Representations of quasi-projective groups, flat connections and transversely projective foliations
Journal de l’École polytechnique — Mathématiques, Volume 3 (2016), pp. 263-308.

The main purpose of this paper is to provide a structure theorem for codimension-one singular transversely projective foliations on projective manifolds. To reach our goal, we firstly extend Corlette-Simpson’s classification of rank-two representations of fundamental groups of quasi-projective manifolds by dropping the hypothesis of quasi-unipotency at infinity. Secondly we establish a similar classification for rank-two flat meromorphic connections. In particular, we prove that a rank-two flat meromorphic connection with irregular singularities having non trivial Stokes matrices projectively factors through a connection over a curve.

L’objet de cet article est d’établir un théorème de structure pour les feuilletages singuliers transversalement projectifs de codimension 1 sur une variété projective lisse. Pour ce faire, nous étendons d’abord la classification de Corlette et Simpson de représentations de rang 2 des groupes fondamentaux des variétés quasi-projectives lisses en omettant l’hypothèse de quasi-unipotence à l’infini. Ensuite, nous établissons une classification analogue pour les connexions méromorphes plates de rang 2. En particulier, nous montrons qu’une connexion méromorphe plate de rang 2 avec des singularités irrégulières et des matrices de Stokes non triviales se factorise par une connexion sur une courbe.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.34
Classification: 37F75, 34M40, 32S40
Keywords: Foliation, transverse structure, birational geometry, flat connections, irregular singular points, Stokes matrices
Mot clés : Feuilletage, structure transverse, géométrie birationnelle, connexion plate, points singuliers irréguliers, matrices de Stokes

Frank Loray 1; Jorge Vitório Pereira 2; Frédéric Touzet 1

1 IRMAR, Université de Rennes 1 Campus de Beaulieu, 35042 Rennes Cedex, France
2 IMPA Estrada Dona Castorina, 110, Horto, Rio de Janeiro, Brasil
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2016__3__263_0,
     author = {Frank Loray and Jorge Vit\'orio Pereira and Fr\'ed\'eric Touzet},
     title = {Representations of quasi-projective groups, flat connections and transversely~projective~foliations},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {263--308},
     publisher = {ole polytechnique},
     volume = {3},
     year = {2016},
     doi = {10.5802/jep.34},
     zbl = {1353.37098},
     mrnumber = {3522824},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.34/}
}
TY  - JOUR
AU  - Frank Loray
AU  - Jorge Vitório Pereira
AU  - Frédéric Touzet
TI  - Representations of quasi-projective groups, flat connections and transversely projective foliations
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2016
SP  - 263
EP  - 308
VL  - 3
PB  - ole polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.34/
DO  - 10.5802/jep.34
LA  - en
ID  - JEP_2016__3__263_0
ER  - 
%0 Journal Article
%A Frank Loray
%A Jorge Vitório Pereira
%A Frédéric Touzet
%T Representations of quasi-projective groups, flat connections and transversely projective foliations
%J Journal de l’École polytechnique — Mathématiques
%D 2016
%P 263-308
%V 3
%I ole polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.34/
%R 10.5802/jep.34
%G en
%F JEP_2016__3__263_0
Frank Loray; Jorge Vitório Pereira; Frédéric Touzet. Representations of quasi-projective groups, flat connections and transversely projective foliations. Journal de l’École polytechnique — Mathématiques, Volume 3 (2016), pp. 263-308. doi : 10.5802/jep.34. https://jep.centre-mersenne.org/articles/10.5802/jep.34/

[1] Y. André - “Structure des connexions méromorphes formelles de plusieurs variables et semi-continuité de l’irrégularité”, Invent. Math. 170 (2007) no. 1, p. 147-198 | DOI | MR | Zbl

[2] E. Artal Bartolo, J. I. Cogolludo-Agustín & D. Matei - “Characteristic varieties of quasi-projective manifolds and orbifolds”, Geom. Topol. 17 (2013) no. 1, p. 273-309 | DOI | MR | Zbl

