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COHOMOLOGY OF NON-GENERIC CHARACTER STACKS

BY TOMMASO SCOGNAMIGLIO

Asstract. — We study (compactly supported) cohomology of character stacks of punctured
Riemann surface with prescribed semisimple local monodromies at punctures. In the case of
generic local monodromies, the cohomology of these character stacks has been studied in [23, 39].
In this paper we extend the results and conjectures of [23] to the non-generic case. In particular
we compute the E-series and give a conjectural formula for the mixed Poincaré series. We prove
our conjecture in the case of the projective line with 4 punctures.

Résumie (Cohomologie des champs de caractéres non génériques). — On étudie la cohomolo-
gie (& support compact) des champs de caractéres pour les surfaces de Riemann épointées
avec monodromies locales semi-simples fixées. Dans le cas de monodromies locales génériques,
la cohomologie de ces champs de caracteéres a été étudiée dans [23, 39]. Dans cet article, on étend
les résultats et la conjecture de [23] au cas non générique. En particulier, on calcule la E-série et
on donne une formule conjecturale pour la série mixte de Poincaré. On démontre cette conjec-
ture dans le cas de la droite projective privée de 4 points.
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1288 T. ScoeNamiGLIO

1. INnTRODUCTION

Consider a Riemann surface 3 of genus g > 0, a subset D = {p1,...,px} C %
of k points and € = (Cy, ..., Cx) a k-tuple of semisimple conjugacy classes of GL,,(C).
In what follows, denote by GL,, the group GL,(C).

The associated character stack Me is defined as the quotient stack

(1.0.1) Me = {{p € Hom(rmy (X~ D), GLy) | p(w:) € C; for i =1,.. .,k}/GLn(C)],

where each x; is a small loop around the point p;. These stacks classify local systems on
>\ D such that the monodromy around the point p; liesin C; for¢ =1,...,k, and are
naturally related to certain moduli spaces of (strongly) parabolic Higgs bundles on 2
via the non-abelian Hodge correspondence, see for example the work of Simpson [45].

The stack Mg has therefore the following explicit form in terms of matrix equations:

(1.0.2) Me = [{(Al,Bl,...,Ag,Bg,Xl,...,Xk) € GLY x [1F_ ¢ |
k
[T [4: B 1), X; =1} /GLa|.

In what follows, for a complex stack of finite type X, we will denote by HF(X) =
H!(X,C) its compactly supported cohomology with C-coefficients. Recall that each
vector space HE(X) is endowed with the weight filtration WEH!(X). For more details
about the definition of these cohomology groups and their weight filtration see Sec-
tion 7.

We define the mixed Poincaré series H.(X, g, t)

He(X,q,t) =Y dim(W,, /Wy, _;)g"/>t".

The E-series E(X, q) is the specialization of H.(X, g, t) obtained by plugging t = —1
and the Poincaré series P (X, t) is the specialization of H.(X, g, t) obtained by plugging
qg=1.

1.1. REVIEW OF GENERIC CHARACTER STACKS. The cohomology of character stacks
and its mixed Hodge structure have been extensively studied from different perspec-
tives. So far, most of the results have been obtained in the case where the k-tuple C
is generic (see Section 7.2.1 for a precise definition of genericity).

In the generic case, the stack Me is smooth and it is a G,,,-gerbe over the associated
GIT quotient, which we denote by Me. Therefore the cohomology of Me can easily be
deduced from that of the character variety Me.

We give here a quick review of the results obtained about the cohomology of generic
character stacks and varieties, see Section 7.2 for more details.

The first results concerning this subject were obtained in the case where k = 1
and € is a central conjugacy class. For n € N and d € Z, let M,, 4 be the stack Me
for k=1 and € = {*™¥/"],} i.e.,

Mpg = H(Al, Bi,..., Ay By) € [1%, GL, | [T, [4:. Bi] = e—md/n[n} / GL”].

The orbit € = {€274/"} is generic if and only if (n,d) = 1.

JE.P — M., 2024, tome 11



COHOMOLOGY OF NON-GENERIC CHARACTER STACKS 128()

Hitchin [26] computed the Poincaré polynomial P, (M, 4,t) in the generic case for
n = 2, using non-abelian Hodge correspondence and Morse theory on the moduli
space of Higgs bundles. Gothen [21] extended his result for n = 3.

Their approach was later extended to compute the Poincaré polynomial P.(Me,t)
in the case where n = 2, any k and any generic k-tuple € by Boden and Yogokawa [4]
and where n = 3, any k and any generic k-tuple € by Garcia-Prada, Gothen and
Muiioz [19].

However, Morse-theoretic techniques do not give information about the weight
filtration and were hard to generalize to any n.

Hausel and Rodriguez-Villegas [25] were the first to obtain a general result
about cohomology of character stacks for any n. The authors computed the E-series
E(M,, q,q) of the stacks M,, 4 for any coprime n,d, by counting points over finite
fields and proposed a conjectural formula for the mixed Poincaré series H.(M,, 4, q, ).

Schiffmann [43] found an expression for the Poincaré series Po(M, 4,t) in the
generic case and Mellit [40] later checked that Schiffmann’s formula agrees with the
specialization of Hausel and Rodriguez-Villegas’ conjecture at ¢ = 1.

Hausel, Letellier and Rodriguez-Villegas afterward generalized the results of [25]
and computed [23, Th. 1.2.3] the E-series E(Me, q) of the stacks Me for any generic
k-tuple C. We quickly explain more precisely their result since it is the starting point
of this paper. For more details, see Section 7.2.1.

Let P be the set of partitions. In [23], the authors introduced, for each multiparti-
tion u € P, a rational function Hy,(z,w) € Q(z,w), defined in terms of Macdonald
polynomials (for a precise definition see Section 7.2.1). The authors [23, Th.1.2.3]

showed that there is an equality
du/2

q 2
(111) E(M@,q): q_lHH(\/avl/\/a)v
where 2d,, = dim(Me) + 1 and p = (p!,...,p*) is the multipartition given by the
multiplicities of the eigenvalues of Cq, ..., Ck respectively.

In the same paper, the authors [23, Conj. 1.2.1] proposed the following conjectural
formula for the mixed Poincaré series H.(Me,q,t), which generalizes Hausel and
Rodriguez-Villegas’ conjecture stated in [25] and naturally deforms Eq. (1.1.1):
(qt?)n/?
qtzi_lHH(_t\/&ﬂ 1/Va,)-

Mellit [39, Th.7.12] later computed the Poincaré series P.(Me,t) using the non-
abelian Hodge correspondence. His formula matches with the specialization at ¢ = 1
of the conjectural formula (1.1.2) for the mixed Poincaré series.

(1.1.2) H.(Me,q,t) =

1.2. Overview or THE pAPER. — Ome of the aims of this paper is the study of the
cohomological invariants of the stacks Me in the case where € is not necessarily
generic. The cohomology of character stacks Me for non-generic k-tuples € has not
been much studied in the literature until recently.

The most explicit and general results in the non-generic case were obtained mainly
for the stacks M, 4.

JEP — M., 2024, lome 11



1200 T. ScoeNamiGLIO

Hausel and Rodriguez-Villegas [25, Th. 3.8.1] expressed the E-series for the stacks
M, 0 in terms of the E-series for the generic character stacks M, ; by the following
formula:

EM, 1, " E(M,, 0, "
(1.2.1) Exp(z MT ) -y WT :
neN ne
where Exp is the plethystic exponential in the ring of formal power series Q(q)[17] (see
Section 2.3 for details about plethystic operations). The authors’ result is obtained
by counting points over finite fields.

