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RIGIDITY

AND SCHOFIELD’S PARTIAL TILTING CONJECTURE

FOR QUIVER MODULI

by Pieter Belmans, Ana-Maria Brecan, Hans Franzen,
Gianni Petrella & Markus Reineke

Abstract. — We explain how Teleman quantization can be applied to moduli spaces of quiver
representations, in order to compute the higher cohomology of the endomorphism bundle of the
universal bundle. We use this to prove Schofield’s partial tilting conjecture in many interesting
cases, and to show that moduli spaces of quiver representations are often (infinitesimally) rigid
as varieties.

Résumé (Rigidité et conjecture de tilting partiel de Schofield pour les espaces de modules de
carquois)

Nous expliquons comment la quantification de Teleman peut être appliquée aux espaces de
modules de représentations de carquois, afin de calculer la cohomologie supérieure du fibré des
endomorphismes du fibré universel. Nous utilisons cela pour démontrer la conjecture de tilting
partiel de Schofield dans de nombreux cas intéressants, et pour montrer que les espaces de
modules de représentations de carquois sont souvent (infinitésimalement) rigides en tant que
variétés.
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1. Introduction

There exists a rich moduli theory for representations of a quiver Q = (Q0, Q1),
surveyed in [42]. Following King [30], one fixes a dimension vector d ∈ NQ0 and
a stability parameter θ ∈ Hom(ZQ0 ,Z), and constructs a moduli space Mθ-st(Q,d)

as a GIT quotient, parametrizing isomorphism classes of θ-stable representations of
dimension vector d.

When d and θ are chosen appropriately, the moduli space Mθ-st(Q,d) is a fine
moduli space, parametrizing isomorphism classes of θ-(semi)stable representations.
It comes with a universal representation U: a vector bundle equipped with a kQ-action,
whose fiber in a point [V ] ∈ Mθ-st(Q,d) is the representation V . The universal bun-
dle U decomposes as a direct sum

⊕
i∈Q0

Ui. These constructions and results will be
recalled in Section 2.

In this paper we are interested in Hom(U,U) ∼= U∨ ⊗ U ∼=
⊕

i,j∈Q0
U∨

i ⊗ Uj , and
we prove the following result on the summands, which can be equivalently stated by
saying that Hom(U,U) has no higher cohomology. The condition of being strongly
amply θ-stable is given in Definition 4.1.

Theorem A. — Let Q be a quiver, let d be a dimension vector, and let θ be a sta-
bility parameter such that d is θ-coprime. Assume furthermore that d is strongly
amply θ-stable.(1) Then, for all i, j ∈ Q0 we have

(1) H⩾1(Mθ-st(Q,d),U∨
i ⊗ Uj) = 0,

where the Ui are the summands of the universal representation on the moduli space.

For this result we do not have to assume that Q is acyclic. We will prove this
using Teleman quantization, a tool that allows to compute sheaf cohomology on a
GIT quotient using sheaf cohomology on the quotient stack which includes the un-
stable locus [46]. To do so, we recall in Section 2 how Mθ-st(Q,d) is constructed as
a quotient of the Zariski-open Rθ-st(Q,d) ⊂ R(Q,d), and how the bundles U∨

i ⊗ Uj

are the descent of bundles which are defined on the entire R(Q,d). Thus we are in a
position to check the conditions for Teleman quantization.

These conditions are checked in Section 3. We determine the width of the windows
in Section 3.3, and we determine the weights of the bundles U∨

i ⊗ Uj in Section 3.4.
The proof of Theorem A thus reduces to finding appropriate conditions on Q, d and θ

for which inequality (34) in the statement of Teleman quantization holds, which is
done in Section 4.2. We illustrate this in Example 4.11.

Four remarks are in order.

Remark 1.1. — A crucial intermediate result is Corollary 3.20, which determines the
width of the windows in the setup for Teleman quantization. Whilst this paper focuses

(1)See Remark 1.2 for a weaker condition, and Remark 1.3 for speculations on a necessary
condition.
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on the weights of U∨
i ⊗Uj , there are other bundles to consider from this perspective,

e.g., as in [39].

Remark 1.2. — The condition that d is strongly amply θ-stable in Theorem A can
in fact be replaced by the (weaker) condition that the inequality (34) holds for the
1-parameter subgroups indexed by the Harder–Narasimhan strata. The reason for
opting for strong ample stability in the statement is that it is easier to verify in
practice, and not directly tied to the problem under consideration. In Section 4.1 we
describe many situations in which strong ample stability holds. An explicit example
where strong ample stability does not hold, but the (weaker) condition from (34) does,
is given in Example 4.14.

Remark 1.3. — By Lemma 4.10 we have that (34) implies that d is amply θ-stable,
i.e., the unstable locus has codimension at least 2. We have not found a single example
which is amply θ-stable and for which (34) does not hold.

Optimistically, the conclusion of Theorem A holds without any condition like (34):
the existence of a universal representation (required for the statement to make sense)
should be enough. However, as explained by Lemma 4.10, one will need new tools
beyond Teleman quantization for its proof in this generality.

Remark 1.4. — In Example 4.12 we explain how one might be able to consider Theo-
rem A in the absence of a universal representation, replacing it by a twisted universal
representation which is defined on the stable locus.

We will now discuss three applications of this cohomology vanishing.

Schofield’s conjecture. — The following conjecture is attributed to Schofield [24, p. 80].

Conjecture B (Schofield). — Let Q be an acyclic quiver, and d a dimension vector.
Let θ be a stability parameter such that Mθ-st(Q,d) is a smooth projective variety.
Then the universal representation U is a partial tilting bundle on Mθ-st(Q,d), i.e.,

Ext⩾1
Mθ-st(Q,d)

(U,U) = 0.

There is a second part to the conjecture, which states that this partial tilting
bundle can be completed to a tilting bundle. We will not address the second part in
this paper.

The condition that Q is acyclic in the statement of Schofield’s conjecture is actually
superfluous, and was presumably included to ensure that the moduli space is smooth
and projective. Then the two parts of the conjecture can be seen as a generalization
of Beilinson’s description of the derived category of Pn.

Using the isomorphism

(2) Ext⩾1
Mθ-st(Q,d)

(U,U) ∼=
⊕

i,j∈Q0

H⩾1(Mθ-st(Q,d),U∨
i ⊗ Uj),

Theorem A is thus equivalent to Schofield’s conjecture. We encode this reformulation
as the following corollary.

J.É.P. — M., 2025, tome 12
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Corollary C. — Let Q be a quiver, let d be a dimension vector, and let θ be a
stability parameter such that d is θ-coprime. Assume furthermore that d is strongly
amply θ-stable. Then Schofield’s conjecture holds, i.e., U is a partial tilting bundle.

Let us now assume that Q is acyclic, so that we are only dealing with smooth
projective varieties and finite-dimensional algebras. Corollary C makes it an inter-
esting question to compute the endomorphism algebra EndMθ-st(Q,d)(U,U), and thus
understand whether the functor

(3) ΦU : Db(kQ) −→ Db(Mθ-st(Q,d)) : V 7−→ RHomOXQ(U,−⊗ OMθ-st(Q,d))

given by the universal representation is fully faithful, i.e., whether

(4) EndMθ-st(Q,d)(U,U) ∼= kQ

by the morphism naturally induced by ΦU. In the thin case, i.e., when d = (1, . . . , 1),
and with respect to the canonical stability condition, the isomorphism (4) was es-
tablished by Altmann–Hille in [2, Th. 1.3]. Another known case is that of quiver flag
varieties, which are quiver moduli for acyclic quivers with a unique source i0 and
dimension vector d such that di0 = 1. In [12, Th. 1.2] Craw shows that both parts of
Schofield’s conjecture hold, i.e., U is partial tilting and can be extended to a tilting
bundle, whilst Craw–Ito–Karmazyn show in [13, Ex. 2.9] that (4) holds in this setting.

The isomorphism (4) beyond the thin and canonical case is studied by a subset of
the authors in [4], building upon the results of this paper. The main result in op. cit.,
which uses methods very different from the ones used in this paper, is that, under the
appropriate conditions, there exists explicit isomorphisms

HomMθ-st(Q,d)(Ui,Uj) ∼= H0(Mθ-st(Q,d),U∨
i ⊗ Uj) ∼= ejkQei,

for all i, j ∈ Q0. This result thus naturally complements Theorem A.
In fact, the fully-faithfulness in (3) has a counterpart for moduli of vector bundles

on curves. There exists a rich dictionary between results for moduli spaces of quiver
representations, and for moduli spaces of vector bundles on curves, see, e.g., [26] for
a survey on some aspects of this dictionary. Taking this dictionary for granted, one
can take a result for one type of moduli spaces and try to obtain the analogous result
for the other type.

For moduli spaces of vector bundles the analogue of (3) is the Fourier–Mukai
functor

ΦE : Db(C) −→ Db(MC(r,L)),

where E is the universal vector bundle on C ×MC(r,L), and MC(r,L) is the moduli
space of stable vector bundles of rank r and determinant L such that gcd(r, degL) = 1

and C is a smooth projective curve of genus g ⩾ 2. Its fully-faithfulness is shown in
various levels of generality in [18, 10, 37, 34].

J.É.P. — M., 2025, tome 12
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Rigidity. — The next application is inspired by the same curve-quiver dictionary.
Recall that in the seminal paper [38] Narasimhan–Ramanan show that the deforma-
tion theory of the curve is the same as that of the moduli space MC(r,L), again
under the assumption that gcd(r, degL) = 1 to ensure the moduli space is smooth
and projective. More precisely, they establish

(5) Hi(MC(r,L),TMC(r,L)) ∼= Hi(C,TC)

which is well-known to be (3g − 3)-dimensional for i = 1, and vanishes for i ̸= 1. For
quiver representations and their moduli, the deformation theory of the quiver is to be
interpreted as the deformation theory of the path algebra of the quiver, and thus we
are interested in its (second) Hochschild cohomology. By [22, §1.6] we have that

(6) HH2(kQ) = 0,

if Q is acyclic, thus the path algebra is rigid as an associative algebra. Under our
dictionary between quivers and curves the analogue of (5) becomes an isomorphism

H1(Mθ-st(Q,d),TMθ-st(Q,d)) ∼= HH2(kQ),

and thus by the vanishing in (6) that Mθ-st(Q,d) is rigid as a variety. This is proved
in Section 4.3. The global sections of TMθ-st(Q,d) should be related to HH1(kQ), which
is studied in [4].

Because (6) actually reads HH⩾2(kQ) we in fact expect higher cohomology van-
ishing for the tangent bundle. We can prove the rigidity and further vanishing using
Theorem A and the 4-term sequence (36).

Corollary D. — Let Q be an acyclic quiver, let d be a dimension vector, and let θ be
a stability parameter, such that d is θ-coprime. Assume furthermore that d is strongly
amply θ-stable. Then Mθ-st(Q,d) satisfies

H⩾1(Mθ-st(Q,d),TMθ-st(Q,d)) = 0,

so in particular it is (infinitesimally) rigid, i.e., H1(Mθ-st(Q,d),TMθ-st(Q,d)) = 0.

