊂ Ωu,
where Ωu has been defined in (1.22). Therefore we also have ΩrΩu⊂B1(Du)∪B2(Du)

so that (1.29) follows from this last inclusion and (6.83), and the proof is complete.

Remark 6.1. — Assuming more regularity on f allows to get singular sets estimates
that are better than the one in (1.29). Specifically, a recent result of Brasco &
Santambrogio [5] asserts that if f ∈ Wσ,p/(p−1)

loc (Ω;RN ) with 1 − 2/p < σ 6 1, then
V (Du) ∈W 1,2

loc (Ω;RN ). This fact, together with the equivalence given in (1.31) and/or
using directly Theorem 1.7, leads to the following improvement of (1.29):

(6.84) dimH (Ω r Ωu) 6 n− 2.

The proof is similar to the argument used to deduce Theorem 1.6.
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