En utilisant l’approche probabiliste en géométrie arithmétique, nous donnons une nouvelle démonstration de l’inégalité d’indice de Hodge pour les -diviseurs adéliques, et nous proposons une nouvelle voie pour sa généralisation au cas de dimension supérieure.
By using the probabilistic approach in arithmetic geometry, one gives a new proof of the Hodge index inequality for adelic -divisors, and proposes a new way of generalizing it to higher dimensional case.
Accepté le :
Publié le :
DOI : 10.5802/jep.33
Mot clés : Inégalité d’indice de Hodge, géométrie d’Arakelov, diviseur adélique, corps d’Okounkov, système linéaire gradué, $\mathbb{R}$-filtration
Keywords: Hodge index inequality, Arakelov geometry, adelic divisor, Okounkov body, graded linear series, $\mathbb{R}$-filtration
Huayi Chen 1
@article{JEP_2016__3__231_0, author = {Huayi Chen}, title = {In\'egalit\'e d{\textquoteright}indice de {Hodge} en g\'eom\'etrie et arithm\'etique~: une approche probabiliste}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {231--262}, publisher = {ole polytechnique}, volume = {3}, year = {2016}, doi = {10.5802/jep.33}, zbl = {06670707}, mrnumber = {3522823}, language = {fr}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.33/} }
TY - JOUR AU - Huayi Chen TI - Inégalité d’indice de Hodge en géométrie et arithmétique : une approche probabiliste JO - Journal de l’École polytechnique — Mathématiques PY - 2016 SP - 231 EP - 262 VL - 3 PB - ole polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.33/ DO - 10.5802/jep.33 LA - fr ID - JEP_2016__3__231_0 ER -
%0 Journal Article %A Huayi Chen %T Inégalité d’indice de Hodge en géométrie et arithmétique : une approche probabiliste %J Journal de l’École polytechnique — Mathématiques %D 2016 %P 231-262 %V 3 %I ole polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.33/ %R 10.5802/jep.33 %G fr %F JEP_2016__3__231_0
Huayi Chen. Inégalité d’indice de Hodge en géométrie et arithmétique : une approche probabiliste. Journal de l’École polytechnique — Mathématiques, Tome 3 (2016), pp. 231-262. doi : 10.5802/jep.33. https://jep.centre-mersenne.org/articles/10.5802/jep.33/
[1] - Probabilité, Collection Enseignement Sup Mathématiques, vol. 33, EDP Sciences, Les Ulis, 2007 | Zbl
[2] - Spectral theory and analytic geometry over non-Archimedean fields, Math. Surveys and Monographs, vol. 33, American Mathematical Society, Providence, R.I., 1990 | MR | Zbl
[3] - “Reverse Brunn-Minkowski and reverse entropy power inequalities for convex measures”, J. Functional Analysis 262 (2012) no. 7, p. 3309-3339 | DOI | MR | Zbl
[4] - “Potential theory and Lefschetz theorems for arithmetic surfaces”, Ann. Sci. École Norm. Sup. (4) 32 (1999) no. 2, p. 241-312 | DOI | Numdam | MR | Zbl
[5] - “Okounkov bodies of filtered linear series”, Compositio Math. 147 (2011) no. 4, p. 1205-1229 | DOI | MR | Zbl
[6] - Arithmetic geometry of toric varieties. Metrics, measures and heights, Astérisque, vol. 360, Société Mathématique de France, Paris, 2014 | Zbl
[7] - “Arithmetic Fujita approximation”, Ann. Sci. École Norm. Sup. (4) 43 (2010) no. 4, p. 555-578 | DOI | Numdam | MR | Zbl
[8] - Géométrie d’Arakelov : théorèmes de limite et comptage des points rationnels, Université Paris Diderot, 2011, Mémoire d’habilitation à diriger des recherches
[9] - “Majorations explicites des fonctions de Hilbert-Samuel géométrique et arithmétique”, Math. Z. 279 (2015) no. 1-2, p. 99-137 | DOI | Zbl
[10] - “On the maximum entropy of the sum of two dependent random variables”, IEEE Trans. Information Theory 40 (1994) no. 4, p. 1244-1246 | DOI | MR | Zbl
[11] - “Asymptotic multiplicities of graded families of ideals and linear series”, Advances in Math. 264 (2014), p. 55-113 | DOI | MR | Zbl