Thus, it is not possible to deform a quiver moduli space, or put more colloquially:
“quiver moduli have no moduli”. The only cases where this rigidity was known were
situations in which an explicit description of the moduli space was known (e.g., for
certain quiver moduli attached to Kronecker or subspace quivers), or in the case
of Fano toric quiver moduli, by applying Danilov–Steenbrink–Bott vanishing, see,
e.g., [36, Th. 2.4(i)].

Finiteness. — In [14] Domokos proves a result which interacts in an interesting way
with Corollary D. In op. cit. it is shown that, if one fixes the dimension, there exist only
finitely many isomorphism classes of quiver moduli of that dimension, where a priori
the number could also be countable (as the choice of quiver, dimension vector, and
stability chamber is countable, resp. countable, resp. finite). There are three variations
on the finiteness statement in op. cit., with different conditions on the dimension
vectors that one considers.

J.É.P. — M., 2025, tome 12
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One can also reverse the flow of information: by the boundedness of Fano varieties
[32, Th. 0.2] we know that in a given dimension there are only finitely many rigid
Fano varieties. Applying Corollary D to Fano quiver moduli (for strongly amply stable
dimension vectors) one obtains that there are only finitely many such quiver moduli
in a given dimension, giving a fourth variation on the finiteness statement from [14].

The computation of the global sections of the tangent bundle, i.e., the vector fields
of the moduli space, is addressed in [4]. It is shown that, under favorable circum-
stances, there exists an isomorphism HH1(kQ) ∼= H0(Mθ-st(Q,d),TMθ-st(Q,d)), as pre-
dicted by the dictionary between quivers and curves.

Height-zero moduli spaces. — The final application involves moduli spaces of sheaves
on P2, and in particular those of height zero, as introduced by Drezet [15, 17, 16].
These are moduli spaces MP2(r, c1, c2) of (semi)stable sheaves on P2 which can be
characterized by having PicMP2(r, c1, c2) ∼= Z [16, Th. 2]. The precise definition is
recalled in Section 4.4.

Using the parameters (r, c1, c2) = (1, 0, n) we describe the Hilbert scheme of n

points on P2 as a fine moduli space of stable sheaves. In [33, Th. 1.2] it is shown that
the Fourier–Mukai functor ΦI : Db(P2) → Db(Hilbn P2), where I is the universal
ideal sheaf, is fully faithful for all n ⩾ 2. In [9, Prop. 29] it is shown that this implies
that H1(Hilbn P2,THilbn P2) ∼= HH2(P2) is non-zero. As mentioned in Remark 30 of
op. cit., the same method to compute the infinitesimal deformations works verbatim
for other smooth projective moduli spaces, provided the Fourier–Mukai functor is
fully faithful.

This gives us examples where the functor cannot be fully faithful, using the cor-
respondence between moduli spaces of height zero and certain Kronecker moduli [15,
Th. 2]. We prove the following in Section 4.4.

Corollary E. — Let MP2(r, c1, c2) be a smooth projective fine moduli space of stable
sheaves on P2, with universal object E. If it is of height zero, then

(7) ΦE : Db(P2) −→ Db(MP2(r, c1, c2))

is not fully faithful.

The special case of the corollary where (r, c1, c2) = (4, 1, 3) was established in [40].
It is also possible to obtain the result in Corollary E using other methods, as explained
in Remark 4.20, with ingredients from the original papers by Drezet.

Acknowledgements. — The first author would like to thank Ben Gould, Dmitrii Ped-
chenko and Fabian Reede for conversations about moduli spaces of height zero related
to Remark 4.20. We want to thank Alastair Craw for interesting discussions regard-
ing the case of quiver flag varieties. We want to thank Daniel Halpern-Leistner and
Sebastían Torres for interesting discussions regarding Teleman quantization.
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2. Moduli spaces of quiver representations

We will first set up the notation, and recall the construction of various moduli
spaces of quiver representations with their universal objects. Throughout we will let k
be an algebraically closed field of characteristic 0. Initially this is not necessary, but
it will be for the main results.

A quiver Q is a finite directed graph, with set of vertices Q0 and set of arrows Q1,
together with two maps s, t : Q1 → Q0, which assign to an arrow a ∈ Q1 its source
and target, respectively.

A representation M of Q over a field k is the data of a finite-dimensional vector
space Mi for each vertex i ∈ Q0 together with a linear map Ma : Ms(a) → Mt(a) for
each arrow a ∈ Q1. For a representation M of Q, we define the dimension vector
dimM ∈ NQ0 as the tuple (dimMi)i∈Q0

.
We will briefly recall the construction of the moduli stacks and spaces, working

over the field k. For a more formal definition, valid over arbitrary bases, the interested
reader can consult [5, §3]. Given a fixed dimension vector d ∈ NQ0

0 , where we write d =

(di)i∈Q0
, we define the representation variety as the affine space

(8) R(Q,d) :=
∏

a∈Q1

Matdt(a)×ds(a)
(k).

A point of R(Q,d) is the same as a representation of Q on the collection of vector
spaces kdi . Let the reductive linear algebraic group Gd = Gd(k) be defined by

Gd(k) :=
∏
i∈Q0

GLdi
(k).

This group acts on the left on R(Q,d) via change of basis; more precisely, g =

(gi)i∈Q0 ∈ Gd acts on the point M = (Ma)a∈Q1 by

g ·M := (gt(a)Ma g
−1
s(a))a∈Q1

.

Two elements of R(Q,d) lie in the same Gd-orbit if and only if the correspond-
ing representations of Q are isomorphic. Consider the closed central subgroup
∆ = {(z · Idi

)i∈Q0
| z ∈ Gm} of Gd. Its elements act trivially on R(Q,d), whence the

action on R(Q,d) descends to an action of the reductive group

PGd := Gd/∆.

For later use we also recall the Euler pairing of the quiver, which for α, β ∈ ZQ0 is
defined as

⟨α, β⟩ =
∑
i∈Q0

αiβi −
∑
a∈Q1

αs(a)βt(a).

Note that the notation does not include Q, as it will be clear from the context.

Moduli of (semi)stable representations. — Let θ ∈ Hom(ZQ0 ,Z) be a stability parame-
ter. We will identify Hom(ZQ0 ,Z) with its dual ZQ0 by the dot product. Assume that
θ(d) = 0. We define a notion of stability with respect to θ, following King [30] (up to
a different sign convention).

J.É.P. — M., 2025, tome 12
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Definition 2.1. — A representation M of Q of dimension vector d is called
θ-semistable (resp. θ-stable) if any proper non-zero subrepresentation N of M

satisfies the inequality θ(dimN) ⩽ 0 (resp. θ(dimN) < 0).

Let
Rθ-st(Q,d) ⊆ Rθ-sst(Q,d) ⊆ R(Q,d)

denote the Zariski open subsets of stable and semistable representations, respectively.
Note that the semistable locus may be empty, or the stable locus may be empty while
the semistable locus is not.

An important choice of stability parameter is the canonical stability parameter θcan
for a dimension vector d, which is given by the morphism ⟨d,−⟩ − ⟨−,d⟩, i.e., the
partial evaluation of the antisymmetrized Euler form {−,−}.

We associate the character χθ of Gd to the stability parameter θ, by defining

χθ(g) =
∏
i∈Q0

det(gi)
−θi ;

note the minus sign in the exponent. As θ(d) = 0, the character χθ vanishes on ∆, so it
is also a character of PGd. Let L(θ) be the trivial line bundle on R(Q,d) equipped
with the PGd-linearization given by χθ. King shows in [30, Th. 4.1] that θ-semistability
agrees with semistability with respect to L(θ), and θ-stability is the same as proper
stability in the sense of Mumford’s GIT. In op. cit., the action by Gd is used, so the
points are not properly stable in the sense of Mumford, but the only difference is a
common Gm-stabilizer.

Definition 2.2. — We define the θ-semistable and θ-stable moduli spaces as

Mθ-sst(Q,d) := R(Q,d)//L(θ) PGd,

Mθ-st(Q,d) := R(Q,d)/L(θ) PGd .

Moreover, we define the θ-semistable and θ-stable moduli stacks as

Mθ-sst(Q,d) := [Rθ-sst(Q,d)/Gd],

Mθ-st(Q,d) := [Rθ-st(Q,d)/Gd].

In the case θ = 0, we write Mssimp(Q,d) for the moduli space of 0-semistable repre-
sentations, as well as M(Q,d) = M0-sst(Q,d) for the moduli stack. These parameterize
the semisimple representations of dimension vector d.

The relations between the affine, semistable and stable quotients are summarized
in the following diagram:

Rθ-st(Q,d) Rθ-sst(Q,d) R(Q,d)

Mθ-st(Q,d) Mθ-sst(Q,d) M(Q,d)

Mθ-st(Q,d) Mθ-sst(Q,d) Mssimp(Q,d).

J.É.P. — M., 2025, tome 12
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The arrows on the first row are open immersions. So are the leftmost arrows in the
second and third row. The morphism Mθ-st(Q,d) → Mθ-st(Q,d) is a Gm-gerbe, the
composition Rθ-st(Q,d) → Mθ-st(Q,d) is a principal PGd-bundle in the fpqc topol-
ogy, and Mθ-sst(Q,d) → Mssimp(Q,d) is projective. The semisimple moduli space
Mssimp(Q,d) is affine, and if Q is acyclic this moduli space is isomorphic to Speck by
the classification of simple modules. The moduli space Mθ-st(Q,d) is smooth.

Definition 2.3. — A dimension vector d ∈ NQ0 is called indivisible if gcdi∈Q0
(di) = 1.

Furthermore, it is called θ-coprime if, for any d′ ∈ NQ0 such that d′ ⩽ d, we have
θ(d′) ̸= 0, unless d′ ∈ {0,d}.

We see that if d is θ-coprime, then it is indivisible. Moreover, if d is θ-coprime,
then every θ-semistable representation of dimension vector d is θ-stable. In particular,
if the quiver Q is acyclic and if d is θ-coprime, the moduli space Mθ-st(Q,d) is a
smooth projective variety. If moreover θ = θcan (or more generally, θ is in the same
chamber as θcan) then Mθ-st(Q,d) is even a Fano variety [20], thus explaining why
this particular choice is especially interesting.

We also recall the following definition from [43, Def. 4.1].

Definition 2.4. — A dimension vector d is said to be amply θ-stable if

codimR(Q,d)(R(Q,d)∖ Rθ-st(Q,d)) ⩾ 2.

This guarantees that the Picard rank of Mθ-st(Q,d) will be maximal, i.e., it is equal
to #Q0 − 1. We will introduce a stronger version of this condition in Definition 4.1.

Universal representations. — For every i ∈ Q0, let Ui be the trivial vector bundle of
rank di on R(Q,d). We equip it with an action of Gd. For a vector v ∈ kdi = (Ui)M
in the fiber over a point M ∈ R(Q,d), the group element g = (gi)i∈Q0 ∈ Gd acts by

g · v = giv

which lies in the fiber over g ·M . For an arrow a ∈ Q1, let Ua : Us(a) → Ut(a) be the
morphism which on the fibers over a point M ∈ R(Q,d) sends a vector v ∈ (Us(a))M
to Ma(v) ∈ (Ut(a))M . This morphism is clearly Gd-equivariant.

