Rigidity and Schofield’s partial tilting conjecture for quiver moduli
[Rigidité et conjecture de tilting partiel de Schofield pour les espaces de modules de carquois]
Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 1345-1379.

We explain how Teleman quantization can be applied to moduli spaces of quiver representations, in order to compute the higher cohomology of the endomorphism bundle of the universal bundle. We use this to prove Schofield’s partial tilting conjecture in many interesting cases, and to show that moduli spaces of quiver representations are often (infinitesimally) rigid as varieties.

Nous expliquons comment la quantification de Teleman peut être appliquée aux espaces de modules de représentations de carquois, afin de calculer la cohomologie supérieure du fibré des endomorphismes du fibré universel. Nous utilisons cela pour démontrer la conjecture de tilting partiel de Schofield dans de nombreux cas intéressants, et pour montrer que les espaces de modules de représentations de carquois sont souvent (infinitésimalement) rigides en tant que variétés.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.312
Classification : 14D20, 14F08, 16G20
Keywords: Moduli spaces of quiver representations, Teleman quantization, deformation theory
Mots-clés : Espaces de modules de représentations de carquois, quantification de Teleman, rigidité

Pieter Belmans 1 ; Ana-Maria Brecan  ; Hans Franzen 2 ; Gianni Petrella 3 ; Markus Reineke 4

1 Mathematical Institute, Utrecht University, Budapestlaan 6, 3584 CD Utrecht, The Netherlands
2 Institute of Mathematics, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
3 Department of Mathematics, Université de Luxembourg, 2 Av. de l’Université, 4365, Esch-sur-Alzette, Luxembourg
4 Fakultat für Mathematik, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2025__12__1345_0,
     author = {Pieter Belmans and Ana-Maria Brecan and Hans Franzen and Gianni Petrella and Markus Reineke},
     title = {Rigidity and {Schofield{\textquoteright}s} partial tilting conjecture for quiver moduli},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1345--1379},
     publisher = {\'Ecole polytechnique},
     volume = {12},
     year = {2025},
     doi = {10.5802/jep.312},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.312/}
}
TY  - JOUR
AU  - Pieter Belmans
AU  - Ana-Maria Brecan
AU  - Hans Franzen
AU  - Gianni Petrella
AU  - Markus Reineke
TI  - Rigidity and Schofield’s partial tilting conjecture for quiver moduli
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2025
SP  - 1345
EP  - 1379
VL  - 12
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.312/
DO  - 10.5802/jep.312
LA  - en
ID  - JEP_2025__12__1345_0
ER  - 
%0 Journal Article
%A Pieter Belmans
%A Ana-Maria Brecan
%A Hans Franzen
%A Gianni Petrella
%A Markus Reineke
%T Rigidity and Schofield’s partial tilting conjecture for quiver moduli
%J Journal de l’École polytechnique — Mathématiques
%D 2025
%P 1345-1379
%V 12
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.312/
%R 10.5802/jep.312
%G en
%F JEP_2025__12__1345_0
Pieter Belmans; Ana-Maria Brecan; Hans Franzen; Gianni Petrella; Markus Reineke. Rigidity and Schofield’s partial tilting conjecture for quiver moduli. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 1345-1379. doi : 10.5802/jep.312. https://jep.centre-mersenne.org/articles/10.5802/jep.312/

[1] J. Adriaenssens & L. Le Bruyn - “Local quivers and stable representations”, Comm. Algebra 31 (2003) no. 4, p. 1777-1797 | DOI | MR | Zbl

[2] K. Altmann & L. Hille - “Strong exceptional sequences provided by quivers”, Algebras Represent. Theory 2 (1999) no. 1, p. 1-17 | DOI | MR | Zbl

[3] T. Beckmann & P. Belmans - “Homological projective duality for the Segre cubic”, 2022, accepted for publication in Proceedings of Nottingham Algebraic Geometry Seminar | arXiv | Zbl

[4] P. Belmans, A.-M. Brecan, H. Franzen & M. Reineke - “Vector fields and admissible embeddings for quiver moduli”, Moduli 2 (2025), article ID e3, 23 pages | DOI | MR

