Cohomology of non-generic character stacks
[Cohomologie des champs de caractères non génériques]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1287-1371.

On étudie la cohomologie (à support compact) des champs de caractères pour les surfaces de Riemann épointées avec monodromies locales semi-simples fixées. Dans le cas de monodromies locales génériques, la cohomologie de ces champs de caractères a été étudiée dans [23, 39]. Dans cet article, on étend les résultats et la conjecture de [23] au cas non générique. En particulier, on calcule la E-série et on donne une formule conjecturale pour la série mixte de Poincaré. On démontre cette conjecture dans le cas de la droite projective privée de 4 points.

We study (compactly supported) cohomology of character stacks of punctured Riemann surface with prescribed semisimple local monodromies at punctures. In the case of generic local monodromies, the cohomology of these character stacks has been studied in [23, 39]. In this paper we extend the results and conjectures of [23] to the non-generic case. In particular we compute the E-series and give a conjectural formula for the mixed Poincaré series. We prove our conjecture in the case of the projective line with 4 punctures.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.278
Classification : 14M35, 14D23
Keywords: Character varieties, compactly supported cohomology, moduli stacks
Mot clés : Variétés de caractères, cohomologie à support compact, champs de modules

Tommaso Scognamiglio 1

1 Université Paris Cité/IMJ-PRG, Campus Grands Moulins, 8 Pl. Aurélie Nemours, 75013 Paris
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__1287_0,
     author = {Tommaso Scognamiglio},
     title = {Cohomology of non-generic character stacks},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1287--1371},
     publisher = {\'Ecole polytechnique},
     volume = {11},
     year = {2024},
     doi = {10.5802/jep.278},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.278/}
}
TY  - JOUR
AU  - Tommaso Scognamiglio
TI  - Cohomology of non-generic character stacks
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 1287
EP  - 1371
VL  - 11
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.278/
DO  - 10.5802/jep.278
LA  - en
ID  - JEP_2024__11__1287_0
ER  - 
%0 Journal Article
%A Tommaso Scognamiglio
%T Cohomology of non-generic character stacks
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 1287-1371
%V 11
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.278/
%R 10.5802/jep.278
%G en
%F JEP_2024__11__1287_0
Tommaso Scognamiglio. Cohomology of non-generic character stacks. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1287-1371. doi : 10.5802/jep.278. https://jep.centre-mersenne.org/articles/10.5802/jep.278/

[1] P. N. Achar - Perverse sheaves and applications to representation theory, Math. Surveys and Monographs, vol. 258, American Mathematical Society, Providence, RI, 2021 | DOI

[2] J. Alper - “Good moduli spaces for Artin stacks”, Ann. Inst. Fourier (Grenoble) 63 (2013) no. 6, p. 2349-2402 | DOI | Numdam | Zbl

[3] K. A. Behrend - “The Lefschetz trace formula for algebraic stacks”, Invent. Math. 112 (1993) no. 1, p. 127-149 | DOI | Zbl

[4] H. U. Boden & K. Yokogawa - “Moduli spaces of parabolic Higgs bundles and parabolic K(D) pairs over smooth curves. I”, Internat. J. Math. 7 (1996) no. 5, p. 573-598 | DOI | Zbl

[5] C. Bonnafé - “Mackey formula in type A”, Proc. London Math. Soc. (3) 80 (2000) no. 3, p. 545-574, Corrigenda: Ibid. 86 (2003), no. 2, p. 435–442 | DOI | Zbl

[6] W. Crawley-Boevey - “Monodromy for systems of vector bundles and multiplicative preprojective algebras”, Bull. London Math. Soc. 45 (2013) no. 2, p. 309-317 | DOI | Zbl

[7] W. Crawley-Boevey & P. Shaw - “Multiplicative preprojective algebras, middle convolution and the Deligne-Simpson problem”, Adv. Math. 201 (2006) no. 1, p. 180-208 | DOI | Zbl