Fix now r € Q. Recently, Davison, Hennecart and Schlegel Mejia [9, Th.14.3,
Cor. 14.7] proved the following formula expressing the compactly supported Poincaré
series of M,, 4 for any n,d, in terms of the Poincaré series for the generic character
stacks M, 1:

(1.2.2) Z %z”wd = EXp( Z Imz"wd)
(n,d)ENs o XZ (n,d)ENs o XZ
d=rn d=rn
and formulated a similar conjecture for the mixed Poincaré series of H.(M,, 4, ¢, t) for
any n,d (see the discussion after [9, Th. 14.10]).

They obtained this formula by relating the cohomology of a character stack with
the cohomology of the so-called BPS sheaves. The latter are certain perverse sheaves
defined on character varieties and are well-understood for the stacks M,, 4. More
precisely the non-abelian Hodge correspondence for stacks, proved in [9], and the
recent work of Koseki and Kinjo [29] about BPS sheaves for the moduli stack of Higgs
bundles, give a way to compute the cohomology of BPS sheaves for a stack M,, 4.

However, notice that since the authors use non-abelian Hodge correspondence
which does not preserve the weight filtration on cohomology, their method does not
allow to prove an analogous formula for the E-series or the mixed Poincaré series
of Mn,d-

Finally, the cohomology of BPS sheaves for character stacks Me is not understood
for an arbitrary € and so a generalization of Eq.(1.2.2) for an arbitrary C is still
unproved.

One of the main results of our paper is a generalization of Eq. (1.2.2) to arbitrary C
for the E-series E(Me, ¢) instead of the Poincaré series P.(Me,t). As a result we get
an explicit formula for E(Me,q) for any k-tuple C, see Theorem 1.3.3 below and
Section 7.2.2.

We also give a conjectural formula (see Conjecture 1.3.5) for H.(Me, ¢, t), which we
verify in the case of ¥ = P}, |D| = 4 and a certain family of non-generic quadruples,
for more details see Section 8.

Conjecture 1.3.5 for the stacks M,, 4 has already appeared in [9], see the discussion
there after Theorem 14.10.

Finally let us notice that our approach is very different from that of [9] as we do
not use non-abelian Hodge theory nor BPS sheaves.

JE.P — M., 2024, tome 11



COHOMOLOGY OF NON-GENERIC CHARACTER STACKS 1291

1.3. MaIN RESULTS. An important tool to formulate and prove the main results
of this paper is the construction of character stacks as multiplicative quiver stacks,
as first introduced by Crawley-Boevey and Shaw [6, 7], which we quickly recall here
(see Section 6.2 for more details).

Notice that this construction is not needed for studying generic character stacks
and does not appear for example in the articles [23, 39]. However, it is a key point
in our paper, as it allows to distinguish between different levels of non-genericity for
non-generic character stacks.

Let s1,...,s, € N be such that, for each i = 1,...,k, the conjugacy class C; has
s;+ 1 distinct eigenvalues 7; o, .. .,7:,s, With multiplicities m;,...,m; s, respectively.
Let Q = (I,Q) be the following star-shaped quiver with ¢g loops on the central vertex

o] ol12] oltss1]

o1 o[22 ol2:82]
et

olk:l] — olk-2] olk,sk]

Recall that for any 3 € N, there is a representation variety R(Q,[3)°* and a
multiplicative moment map

o5 : R(Q,B)”" — GLg = [ [ GLg,.
el

For any s € (C*)!, we denote by s the central element s := (s;13,)ic; € GLg. The
multiplicative quiver stack with parameters [, s is the quotient stack

M 5= [(®5) 7" (s)/GLg]-

Consider now the dimension vector ae € NI defined as
s
(ae)iij) = Y mih
h—j

for every j = 0,...,s;, where we identify [i,0] = 0 for each i = 1,..., k. Notice that
(ae)o = n. Let moreover ve € (C*)! be defined as

E -1 .

o Hi=1 'Yi,ol it j =0,

(vedugg =4 .
Yi.j Yij—1 otherwise.

In Theorem 7.2.8, we show that, for the elements ae, e, there is an isomorphism of
stacks

(1.3.1) Me = M

Ye,xe”

JEP — M., 2024, lome 11



1202 T. ScoeNamiGLIO

Let now (N?)* C N be the subset of vectors with non-increasing coordinates along
the legs and denote by 3* C (N%)* the subset defined as

vye,ae
i}fj;e,ae ={0e (NI)* | ’Yg =1 and § < ae},
where 7% = [[;c;(ve)7"-
Exampre 1.3.1. It can be checked that if 2
generic.

= {ae} then the k-tuple C is

c,xe

The subsets H7, . allow to define a natural stratification on the set of k-tuples €
and so of character stacks Me. The introduction of this stratification is one of the
key ingredients to study the cohomology of Me in the non-generic case. Notice that

although not explicitly defined, the subsets H} appear implicitly in [9].

Ye,ae
1.3.1. E-series of character stacks. — For any 8 € (N/)* and for any j = 1,..., k, the
inﬁegers (Big,0) = Biia)s - -+ Bljys;—1) — Bljs;)> Blj,s;)) up to reordering form a partition

pry € P. Denote by pg € P* the multipartition pg = (uf, ..., uf) and by Hg(z,w)
the function H,, (z,w).

Remark 1.3.2. — For a k-tuple C, the multipartition p,, € P¥ is the multipartition
given by the multiplicities of the orbits Cy, ..., Gy respectively.

Moreover, it can be checked that dim(Me) = —2(ae, ae) + 1, where (,) is the
Euler form of @. The result [23, Th. 1.2.3] of Hausel, Letellier and Rodriguez-Villegas
for a generic k-tuple C can then be rewritten as

E(Me.q) _ aHo, (v3,1/v3)

q*(ae,ae) q—1

(1.3.2)

The main result about character stacks of this paper (see Theorem 7.2.9) is the
following theorem:

Turorem 1.3.3. For any k-tuple of semisimple orbits C, it holds:
H , 1 E(Me,
(1.3.3) Coeff EXp( Z M yﬁ> — M
g - q— 1 q—(ae,@e)
BEIT oo
Remark 1.3.4. — One of the interesting aspects of Theorem 1.3.3 is that it expresses

the E-series E(Me, q) for any k-tuple € in terms of the functions Hg(y/q,1/1/9), i.e.,
in terms of the E-series for generic k-tuples.

Similar type of results, relating non-generic to generic, have already appeared else-
where, see for example the discussion in Section 1.2 and also Letellier’s paper [33].

In Section 7, we compute the E-series of the complex character stacks Me through
the approach introduced in [25, 23, 35], i.e., by reduction to finite fields and point
counting. Namely, recall that if there exists a rational function Q(t) € Q(¢) such that,
for any F,-stack Me r, obtained from Me by base change and any m, it holds

#Mer, (Fen) = Q(¢™),

JE.P — M., 2024, tome 11



COHOMOLOGY OF NON-GENERIC CHARACTER STACKS I‘).()g

we have an equality
E(Mev Q) = Q(q)a

for more details see Section 7.1.

However, the way we count rational points of character stacks in this paper is
quite different from that of [23]. The description of the rational functions Q(¢) for
non-generic character stacks is given through the results of Section 5 and Section 6,
where we show how to compute the rational points of a multiplicative quiver stack
for a star-shaped quiver over F,.

In the articles [24, 23], star-shaped quivers had already been introduced and used
to relate character varieties and quiver varieties for star-shaped quivers. However, the
authors did not use multiplicative quiver stacks and in particular they didn’t need
the isomorphism Eq. (1.3.1) to compute F4-points of generic character stacks.

The results of Section 5 and Section 6 about the rational functions Q(t) will be
obtained as a consequence of the main technical result of this paper, which is Theo-
rem 4.1.2. The latter theorem is very general and applies to certain families of rational
functions called Log compatible.