[5] P. Belmans, C. Damiolini, H. Franzen, V. Hoskins, S. Makarova & T. Tajakka - “Projectivity and effective global generation of determinantal line bundles on quiver moduli”, 2022, accepted for publication in Algebra & Number Theory | arXiv | Zbl

[6] P. Belmans & H. Franzen - “On Chow rings of quiver moduli”, Internat. Math. Res. Notices (2024) no. 13, p. 10255-10272 | DOI | MR | Zbl

[7] P. Belmans, H. Franzen & G. Petrella - “QuiverTools”, https://quiver.tools

[8] P. Belmans, H. Franzen & G. Petrella - “The QuiverTools package for SageMath and Julia”, 2025 | arXiv | Zbl

[9] P. Belmans, L. Fu & T. Raedschelders - “Hilbert squares: derived categories and deformations”, Selecta Math. (N.S.) 25 (2019) no. 3, article ID 37, 32 pages | DOI | MR | Zbl

[10] P. Belmans & S. Mukhopadhyay - “Admissible subcategories in derived categories of moduli of vector bundles on curves”, Adv. Math. 351 (2019), p. 653-675 | DOI | MR | Zbl

[11] M. Brion - “On linearization of line bundles”, J. Math. Sci. Univ. Tokyo 22 (2015) no. 1, p. 113-147 | MR | Zbl

[12] A. Craw - “Quiver flag varieties and multigraded linear series”, Duke Math. J. 156 (2011) no. 3, p. 469-500 | DOI | MR | Zbl

[13] A. Craw, Y. Ito & J. Karmazyn - “Multigraded linear series and recollement”, Math. Z. 289 (2018) no. 1-2, p. 535-565 | DOI | MR | Zbl

[14] M. Domokos - “Quiver moduli spaces of a given dimension”, J. Comb. Algebra. (2024), online first, arXiv:2303.08522v2 | DOI | Zbl

[15] J.-M. Drezet - “Fibrés exceptionnels et variétés de modules de faisceaux semi-stables sur P 2 (C), J. reine angew. Math. 380 (1987), p. 14-58 | DOI | MR | Zbl

[16] J.-M. Drezet - “Groupe de Picard des variétés de modules de faisceaux semi-stables sur P 2 , in Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), Lect. Notes in Math., vol. 1273, Springer, Berlin, 1987, p. 337-362 | DOI | MR | Zbl

[17] J.-M. Drezet - “Cohomologie des variétés de modules de hauteur nulle”, Math. Ann. 281 (1988) no. 1, p. 43-85 | DOI | MR | Zbl

[18] A. Fonarev & A. Kuznetsov - “Derived categories of curves as components of Fano manifolds”, J. London Math. Soc. (2) 97 (2018) no. 1, p. 24-46 | DOI | MR | Zbl

[19] H. Franzen & M. Reineke - “Cohomology rings of moduli of point configurations on the projective line”, Proc. Amer. Math. Soc. 146 (2018) no. 6, p. 2327-2341 | DOI | MR | Zbl

[20] H. Franzen, M. Reineke & S. Sabatini - “Fano quiver moduli”, Canad. Math. Bull. 64 (2021) no. 4, p. 984-1000 | DOI | MR | Zbl

[21] D. Halpern-Leistner - “The derived category of a GIT quotient”, J. Amer. Math. Soc. 28 (2015) no. 3, p. 871-912 | DOI | MR | Zbl

[22] D. Happel - “Hochschild cohomology of finite-dimensional algebras”, in Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin (Paris, 1987/1988), Lect. Notes in Math., vol. 1404, Springer, Berlin, 1989, p. 108-126 | DOI | MR | Zbl

[23] W. H. Hesselink - “Uniform instability in reductive groups”, J. reine angew. Math. (1978), p. 74-96 | DOI | MR | Zbl

[24] L. Hille - “Tilting line bundles and moduli of thin sincere representations of quivers”, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 4 (1996) no. 2, p. 76-82, Representation theory of groups, algebras, and orders (Constanţa, 1995) | MR | Zbl

[25] L. Hille & J. A. de la Peña - “Stable representations of quivers”, J. Pure Appl. Algebra 172 (2002) no. 2-3, p. 205-224 | DOI | MR | Zbl