The bundles Ui do not descend to Mθ-st(Q,d) because the stabilizer ∆ does not
act trivially on the fibers. We need to twist by certain line bundles to achieve this.

Let a ∈ ZQ0 . Define L(a) as the trivial line bundle on R(Q,d), so that on its fibers
the element g ∈ Gd acts by the character χa(g) =

∏
i∈Q0

det(gi)
−ai . If we assume

that d is indivisible, then there exists a tuple of integers a ∈ ZQ0 for which a · d =∑
i∈Q0

aidi = 1.
Let Ui(a) := Ui⊗L(a) on R(Q,d) for a such that a ·d = 1. By the choice of a, the

stabilizer ∆ acts trivially, so these vector bundles, once restricted to the θ-stable locus,
descend to the quotient Mθ-st(Q,d). The morphisms Ua⊗ idL(a) : Us(a)(a) → Ut(a)(a)

descend to morphisms Ua(a) : Us(a)(a) → Ut(a)(a).
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Definition 2.5. — The data U(a) = ((Ui(a))i∈Q0
, (Ua(a))a∈Q1

) is a representation
of Q in vector bundles on Mθ-st(Q,d). It is called the universal representation (relative
to a).

Remark 2.6. — Different choices of a give rise to non-isomorphic universal represen-
tations. However, for a and b ∈ ZQ0 as before, i.e., a ·d = b ·d = 1, we have universal
representations U(a) and U(b). The line bundle L(b − a) descends to a line bundle
L(b − a) on Mθ-st(Q,d), because (b − a) · d = 0, making the stabilizer act trivially,
and it gives rise to the isomorphism U(a)⊗ L(b− a) ∼= U(b).

3. Teleman quantization for quiver moduli

The following section is the technical heart of the paper. We will explain how to set
up Teleman quantization for quiver moduli, by recalling the Hesselink stratification
and relating it to the Harder–Narasimhan stratification. This allows us to compute
the width of the windows in Section 3.3, and the weights of the endomorphisms of
the universal representation in Section 3.4.

3.1. The Hesselink stratification and Teleman’s quantization theorem. — Let G

be a linearly reductive algebraic group, and let R be an affine variety over k on
which G acts. In our application to quiver moduli we will let G be Gd or PGd, and R

the representation variety (8).
Let λ : Gm → G be a 1-parameter subgroup, and let χ : G → Gm be a character

of G. We denote by ⟨χ, λ⟩ the integer exponent in the identity χ◦λ(z) = z⟨χ,λ⟩. Recall
that the Hilbert–Mumford criterion for semistability states the following.

Theorem 3.1. — A point x ∈ R is χ-semistable if and only if ⟨χ, λ⟩ ⩾ 0 for every
1-parameter subgroup λ : Gm → G for which limz→0 λ(z)x exists.

Given an unstable point x ∈ R, Kempf finds in [29] a 1-parameter subgroup which
is “most responsible” for its instability. This construction was used by Hesselink in [23]
to obtain a stratification of R into locally closed subsets. The Hesselink stratification
is also the basis for Teleman’s quantization theorem. We will thus briefly recall this
theory in the following. A comprehensive reference is [31, §12 & §13].

With X∗(G) we denote the set of 1-parameter subgroups of G. It is acted upon
by G by conjugation. Fix a maximal torus T ⊆ G and let W be the corresponding
Weyl group. Then X∗(T ) is a free abelian group. The Weyl group W acts on X∗(T )

and we have a bijection

(9) X∗(T )/W ∼= X∗(G)/G.

Let (−,−) be a W -invariant inner product on the vector space X∗(T )R such that
(λ, λ) ∈ Z for all 1-parameter subgroups λ of T . The induced norm ∥−∥ is also
W -invariant. Therefore, we may extend the norm to 1-parameter subgroups λ of G
by setting ∥λ∥ := ∥gλg−1∥ where g ∈ G is such that gλg−1 lies in T .
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Definition 3.2. — Let x∈R. We define the normalized Hilbert–Mumford weight of x as

m(x) := inf
{ ⟨χ, λ⟩

∥λ∥

∣∣∣ 1 ̸= λ ∈ X∗(G) such that lim
z→0

λ(z)x exists
}
,

and the set of 1-parameter subgroups associated to x as

Λ(x) :=
{
λ ∈ X∗(G)

∣∣∣ λ is primitive, lim
z→0

λ(z)x exists, and ⟨χ, λ⟩
∥λ∥

= m(x)
}
.

For a 1-parameter subgroup λ of G we define

Lλ := {g ∈ G | λ(z)gλ(z)−1 = g for all z ∈ Gm}, and(10)
Pλ := {g ∈ G | lim

z→0
λ(z)gλ(z)−1 exists}.(11)

These are closed subgroups of G. Moreover, Pλ is a parabolic subgroup with Levi
factor Lλ.

We define two subsets of R as follows, where the first is the fixed locus of λ:

Rλ := {x ∈ R | λ(z)x = x for all z ∈ Gm}, and
R+

λ := {x ∈ R | lim
z→0

λ(z)x exists}.

Both subsets are closed in the Zariski topology. The group Lλ acts on Rλ, while Pλ

acts on R+
λ . The morphism

(12) pλ : R
+
λ −→ Rλ : x 7−→ lim

z→0
λ(z)x

is Pλ-equivariant via Pλ → Lλ.

Definition 3.3. — Let λ be a 1-parameter subgroup of G, and let [λ] be its
G-conjugacy class inside X∗(G). We define the following subsets of R:

(1) S[λ] := {x ∈ R | Λ(x) ∩ [λ] ̸= ∅}, which is called the Hesselink stratum of [λ];
(2) Σλ := {x ∈ R | λ ∈ Λ(x)} ⊂ S[λ], which is called the blade of λ; and
(3) Zλ := {x ∈ Rλ | λ ∈ Λ(x)} = Σλ ∩Rλ ⊂ Σλ, which is called the limit set of λ.

Now we proceed to describe the Hesselink stratification. It is an algebraic analog
of the Kempf–Ness stratification.

Theorem 3.4 (Hesselink). — The unstable locus (or null cone) inside R admits a
decomposition

(13) R∖Rχ-sst =
⊔
[λ]

S[λ],

as a finite disjoint union into G-invariant locally closed subsets ranging over all the
G-conjugacy classes of primitive λ ∈ X∗(G) such that ⟨χ, λ⟩ < 0. Moreover,

(1) Each limit set Zλ is Lλ-invariant and open inside Rλ;
(2) Each blade satisfies Σλ = p−1

λ (Zλ), where pλ is as in (12), and is hence a
Pλ-invariant open subset of R+

λ ;
(3) Each stratum S[λ] satisfies S[λ] = G · Σλ; and
(4) The action map σ : G× Σλ → G · Σλ = S[λ] induces an isomorphism with the

associated fiber bundle, i.e., G×Pλ Σλ
∼= S[λ].
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The complement of the null cone can be included in the decomposition (13) by
using the trivial 1-parameter subgroup.

Remark 3.5. — By (9), the disjoint union of (13) may equivalently be taken over all
W -conjugacy classes of primitive 1-parameter subgroups λ of T such that ⟨χ, λ⟩ < 0.

Now we state the result which is most important for our purposes – Teleman’s
quantization theorem. We do not state its most general version, but only one which
will be sufficient for our purposes. This result was given in great generality by
Halpern-Leistner in [21, Th. 3.29], extending the original version from [46, Prop. 2.11
& Rem. 2.12(i)].

Theorem 3.6 (Teleman). — Let G be a reductive algebraic group acting on a smooth
quasiprojective variety R. Let {S[λ]} be the Hesselink stratification (13) of the unstable
locus with respect to the character χ from Theorem 3.4. Assume that all limit sets Zλ

are connected.
For each λ, define ηλ as the weight of the action of λ on the determinant of the

conormal bundle restricted to the limit set, i.e.,

(14) ηλ := wtλ
(
(detN∨

S[λ]/R
)|Zλ

)
.

Let F be a G-linearized vector bundle on R. If, for each λ, the weights of the action
of λ on F|Zλ

are strictly less(2) than ηλ, i.e.,

(15) max {wtλ (F|Zλ
)} < ηλ,

then the natural map
Hk(R,F)G −→ Hk(Rχ-sst,F)G

is an isomorphism for all k ⩾ 0.

In particular, if G acts freely on the semistable locus, then we obtain isomorphisms

Hk(R,F)G −→ Hk(R//χ G,F)

for all k ⩾ 0, where on the right-hand side F denotes the descent to the GIT quotient,
as in [46, Th. 3.2].

Because the statement in Theorem 3.6 is not readily obtained from the statement
in [21, Th. 3.29] we sketch how it can be deduced. Alternatively, one can go through
the setup of [46, Prop. 2.11], taking into account the different sign convention, and
different notation.

Sketch of proof of Theorem 3.6. — [21, Th. 3.29] gives an isomorphism for the restric-
tion on a per-stratum basis. One applies it inductively, as in the proof of [21, Th. 1.1],
checking the conditions for F • and G• in the notation of op. cit. for all strata.

To apply this result, we take F • = OR, and G• = F, with weights v = w = 0

for every stratum. For every stratum we have OR ∈ D−([R/G])⩾0 as defined in

(2)Some authors state this result by taking the limit z → ∞ rather than z → 0, which modifies
the statement.
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[21, Def. 3.24] because the weight of the structure sheaf is 0. Finally, we have F ∈
D+([R/G])<0 by the smoothness assumption on R, so that we can apply [21, Lem. 2.9],
which translates the inequality in the definition of D+([R/G])<0 to (15). □

Remark 3.7. — Note that as Zλ is supposed to be connected, and Gm acts trivially
via λ on Zλ, [11, Prop. 2.10] gives a split exact sequence

0 −→ Z −→ PicGm(Zλ) −→ Pic(Zλ) −→ 0.

A section is given by equipping a line bundle with the trivial linearization. The cor-
responding retraction is the map wtλ : PicGm(Zλ) → Z. This means that a Gm-lin-
earized line bundle L on Zλ is the same as a line bundle on Zλ together with a linear
action of Gm on every fiber by the same weight wtλ(L).

3.2. The Harder–Narasimhan and Hesselink stratifications for quiver moduli

As in Section 2 we let Q be a quiver, d a dimension vector and θ ∈ Hom(ZQ0 ,Z)
a stability parameter such that θ(d) = 0. The character χθ of Gd defined by χθ(g) =∏

i∈Q0
det(gi)

−θi descends to a character of PGd = Gd/∆, therefore it makes no
difference to consider the action of Gd instead of the action of PGd.

We consider the action of PGd on the representation space R = R(Q,d) and
describe the Hesselink stratification in this case.

For quiver representations, the fifth-named author established in [41, Prop. 3.4] the
existence of an analogous stratification of R, the Harder–Narasimhan stratification.
Under the standing assumption that k is algebraically closed these two will coincide,
which is the content of Theorem 3.13. In the case of complex numbers, Hoskins gives
a proof in [27, Th. 3.8]. Over an arbitrary algebraically closed field, Zamora gives a
proof in [47, Th. 6.3]. We recall below how the identification goes, and explain how
all the auxiliary data are related, because we will need this for later computations.