Therefore, to prove Theorem 1.3.3 we will have to prove that the rational functions
involved in it satisfy this Log compatibility property.

Theorem 4.1.2 can be used to prove similar formulas in a different context :
quiver representations and multiplicities in tensor products of irreducible characters
of GL,,(F,), which are the main results of [44]. However, in the latter article we could
avoid using the technical Theorem 4.1.2, using a more categorical approach instead.

For the proof of Theorem 4.1.2, we will have to use combinatorial objects different
from the ones used for the generic case in [24, 23]. They we will be introduced in
Sections 3 and 4.

1.3.2. Cowyecture for mixed Poincaré series of character stacks. — Hausel, Letellier and
Rodriguez-Villegas conjectural formula (1.1.2) for the mixed Poincaré series of char-
acter stacks for generic k-tuples and Theorem 1.3.3 suggest the following conjecture
for the mixed Poincaré series of character stacks. For more details see Section 8.

Consecrure 1.3.5. — For any k-tuple of semisimple orbits C, it holds:

(th)Hﬁ (t\/a, 1/\/6) y’8>> HC(MQ, q, —t)

gt? — 1 = (qf2)(acae) |

(1.3.4) Coeft,, (Exp( Z

BET ot

Remark 1.3.6. — The presence of the sign — in H.(Me, g, —t) in Eq. (1.3.4) is due to
the combinatorial properties of the plethystic exponential Exp, see for example the
discussion in [8, §4.3].

In Section 8, we verify that Conjecture 1.3.5 holds in the case of ¥ = P{, |D| = 4
and the family of non-generic quadruples (€;),=1,... 4, where €; is the conjugacy class

JEP — M., 2024, lome 11



1204 T. ScoeNamiGLIo

of the diagonal matrix

Aj 0
0 A"

and A1, A2, A3, Ay € C* ~ {1,—1} satisfy: for any e1,...,e4 € {1,—1} such that
At Aft =1, theneither ey =~ =g4=1lore; = =¢g4 = —1.

1.4. FinaL reEmark. — In the generic case [23], the conjectural formula for the mixed
Poincaré series is written in the language of symmetric functions. More precisely,
let Ay the ring of functions with values in the rational functions Q(z,w) and sepa-
rately symmetric in k sets of infinite variables @1, ..., k. Then the function H,,(z, w)
mentioned in Section 1.1 is defined as

H,, (2, w) = (2* = 1)(1 — w?)(Coeffr» (Log(Q(z,w))), hy),

where Q(z,w) € Ax[T] (see [23, §2.3.6] for a definition), h, = hyi(21) - by (2k)
is the complete symmetric functions and (,) is the natural extension to Ay of the
bilinear product on symmetric functions making Schur functions orthonormal.

One of the advantages of this approach is that the cohomology of every generic
character stack is encoded in the single object 2(z,w). Moreover, this allows to im-
mediately generalize the results and the conjectures to the cohomology of generic
character stacks with non necessary semisimple local monodromies by replacing the
complete symmetric functions in the pairing by other symmetric functions (for in-
stance it would be Schur symmetric functions for conjugacy classes which are the
product of a unipotent conjugacy class with a central element, see for example [33]).

It would be interesting to “symmetrize” our main formulas and conjectures.

Acknowledgements. — The author is very grateful to Ben Davison, Emmanuel Letel-
lier, Fernando Rodriguez-Villegas and Olivier Schiffmann for many useful discussions
about the topics dealt in this paper. The author would also like to thank the anony-
mous referee for many useful comments about a first draft of this paper. This article
is a part of the author’s PhD thesis.

2. PRELIMINARIES AND NOTATIONS

In this section, I will be a fixed finite set. In the cases relevant to the main result of
this paper on non-generic character stacks, I will be the set of vertices of a star-shaped
quiver.

In Section 2.2 and Section 2.3, we will introduce and recall the properties of some
combinatorial objects defined in terms of I, such as the multitypes and an associated
ring, which will be a key technical point of this paper and were not needed in the
works about the generic case [24, 23].

We endow the set N/ with the partial order < such that, for o, 8 € N/, we have
B > « if and only if 8; > «a; for each ¢ € I.

JE.P — M., 2024, tome 11



COHOMOLOGY OF NON-GENERIC CHARACTER STACKS T‘l()S

2.1. PARTITIONS AND MULTIPARTITIONS. Let P be the set of all partitions and P* C P
the subset of nonzero partitions. A partition A will be denoted by A = (A1, Aa..., A\p)
with Ay > Ao = -+ = Ay or by A = (1™,2™2 .. .) where my is the number of

occurrences of the number & in the partition A\. We will denote by A’ the partition
conjugate to .

The size of A is |A| = >, A\; and its length () is the largest 7 such that A\; # 0.
For each n € N, we denote by P,, the subset of partitions of size n. For two partitions
A, 1, We set

Aoy =Y Npi and n(A) =D (i— 1)\

K2 ?

We have that
(M) =2n(N) + |

Recall that the set P admits different possible orderings. In the following, we will
denote by A < p the ordering induced by the lexicographic order.

The conjugacy classes of the symmetric group .5,, are indexed by the partitions P,,.
For each )\ € P,,, denote by z, the cardinality of the centralizer of an element of the
conjugacy class associated to A. If A = (1™2,2™2 ... ), we have

o =[] 45
J

Moreover, recall that the set of irreducible characters of S, is in bijection with P,,.
In our bijection we associate to the partition (n) the trivial character of S,,. We denote
the irreducible character of S, associated to A by x*.

For any three partitions A € P,,, u € Py, v € Py, we denote by ¢35, the integer

v v Sn m
CA,M = <X aIndS”;Sm (X)\ X X#)>
Consider also the set of multipartitions P/. The elements of P! will be usually
be denoted in bold letters A € P!. To avoid confusion with the notation used for

partitions, we will use the notation A = (A");c7. For A € P the size |A| € NI of X is
defined as
[Ali = A,

We also put n(A) == Y,c; n(A).

For an element o € N’, we will denote by (1%) € P! the multipartition ((1%));cr
and by (a) € P! the multipartition ((a;))ier-

The order < on P induces an ordering on P! through the lexicographical ordering,
which we still denote by <.

2.2. MurtrrypEs. A multitype is a function w : N x P! — N such that its support
(i.e., the elements (d, p) such that w(d, u) # 0) is finite and w(0, A\) = w(d,0) = 0 for
any A € Pl and d € N.

On the set N x P! put the total order defined as follows. If d > d’ then (d,\) >
(d', ), if |A] > || then (d, A) > (d’, p) and if |A| = |u| then (d, ) > (d', p) if A > p.

JIEP. — M., 2024, tome 11



1296 T. ScoeNamiGLIO

We can alternately think of a multitype w as a non-decreasing sequence w =
(d1, A1) ... (dry Ar), where the value w(d, A) corresponds to the number of times the
element (d,A) appear in the sequence (dy, A1) ... (d,, A;).

We will denote by T; the set of multitypes. If |I| = 1, we call multitypes simply
types. For w € Ty where w = (d1, A1) ...(d,, A) and d € Nsg, we denote by 94(w)
the multitype

wd(w) = (ddl, Al) ‘e (ddr, AT)

The size |w| of a multitype w is the following element of N’

W= > dw(d,p)pl

(d,p)ENXPI
and w(w) is the quantity

w(w) = H d (R g (d, ).
(d,n)eENxPI

For a € N’, we denote by T, C T; the subset of multitypes of size .
The sum of multitypes endows the set T; with an associative operation

x: Ty x Ty — Ty.