[26] V. Hoskins - “Parallels between moduli of quiver representations and vector bundles over curves”, SIGMA Symmetry Integrability Geom. Methods Appl. 14 (2018), article ID 127, 46 pages | DOI | MR | Zbl

[27] V. Hoskins - “Stratifications for moduli of sheaves and moduli of quiver representations”, Algebraic Geom. 5 (2018) no. 6, p. 650-685 | DOI | MR | Zbl

[28] V. G. Kac - “Infinite root systems, representations of graphs and invariant theory”, Invent. Math. 56 (1980) no. 1, p. 57-92 | DOI | MR | Zbl

[29] G. R. Kempf - “Instability in invariant theory”, Ann. of Math. (2) 108 (1978) no. 2, p. 299-316 | DOI | MR | Zbl

[30] A. D. King - “Moduli of representations of finite-dimensional algebras”, Quart. J. Math. Oxford Ser. (2) 45 (1994) no. 180, p. 515-530 | DOI | MR | Zbl

[31] F. C. Kirwan - Cohomology of quotients in symplectic and algebraic geometry, Math. Notes, vol. 31, Princeton University Press, Princeton, NJ, 1984 | DOI | MR | Zbl

[32] J. Kollár, Y. Miyaoka & S. Mori - “Rational connectedness and boundedness of Fano manifolds”, J. Differential Geom. 36 (1992) no. 3, p. 765-779 | MR | Zbl

[33] A. Krug & P. Sosna - “On the derived category of the Hilbert scheme of points on an Enriques surface”, Selecta Math. (N.S.) 21 (2015) no. 4, p. 1339-1360 | DOI | MR | Zbl

[34] K.-S. Lee & H.-B. Moon - “Derived category and ACM bundles of moduli spaces of vector bundles on a curve”, Forum Math. Sigma 11 (2023), article ID e81 | DOI | MR | Zbl

[35] K. L. Martinez Acosta - Approaches to ample stability for quiver moduli, Ph. D. Thesis, Ruhr-Universität Bochum, 2023

[36] M. Mustaţă - “Vanishing theorems on toric varieties”, Tohoku Math. J. (2) 54 (2002) no. 3, p. 451-470 | MR | Zbl

[37] M. S. Narasimhan - “Derived categories of moduli spaces of vector bundles on curves”, J. Geom. Phys. 122 (2017), p. 53-58 | DOI | MR | Zbl

[38] M. S. Narasimhan & S. Ramanan - “Deformations of the moduli space of vector bundles over an algebraic curve”, Ann. of Math. (2) 101 (1975), p. 391-417 | DOI | MR | Zbl

[39] G. Petrella - “Partial semiorthogonal decompositions for quiver moduli”, J. Symbolic Comput. 131 (2025), article ID 102448, 18 pages | DOI | MR | Zbl

[40] F. Reede - “The Fourier-Mukai transform of a universal family of stable vector bundles”, Internat. J. Math. 32 (2021) no. 2, article ID 2150007, 13 pages | DOI | MR | Zbl

[41] M. Reineke - “The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli”, Invent. Math. 152 (2003) no. 2, p. 349-368 | DOI | MR | Zbl

[42] M. Reineke - “Moduli of representations of quivers”, in Trends in representation theory of algebras and related topics, EMS Ser. Congr. Rep., European Mathematical Society, Zürich, 2008, p. 589-637 | DOI | Zbl

[43] M. Reineke & S. Schröer - “Brauer groups for quiver moduli”, Algebraic Geom. 4 (2017) no. 4, p. 452-471 | DOI | MR | Zbl

[44] A. Rudakov - “Stability for an abelian category”, J. Algebra 197 (1997) no. 1, p. 231-245 | DOI | MR | Zbl

[45] A. Schofield - “Birational classification of moduli spaces of representations of quivers”, Indag. Math. (N.S.) 12 (2001) no. 3, p. 407-432 | DOI | MR | Zbl

[46] C. Teleman - “The quantization conjecture revisited”, Ann. of Math. (2) 152 (2000) no. 1, p. 1-43 | DOI | MR | Zbl

[47] A. Zamora - “On the Harder-Narasimhan filtration for finite dimensional representations of quivers”, Geom. Dedicata 170 (2014), p. 185-194 | DOI | MR | Zbl

Cité par Sources :