[12] - Probabilités et potentiel, Hermann, Paris, 1975, Chap. I à IV
[13] - “Espaces analytiques -adiques au sens de Berkovich”, in Séminaire Bourbaki. Vol. 2005/06, Astérisque, vol. 311, Société Mathématique de France, Paris, 2007, p. 137-176, Exp. No. 958 | Numdam | Zbl
[14] - The geometry of syzygies, Graduate Texts in Math., vol. 229, Springer-Verlag, New York, 2005 | MR
[15] - “Calculus on arithmetic surfaces”, Ann. of Math. (2) 119 (1984) no. 2, p. 387-424 | DOI | MR | Zbl
[16] - “Approximating Zariski decomposition of big line bundles”, Kodai Math. J. 17 (1994) no. 1, p. 1-3 | DOI | MR | Zbl
[17] - Geometric methods and applications, Texts in Appl. Math., vol. 38, Springer, New York, 2011 | MR
[18] - “Pentes de fibrés vectoriels adéliques sur un corps global”, Rend. Sem. Mat. Univ. Padova 119 (2008), p. 21-95 | DOI | Zbl
[19] - “On the number of lattice points in convex symmetric bodies and their duals”, Israel J. Math. 74 (1991) no. 2-3, p. 347-357 | DOI | MR | Zbl
[20] - “Heights and Arakelov’s intersection theory”, Amer. J. Math. 107 (1985) no. 1, p. 23-38 | DOI | MR | Zbl
[21] - “Boundedness of the successive minima on arithmetic varieties”, J. Algebraic Geom. 22 (2013) no. 2, p. 249-302 | MR | Zbl
[22] - “Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory”, Ann. of Math. (2) 176 (2012) no. 2, p. 925-978 | DOI | MR | Zbl
[23] - “Some remarks on the arithmetic Hodge index conjecture”, Compositio Math. 99 (1995) no. 2, p. 109-128 | Numdam | MR | Zbl
[24] - Positivity in algebraic geometry. I, Ergeb. Math. Grenzgeb. (3), vol. 48, Springer-Verlag, Berlin, 2004 | MR
[25] - “Convex bodies associated to linear series”, Ann. Sci. École Norm. Sup. (4) 42 (2009) no. 5, p. 783-835 | DOI | Numdam | MR | Zbl
[26] - “Riemann-Roch type inequalities for nef and big divisors”, Amer. J. Math. 111 (1989) no. 3, p. 457-487 | DOI | MR | Zbl
[27] - “Hodge index theorem for arithmetic cycles of codimension one”, Math. Res. Lett. 3 (1996) no. 2, p. 173-183 | DOI | MR | Zbl
[28] - Adelic divisors on arithmetic varieties, Mem. Amer. Math. Soc., vol. 242, no. 1144, American Mathematical Society, Providence, R.I., 2016 | Zbl
[29] - “Brunn-Minkowski inequality for multiplicities”, Invent. Math. 125 (1996) no. 3, p. 405-411 | MR | Zbl
[30] - “Convex bodies associated with a given convex body”, J. London Math. Soc. (2) 33 (1958), p. 270-281 | DOI | MR | Zbl
[31] - “An absolute Siegel’s lemma”, J. reine angew. Math. 476 (1996), p. 1-26 | MR | Zbl
[32] - “A mathematical theory of communication”, AT&T Bell Labs. Tech. J. 27 (1948), p. 379-423, 623–656 | MR | Zbl
[33] - “Some inequalities satisfied by the quantities of information of Fisher and Shannon”, Inform. and Control 2 (1959), p. 101-112 | DOI | MR | Zbl
[34] - “Fujita’s approximation theorem in positive characteristics”, J. Math. Kyoto Univ. 47 (2007) no. 1, p. 179-202 | DOI | MR | Zbl
[35] - “An adelic Minkowski-Hlawka theorem and an application to Siegel’s lemma”, J. reine angew. Math. 475 (1996), p. 167-185 | MR | Zbl
[36] - Lectures on measure theory, Lect. series Chinese Acad. Sci., Science Press, Beijing, 2004
[37] - “On volumes of arithmetic line bundles”, Compositio Math. 145 (2009) no. 6, p. 1447-1464 | DOI | MR | Zbl
[38] - “Algebraic dynamics, canonical heights and Arakelov geometry”, in Fifth International Congress of Chinese Mathematicians, AMS/IP Stud. Adv. Math., vol. 51, 2e partie, American Mathematical Society, Providence, R.I., 2012, p. 893-929 | Zbl
[39] - “The arithmetic Hodge index theorem for adelic line bundles I : number fields”, Math. Ann. (2016), online, arXiv :1304.3538
[40] - “Positive line bundles on arithmetic varieties”, J. Amer. Math. Soc. 8 (1995) no. 1, p. 187-221 | DOI | MR | Zbl
Cité par Sources :