[3] M. Berthier & F. Touzet - “Sur l’intégration des équations différentielles holomorphes réduites en dimension deux”, Bol. Soc. Brasil. Mat. (N.S.) 30 (1999) no. 3, p. 247-286 | DOI | Zbl

[4] M. Brunella - “Minimal models of foliated algebraic surfaces”, Bull. Soc. math. France 127 (1999) no. 2, p. 289-305 | DOI | Numdam | MR | Zbl

[5] M. Brunella - Birational geometry of foliations, Publicações Matemáticas do IMPA, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2004 | Zbl

[6] C. Camacho & B. Azevedo Scárdua - “Holomorphic foliations with Liouvillian first integrals”, Ergodic Theory Dynam. Systems 21 (2001) no. 3, p. 717-756, Erratum: Ibid. 23 (2003), no. 3, p. 985–987 | DOI | MR | Zbl

[7] F. Cano, D. Cerveau & J. Déserti - Théorie élémentaires des feuilletages holomorphes singuliers, Échelles, Belin, Paris, 2013

[8] G. Casale - “Feuilletages singuliers de codimension un, groupoïde de Galois et intégrales premières”, Ann. Inst. Fourier (Grenoble) 56 (2006) no. 3, p. 735-779 | DOI | Numdam | Zbl

[9] D. Cerveau, A. Lins-Neto, F. Loray, J. V. Pereira & F. Touzet - “Complex codimension one singular foliations and Godbillon-Vey sequences”, Moscow Math. J. 7 (2007) no. 1, p. 21-54, 166 | DOI | MR | Zbl

[10] D. Cerveau & J.-F. Mattei - Formes intégrables holomorphes singulières, Astérisque, vol. 97, Société Mathématique de France, Paris, 1982 | Zbl

[11] D. Cerveau & P. Sad - “Liouvillian integration and Bernoulli foliations”, Trans. Amer. Math. Soc. 350 (1998) no. 8, p. 3065-3081 | DOI | MR | Zbl

[12] B. Claudon, F. Loray, J. V. Pereira & F. Touzet - “Compact leaves of codimension one holomorphic foliations on projective manifolds” (2015), arXiv:1512.06623

[13] K. Corlette & C. Simpson - “On the classification of rank-two representations of quasiprojective fundamental groups”, Compositio Math. 144 (2008) no. 5, p. 1271-1331 | DOI | MR | Zbl

[14] G. Cousin - Connexions plates logarithmiques de rang deux sur le plan projectif complexe, IRMAR, 2011, PhD Thesis

[15] G. Cousin - “Un exemple de feuilletage modulaire déduit d’une solution algébrique de l’équation de Painlevé VI”, Ann. Inst. Fourier (Grenoble) 64 (2014) no. 2, p. 699-737 | DOI | Numdam | MR | Zbl

[16] G. Cousin & J. V. Pereira - “Transversely affine foliations on projective manifolds”, Math. Res. Lett. 21 (2014) no. 5, p. 985-1014 | DOI | MR | Zbl

[17] P. Deligne - Équations différentielles à points singuliers réguliers, Lect. Notes in Math., vol. 163, Springer-Verlag, Berlin, 1970 | Zbl

[18] C. Godbillon - Feuilletages. Études géométriques, Progress in Math., vol. 98, Birkhäuser Verlag, Basel, 1991 | Zbl

[19] K. Kedlaya - “Good formal structures for flat meromorphic connections, I: surfaces”, Duke Math. J. 154 (2010) no. 2, p. 343-418 | DOI | MR | Zbl

[20] R. Lazarsfeld - Positivity in algebraic geometry. I, Ergeb. Math. Grenzgeb. (3), vol. 48, Springer-Verlag, Berlin, 2004 | DOI | MR

[21] A. Lins Neto - “Construction of singular holomorphic vector fields and foliations in dimension two”, J. Differential Geom. 26 (1987) no. 1, p. 1-31 | DOI | MR | Zbl

[22] A. Lins Neto - “Some examples for the Poincaré and Painlevé problems”, Ann. Sci. École Norm. Sup. (4) 35 (2002) no. 2, p. 231-266 | DOI | Numdam | Zbl