[8] B. Davison - “The integrality conjecture and the cohomology of preprojective stacks”, J. reine angew. Math. 804 (2023), p. 105-154 | DOI | Zbl

[9] B. Davison, L. Hennecart & S. Schlegel Mejia - “BPS Lie algebras for totally negative 2-Calabi-Yau categories and nonabelian Hodge theory for stacks”, 2022 | arXiv

[10] B. Davison & S. Meinhardt - “Cohomological Donaldson-Thomas theory of a quiver with potential and quantum enveloping algebras”, Invent. Math. 221 (2020) no. 3, p. 777-871 | DOI | Zbl

[11] P. Deligne & G. Lusztig - “Representations of reductive groups over finite fields”, Ann. of Math. (2) 103 (1976) no. 1, p. 103-161 | DOI | Zbl

[12] P. Deligne - “Théorie de Hodge. III”, Publ. Math. Inst. Hautes Études Sci. 44 (1974), p. 5-77 | DOI | Numdam | Zbl

[13] F. Digne & J. Michel - Representations of finite groups of Lie type, London Math. Soc. Student Texts, vol. 95, Cambridge University Press, Cambridge, 2020 | DOI

[14] D. Edidin & W. Graham - “Equivariant intersection theory”, Invent. Math. 131 (1998) no. 3, p. 595-634 | DOI

[15] P. Etingof, W. L. Gan & A. Oblomkov - “Generalized double affine Hecke algebras of higher rank”, J. reine angew. Math. 600 (2006), p. 177-201 | DOI | Zbl

[16] P. Etingof, A. Oblomkov & E. Rains - “Generalized double affine Hecke algebras of rank 1 and quantized del Pezzo surfaces”, Adv. Math. 212 (2007) no. 2, p. 749-796 | DOI | Zbl

[17] R. Fricke & F. Klein - Vorlesungen über die Theorie der automorphen Funktionen, vol. 1, B. G. Teubner, Leipzig, 1912

[18] B. Fu - “Symplectic resolutions for nilpotent orbits”, Invent. Math. 151 (2003) no. 1, p. 167-186 | DOI | Zbl

[19] O. García-Prada, P. B. Gothen & V. Muñoz - Betti numbers of the moduli space of rank 3 parabolic Higgs bundles, Mem. Amer. Math. Soc., vol. 187, no. 879, American Mathematical Society, Providence, RI, 2007 | DOI

[20] A. M. Garsia & M. Haiman - “A remarkable q,t-Catalan sequence and q-Lagrange inversion”, J. Algebraic Combin. 5 (1996) no. 3, p. 191-244 | DOI | Zbl

[21] P. B. Gothen - “The Betti numbers of the moduli space of stable rank 3 Higgs bundles on a Riemann surface”, Internat. J. Math. 5 (1994) no. 6, p. 861-875 | DOI | Zbl

[22] P. Hanlon - “The fixed-point partition lattices”, Pacific J. Math. 96 (1981) no. 2, p. 319-341 | DOI | Zbl

[23] T. Hausel, E. Letellier & F. Rodriguez-Villegas - “Arithmetic harmonic analysis on character and quiver varieties”, Duke Math. J. 160 (2011) no. 2, p. 323-400 | DOI | Zbl

[24] T. Hausel, E. Letellier & F. Rodriguez-Villegas - “Arithmetic harmonic analysis on character and quiver varieties II”, Adv. Math. 234 (2013), p. 85-128 | DOI | Zbl

[25] T. Hausel & F. Rodriguez-Villegas - “Mixed Hodge polynomials of character varieties”, Invent. Math. 174 (2008) no. 3, p. 555-624, With an appendix by Nicholas M. Katz | DOI | Zbl

[26] N. J. Hitchin - “The self-duality equations on a Riemann surface”, Proc. London Math. Soc. (3) 55 (1987) no. 1, p. 59-126 | DOI | Zbl