We make the representation-theoretic setup of Section 3.1 explicit in our special
setting. Let Td ⊆ Gd be the maximal torus of diagonal matrices. The lattice X∗(Td)

of 1-parameter subgroups of Td is freely generated by {λi,r | i ∈ Q0, r = 1, . . . , di}
where λi,r(z) ∈ Td is the tuple of matrices where in the ith matrix there is a di-
agonal entry z in the rth position. Let (−,−) be the inner product on X∗(Td)R for
which {λi,r} is an orthonormal basis. This inner product is invariant under the Weyl
group W =

∏
i∈Q0

Sdi
. Let ∥−∥ be the corresponding norm. Note that, for each

i ∈ Q0, the restriction of this norm on X∗(Tdi
) is the standard Euclidean norm.

We also have to consider the maximal torus T = Td/∆ of PGd. Its lattice
of 1-parameter subgroups is X∗(T ) = X∗(Td)/Zδ, where δ =

∑
i∈Q0

∑di

r=1 λi,r,
or more concretely δ(z) = z · id. We may identify X∗(T )R with the orthogonal
complement (Rδ)⊥ inside X∗(Td)R. It consists of all real linear combinations∑

i∈Q0

di∑
r=1

ai,rλi,r

such that
∑

i∈Q0

∑di

r=1 ai,r = 0. We restrict the norm ∥−∥ to this subspace.
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Now now recall the terminology for the Harder–Narasimhan stratification. For a
dimension vector e ̸=0 we define |e|=

∑
i∈Q0

ei and the slope µ(e)=µθ(e) :=θ · e/|e|,
i.e., we choose the total dimension as denominator for the slope. If M is a represen-
tation of Q, we write µ(M) := µ(dim(M)) and call it the slope of M .

Definition 3.8. — Let µ = µθ be as above. A representation M of Q is called
µ-semistable (respectively µ-stable) if any nonzero proper subrepresentation M ′ sat-
isfies the inequality

µ(M ′) ⩽ µ(M) (respectively µ(M ′) < µ(M)).

By clearing the denominator as explained in [47, Rem. 2.3] this recovers King’s
definition of (semi)stability, so the moduli spaces of (semi)stable objects do not depend
on the choice of denominator in µ. However, the choice of (the denominator in) the
slope function is required to define the Harder–Narasimhan stratification. We will
stick to the standard choice of slope function made in [41], and leave it for future
work to understand its influence on the results in this paper.

Definition 3.9. — Let M be a representation of Q. A Harder–Narasimhan filtration
of M is a sequence

0 = N0 ⊂ N1 ⊂ N2 ⊂ · · · ⊂ N ℓ = M

of subrepresentations such that each subquotient Nm/Nm−1 is µ-semistable and such
that the chain of inequalities

µ(N1/N0) > µ(N2/N1) > · · · > µ(N ℓ/N ℓ−1)

holds.

Remark 3.10. — Any such filtration defines the Harder–Narasimhan type

d∗ = (dim(N1/N0), . . . ,dim(N ℓ/N ℓ−1)).

Conversely, for any tuple d∗ = (d1, . . . ,dℓ) summing to d and such that each ds is
µ-semistable and the inequalities µ(d1) > · · · > µ(dℓ) hold, there exist representations
whose Harder–Narasimhan type is d∗.

Rudakov establishes in [44, Th. 3] the existence and uniqueness of the Harder–
Narasimhan filtration, see also [25, Th. 2.5] which proves this directly in the case of
quiver representations.

We may stratify R(Q,d) by Harder–Narasimhan type as follows. Let d∗ =

(d1, . . . ,dℓ) be a Harder–Narasimhan type, i.e., a sequence of dimension vectors
of strictly decreasing slope such that for each dimension vector dm there exists
a µ-semistable representation of dimension vector dm.
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For a representation M ∈ R(Q,d) and a ∈ Q1, we can decompose the matrix
describing the linear transformation Ma : Ms(a) → Mt(a) into blocks

(16) Ma =

M1,1
a . . . M1,ℓ

a
...

. . .
...

M ℓ,1
a . . . M ℓ,ℓ

a

 ,

where each block Mn,m
a is of size dnt(a) × dms(a), for m,n = 1, . . . , ℓ. Similarly, each

component gi of g ∈ Gd can be decomposed into blocks gn,mi of size dni ×dmi , for m,n =

1, . . . , ℓ.
Let Ld∗ and Pd∗ be subgroups of Gd defined by

Ld∗ := {g ∈ Gd | gn,mi = 0 for all i ∈ Q0 and all n ̸= m},
Pd∗ := {g ∈ Gd | gn,mi = 0 for all i ∈ Q0 and all n > m}.

The group Ld∗ is a Levi factor of the parabolic subgroup Pd∗ of Gd. Let Rd∗ and R+
d∗

be closed subvarieties of R defined by

(17)
Rd∗ := {M ∈ R(Q,d) | Mn,m

a = 0 for all a ∈ Q1 and all n ̸= m},
R+

d∗ := {M ∈ R(Q,d) | Mn,m
a = 0 for all a ∈ Q1 and all n > m}.

The group Ld∗ ∼= Gd1 × · · · ×Gdℓ acts on Rd∗ ∼= R(Q,d1)× · · · × R(Q,dℓ), and Pd∗

acts on R+
d∗ . The projection pd∗ : R+

d∗ → Rd∗ which forgets the off-diagonal blocks is
equivariant with respect to the projection Pd∗ → Ld∗ .

Definition 3.11. — Let d∗ = (d1, . . . ,dℓ) be a Harder–Narasimhan type. The locus

RHN

d∗ := {M ∈ R(Q,d) | M has a Harder–Narasimhan filtration of type d∗}

is called the associated Harder–Narasimhan stratum.
We also define Zd∗ := Rµ-sst(Q,d1)× · · · × Rµ-sst(Q,dℓ), and Σd∗ := p−1

d∗ (Zd∗).

We state the fifth-named author’s result [41, Prop. 3.4] on the Harder–Narasimhan
stratification.

Theorem 3.12 (Reineke). — The affine space R admits a decomposition

R =
⊔
d∗

RHN

d∗ ,

as a finite disjoint union into finitely many locally closed irreducible Gd-invariant
subsets. Moreover,

(1) The set Zd∗ is an Ld∗-invariant open subset of Rd∗ ;
(2) The set Σd∗ is a Pd∗-invariant open subset of R+

d∗ ;
(3) Each stratum RHN

d∗ satisfies RHN

d∗ = Gd · Σd∗ ; and
(4) The action map σ : Gd ×Σd∗ → RHN

d∗ induces an isomorphism with the associ-
ated fiber bundle, i.e., RHN

d∗ ∼= Gd ×Pd∗ Σd∗ .
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We are going to describe how to identify these two stratifications. Let d∗ =

(d1, . . . ,dℓ) be a Harder–Narasimhan type and assume that d∗ ̸= (d). Let C be
the minimal positive integer such that

(18) km := Cµ(dm) ∈ Z

for all m = 1, . . . , ℓ. In Table 1 we have listed the Harder–Narasimhan types for an
interesting Kronecker moduli space, together with the values of µ(dm), C, and km for
all types, and all m = 1, . . . , ℓ.

We define a 1-parameter subgroup λ = λd∗ = (λi)i∈Q0
∈ X∗(Td) by

(19) λi(z) = diag
(
zk1 , . . . , zk1︸ ︷︷ ︸

d1
i times

; zk2 , . . . , zk2︸ ︷︷ ︸
d2
i times

; . . . ; zkℓ , . . . , zkℓ︸ ︷︷ ︸
dℓ
i times

)
.

Note that λ is primitive by the minimality of C, and that

(δ, λ) =
∑
i∈Q0

ℓ∑
m=1

kmdmi =

ℓ∑
m=1

km|dm| = C

ℓ∑
m=1

θ(dm) = Cθ(d) = 0.

This shows that λ lies in (Rδ)⊥ which we have identified with X∗(T )R. We thus can,
and will, interpret λ also as a 1-parameter subgroup of PGd.

We can now compare the two stratifications obtained in Theorems 3.4 and 3.12.
The comparison we state next is proved independently in [27, Th. 3.8] and [47, Th. 6.3],
where we restrict ourselves to the case where the denominator of the slope function is
the total dimension (and we are not using relations for the quiver). For a representa-
tion M which has a Harder–Narasimhan filtration of type d∗, we get [λ]∩Λ(M) ̸= ∅.
This shows that every primitive 1-parameter subgroup λ ∈ X∗(T ) which occurs in the
Hesselink stratification for R(Q,d) is of the form λd∗ for a unique Harder–Narasimhan
type d∗ after conjugation with a suitable Weyl group element.

Theorem 3.13 (Hesselink–Harder–Narasimhan correspondence). — For the Hesselink
and Harder–Narasimhan stratifications from Theorems 3.4 and 3.12

R∖Rθ-sst =
⊔

d∗ ̸=(d)

RHN

d∗ =
⊔
[λ]

S[λ]

the following hold:
(1) For every Harder–Narasimhan type d∗ ̸= (d), the 1-parameter subgroup λd∗

satisfies ⟨χθ, λd∗⟩ < 0 and RHN

d∗ = S[λd∗ ].
(2) For ever Gd-conjugacy class [λ] in the Hesselink stratification for which S[λ] ̸=∅,

there exists a unique Harder–Narasimhan type d∗ ̸= (d) such that [λ] = [λd∗ ].

The same correspondence also gives rise to several other identifications, that we
state and introduce notation for in the following remark.

Remark 3.14. — Let d∗ ̸= (d) be a Harder–Narasimhan type and let λ = λd∗ be
the 1-parameter subgroup of T ⊂ PGd which corresponds to it under Theorem 3.13.
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Then we set

L := Ld∗/∆ = Lλ, P := Pd∗/∆ = Pλ, R0 := Rd∗ = Rλ, R+ := R+
d∗ = R+

λ ,

Z := Zd∗ = Zλ, Σ := Σd∗ = Σλ, S := RHN

d∗ = S[λ].

Then we have the following situation:

L P

↷ ↷

R0 R+

⊆ ⊆

Z Σ S

{eP} Gd/P.

p

3.3. Width of the windows for quiver moduli. — Let d∗ = (d1, . . . ,dℓ) be
a Harder–Narasimhan type, and let λ := λd∗ ∈ X∗(Gd) be the corresponding
1-parameter subgroup given by (19). Let S be the Hesselink stratum associated
to λ := λd∗ , or equivalently the Harder–Narasimhan stratum associated to d∗, let
Σ := Σλ be the blade of λ (and of d∗), and let Z := Zλ be the limit set of λ (and
of d∗).

We wish to compute the weight of det(N∨
S/R|Z) for the action of λ, which we denote

by ηλ, which is one of the ingredients in the statement of Teleman quantization as
in Theorem 3.6. By using the equivariant adjunction formula, which we state for a
general case below, we will be able to split the computation in two parts and conduct
each of them separately.