More precisely, for wy,ws € Ty, we define wy * wy as the multitype such that
w1 * wa(d, A) == wi(d, ) + wa(d, A).

The reason for this choice of notation will be clear in Section 2.3.1, where we will use
the sum of multitypes to define an associative ring.

We view N x N’ as a subset of N x P! by associating to (d, a) the element (d, (1%)).
We call a multitype w semisimple if its support is contained in N x N. Given a
semisimple w we will see it as a function N x N/ — N, which we still denote by w,
where

w(d, ) = w(d, (19)).
Whenever the context is clear, we will frequently switch between the two notations
for semisimple multitypes.

For each o € N’ we denote by w, the semisimple multitype such that w,(1,a) = 1
and w,(d, 3) = 0 for every other element (d, 3) € N x NZ.

We denote by T5° C T; the subset of semisimple multitypes. Notice that for any
semisimple multitype w € T, there exist di,...,d, € Nyg and aq,...,q, € N’ such
that

W= wdl (woq) Kook ,(/)d'r' (war)'

For a multitype w = (d1,A1)...(dr, Ar) € Ty, we define its semi-simplification

w* € T} as the following semisimple multitype

W™ = (dy, (1)) (d,., (1A,

i.e., W = d)dl (w‘,\l‘) EIRRE 3 wdT(w‘Ar‘).

JE.P — M., 2024, tome 11



COHOMOLOGY OF NON-GENERIC CHARACTER STACKS 1297

To a semisimple multitype w = (d1, 1) . .. (d,, a;), we associate the following poly-
nomial P, (t) € Z[t]

T

P,(t) = % - 1.

j=1
Notice that for any o € N, we have
P, (t)=t-1.
For a semisimple multitype w = (dy,f1) - - - (dr, Br) € T, put
o {u(d)d”(wl(r —1)! ifdi=do=-=d, =d,
© 0 otherwise,

where i denotes the ordinary Mébius function.
Lastly, we introduce the notion of levels for semisimple multitypes.

Derinrrion 2.2.1. For a subset V C N! and a semisimple multitype w with
W= q/}dl (w(h) ook wd'r‘(war)7

we say that w is of level V if o € V foreach j =1,...,r.

Exampre 2.2.2. — For any o € N’ the multitype w,, is of level {a}. Conversely, the
only semisimple multitype w € T of level {a} is wq.

2.3. LLAMBDA RINGS AND PLETHYSTIC OPERATIONS. In this paragraph we recall the
definition and some properties of A-rings. We follow [42, App. A].

Derinition 2.3.1. A A-ring R is a commutative Q-algebra with homomorphisms
g : R — R for any d > 1 such that ¥ (14(r)) = ¥gq (r) for every d,d’" € N5 and
r e R.

The morphisms 14 are called Adams operations. For any partition u = (p1, ..., pn),
we denote by v, : R — R the homomorphism defined as ¢, (1) = ¥, (r) - - - ¥y, (r).
For every integer n € N, denote by o, (f) the element

(2.3.1) on(f) =Y wli(f)
reP, A

For a A-ring R, consider now the ring R[y;]Jicr. For a € N7, put y* := [[,c, 5"
We endow the ring R[y;];ecs with the A-ring structure defined by the Adams operations
defined as

Ya(ry®) = va(r)y™
for r € R and o € N/,

Denote by Rﬂyl]]fe ; the ideal generated by the y;’s. The plethystic exponential is

the following map Exp : R[y:];.; — 1+ Ryl

(2.3.2) Exp(f) = exp(z 1/}HT(‘f))

n>1

Notice that for f,g € R[y;]/;, we have Exp(f + g) = Exp(f)Exp(g).
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Exampre 2.3.2. Consider R = Q and |I| = 1. In the ring Q7] we have:
™ 1 1
(2.3.3) EXp(T) = eXp(Z ?) = exp(log(ﬁ)> = ﬁ

n=1

We have the following lemma (see the discussion before [42, Cor. 21]):

Lemma 2.3.3. — For any f € R[[yl]]lel, we have

(2.3.4) Exp(f) =Y _ ou(f)

n>1
The plethystic exponential admits an inverse operation
Log: 1+ R[[yZ]]zeI — R[[y%]]zel

known as the plethystic logarithm. The plethystic logarithm can either be defined by
the property Log(Exp(f)) = f or by the following explicit rule. For a € N/ we put

@ = ged(ay)ier

Ua
log(f) = > =y

and we define U, € R by:

aeN!
Then we set
(2.3.5) Log(f) == Z Vay®,
aeN!
where 1
== Zu(d)wdwa/d)-

Indeed, consider h =37 cnr hay®™ € R[[yi]]zej and f = Exp(h). We then have

ha
log(Exp(h de —ZZ %Thﬂ)y‘w: Zyazw’

d>1 d>1geN? aeN!  dja

i.e., Ua :az ’(/)d(da/d).
dfa

‘We then have

LS st - 15 i 3 e

* = d'a/d
(2.3.6) wdd’ dd’)
:Zu(d) Z / Z'(/)m a/m Z /.L(d) :h‘a?
d|a d'la/d m|a d,d’ s.t.
dd':m

where the last equality of Eq. (2.3.6) comes from the fact that

doopd) =) wd) =

d,d s.t. dlm
dd'=m

if m # 1.
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2.3.1. Multtypes and plethysm. — Let K5 be the Q-vector space having as a base the
semisimple multitypes T5°. The size of the multitypes endows X95° with the structure
of an N’-graded vector space and the operation * endows X5 with the structure of
an N’/-graded Q-algebra.

The operation 14 on multitypes endows the Q-algebra X5° with the structure of a
A-ring with Adams operations defined as

Ya(qwi + - + grwy) == a(wi) + - - + ¢rhg(wy)

for any element qywy +- - -+ grw, € K3 with q1,...,¢ € Qand wy,...,w, € T7. This
A-ring is going to be a key tool to the proof of our main result 4.1.2.

Given a semisimple multitype w = (d1, (1°*)) ... (d,, (1%")), in the ring K3 we have
an equality

W= ¢d1 (woq) Hoeeo ok ,(/)d'r' (wa'r')'

We therefore deduce that X7 is isomorphic to the ring of polynomials in the variables
Ya(wa) for (d,a) € Nug x NI

Consider now the ring JAC? = K% [y;]ics. For semisimple multitypes of level V|
we have the following lemma:

Levmva 2.3.4. For any V C NI, we have the following identity in the ring UA@S:

(2.3.7) EXp(Zwaya): Z ﬁyl“".

acV weT$
of level V'

Proof. — By Eq.(2.3.1), there is an equality

(2.3.8) Exp(aeszay“) = H (Z o'n(wa)yna> = H (Z %:‘}a)ylz\\u)_

aeV neN acV e

For each semisimple multitype w of level V| there exist unique 81 # B2 # ... £ B, € V

and integers dy 1,...d1,,,d2,1,...,dp,, such that
W= (dl,lv (lﬁl))(dLQ? (1B1)) e (dh,lha (1ﬁh))a
ie., w :wdl,l(wﬂl) koo *wdh,zh (th)'
Up to reordering, we can assume that for each j = 1,..., h, the integers (dj1,...,d;1,)

form a partition A;. We have thus an identity

h
w = H ¢Aj (wﬁj)'

j=1
Notice moreover that zy, ---z), = w(w). We therefore deduce that the RHS of
Eq. (2.3.8) is equal to the RHS of Eq. (2.3.7). O
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3. FiniTE REDUCTIVE GROUPS, SUBTORI AND MULTITYPES

In this chapter we will review the notions about the geometry of reductive groups
over F, that we will need in the rest of the article. The main reference is the book [13].
We will start by fixing some notations about varieties over finite fields and Frobenius
morphisms.