[27] I. M. Isaacs - Character theory of finite groups, AMS Chelsea Publishing, Providence, RI, 2006, Corrected reprint of the 1976 original | DOI

[28] A. D. King - “Moduli of representations of finite-dimensional algebras”, Quart. J. Math. Oxford Ser. (2) 45 (1994) no. 180, p. 515-530 | DOI | Zbl

[29] T. Kinjo & N. Koseki - “Cohomological χ-independence for Higgs bundles and Gopakumar–Vafa invariants”, 2021 | arXiv

[30] H. Kraft & C. Procesi - “Closures of conjugacy classes of matrices are normal”, Invent. Math. 53 (1979) no. 3, p. 227-247 | DOI | Zbl

[31] Y. Laszlo & M. Olsson - “The six operations for sheaves on Artin stacks. II. Adic coefficients”, Publ. Math. Inst. Hautes Études Sci. 107 (2008), p. 169-210 | DOI | Numdam | Zbl

[32] C. Lehn, M. Lehn, C. Sorger & D. van Straten - “Twisted cubics on cubic fourfolds”, J. reine angew. Math. 731 (2017), p. 87-128 | DOI | Zbl

[33] E. Letellier - “Character varieties with Zariski closures of GL n -conjugacy classes at punctures”, Selecta Math. (N.S.) 21 (2015) no. 1, p. 293-344 | DOI | Zbl

[34] E. Letellier - “DT-invariants of quivers and the Steinberg character of GL n , Internat. Math. Res. Notices (2015) no. 22, p. 11887-11908 | Zbl

[35] E. Letellier & F. Rodriguez-Villegas - “E-series of character varieties of non-orientable surfaces”, Ann. Inst. Fourier (Grenoble) 73 (2023) no. 4, p. 1385-1420 | DOI | Zbl

[36] G. Lusztig - “On the finiteness of the number of unipotent classes”, Invent. Math. 34 (1976) no. 3, p. 201-213 | DOI | Zbl

[37] G. Lusztig & B. Srinivasan - “The characters of the finite unitary groups”, J. Algebra 49 (1977) no. 1, p. 167-171 | DOI | Zbl

[38] I. G. Macdonald - Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015

[39] A. Mellit - “Poincaré polynomials of character varieties, Macdonald polynomials and affine Springer fibers”, Ann. of Math. (2) 192 (2020) no. 1, p. 165-228 | DOI | Zbl

[40] A. Mellit - “Poincaré polynomials of moduli spaces of Higgs bundles and character varieties (no punctures)”, Invent. Math. 221 (2020) no. 1, p. 301-327 | DOI | Zbl

[41] J. S. Milne - Algebraic groups. The theory of group schemes of finite type over a field, Cambridge Studies in Advanced Math., vol. 170, Cambridge University Press, Cambridge, 2017 | DOI

[42] S. Mozgovoy - “A computational criterion for the Kac conjecture”, J. Algebra 318 (2007) no. 2, p. 669-679 | DOI | Zbl

[43] O. Schiffmann - “Indecomposable vector bundles and stable Higgs bundles over smooth projective curves”, Ann. of Math. (2) 183 (2016) no. 1, p. 297-362 | DOI | Zbl

[44] T. Scognamiglio - “A generalization of Kac polynomials and tensor product of representations of GL n (𝔽 q ), Transform. Groups (2024), online first, arXiv:2306.08950 | DOI

[45] C. T. Simpson - “Harmonic bundles on noncompact curves”, J. Amer. Math. Soc. 3 (1990) no. 3, p. 713-770 | DOI | Zbl

[46] T. A. Springer - Linear algebraic groups, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2009

[47] D. Yamakawa - “Geometry of multiplicative preprojective algebra”, Internat. Math. Res. Papers (2008), article ID rpn008, 77 pages | Zbl

Cité par Sources :