Lemma 3.15. — Let R be a smooth variety, and let S be a smooth, locally closed
subvariety of R. Let a linearly reductive algebraic group G act on R, and assume
that S is G-stable. In this case, the standard adjunction isomorphism

(20) det(NS/R)
∨ ∼= ωR|S ⊗ ω∨

S

is G-equivariant, i.e., it holds in PicG(S).

Proof. — By assumption S is locally closed, hence closed in an open U of R. Since
both U and S are smooth, the standard adjunction formula applies. This isomorphism
is G-equivariant because it is induced from the short exact sequence

0 −→ IS/I
2
S −→ Ω1

U/k|S −→ Ω1
S/k −→ 0,

which is G-equivariant as S is G-stable. □

The space R = R(Q,d) is defined to be the product of affine spaces Matdt(a)×ds(a)
,

indexed by the arrows a ∈ Q1, see (8). The coordinate ring of R is thus

O(R) = k[x(a)
p,q ]a∈Q1, p=1,...,dt(a), q=1,...,ds(a)

,
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where x
(a)
p,q is the regular function which selects from a tuple M = (Ma)a∈Q1 the

(p, q)-th entry of the matrix Ma. The sheaf of differentials Ω1
R is therefore the sheaf

associated to the free O(R)-module with basis {dx(a)
p,q} where a ∈ Q1, p = 1, . . . , dt(a)

and q = 1, . . . , ds(a).
The action of Gd on R := R(Q,d) induces a left action on the coordinate ring,

by precomposition with the inverse, so for f ∈ O(R) and g = (gi)i∈Q0 ∈ Gd, the
regular function g · f is defined by

(g · f)(M) = f(g−1 ·M) = f((g−1
t(a)Mags(a))a∈Q1

)

for all M = (Ma)a∈Q1
∈ R. The induced left action of Gd on the sheaf of differen-

tials Ω1
R is given by g · df := d(g · f), for all f ∈ O(R). This yields left actions on all

exterior products and all Gd-stable subsheaves of Ω1
R, as well as on quotients of Ω1

R

by such subsheaves.
First we deal with the first tensor factor in (20) restricted to Z, i.e., we consider

the limit set Z inside stratum S which itself lives inside the representation variety R.

Lemma 3.16. — The λ-weight of the canonical bundle ωR|Z on R restricted is

(21) wtλ(ωR|Z) =
∑

1⩽m<n⩽ℓ

(kn − km) (⟨dm,dn⟩ − ⟨dn,dm⟩) .

Proof. — Recall that λ = (λi)i∈Q0
consists of diagonal 1-parameter subgroups λi,

see (19). The action of λ on x
(a)
p,q is given by

(λ(z) · x(a)
p,q)(M) = x(a)

p,q((λt(b)(z)
−1Mbλs(b)(z))b∈Q1) = λt(a)(z)

−1
p,pλs(a)(z)q,q · x(a)

p,q(M)

for all M = (Mb)b∈Q1
and all z ∈ Gm. This shows that

λ(z) · dx(a)
p,q = λt(a)(z)

−1
p,pλs(a)(z)q,qdx

(a)
p,q .

Taking the exterior product over all the generators dx
(a)
p,q , we obtain

∧
a∈Q1

∧
1⩽p⩽dt(a)

1⩽q⩽ds(a)

λ(z) · dx(a)
p,q =

( ∏
a∈Q1

∏
1⩽p⩽dt(a)

1⩽q⩽ds(a)

λt(a)(z)
−1
p,pλs(a)(z)q,q

) ∧
a∈Q1

∧
1⩽p⩽dt(a)

1⩽q⩽ds(a)

dx(a)
p,q .

This determines the character of the Gm-linearization via λ of ωR. Its weight is
necessarily wtλ(ωR|Z). So, we obtain

wtλ(ωR|Z) =
∑
a∈Q1

∑
1⩽m,n⩽ℓ

(km − kn)d
m
s(a)d

n
t(a)

=
∑
a∈Q1

∑
1⩽m<n⩽ℓ

(km − kn)(d
m
s(a)d

n
t(a) − dns(a)d

m
t(a))

=
∑

1⩽m<n⩽ℓ

(km − kn)(⟨dn,dm⟩ − ⟨dm,dn⟩)

=
∑

1⩽m<n⩽ℓ

(kn − km)(⟨dm,dn⟩ − ⟨dn,dm⟩). □
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Next we deal with the second tensor factor in (20) restricted to Z, i.e., we consider
the limit set Z inside the stratum S, without reference to R.

Lemma 3.17. — The λ-weight of ωS |Z is

(22) wtλ(ωS |Z) =
∑

1⩽m<n⩽ℓ

(km − kn)⟨dn,dm⟩.

To give a proof, we first explain how to split the computation in several steps,
eventually leading to the identity in (27), and then perform each step separately.

The morphism σ : Gd ×Σ → S in Theorem 3.12(4) is a principal fiber bundle (for
the étale topology, by the standing assumption on k being of characteristic zero) with
fiber Pd∗ . Therefore, σ is smooth and the relative tangent bundle sequence

(23) 0 −→ TGd×Σ/S −→ TGd×Σ −→ σ∗TS −→ 0.

is exact. The fiber of σ in a point σ(g,M) = g · M is the Pd∗ -orbit of (g,M). The
latter is isomorphic to Pd∗ via the action of Pd∗ on the point (g,M), which is given by

p · (g,M) = (gp−1, p ·M).

Denote gd := LieGd and pd∗ := LiePd∗ the associated Lie algebras. With this nota-
tion, the sequence (23) can be written as

(24) 0 −→ pd∗ ⊗ OGd×Σ −→ TGd×Σ −→ σ∗TS −→ 0,

where, over a point (g,M) ∈ Gd ×Σ, the map pd∗ → TGd×Σ,(g,M) = g · gd ⊕ TΣ,M is
the derivative of the map Pd∗ → Gd × Σ defined by p 7→ p · (g,M) = (gp−1, p ·M).

The sequence (23) is Pd∗ -equivariant, which implies that (24) is also Pd∗ -equi-
variant; note that here we consider the adjoint action of Pd∗ on pd∗ , which is induced
by the conjugation action of Pd∗ on Gd, the left multiplication on Σ and the action
induced by σ on TS .

Now we restrict the action of Pd∗ via the 1-parameter subgroup λ : Gm→Pd∗ ⊆Gd.
As Z is the locus of fixed points of the λ-action, λ acts on every fiber of TS |Z , and
as Z is connected, the action is the same on every fiber. Let M ∈ Z and consider the
sequence (24) in the fiber of the point (e,M) ∈ Gd × Σ. It is

(25) 0 −→ pd∗ −→ gd ⊕ TΣ,M −→ TS,M −→ 0.

The point (e,M) is a fixed point for the λ-action on Gd ×Σ, which implies that (25)
is a short exact sequence of representations of Gm.

As the blade Σ is open in the affine space R+
d∗ , see (17), the tangent space to Σ at

every point is identified with R+
d∗ (considered as a vector space). The exact sequence

(25) thus becomes

(26) 0 −→ pd∗ −→ gd ⊕R+
d∗ −→ TS,M −→ 0.

Although it is not relevant for the weight computation, we can describe the map
pd∗ → gd ⊕R+

d∗ explicitly. It sends x ∈ pd∗ to (−x, [x,M ]), where

[x,M ] = (xt(a)Ma −Maxs(a))a∈Q1
.
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We use the sequence (26) to compute the weight of the restriction to Z of the anti-
canonical bundle of S. It is

(27) wtλ(ω
∨
S |Z) = wtλ(det(gd)) + wtλ(det(R

+
d∗))− wtλ(det(pd∗)).

Now to the individual weights in the right-hand side of (27). The 1-parameter
subgroup λ acts on gd by conjugation and pd∗ is a submodule. On R+

d∗ , it acts by
restriction of the Gd-action via λ : Gm → Gd. As λ consists of diagonal matrices, the
matrix entries of elements of gd and of R+

d∗ are weight spaces. Using the decomposition
of the summands of R+

d∗ into blocks as in (16) and similarly for the summands of gd
and pd∗ , we obtain the following. Here, k(r) is the one-dimensional Gm-representation
whose weight is r.

Lemma 3.18. — Regarded as Gm-representations via λ, we have the following isomor-
phisms:

gd ∼=
⊕

i∈Q0

⊕
1⩽m,n⩽ℓ

k(km − kn)
dm
i dn

i

pd∗ ∼=
⊕

i∈Q0

⊕
1⩽m<n⩽ℓ

k(km − kn)
dm
i dn

i

R+
d∗ ∼=

⊕
a∈Q1

⊕
1⩽m<n⩽ℓ

k(km − kn)
dm
t(a)d

n
s(a)

The above lemma implies at once the following.

Lemma 3.19. — The λ-weights of the determinants of gd, pd∗ , and R+
d∗ are

wtλ(det(gd)) = 0

wtλ(det(pd∗)) =
∑

1⩽m<n⩽ℓ

(km − kn)
(∑
i∈Q0

dni d
m
i

)
wtλ(det(R

+
d∗)) =

∑
1⩽m<n⩽ℓ

(km − kn)
(∑
a∈Q1

dmt(a)d
n
s(a)

)
.

We can now give the proof of Lemma 3.17.

Proof of Lemma 3.17. — Using (27), we conclude that the λ-weight of ω∨
S |Z is

wtλ(ω
∨
S |Z) =

∑
1⩽m<n⩽ℓ

(km − kn)
(∑
a∈Q1

dns(a)d
m
t(a) −

∑
i∈Q0

dni d
m
i

)
=

∑
1⩽m<n⩽ℓ

(kn − km)⟨dn,dm⟩. □

Thus from Lemma 3.15 and the computations in Lemmas 3.16 and 3.17 we obtain
the first ingredient to apply Teleman quantization.

Corollary 3.20. — The λ-weight, where λ = λd∗ , of det
(
N∨

S/R|Z
)

is

(28) ηλ := wtλ(detN
∨
S/R|Z) =

∑
1⩽m<n⩽ℓ

(kn − km)⟨dm,dn⟩.
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Throughout we will denote this weight by ηλ. In Table 1 we have computed ηλ for
all Harder–Narasimhan strata, in our running example of an interesting Kronecker
moduli space.

3.4. Weights of the endomorphism bundle of the universal bundle. — Recall from
Section 2 that, if d is θ-coprime, the moduli space Mθ-st(Q,d) is fine, i.e., comes
equipped with a universal bundle U = U(a). As explained in Remark 2.6, this bundle
is unique up to the choice of a normalization, which is given by a tuple a ∈ ZQ0 such
that a · d = 1.

The bundles Ui(a) are the descent of (the restriction to the stable locus of)
the Gd-equivariant bundles Ui(a) = Ui⊗L(a) on R = R(Q,d). We will now consider
these equivariant bundles on R itself, thus in what follows, we do not have to put any
conditions to ensure their existence, nor do we have to choose a normalization with
certain properties.

For a Harder–Narasimhan type d∗, we will compute the weights of the action of
λd∗ on the universal bundles Ui(a) on R.

Recall that the element g ∈ Gd acts on ui ∈ Ui(a) as

g · ui :=
( ∏
j∈Q0

det(gj)
−aj

)
giui.

We have defined the integers km for m = 1, . . . , ℓ in (18) as the smallest integer
multiples of µ(dm), and used it to define the 1-parameter subgroup λd∗ in (19). From
the block decomposition in (19) we obtain that z ∈ λ = λd∗ acts by

(29) z · ui =
( ∏
j∈Q0

det(λj(z))
−aj

)
λi(z)ui =

( ∏
j∈Q0

z−aj
∑ℓ

n=1 dn
j kn

)
λi(z)ui.

Lemma 3.21. — The weights of the action of λ = λd∗ on Ui(a) are

(30)
{
km −

∑
j∈Q0

ℓ∑
n=1

ajd
n
j kn

∣∣∣ 1 ⩽ m ⩽ ℓ

}
,

where the weight indexed by m appears with multiplicity dmi .

Proof. — It suffices to observe in (29) that the weights of λi(z) acting on ui

are k1, . . . , kℓ and the dimension of the weight space of weight km is dmi . □

The choice of normalization disappears when we consider the summands of the
endomorphism bundle, as in the statement of the following proposition.

Proposition 3.22. — Let Q be a quiver, d a dimension vector, and θ a stability
parameter. Let d∗ be a Harder–Narasimhan type.

The weights of the action of λd∗ on the Gd-equivariant vector bundles U∨
i ⊗Uj are

given by
{km − kn | 1 ⩽ m,n ⩽ ℓ},

where km is defined as in (18), and the weight km−kn appears with multiplicity dmi dnj .
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Proof. — Observe that U∨
i ⊗Uj = U∨

i ⊗L(−a)⊗Uj⊗L(a) so that it suffices to cancel
the contribution of L(a) in (30) and sum them together with opposite signs. □

4. Main theorem and applications

After the work in Section 3 we can prove the main results in this paper. For this we
introduce in Section 4.1 a strengthening of the notion of an amply stable dimension
vector (with respect to some θ), which allows us to prove Proposition 4.9, the main
inequality for the proof of Theorem A.

4.1. Strong ample stability. — We introduce a strengthening of the notion of being
amply θ-stable. The former was introduced in [43, Def. 4.1] and recalled in Defini-
tion 2.4, the strengthening was introduced without giving it a name in [43, Prop. 5.1],
as a sufficient numerical condition for ample stability.

Definition 4.1. — The dimension vector d is said to be strongly amply θ-stable if for
any dimension subvector e for which µ(e) > µ(d − e), (or equivalently by clearing
denominators, θ(e) > 0) the inequality ⟨e,d− e⟩ ⩽ −2 holds.

Clearing the denominator shows that strong ample stability only depends on θ,
not on the choice of denominator for µ. The condition above has been shown [43,
Prop. 5.1] to imply ample stability. As we will see in Example 4.8, the converse is not
true. Strong ample stability has also been studied by Martinez Acosta in [35], where
it goes by the name of “numerically amply θ-stable”,

Remark 4.2. — We can interpret this definition as saying that the Harder–Narasim-
han stratum associated to the 2-step Harder–Narasimhan type d∗ = (e,d − e), has
codimension −⟨e,d− e⟩ ⩾ 2, provided it is non-empty.

We will recall some positive results from [43, 35], and subsequently prove a general
criterion, indicating that strong ample stability is a natural condition. It can also be
algorithmically checked, and it is one of the features of QuiverTools [7], see also [8].

A negative result, where strong ample stability does not hold, whilst ample stability
does, is given in Example 4.8. It was the smallest (and somewhat artificial) example
we could find, suggesting strong ample stability is indeed satisfied in many examples
of interest where ample stability holds.

First some special cases of often studied quivers.

Lemma 4.3. — Strong ample stability holds for the following cases:
– the m-Kronecker quiver with m ⩾ 3, and d a stable dimension vector (in which

case one can assume that θ = θcan), except for d = (2, 2).
– the generalized Jordan quiver (or loop quiver) with m ⩾ 2 loops and d = (d)

a dimension vector with d ⩾ 2, except for (m, d) = (2, 2).
– the m-subspace quiver (so #Q0 = m+1) with m ⩾ 3, d of the form (1, . . . , 1, d)

with d ̸= m− 1 which is θcan-coprime.
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Proof. — For the Kronecker case it follows from the proof of [43, Prop. 6.2]. The gen-
eralized Jordan quiver is covered on [43, p. 460]. The subspace quiver case is (a special
case of) [35, Th. 3.3.4]. □

The two exceptional cases excluded in Lemma 4.3 are not amply stable. We can
often vary the stability parameter, and preserve strong ample stability, as illustrated
by this geometrically meaningful example.

Example 4.4. — Let Q be the 6-subspace quiver, and let d = (1, 1, 1, 1, 1, 1; 2).
By Lemma 4.3, this setting is strongly amply stable for the canonical stability pa-
rameter θcan. However, this data gives rise to a singular moduli space [19, 3].

Two non-isomorphic small resolutions of singularities have been studied in [19],
by considering the stability parameters

θ+ =
(1
3
+ ε,

1

3
− ε

5
, . . . ,

1

3
− ε

5
;−1

)
θ− =

(1
3
− ε,

1

3
+

ε

5
, . . . ,

1

3
+

ε

5
;−1

)
for some small ε > 0 from Section 3 in op. cit. One can verify, e.g., using [7], that d

is strongly amply stable for both stability parameters.

The following proposition gives a general procedure for finding strongly amply sta-
ble dimension vectors for the canonical stability condition θcan = {d,−} = ⟨d,−⟩ −
⟨−,d⟩. We will say that a quiver Q and a dimension vector d have a thin bridge if
there exists a decomposition Q0 = I ′ ⊔ I ′′ with a unique arrow a : i′ → i′′ connect-
ing I ′ and I ′′ (so i′ ∈ I ′ and i′′ ∈ I ′′) so that di′ = di′′ = 1. We recall that the
symmetric bilinear form (−,−) is defined to be the symmetrization of the Euler form,
i.e., (α, β) = ⟨α, β⟩+ ⟨β, α⟩.

Proposition 4.5. — Let Q be an acyclic quiver and let d be a sincere dimension
vector, i.e., di ⩾ 1 for all i ∈ Q0. Assume that

(1) d is θcan-coprime;
(2) d is in the interior of the fundamental domain, i.e., for all i ∈ Q0 we have

that (d, i) ⩽ −1; and
(3) Q has no thin bridge.

Then d is strongly amply θcan-stable.

As recalled in Section 2, by [20] the canonical stability θcan has the pleasant prop-
erty that its associated moduli spaces are Fano varieties, thus making this stability
parameter a natural choice. We relegate the proof of Proposition 4.5 to the appendix
because it is rather lengthy and the methods are not related to the rest of the paper.

An interesting corollary to this general procedure is the following result for 3-vertex
quivers.
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Corollary 4.6. — Let Q be a connected acyclic 3-vertex quiver, and let d be a sincere
dimension vector in the fundamental domain which is θcan-coprime. Then it is strongly
amply θcan-stable.

Proof. — By Proposition 4.5 we only need to consider 3-vertex quivers with thin
bridges. There are precisely 6 possibilities, which have the same symmetrized Euler
form up to conjugation by a permutation matrix, so it suffices to consider one case.
Consider the 3-vertex quiver on the vertices {1, 2, 3}, with a thin bridge between 1

and 2, and m ⩾ 1 arrows from 2 to 3 (and no arrows from 1 to 3), and dimension
vector (1, 1, d) for some d ⩾ 1. The symmetrized Euler form is given by

C =

 2 −1 0

−1 2 −m

0 −m 2


so that (d,1) = (1, 1−m,−m+2d)(1, 0, 0)T = 1, and thus d is not in the fundamental
domain. □

Remark 4.7. — The special case of the 3-vertex quiver of the form

(31)

is studied in [35, Th. 3.3.2] more exhaustively. The dimension vectors (1, a + 1, a)

and (a, a+1, 1), mentioned in op. cit., are not θcan-coprime (it suffices to consider e =

(1, 1, 0) resp. (0, 1, 1)) so Corollary 4.6 does not apply to them.

For more examples one can consult [35, §3]. The next example shows that strong
ample stability is a strictly stronger notion than ample stability, thus justifying its
name. We will revisit it in Example 4.14 to explain that Theorem A still holds, without
using Proposition 4.9.

Example 4.8. — Let Q be the 3-vertex quiver

(32) Q :

1 2

3
Let d = (4, 1, 4), and let θ = θcan = (9,−16,−5) be the canonical stability param-
eter. The resulting moduli space is a Fano 8-fold, with even Betti numbers given
by 1, 2, 3, 4, 5, 4, 3, 2, 1.

The dimension vector d is θ-coprime, and the stable locus Rθ-st(Q,d) is non-empty.
The representation variety admits a Harder–Narasimhan stratification with 41 strata:
40 unstable strata, and the dense stratum of θ-stable representations. These can easily
be verified using [7].

Via the formula of [41, Prop. 3.4], we can verify that the codimension of the unstable
locus is 2, therefore ample stability holds. On the other hand, strong ample stability
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is not satisfied: the dimension vector e = (3, 1, 2) gives the inequality 1/6 = µ(e) >

µ(d − e) = −1/3, but we have ⟨e,d − e⟩ = −1. The associated 2-step Harder–
Narasimhan type (e,d− e) does not appear in the list of Harder–Narasimhan types
for this setup, as can be checked using [7], which is why it does not influence the
codimension of the unstable locus.

In view of Corollary 4.6, we also point out that d is not in the fundamental domain,
because (d,3) = 3.

We revisit this example in Example 4.14.

4.2. Cohomology vanishing and Schofield’s conjecture. — We recall the notation
we will use. For any Harder–Narasimhan type d∗ = (d1, . . . ,dℓ), let λ := λd∗ be the
corresponding 1-parameter subgroup given in (19); and let

km := Cµ(dm) = Cθ(dm)/|dm|

be the smallest integer multiple of the slopes as in (18), and let
ηλ := wtλ(detN

∨
S/R|Z)

as in Corollary 3.20. Recall also the result of Proposition 3.22 describing the weights
of U∨

i ⊗ Uj .

Proposition 4.9. — Let Q be a quiver, d a dimension vector, and θ a stability param-
eter, such that d is strongly amply θ-stable. Let λ = λd∗ be the 1-parameter subgroup
corresponding to a Harder–Narasimhan type d∗. For all 1 ⩽ m,n ⩽ ℓ, the inequality
(33) km − kn < ηλ

holds.

Observe that
k1 − kℓ = max

1⩽m<n⩽ℓ
km − kn,

because the entries of the tuple (km)m=1,...,ℓ are strictly decreasing by definition.
Moreover, rewriting km in terms of the slope (using its definition in (18)) and spelling
out ηλ using Corollary 3.20, the inequalities (33) can be summarized by the inequality

(34) µ(d1)− µ(dm) <
∑

1⩽m<n⩽ℓ

(µ(dn)− µ(dm)) ⟨dn,dm⟩.

This inequality is an entirely algorithmic condition that is implemented in [7], using
the recursion from [41, Cor. 3.5] to enumerate the Harder–Narasimhan strata.

Proof. — We can rewrite ηλ as

ηλ =
∑

1⩽m<n⩽ℓ

(kn − km)⟨dm,dn⟩ =
∑

1⩽m<n⩽ℓ

n−1∑
r=m

(kr+1 − kr)⟨dm,dn⟩

=

ℓ−1∑
r=1

(kr+1 − kr)
∑
m⩽r
n>r

⟨dm,dn⟩ =
ℓ−1∑
r=1

(kr − kr+1)
∑
m⩽r
n>r

(
−⟨dm,dn⟩

)
︸ ︷︷ ︸

=:Nr

.
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To prove the inequality (33), it will be enough to show that Nr ⩾ 1 for all r, and that
there exists at least one r for which Nr ⩾ 2. To apply the condition from Definition 4.1,
we notice that each term Nr satisfies the equality

−Nr =
〈∑
m⩽r

dm,
∑
n>r

dn
〉
= ⟨e,d− e⟩.

Since µ(e) > µ(d− e), we can conclude that Nr ⩾ 2. This completes the proof. □

We hope that the strong ample stability in Proposition 4.9 is not needed for the
statement of Theorem A, and that ample stability in fact suffices (cf. Example 4.14),
or in fact that it holds as soon as there exists a universal representation. However,
the following shows that the use of Teleman quantization, and thus Proposition 4.9,
does require at least ample stability to hold.

Lemma 4.10. — Let Q be a quiver, d a dimension vector, and θ a stability parameter,
such that d is not amply θ-stable. Let λ = λd∗ be the 1-parameter subgroup corre-
sponding to one of the Harder–Narasimhan types d∗ whose associated stratum is of
codimension 1. Then (34) does not hold.

Proof. — By [41, Prop. 3.4], the codimension of the Harder–Narasimhan stratum can
be computed as

(35) 1 =
∑

1⩽m<n⩽ℓ

−⟨dm,dn⟩

and because m < n in this sum, we have

⟨dm,dn⟩ = hom(dm,dn)− ext(dm,dn) = − ext(dm,dn).

Thus in the sum (35) all but one term vanishes, with one term having value exactly 1.
But then

kℓ − k1 ⩾
∑

1⩽m<n⩽ℓ

(km − kn)(−⟨dm,dn⟩) = ηλ,

where the last equality is Corollary 3.20, thus (34) does not hold. □

We now come to the proof of the cohomology vanishing.

Proof of Theorem A. — In order to apply Teleman quantization as stated in Theo-
rem 3.6 we need to check that, for every 1-parameter subgroup λ arising in the Hes-
selink stratification, the limit set Zλ is connected, and the weights of the equivariant
bundle are bounded above by ηλ as defined in (14). The connectedness follows from the
definition of Zd∗ in Definition 3.11 and the correspondence in Theorem 3.13. That the
inequality holds whenever d is strongly amply θ-stable is checked in Proposition 4.9.

Thus we can apply Teleman quantization, and we obtain isomorphisms

Hk(R(Q,d), U∨
i ⊗ Uj)

Gd ∼= Hk(Rθ-sst(Q,d), U∨
i ⊗ Uj)

Gd ∼= Hk(Mθ-st(Q,d),U∨
i ⊗ Uj)

for all k ⩾ 0, as stability and semistability agree. But because the representation
variety R(Q,d) is affine, the cohomology Hk(R(Q,d), U∨

i ⊗ Uj) vanishes for k ⩾ 1,
even before taking invariants, which proves (1). □
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Table 1. Harder–Narasimhan strata and their properties for 3-Kro-
necker quiver and d = (2, 3).

d∗ codim (µ(dm))m=1,...,ℓ C (km)m=1,...,ℓ k1 − kℓ ηλ

((1, 1), (1, 2)) 3 (1/2,−1/3) 6 (3,−2) 5 15
((2, 2), (0, 1)) 4 (1/2,−2) 2 (1,−4) 5 20
((2, 1), (0, 2)) 10 (4/3,−2) 3 (4,−6) 10 100
((1, 0), (1, 3)) 8 (3,−3/4) 4 (12,−3) 15 120
((1, 0), (1, 2), (0, 1)) 9 (3,−1/3,−2) 3 (9,−1,−6) 15 100
((1, 0), (1, 1), (0, 2)) 12 (3, 1/2,−2) 2 (6, 1,−4) 10 90
((2, 0), (0, 3)) 18 (3,−2) 1 (3,−2) 5 90

As already explained in the introduction, (2) shows that Theorem A is equivalent
to Corollary C and thus proves Schofield’s conjecture under the additional assumption
of strong ample stability, without needing that Q is acyclic.

Windows and weights for a 6-dimensional Kronecker moduli space. — To illustrate the
theory we will give the details of an interesting and relevant example. We will consider
the smallest Kronecker moduli space which is not a projective space or a Grassman-
nian, whose geometry was studied explicitly in [6].

Example 4.11. — Let Q be the 3-Kronecker quiver, and consider the dimension vec-
tor d = (2, 3). The stability parameter θ = (3,−2) is necessarily (a rescaling of) the
canonical stability parameter θcan = (9,−6).

We have R(Q,d) ∼= Mat3×2(k)
3 ∼= A18, with a group action of GL2 ×GL3.

There are 8 Harder–Narasimhan strata, the (semi)stable one and 7 unstable strata.
In Table 1 we have enumerated the properties of the unstable strata. Every-
thing can be determined from the Euler pairings (⟨dm,dn⟩)m,n=1,...,ℓ and the
tuple (µ(dm))m=1,...,ℓ. The Harder–Narasimhan type ((2, 0), (0, 3)) is the origin
in A18, corresponding to the direct sum S⊕2

1 ⊕ S⊕3
2 of simple representations.

In Table 1 we only list the difference k1−kℓ, as explained in the discussion surround-
ing (34), as this is sufficient to check the conditions to apply Teleman quantization.

Schofield’s conjecture in the twisted case. — The statement of Schofield’s conjecture
uses the universal bundle, which is thus required to exist. By [43, Th. 4.4] there are
obstructions to its existence if gcd(d) ⩾ 2. However, it is reasonable to expect a
twisted universal bundle U, defined (only) on the stable locus, which can be seen as
an alternative natural generator of the Brauer group in [43, Conj. 4.3]. In U∨ ⊗U the
twists cancel each other, and this is in fact an Azumaya algebra whose class in the
Brauer group is the same class.

The following example illustrates how Theorem A suggests a twisted version of
Schofield’s conjecture.
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Example 4.12. — Let Q be the 3-Kronecker quiver, and consider the dimension vec-
tor d = (2, 2). The stability parameter θ = (2,−2) is necessarily (a rescaling of) the
canonical stability parameter θcan = (6,−6). Then by [1, p. 1779] and [43, §7] we have
that Mθ-sst(Q,d) ∼= P5 and Mθ-st(Q,d) is the complement of a determinantal cubic
hypersurface.

By [43, Prop. 7.1] we have that Br(Mθ-st(Q,d)) ∼= Z/2Z, and there cannot exist a
choice of linearization a for which the universal representation U(a) descends. How-
ever, it should be a twisted universal bundle U on Mθ-st(Q,d), which corresponds to
the unique non-trivial Brauer class.

The twisted analogue of Theorem A then implies that U is a twisted (partial) tilting
bundle, whose endomorphism algebra (which is an untwisted object) is an Azumaya
algebra whose class in the Brauer group coincides with the twist of U. Schofield’s
conjecture thus holds for the twisted moduli space of stable representations. Observe
that Mθ-st(Q,d) is affine, so any untwisted vector bundle is already a tilting bundle,
and any twisted vector bundle is a twisted tilting bundle, without the need for the
adjective partial.

4.3. Rigidity. — From now on we will assume that Q is acyclic. In Section 2 we
recalled the construction of the universal bundle U =

⊕
i∈Q0

Ui on Mθ-st(Q,d).
Using the summands Ui we obtain an exact sequence of vector bundles, by combining
[6, Prop. 3.3 & Prop. 3.7]:

(36) 0 → OMθ-st(Q,d) −→
⊕

i∈Q0

U∨
i ⊗ Ui −→

⊕
a∈Q1

U∨
s(a) ⊗ Ut(a) −→ TMθ-st(Q,d) → 0.

See also [20, §4.1] for a more direct (but less detailed) construction.
To compute the higher cohomology of the tangent bundle for the proof of Corol-

lary D, we can split the sequence in two short exact sequences. The cohomology of
the middle terms in (36) is the subject of Theorem A. For the first term we have the
following.

Proposition 4.13. — Let Q, d and θ be as in Corollary D, where it is possible to omit
the condition that d is strongly amply θ-stable. Then

(37) Hk(Mθ-st(Q,d),OMθ-st(Q,d)) = 0

for all k ⩾ 1.

Proof. — Because d is chosen to be θ-coprime, d is a Schur root for the quiver Q.
As gcd(d) = 1 we have that Mθ-st(Q,d) is a rational variety [45, Th. 6.4]. It is also
smooth and projective, as discussed in Section 2. We thus obtain the vanishing in (37)
by the birational invariance of these cohomology groups. □

We thus arrive at the following (short) proof of the rigidity of quiver moduli.

Proof of Corollary D. — The higher cohomology of the first term in (36) vanishes.
By Theorem A the higher cohomology of the second and third term in (36) vanishes,
if we in addition assume Definition 4.1. This allows us to conclude. □
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Example 4.14. — Consider the setup of Example 4.8, which gave an example of a
quiver, dimension vector and stability parameter which was amply stable, but not
strongly amply stable. The inequality in (34) can be shown to hold directly in this
case, thus the resulting moduli space is rigid, even in the absence of strong ample
stability.

We now give an example of a moduli space that is rigid even though the inequal-
ity (34) is not satisfied, and in fact, the defining data is not even amply stable.

Example 4.15. — Let Q be the 3-vertex quiver

(38) Q :

1 2

3

Let d = (1, 6, 6) and let θ = θcan = (42, 5,−12) be the canonical stability parameter.
We have again that d is θ-coprime, and that the θ-stable locus is non-empty.

The Harder–Narasimhan stratification of the representation variety contains
85 strata: 84 unstable strata, plus the dense stratum of stables. This can easily be
verified using [7]. The stratum of HN-type ((0, 1, 0), (1, 5, 6)) has codimension 1, so d

is not amply θ-stable. The condition in (34) does not hold, as the same stratum of
HN-type ((0, 1, 0), (1, 5, 6)) gives k1 = 5, k2 = −5/12, and ⟨(0, 1, 0), (1, 5, 6)⟩ = −1.
However, the resulting moduli space is P6 by Lemma 4.16, for which rigidity easily
follows from the Euler sequence.

Lemma 4.16. — For Q,d, θ as in Example 4.15 there exists an isomorphism

Mθ-st(Q,d) ∼= P6.

Proof. — The data of a representation M consists of a vector v in M2
∼= k6, six vec-

tors w1, . . . , w6 in M3
∼= k6, and an endomorphism of k6 that we denote by A : k6→k6.