3.1. VARIETIES OVER FINITE FIELDS. — Let ¢ = p” where p is a prime number, let I,
be the field with ¢ elements and E] its algebraic closure. In the following, a variety
over F, will be a pair (X, F') where X is a reduced scheme of finite type over F, and F
is an F4- Frobenius morphism F' : X — X (for more details see for example Milne’s
book [41] or [13, Ch. 4]).

Whenever the F,-structure of X is clear, we will often drop the Frobenius morphism
in the notation and we will simply use the terminology "the F4-variety X".

A morphism of Fy-varieties f : (X, F) — (Y, F) is a morphism f : X — Y which
commutes with the corresponding Frobenius maps.

Given an affine variety (X, F') over F, with Frobenius F' : X — X, consider the
variety X¢ equipped with the twisted Frobenius

Fy: x4 — x4
defined as
Fy(zy,...xq) = (F(zq), F(21),..., F(xq-1)).
In the following, we will denote the F,-variety (X%, Fy) simply by (X)4. Notice that
there is a bijection (X)4(Fy) = X (Fja).

For n € N, we denote by GL,, the general linear group over ﬁq. The group GL,
is endowed with the canonical Frobenius morphism F((a;;)) = (aj;) for a matrix
(ai)j) € GL,.

For a € N’, we denote by GL, the group

GL, = [ [ GLa,
iel
with the usual product Frobenius structure, and by GL,(F,) the finite group
GL4(F,) = GLE.

Remark 3.1.1. — For each n,d > 1, we will define an embedding (GL,)q € GL,4
defined over F, in the following way. Let A : GLfL — GL,4 be the block diagonal
embedding.

Notice that A is not defined over F, when GLfL is equipped with the Frobenius
structure Fj. Consider then the permutation o € S,,4 given by

c=01Mm+1)---(n(d-1)+1))---(n2n---dn)

and the associated permutation matrix J, € GLjq4.
Fix an element g, € GL,q4 such that g;'F(g,) = J, (such an element exists
because of the surjectivity of the Lang map, see for example [13, Th.4.29]). The
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embedding
9o0g; " (GLY, Fy) — (GLyg, F)
is defined over Fy.

Similarly, we get an Fj-embedding of (GL4)q inside GLqg for any d > 1 and any
a €N

Exampre 3.1.2. — Let n=2. Fixz € ]FZ2 ~ F; and let T, be the torus

1 ar?—br —a+b ——
T. =3 —— beF, ;.
: {xq —x ((a —b)za? —ax + ba:q) la.b ey }
The torus T; is F-stable and is GLy(F,)-conjugated to the torus (G,, )2 embedded
inside GLy as in Remark 3.1.1 above.

3.2. REDUCTIVE GROUPS OVER FINITE FIELDS. — We start by recalling the following
definition.

Derintrron 3.2.1

« A group T over F, is called a torus if there is an isomorphism T Xgpec(r,)
Spec(F,) = GZ, for a certain integer d. For a torus T, we denote by rank(T) its
dimension.

« A torus T over F, is called split if we have an F -isomorphism 7' =, Grank(™D),

In this paragraph and in the rest of the article, G is going to be a reductive group
defined over IF, with a fixed Frobenius morphism F' : G — G. In the cases that interest
us in this article, G will always be a product of factors of type (GL,)4’s.

We denote by rank(G) the dimension of a maximal torus of G. Recall that we
always have an F-stable maximal subtorus 7' C G.

We denote by g the rank of a maximal split F-stable subtorus of G. In general
eq # rank(Q). If rank(G) = e¢, we say that G is split.

Exavpre 3.2.2. Consider the group (GL,)4. Let T C G be the maximal torus
T, x--xT, C (GL,)4, where we denote by T,, C GL,, the torus of diagonal matrices.
Notice that T'is F-stable and dim(7") = rank(G) = nd. However, it is possible to verify
that e¢ = n, i.e., (GL,,)q is split if and only if d = 1.

For a maximal torus T', we denote by
X.(T) =Hom(T,G,,) and Y.(T):=Hom(G,,,T)

the group of characters and cocharacters of T respectively. Recall that these are free
abelian groups of rank equal to rank(G) and that there is a pairing

(,): Yu(T) x Xo(T) — Z,
where, for 8 € Y, (T),a € X.(T), we have
aofB(z) = PA

for any z € Gy,.
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Denote by Wg(T) the Weyl group of T, i.e., Wg(T) = Ng(T)/T. Notice that
Wea(T) acts on X,.(T) as
w-a(t) = a(wtw™)
for each w € Wg(T), t € T and a € X.(T). For each w € Wg(T), we denote by
w: X, (T) = X.(T) the corresponding endomorphism.
Recall that inside X, (T') there is the root system ®(T) C X.(T) given by the
characters appearing in the weight space decomposition of the adjoint action of T'

on g = Lie(G). Recall that for any € € ®(T'), there is an injective homomorphism
ue : G, — G such that for any x € F, and any ¢ € T, we have

tue (z)t ! = u.(e(t)z).

We denote by U, C G the subgroup U, = Im(uc).
Moreover, inside Y, (T') there is the dual root system &V (T'), provided with a canon-
ical bijection
O(T) +— V(T
e+—e’

such that (¢¥,¢) = 2 for every € € ®(T).
If T is F-stable, the Frobenius acts on the groups X, (T),Y.(T) as

F:X.(T)— X.(T) 1 F:Y.(T)— Y.(T)
a— aoF an B +— Fop.
3.2.1. Twisted Frobenius of maximal tori. — Fix now an F-stable maximal torus

T C G. As T is F-stable, the Frobenius acts on the Weyl group too. Given two ele-
ments hy, ho € We(T), we say that they are F-conjugated if there exists w € Wg(T)
such that h; = who F(w)~ 1.

The set of F-conjugacy classes of Wg(T), usually denoted by H(F,Wg(T)),
parametrizes the G¥'-conjugacy classes of F-stable maximal tori in the following way.

Given an F-stable maximal torus 7" there exists g € G such that gT'g~! = T".
As F(T") = T’ we see that @ = g~ 'F(g) belongs to Ng(T) and so determines an
associated element w € Wg(T). The element w is well-defined up to conjugacy, i.e.,
the conjugacy class of w does not depend on g.

Conversely, for every w € Wq (T'), consider an element g € G such that g~ 1 F(g) = w.
Such an element exists thanks to the surjectivity of Lang’s map, see for example
[13, Th. 4.29]. To w we associate the torus g7'g~* = T’. The G¥-conjugacy class of
the torus ¢gT'g~! does not depend on the choice of g neither on w, but rather on the
F-conjugacy class of w.

We can reformulate this correspondence in terms of the twisted Fg-structures of
the torus T. While the conjugation by g provides an isomorphism 7" 2 T over F,, this
isomorphism is not in general an F,-morphism (T7, F) — (T, F'). However, when T
is equipped with the F, structure coming from the twisted Frobenius wF : T — T,
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the conjugation by g is an I, -isomorphism
(T',F) =g, (T, WF).

In the following, we assume to have fixed, for each w € Wg(T), a corresponding
F-stable maximal torus T;, C G.

Examrere 3.2.3. — Consider the case of G = GL,, and T' = T,, the torus of diagonal
matrices. In this case, we have Wg(T,,) = S, and the F-action on S, is trivial.
In particular, the F-conjugacy classes of S,, are the conjugacy classes of S,, and are
therefore indexed by the partitions P,, of size n.

For any A = (\1,...,A\n) € Py, any associated torus F-stable maximal torus 7" is
GL, (F,)-conjugated to

ie.,

(TlvF) = (Gm))\l X X (Gm))\h'

Examrre 3.2.4. — Consider the group G = (GL,, )4 and the F-stable maximal torus T'
introduced above. The Weyl group W¢(T) is isomorphic to S¢ and the corresponding
Frobenius action F : S — S% is given by

F(O’l,...7(7d) = (Ud,O'h...,Ud,l).

The F-conjugacy classes of S? are in bijection with the conjugacy classes of S, in

the following way. Consider 7 = (71,...,74), 0 = (01,...,04) € S%. The element
ToF(7)~! is equal to (7'1017';1, 7'2027'1_1, . ,TdUde_jl). We have

d—1 d—1

H(TUF(T)’l)d_i =T74(0404-1- - 01)T; ' = Td(H O'd—i)Td_l.

i=0 i=0

We deduce therefore that o,0’ € S¢ are F-conjugated if and only if Hztol Od—i,

d-1 . .
[I;—g 0),_; are conjugated in S,,.

Consider a pair of F-stable maximal tori T, 7" with
gT'g ' =T, w=g 'F(g) € No(T') and w € Wq(T")
as above. There is an isomorphism of abelian groups
U, X (T — X.(T)
a— alg~(-)g)

such that ¥, (®(T")) = ©(T). In general, ¥, does not commute with the respective
Frobenius morphisms on X, (7T'), X.(T") and indeed we have

(3.2.1) U PV, =wo F: X, (T') — X.(T').
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3.2.2. The case of finite general linear groups. — For m € N, let GL,,, be the general
linear group over F,, with the canonical Fy-structure F' : GL,, — GL,,. Consider the
maximal torus of diagonal matrices T;, C GL,,. As mentioned before, in this case
We(Tm) = Sm and the F-action on Sy, is trivial.

Let ¢; € X, (T},) be the homomorphism

zz70 0 O
0 2 0 O

0 0 =2 O

& = Zj.

o O O o o

0 0 0 0 0 zn
The subset {e1,...,em} C Xi(T),) is a basis of the free abelian group X.(T;,), which
we denote by B(T,,). Notice that, for each i = 1,...,m, we have that F(g;) = ¢e;.
Moreover, for such a basis, we have that

O(Tr) = {e; F e |i#5€{L...,m}}

For h,j € {1,...,m}, put e, ; := e, — ;. We denote by ®*(T,,,) the set of positive
roots with respect to the Borel subgroup of upper triangular matrices, i.e.,
(I)+(Tm> = {Ei’j ‘ 1< j}

For any other F-stable maximal torus T C GL,,, fix g such that ¢7},,g~' = T and
the corresponding permutation w € Wg(Ty,) = S, as at the end of Section 3.2.1
above. Put B(T') == ¥, (B(Ty)).

Whenever the torus 7T is fixed and the context is clear we will denote by ¢; also
the element ¥, (g;) € B(T) and by ¢; ; the element U, (e; ;) € ®(T). We set @T(T) =
W, (0 (T).

Notice that, by Eq. (3.2.1), in the character group X,.(T") we have

F(ei) = qew(-

Consider now a € N’, put m = |a| == >,.; o; and consider GL, as a subgroup

of GL,,, through the block diagonal embedding. Fix an F-stable maximal torus 7" C

GL, C GL,,. The torus T is a maximal torus for GL, and GL,,. Consider then the
basis B(T') introduced before.

Remark 3.2.5. — For ¢ € I, let m; : GL, — GL,, the canonical projection. For a
maximal torus T' C GL,, denote by T; := 7;(T). We have inclusions
T ¢ [[7 ¢ I] GLa..
i€l il
As T is a maximal torus, we have thus an equality 7' = [[,.; Ti. For dimensional

reasons, we deduce that, for each ¢ € I, T; is a maximal torus of GL,,. From the
identity T' = [[,.;Ti, we therefore deduce that there is an isomorphism X,(T") =

EBieI X, (Tz)

iel
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We can choose g € GL, such that g7,,g~' = T. We thus deduce that, putting
B;(T) =B(T) N X.(T;), we obtain a partition

B(T) = -lgll Bi(T)

such that each B;(T) is a basis of X, (T;) and B;(T) is w-stable for every ¢ € I.

33 LLEVI SUBGROUPS AND PARABOLIC SUBGROUPS OF GENERAL LINEAR GROUPS

Recall that a parabolic subgroup P C G is a subgroup containing a Borel subgroup
and denote by Up C P its unipotent radical. A Levi factor of P is a reductive subgroup
L C P such that P = LUp. A Levi factor of a parabolic subgroup is called a Levi
subgroup of G.

Recall that, for any Levi subgroup L C G, there exists a maximal torus T' C G
such that 7' C L. Moreover, the Levi subgroup L can be described in terms of the
root systems ®(7T) as follows.

Consider the subset ®1,(T) C ®(T') defined as

O (T) ={c € ®(T)|Ker(e) 2 Z;},

where Z7 is the connected component containing the identity of the center Z; C L.
We have the following lemma, see [46, Lem. 8.4.2].

Lemma 3.3.1. — The subset ®1,(T) is a root subsystem of ®(T) and we have :
(1) Ce(2;) = L.

(2) 2% = Neca, () (Ker(e)?).
(3) L= TH56<I>L(T) Ue.

ExamerLe 3.3.2. — For G = GL,, Levi subgroups and parabolic subgroups can be
explicitly described as follows. For any ng,...,ns € N such that ng +--- +ns = n,
the subgroup Ly, ..., defined as

GL,. 0 0 0 ... 0

0 GL,., 0 0 0

0 0 GL, , 0 0
Lno ..... ns — 0

0 0 0 0 0 GLy,

is a Levi subgroup of G. We will denote the group Ly, .. », simply by

s

GL,, x -+ x GL,, € GL,,.
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0 Aeiln, 0 0 ... 0

0 0 Aealy., 0 ... O
7y = 0

0 0 0 0 0 Moy,

for Ag, ..., s € F;. Notice in particular that Z;, is connected. A parabolic subgroup P
containing GL,, x --- x GL,, is given by the upper block triangular matrices

GL,, * * ..k
0 GL,,_, * * *
0 0 GL,,, *
P= 0 *
: : . - . *
0 0 0 0 0 GLy,

It is not difficult to verify that, for any Levi subgroup L C GL,,, there exist ng,...,ns
such that ng +--- +ns =n and L is conjugated to

GLy, X +++ X GLy,..

Assume now that L is F-stable. In a way similar to what we said about F-stable
maximal tori in Example 3.2.3, we can show that there exist dy,...,d, € N and
mo, - .., m, such that L is conjugated by an element of GL,,(F,) to the group

(GLing)do X -+ X (GLp, ),
i.e., there is an F,-isomorphism
(L, F) 2 (GLpng)dg X -+ X (GLp, )d, -
In this case we have an isomorphism

(Z, F) = (Gm)ay X -+ X (G-

3.4. ADMISSIBLE SUBTORI OF GENERAL LINEAR GROUPS

For v € N', put |a| == ",.; a; and consider GL, as a subgroup of GLj,| via the
block diagonal embedding. Recall that I can be thought of as the set of vertices of a
star-shaped quiver. We introduce here the definition of the admissible subtori of GL,,.

Admissible subtori will play a significant role in this paper. For instance, they
appear in the classification of the irreducible characters of the finite group GL«(F)
(see Section 5.7).

They are also a key part of the proof of Theorem 4.1.2, which will be the main
technical result needed to study the cohomology of non-generic character stacks.
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DEermNirion 3.4.1. A subtorus S of GL, is said admissible if there exists a Levi
subgroup Ls € GLj4| such that Zp, = S.

Exampre 3.4.2. For any o € N/, there is an admissible subtorus Z, C GL,, given
by Zo = ZgL,,, € GLa, i.e., the elements of Z, are of the form (My,)icr, for X € FZ.

i

Remark 3.4.3. If |I| = 1, admissible subtori are the centers of the Levi subgroups
of GL,,. This latter type of tori has already appeared in [23, §4.2], where the authors
used them to count points of generic character stacks for Riemann surfaces over finite
fields.

As mentioned in the introduction, to generalize their results to the non-generic case
we will need to study, more generally, multiplicative quiver stacks over finite fields,
which will require a careful understanding of the case |I| > 1.

We have the following lemma (see [13, Prop. 3.4.6])

Lemma 3.4.4. — For an admissible S and a Levi subgroup Ls such that Zp, = S,
we have Cg,, (S) = Ls. In particular, the group Lg is unique.

Remark 3.4.5. — From Lemma 3.4.4 above we deduce that S is F-stable if and only
if Lg is F-stable.

Examrre 3.4.6. — Put |I| =1 and let S C GLy be the torus

s={(32) 1reF,}.
Notice that Cgr,, (S) = Tz, where To C GLg is the torus of diagonal matrices. However,

Zr, =Ty # 5. We deduce thus that the torus S is not admissible.

Consider an admissible subtorus S C GL, and the associated Levi subgroup Lg C
GLjq4|- The group Car, (S) is a Levi subgroup of GL,, (see [13, Prop. 3.4.7]), which we
will denote by Z; The group f:g is equal to LsNGL, as Car,,, (S)NGL, = Car, (5).
In particular, there exists a maximal torus T' C GL, such that S C T C Eg

Conversely, consider an F-stable Levi subgroup L C GLj, such that there exists
a maximal torus 7' C L N GL,. As Z;, C T, the center Z;, is an admissible subtorus
of GL,.

ExamreLe 3.4.7. Notice that even if two admissible tori S, S’ are different, we can
have Lg = Lg/. Consider for example S = Z,, and S’ defined as

S" = {(Nila,)ier | (Ni)ier € (FZ)I}-
In general, we have S # S’. However, for any o € N, for both tori we have
Ls = Ls = GLq.

In particular, it is not true in general that Z [ S.
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For each o € N’, denote by Z, the subset of F-stable admissible subtori of GLi,
and denote by Z the set defined as

2= |] Za.
aeNT

Exavrre 3.4.8. Consider I = {1,2,3,4} and a = (2,1,1,1) € N/. We have that
|| = 5. Consider for example the admissible subtori S7, .52, 55 C GL,, given by
$1={((A2)AAN) [ApeT,},
So={((30). hmX) | A e By},
and ng{((a\g),%é,n)|/\,u,'y,5,77€FZ}.
In this case, Lg, is GL5(Fq)-conjugated to GLs x GL; and

le = T2 X GL1 X GL1 X GLl - GLQ X GL1 X GL1 X GLl,

where T5 C GLg is the torus of diagonal matrices. Moreover, we have that Lg, is
GL5(F,)-conjugated to GLy x GL3 and f; = Z;;

Lastly, the Levi subgroup Lg, is the maximal torus of diagonal matrices 75 C GLs,
and f; = LAS/1 too.

For a multitype w = (d1, A1) ... (dr, A of size a, we denote by S,, € Z,, the torus
defined as

(Z|/\1\)d1 X X (Z\)\7,|)dr - GL(xy
where (Z|x,|)d, X" - - x(Z)a,|)d, is considered a subtorus of GL,, via the componentwise
block diagonal embedding. Denote by 3; = |A;| € N!, for each j = 1,...,r. For the
Levi subgroup L, C GLM defined as

Ly = (GLjg,)a, x -+ x (GLyg,|)a,

embedded block diagonally, we have Z; = S,, i.e., S, is admissible.

We will denote by L, the Levi subgroup of GL,, defined as L, :== L,NGL,. Notice
that the groups L, S, L, depend only on the semi-simplification w*® of w.

Remark 3.4.9. Let we Ty and dy,...,d, € Nand b,..., 3, € N with
W™ = tha, (wp, ) * -+ * ha, (wp,.)-
For each ¢ € I, consider the Levi subgroup
(GL(g,),)d, X -+ x (GLg,y,)d, S GLq,
embedded block diagonally. The Levi subgroup EZ is given by
Lo, = [[(GL(g))ar x -+ % (GLg,),)a, -

iel
From the description of the Levi subgroups of GL|, given in Example 3.3.2,
we deduce the following lemma.
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Lemma 3.4.10. For any F-stable admissible E € Z,,, there exists a unique semisim-
ple multitype, which we denote by [E], such that E is GLy(F,)-conjugated to Sigy.

Examere 3.4.11. — For any o € N, we have that
[Z4) = wa.

Let ~ be the equivalence relation on Z,, induced by the conjugation by GL(F)
and let 2 := 2/ ~ be the quotient set. The map Z, — T given by S — [S], induces
thus a bijection

2 =T,

Lastly, we give the following definition of levels for the admissible subtori.,

Derinition 3.4.12. — Given S € Z and V C N/, we say that S is of level V if [9] is
of level V' (see Definition 2.2.1).

Exampre 3.4.13. — Consider the tori Si,S5,S3 introduced in Example 3.4.8. The
torus Sy is the product Z(; 1,1,1) X Z(1,0,0,0) embedded componentwise block diagonally
into GL,,. The multitype [S1] is therefore the semisimple multitype

[S1] = (1, (1(1’1’1’1)))(1, (1(1’0’0’0))) = W(1,1,1,1) * W(1,0,0,0)-
Similarly, we have
[52] = W(1,0,1,0) * W(1,1,0,1)
and
[SS] = W(1,0,0,0) * W(1,0,0,0) * W(0,1,0,0) * W(0,0,1,0) * ¥“(0,0,0,1)-
Notice that for V.= {(1,1,1,1),(1,0,0,0)}, we have that S if of level V', while S, S3
are not.

3.5. REGULAR ELEMENTS AND MOBIUS FUNCTION FOR ADMISSIBLE TORI. In this para-
graph we give to Z the structure of a locally finite poset, with the ordering induced
by inclusion and we introduce the associated Mébius function

w:ZxZ—17Z

and we recall more generally some properties of the Mobius function of a locally finite
poset. The Mobius function p is one the main technical ingredient in the proof of our
Theorem 4.1.2.

Remark 3.5.1. — The Mobius function p had already been studied in [23, §4.2], in the
case of |I| = 1, where the authors used it to compute cohomology of generic character
stacks. In this case, the only values that are needed are the values u(Z,,.S), which
have already been computed in [22] (see Proposition 3.6.3 for more details).

However, to extend their result to the non-generic case in this article we needed
a better understanding of the values p(S,S’) for any admissible subtori S,S5" and
any I. The next paragraphs develop the necessary tools to obtain the description of
the Mobius function p that we will need in the proof of Theorem 4.1.2.
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3.5.1. Poset of F-stable admissible subtori. For any two elements S, S’ of Z,, we say
that S < §" if S C §’. Notice that Z, < S for any admissible S C GL,. For any
S € Z, we denote by S the subset of regular elements of S defined as

S8 :={seS|s¢gS forany S'< S, S €2}.

We have the following disjoint union

S — l_l (S/)rcg
5'<S
and so, taking F-fixed points,
(3.5.1) SE = 1] ((8")&)F.
S'<S

In particular, we have an equalit S| = S ((5')"%)". Notice that, if 5] =
Y, (wg, ) * -+ * g, (wg,), we have

and therefore we have
S| = Pis)(a).
3.5.2. Mobius functions of locally finite posets. — For a finite poset (X, <) denote by
px XXX — 7

its associated Mobius functions. Recall that px is defined by the following three
properties:

e px(z,x) =1 for each x € X.

e px(z,y) =0ifz L y.