[23] F. Loray - “Pseudo-groupe d’une singularité de feuilletage holomorphe en dimension deux” (2006), hal-00016434

[24] F. Loray & J. V. Pereira - “Transversely projective foliations on surfaces: existence of minimal form and prescription of monodromy”, Internat. J. Math. 18 (2007) no. 6, p. 723-747 | DOI | MR | Zbl

[25] F. Loray, J. V. Pereira & F. Touzet - “Singular foliations with trivial canonical class” (2011), arXiv:1107.1538 | Zbl

[26] A. I. Mal’cev - “On the faithful representation of infinite groups by matrices”, Mat. Sb. 8 (1940), p. 405-422, English transl.: Amer. Math. Soc. Transl. (2) 45 (1965), p. 1–18

[27] B. Malgrange - “Connexions méromorphes. II. Le réseau canonique”, Invent. Math. 124 (1996) no. 1-3, p. 367-387 | DOI | Zbl

[28] B. Malgrange - “On nonlinear differential Galois theory”, Chinese Ann. Math. Ser. B 23 (2002) no. 2, p. 219-226 | DOI | MR | Zbl

[29] J. Martinet & J.-P. Ramis - “Problèmes de modules pour des équations différentielles non linéaires du premier ordre”, Publ. Math. Inst. Hautes Études Sci. (1982) no. 55, p. 63-164 | DOI | Numdam | Zbl

[30] L. G. Mendes & J. V. Pereira - “Hilbert modular foliations on the projective plane”, Comment. Math. Helv. 80 (2005) no. 2, p. 243-291 | DOI | MR | Zbl

[31] T. Mochizuki - “Good formal structure for meromorphic flat connections on smooth projective surfaces”, in Algebraic Analysis and Around, Advanced Studies in Pure Math., vol. 54, Math. Soc. Japan, Tokyo, 2009, p. 223-253 | MR | Zbl

[32] I. Moerdijk & J. Mrčun - Introduction to foliations and Lie groupoids, Cambridge Studies in Adv. Math., vol. 91, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl

[33] D. Mumford - “The topology of normal singularities of an algebraic surface and a criterion for simplicity”, Publ. Math. Inst. Hautes Études Sci. (1961) no. 9, p. 5-22 | DOI | Numdam | MR | Zbl

[34] A. Neeman - Ueda theory: theorems and problems, Mem. Amer. Math. Soc., vol. 81, no.  415, American Mathematical Society, Providence, R.I., 1989 | DOI | Zbl

[35] J. V. Pereira - “Fibrations, divisors and transcendental leaves”, J. Algebraic Geom. 15 (2006) no. 1, p. 87-110 | DOI | MR | Zbl

[36] J. V. Pereira & P. Sad - “Rigidity of fibrations”, in Differential equations and singularities. 60 years of J. M. Aroca, Astérisque, vol. 323, Société Mathématique de France, Paris, 2009, p. 291-299 | Zbl

[37] E. Rousseau & F. Touzet - “Curves in Hilbert modular varieties” (2015), arXiv:1501.03261

[38] C. Sabbah - Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2, Astérisque, vol. 263, Société Mathématique de France, Paris, 2000 | Zbl

[39] B. A. Scárdua - “Transversely affine and transversely projective holomorphic foliations”, Ann. Sci. École Norm. Sup. (4) 30 (1997) no. 2, p. 169-204 | DOI | Numdam | MR | Zbl

[40] B. Totaro - “The topology of smooth divisors and the arithmetic of abelian varieties”, Michigan Math. J. 48 (2000), p. 611-624 | DOI | MR | Zbl

[41] B. Totaro - “Moving codimension-one subvarieties over finite fields”, Amer. J. Math. 131 (2009) no. 6, p. 1815-1833 | DOI | MR | Zbl

[42] F. Touzet - “Sur les feuilletages holomorphes transversalement projectifs”, Ann. Inst. Fourier (Grenoble) 53 (2003) no. 3, p. 815-846 | DOI | Numdam | MR | Zbl

Cited by Sources: