The intrinsic dynamics of optimal transport
[La dynamique intrinsèque du transport optimal]
Journal de l’École polytechnique — Mathématiques, Tome 3 (2016), pp. 67-98.

Nous nous intéressons aux coûts pour lesquels la solution du problème de transport optimal de Monge-Kantorovitch entre deux mesures de probabilités est unique. À l’heure actuelle, les seuls exemples connus de tels coûts lisses sur des variétés compactes nécessitent que l’une des variétés soit homéomorphe à une sphère. Nous introduisons une dynamique (multivaluée) associée au coût et exhibons des propriétés suffisantes pour l’unicité d’un plan de transport optimal. Cette approche nous permet de construire des coûts lisses sur des variétés compactes quelconques pour lesquels l’unicité d’un plan de transport optimal est assurée.

The question of which costs admit unique optimizers in the Monge-Kantorovich problem of optimal transportation between arbitrary probability densities is investigated. For smooth costs and densities on compact manifolds, the only known examples for which the optimal solution is always unique require at least one of the two underlying spaces to be homeomorphic to a sphere. We introduce a (multivalued) dynamics which the transportation cost induces between the target and source space, for which the presence or absence of a sufficiently large set of periodic trajectories plays a role in determining whether or not optimal transport is necessarily unique. This insight allows us to construct smooth costs on a pair of compact manifolds with arbitrary topology, so that the optimal transportation between any pair of probability densities is unique.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.29
Classification : 49Q20, 28A35
Keywords: Optimal transport, Monge-Kantorovitch problem, optimal transport map, optimal transport plan, numbered limb system, sufficient conditions for uniqueness
Mot clés : Transport optimal, problème de Monge-Kantorovitch, application de transport optimale, plan de transport optimal, conditions suffisantes pour l’unicité
Robert J. McCann 1 ; Ludovic Rifford 2

1 Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 2E4
2 Université Nice Sophia Antipolis, Laboratoire J.A. Dieudonné, UMR CNRS 7351 Parc Valrose, 06108 Nice Cedex 02, France & Institut Universitaire de France
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2016__3__67_0,
     author = {Robert J. McCann and Ludovic Rifford},
     title = {The intrinsic dynamics of optimal transport},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {67--98},
     publisher = {ole polytechnique},
     volume = {3},
     year = {2016},
     doi = {10.5802/jep.29},
     zbl = {1364.49060},
     mrnumber = {3477865},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.29/}
}
TY  - JOUR
AU  - Robert J. McCann
AU  - Ludovic Rifford
TI  - The intrinsic dynamics of optimal transport
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2016
SP  - 67
EP  - 98
VL  - 3
PB  - ole polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.29/
DO  - 10.5802/jep.29
LA  - en
ID  - JEP_2016__3__67_0
ER  - 
%0 Journal Article
%A Robert J. McCann
%A Ludovic Rifford
%T The intrinsic dynamics of optimal transport
%J Journal de l’École polytechnique — Mathématiques
%D 2016
%P 67-98
%V 3
%I ole polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.29/
%R 10.5802/jep.29
%G en
%F JEP_2016__3__67_0
Robert J. McCann; Ludovic Rifford. The intrinsic dynamics of optimal transport. Journal de l’École polytechnique — Mathématiques, Tome 3 (2016), pp. 67-98. doi : 10.5802/jep.29. https://jep.centre-mersenne.org/articles/10.5802/jep.29/

[1] N. Ahmad, H. K. Kim & R. J. McCann - “Optimal transportation, topology and uniqueness”, Bull. Sci. Math. 1 (2011) no. 1, p. 13-32 | DOI | MR | Zbl

[2] V. Beneš & J. Štěpán - “The support of extremal probability measures with given marginals”, in Mathematical statistics and probability theory, Vol. A (Bad Tatzmannsdorf, 1986), Reidel, Dordrecht, 1987, p. 33-41 | DOI | Zbl

[3] P. Bernard & B. Buffoni - “Optimal mass transportation and Mather theory”, J. Eur. Math. Soc. (JEMS) 9 (2007) no. 1, p. 85-121 | DOI | MR | Zbl

[4] P. Bernard & G. Contreras - “A generic property of families of Lagrangian systems”, Ann. of Math. (2) 167 (2008) no. 3, p. 1099-1108 | DOI | MR | Zbl

[5] S. Bianchini & L. Caravenna - “On the extremality, uniqueness and optimality of transference plans”, Bull. Inst. Math. Acad. Sinica 4 (2009) no. 4, p. 353-454 | MR | Zbl

[6] P.-A. Chiappori, R. J. McCann & L. P. Nesheim - “Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness”, Econom. Theory 42 (2010) no. 2, p. 317-354 | DOI | MR | Zbl

[7] F. H. Clarke - “Generalized gradients and applications”, Trans. Amer. Math. Soc. 205 (1975), p. 247-262 | DOI | MR | Zbl

[8] F. H. Clarke - Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, J. Wiley & Sons, Inc., New York, 1983 | Zbl

[9] H. Federer - Geometric measure theory, Grundlehren Math. Wiss., vol. 153, Springer-Verlag New York Inc., New York, 1969 | MR | Zbl

[10] W. Gangbo - “Quelques problèmes d’analyse non convexe” (1995), Habilitation thesis, Université de Metz

[11] W. Gangbo & R. J. McCann - “The geometry of optimal transportation”, Acta Math. 177 (1996) no. 2, p. 113-161 | DOI | MR | Zbl

[12] W. Gangbo & R. J. McCann - “Shape recognition via Wasserstein distance”, Quart. Appl. Math. 58 (2000) no. 4, p. 705-737 | DOI | MR | Zbl

[13] N. Gigli - “On the inverse implication of Brenier-McCann theorems and the structure of (P 2 (M),W 2 ), Methods Appl. Anal. 18 (2011) no. 2, p. 127-158 | DOI | MR | Zbl

[14] M. Golubitsky & V. Guillemin - Stable mappings and their singularities, Graduate Texts in Math., vol. 14, Springer-Verlag, New York-Heidelberg, 1973 | MR | Zbl

[15] K. Hestir & S. C. Williams - “Supports of doubly stochastic measures”, Bernoulli 1 (1995) no. 3, p. 217-243 | DOI | MR | Zbl

[16] V. L. Levin - “Abstract cyclical monotonicity and Monge solutions for the general Monge-Kantorovich problem”, Set-Valued Anal. 7 (1999) no. 1, p. 7-32 | DOI | MR | Zbl

[17] V. L. Levin - “On the generic uniqueness of an optimal solution in an infinite-dimensional linear programming problem”, Dokl. Akad. Nauk 421 (2008) no. 1, p. 21-23 | DOI | MR | Zbl

[18] R. Mañé - “Generic properties and problems of minimizing measures of Lagrangian systems”, Nonlinearity 9 (1996) no. 2, p. 273-310 | DOI | MR | Zbl

[19] R. J. McCann - “Polar factorization of maps on Riemannian manifolds”, Geom. Funct. Anal. 11 (2001) no. 3, p. 589-608 | DOI | MR | Zbl

[20] J. W. Milnor - Topology from the differentiable viewpoint, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, N.J., 1997, Revised reprint of the 1965 original

[21] A. Moameni - “Supports of extremal doubly stochastic measures” (2014), preprint

[22] L. Rifford - Sub-Riemannian geometry and optimal transport, Springer Briefs in Mathematics, Springer, Cham, 2014 | DOI | Zbl

[23] S. M. Srivastava - A course on Borel sets, Graduate Texts in Math., vol. 180, Springer-Verlag, New York, 1998 | DOI | MR | Zbl

[24] H. Whitney - Geometric integration theory, Princeton University Press, Princeton, N.J., 1957 | DOI | Zbl

[25] L. Zajíček - “On the differentiability of convex functions in finite and infinite dimensional spaces”, Czechoslovak Math. J. 29 (1979) no. 3, p. 340-348

Cité par Sources :