Let us consider the conditions on this data for M to be θ-stable. If A has a nontrivial
kernel, then M admits a subrepresentation of dimension vector (0,dimk kerA, 0) or
(1,dimk kerA, 0), and both have positive slope. Thus A must be injective for M to
be θ-stable. If Av,w1, . . . , w6 together do not span M3, then there is a subrepresenta-
tion of dimension vector (1, 6, 5) which has positive slope. Therefore, the 6×7-matrix

FM := (Av | w1 | . . . | w6)

must have rank 6. Using this description we can see that the moduli space can be
identified to P6. To do so, we send the data of a semistable representation M to the
kernel of the linear map FM : k7 → k6, which is a line in k7. □
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4.4. Height-zero moduli spaces. — Let us recall some aspects of the moduli theory
of semistable sheaves on P2. We will denote the moduli space of Gieseker-semistable
sheaves with given rank and first (resp. second) Chern class by MP2(r, c1, c2). In [15] a
function δ : Q → Q is constructed, for which it is shown that MP2(r, c1, c2) has strictly
positive dimension if and only if

δ (c1/r) ⩽
1

r

(
c2 −

(
1− 1

r

)c21
2

)
.

When it is an equality, the moduli space is said to be of height zero.
It is also shown in op. cit. that for moduli spaces of strictly positive dimension

there exists an associated exceptional vector bundle. Writing µ := c1/r for the slope of
the sheaves parametrized by MP2(r, c1, c2), we will denote this associated exceptional
vector bundle by Eµ.

As explained in [15], moduli spaces of height zero have special properties amongst
all moduli spaces of semistable sheaves on P2. The one which is relevant to us is the
following identification [15, Th. 2].

Theorem 4.17 (Drezet). — Let MP2(r, c1, c2) be a moduli space of height zero. Then
there exists a natural isomorphism

MP2(r, c1, c2) ∼= Mθcan-sst(K3rµ , (m,n))

where rµ is the rank of the of the associated exceptional vector bundle Eµ, K3rµ is the
Kronecker quiver with 3rµ arrows, and the dimension vector (m,n) is determined as
in [15, §IV.2].

In what follows, we only consider invariants (r, c1, c2) such that every semistable
sheaf is stable, and thus (m,n) will be coprime.

For Kronecker quivers, [43, Prop. 6.2] shows that strong ample stability holds,
as also recalled in Lemma 4.3. We thus have the following observation which we
record for later use.

Lemma 4.18. — Let Q be a Kronecker quiver, and let d be a dimension vector which
is θcan-coprime (and thus indivisible). Then Mθ-sst(Q,d) is rigid.

To prove Corollary E, we wish to obtain a contradiction on the assumption that (7)
is fully faithful. The combination of [9, Prop. 29, Rem. 30] states the following for fully
faithful functors towards moduli spaces of sheaves on surfaces.

Theorem 4.19 (Belmans–Fu–Raedschelders). — Let S be a smooth projective surface
such that OS is exceptional, i.e., H1(S,OS) = H2(S,OS) = 0. Let MS(r, c1, c2) be a
smooth projective moduli space of stable sheaves on S with prescribed invariants. Let E
be the universal sheaf. Assume that the Fourier–Mukai functor

ΦE : Db(S) −→ Db(MS(r, c1, c2))

is fully faithful. Then

Hi(MS(r, c1, c2),TMS(r,c1,c2))
∼= HHi+1(S).
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Proof of Corollary E. — For P2, the Hochschild–Kostant–Rosenberg decomposition
gives us the isomorphism HH2(P2) ∼= H0(P2, ω∨

P2) ∼= k10. By the identification from
Theorem 4.17 and the assumption that the moduli spaces are smooth we have that

(39) H1(MP2(r, c1, c2),TMP2 (r,c1,c2)
) ∼= H1(Mθcan(K3rµ , (m,n)),TMθcan (K3rµ ,(m,n))).

But by Corollary D, which we can apply because of Lemma 4.18, the cohomology
in (39) vanishes, which contradicts Theorem 4.19. □

The following remark gives an alternative method to prove the functor cannot be
fully faithful, using techniques introduced already by Drezet.

Remark 4.20. — Consider MP2(r, c1, c2) of height zero. As explained in [15, §5.1],
there exists a unique associated exceptional vector bundle E for which

(40) −3 <
c1H

r
+

c1(E)H

rkE
⩽ 0.

As mentioned in loc. cit., this implies that

χ(P2, E∨ ⊗ V ) = ht(MP2(r, c1, c2)) = 0

for all [V ] ∈ MP2(r, c1, c2). But then we can prove that ΦU(E
∨) = 0, contradicting

fully-faithfulness. Namely, fiberwise we see for the transform of E∨ that

H
•
(P2, (p∗E∨ ⊗ U)P2×[V ]) ∼= H

•
(P2, E∨ ⊗ V ) = 0,

as both Hom(E, V ) and Ext2(E, V ) = Hom(V,E ⊗ OP2(3))∨ vanish, by the inequali-
ties (40).

Appendix. Proof of Proposition 4.5

We now come to the proof of Proposition 4.5, which we relegated to this appendix
because it is rather lengthy and the methods are not related to the rest of the paper.

Recall that a quiver Q and a dimension vector d have a thin bridge if there exists
a decomposition Q0 = I ′ ⊔ I ′′ with a unique arrow a : i′ → i′′ connecting I ′ and I ′′

(so i′ ∈ I ′ and i′′ ∈ I ′′) so that di′ = di′′ = 1.

Proof of Proposition 4.5. — Suppose that d is not strongly amply θcan-stable, so that
there exists a subdimension vector e ⩽ d such that θcan(e) ⩾ 1 and ⟨e,d− e⟩ ⩾ −1.
This yields

{e,d− e} = {e,d} = −{d, e} = −θcan(e) ⩽ −1,

which implies that ⟨d− e, e⟩ = ⟨e,d− e⟩ − {e,d− e} ⩾ 0, and thus

(d− e, e) ⩾ −1.

As in the proof of [28, Lem. 2.15], and more precisely Equation (2.10) of op. cit.,
we can write

(41) −1 ⩽ (d− e, e) =
∑
i∈Q0

ei(di − ei)

di
(d, i)︸ ︷︷ ︸

S1

+
1

2

∑
i ̸=j∈Q0

didj

( ei
di

− ej
dj

)2
(i, j)︸ ︷︷ ︸

S2

.

J.É.P. — M., 2025, tome 12



1376 P. Belmans, A.-M. Brecan, H. Franzen, G. Petrella & M. Reineke

Since d is assumed in the interior of the fundamental domain, the summand S1 is
non-positive, whereas S2 is non-positive because (i, j) is always non-positive.

First, assume that S2 = 0. This implies that the vectors (ei, di) and (ej , dj) are
proportional whenever i and j are connected in Q. Because d is θcan-coprime, the
quiver is connected. But then the proportionality implies that e is proportional to d,
which contradicts the θcan-coprimality. Hence S2 < 0.

Next, we will consider S1. We want to show that ei ∈ {0, di} for all i ∈ Q0. If there
exists some vertex k ∈ Q0 for which ek ̸∈ {0, dk}, then dk ⩾ 2, and we have the bound

(42) ek(dk − ek)

dk
⩾ 1− 1

dk
⩾

1

2

on the coefficient of (d,k) in the kth term of S1.
If there are at least two vertices for which ek ̸∈ {0, dk}, then

S1 ⩽ −1

2
− 1

2
= −1,

because we have taken d in the interior of the fundamental domain. However, this
contradicts (41), as S2 < 0. Therefore, there is at most one vertex k of the quiver for
which ek /∈ {0, dk}.

Assume now that there is precisely one such vertex k. We have ek ∈ {1, . . . , dk−1},
which using (42) implies S1 < −(1− 1/dk).

Let us see what this does to S2. Since Q is connected, there exists at least one
vertex j of Q which is connected to k by at least one arrow, which means that there
are at least two summands in S2 that are nonzero. As j ̸= k, ej ∈ {0, dj} by hypothesis,
so that the respective summands simplify to dj

(dk−ek)
2

dk
(k, j) or dj

e2k
dk
(k, j). In either

case, their value is bounded above by −1/dk, so that S2 ⩽ −1/dk. If this inequality is
strict, then together with the first inequality in (42) it contradicts (41), thus S1 = 0.

We will show now that the inequality above is in fact strict, i.e., that S2 < 1/dk.
This amounts to proving that there is at least another summand in S2 that is nonzero.

Let us split the quiver Q in three disjoint sets of vertices, i.e., we decompose Q0

into the disjoint union {k} ⊔ I ′ ⊔ I ′′, where I ′ := {j | ej = dj} and I ′′ := {j | ej = 0}.
We see that any arrow from I ′ to I ′′ or vice versa yields a nonzero summand of S2,
so to conclude we must show that neither I ′ nor I ′′ are empty. As Q is connected,
this will imply that at least one such arrow exists.

Let us assume by contradiction that no such arrow exists, i.e., that in the previous
decomposition either of I ′ or I ′′ is empty. This means that S2 = 1/dk, and the
inequality (41) yields −1 ⩽ S1+S2 ⩽ −1, so that (d−e, e) = −1. This gives the two
following identities:

(43) ⟨e,d− e⟩ = −1

and

(44) ⟨d− e, e⟩ = 0.
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These two identities contradict the fact that d belongs to the fundamental domain.
We will show this for the case I ′ = ∅, the other case being essentially the same.

Using the conditions on ei for i ̸= k, the equations (43) and (44) are written out
explicitly as

⟨e,d− e⟩ = −1 = ek(dk − ek)−
∑
a∈Q1

es(a)(dt(a) − et(a))

= ek(dk − ek)−
∑
a∈Q1

s(a)=k

ekdt(a)

and
⟨d− e, e⟩ = 0 = ek(dk − ek)−

∑
a∈Q1

(ds(a) − es(a))et(a)

= ek(dk − ek)−
∑
a∈Q1

t(a)=k

ds(a)ek.

These yield the inequalities∑
a∈Q1

t(a)=k

ds(a) = dk − ek < dk,
∑
a∈Q1

s(a)=k

dt(a) = dk − ek +
1

ek
⩽ dk.

Summing them we obtain
2dk −

∑
a∈Q1

s(a)=k

dt(a) −
∑
a∈Q1

t(a)=k

ds(a) > 0.

The left-hand side is (d,k), and this inequality contradicts the assumption that
(d,k) ⩽ −1. We conclude that there cannot be a vertex k ∈ Q for which ek /∈ {0, dk}.
Thus, S1 = 0.

We obtain the equality (d− e, e) = −1 in (41), and thus
(45) ⟨e,d− e⟩ = −1

and
(46) ⟨d− e, e⟩ = 0.

Denote again by I ′ ⊆ Q0 the set of vertices for which ei = di, and let I ′′ be its
complement. From (45) and (46) we obtain that there exists a unique edge i′ → i′′

from I ′ to I ′′. Because ei ∈ {0, di} we have that every factor (ei/di − ej/dj)
2 in S2

is either 0 or 1. This implies that S2 = −1 has a unique non-zero summand, equal
to −1, and thus di′ = di′′ = 1. We obtain a thin bridge, and this contradiction finishes
the proof. □
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