« For each z < 2/, we have
(3.5.2) Z px(z,2") = —pux(z,2")

o< Sa’

The Mobius function has the following property.

Prorosition 3.5.2. — Given fi, fo : X — C such that
fil@) =Y fala'),
o'z

we have an equality

(3.5.3) fo(z) = > fil@)ux (', x).

' <z
Lastly, we recall the following standard lemma about Mobius functions.

Levma 3.5.3. — Let (X, <), (Y, <) be two locally finite posets and equip X x Y with
the ordering defined as (x,y) < (¢',y') if and only if x < &’ and y < y'. For the locally
finite poset (X x Y, <), we have

(3.5.4) pxxy ((x,9), (2, y") = px (2, 2"))py ((y,4'))-
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Proof. — If (xz,y) £ (2/,y'), both sides of Eq. (3.5.4) are 0, since in this case we have
x € o' or y £ y'. We can therefore assume that (z,y) < (2/,3’). By induction we can
assume that

pxy ((2,9), (2", y") = px (2, 2")py ((y,4"))
for all (x,y) < (¢”,y”) < (2/,y). From Eq. (3.5.2) we have therefore

(3.55)  pxxy((z,y)(@',y)) = - > px (2" )y (y,y")

()< (z",y")<(z',y")

:—( > owax(@a”) Y py(y ") +px(e) Y uy(y,y”))~

s <z! y<y' <y’ y<y' <y’

By Eq.(3.5.2), 32 < prey by (") = 0and 35 iy (y,9") = —py (y,9), and
therefore

oy (@,9) (@) = —px(@,2') D wy(y,y") = px(@, 2 )y (y,y). O

Yy <y’
For x € X, denote by [z,00]x C X the poset
[#,00] ={2' € X | 2’ > x}.
Notice that, for each 2’ € [z, 00]x, from Eq. (3.5.2), we deduce that we have:

(3.5.6) ,th((t,xl) = :U'[ac,oo]x(l'vx/)'

3.5.3. Mobius function for admissible subtori. — The ordering < endows the set Z with
the structure of a locally finite poset. We denote by

wl—,—):2Zx2—172
the associated Md&bius function.
Examrre 3.5.4. Let f1, fo : Z — C be the functions defined as
£1(8) = 18"] and  fo(S) = |(5™¥)"].

By Egs. (3.5.1) and (3.5.3), we have the following identity:

(3.5.7) [(S™5)F = > [(S)Fu(S',S) = Y Psi(q)u(s', S).
5'<8 S'<S
3.6. LLEVI SUBGROUPS AND GRAPIIS. In this paragraph, we will associate a finite

graph I's to each admissible subtorus S. This construction will be useful to under-
stand the Mobius function p : Z x Z — Z and to develop the combinatorial arguments
of Section 3.7, both of which will be key elements in our proof of Theorem 4.1.2 about
Log compatible functions.
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3.6.1. Notations on graphs. Let T be a finite graph, M its set of vertices, and set
m = |M|. We say that I" is of type K, if it is the complete graph associated to M,
i.e., each pair of distinct vertices is connected exactly by one edge. We say that I is
admissible if each of its connected components is of type K, for some d.

Remark 3.6.1. — Notice that the property of being admissible for a graph I' can be
stated in the following equivalent way.

For any two m,m’ € M, there is at most one edge of I joining m to m’ and,
if mq, mo, m3g € M are such that there is an edge of I' between m; and mo and an
edge of I' between my and mg, there is an edge of I' between m; and mg.

3.6.2. Admissible graphs and maximal tori. — Let now o € N' and m = |a| and fix
an F-stable maximal torus T' C GL, C GL,,.

Denote simply by B, B;, ®, &1 the sets B(T), B;(T),®(T),®*(T) and by o € S,
the permutation such that F'(e;) = ge,(;) for each ; € B, introduced in Section 3.2.2.
Recall that we have a decomposition

B=1]3B:
il
For any two admissible graphs I', I with set of vertices B and sets of edges Qr, Qv
respectively, we say that I' < TV if Qp D Qp-.

We denote by A(B,o) the poset of admissible and o-stable graph with set of
vertices B. Here o-stable means that I" has an edge between ¢; and ¢; if and only if
it has an edge between e,(;) and €, ;).

We denote by pus - (—, —) the associated Mobius function. Moreover, we will denote
the complete graph with vertices B by I, € A(B, o).

Remark 3.6.2. From Remark 3.6.1, we see that the poset A(B, o) is the the poset
of o-stable partitions of the set B with ordering given by the reversed inclusion, i.e.,
the fixed point set lattice considered in [22].

In the latter article, the authors computed certain values of the Moébius function
s, and in particular the values ps »(I'a,I”) for each I'". We will review this result
in Proposition 3.6.3.

We prefer to introduce this graph theoretic description, as in our opinion this can
ease the notations and give a more direct and visual understanding of the results of
this paragraph about the relationship between admissible graphs and admissible tori.

Fix now an admissible o-stable graph I" with set of vertices B. Notice that, as I’
is o-stable, o acts by permutation on the set of connected components of I'. Assume
that this action has r orbits of length di,...,d, respectively, which we denote by
01, ey Or-

For each 7 = 1,...,r, denote by BJF- C B the set of vertices contained in the
orbit O;. Notice that each B? is o-stable and there is an equality

B = _|_|193§.

Jj=
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For each j =1,...,r, choose a partition of Bg into d; subsets
R r
Bj =B U---UBjq,
such that:

. each Bih is given by the vertices of a connected component belonging to the
orbit Oj,

. we have J(Bah) = B£h+1 for each h = 1,...,d; (here we consider the indices
modulo d;).

For each j = 1,...,r, let 3; € N! be the element defined as
(Bj)i = |BL, NB
for i € I. We denote by wr € T the semisimple multitype defined as
wr = Ya, (wg, ) * - -+ x Ya, (wg,)-
The results of [22, Th. 4] imply the following proposition.
Prorosition 3.6.3. — For each T’ € A(B, o), we have
pas.o)(Ta, ) =C3L.

Denote now by I';; the restriction of I' to the set B?h. Notice that I';j is the
complete graph with vertices B]F',h, and so I' is totally determined by the subsets
{B! 1 }j=1,...r Notice, in addition, that for each j = 1,..., 7, we have 0% (B} ) = Bl .

We have the following lemma.

Lemma 3.6.4. There is an equivalence of posets
(3.6.1) [F, OO]A(E;’J) = H[Fj)l, OO}A(’B;“J,adJ')
j=1

and, for each T" > T', denoting by I, the restriction of T to Bjr’h, we have
(3.6.2) pa (00 = [ [ gy, ot (T, T50)-
j=1

Proof. — Notice indeed that, given admissible graphs I"; ; with vertices B;l which
are o%-stable, for each j = 1,...,r, there exist a unique o-stable and admissible
graph I'" with vertices B containing as subgraphs I'} ;,...,T". ; and such that T" > T..

Equation (3.6.2) is thus a consequence of Eq. (3.6.1) and Lemma 3.5.3. O

3.6.3. Admissible subtori and admissible graphs. — Fix now an admissible torus SCT.
Denote by Jg C ® the subset

Js={e€®|S CKer(e)}.
From Lemma 3.3.1 we deduce that we have

S= [ Ker(¢) and Lg=T H U..
e€Js e€Js

Moreover, the subgroup S is F-stable if and only if Jg is o-stable.
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We now associate the following graph I's to the admissible torus S:

. the set of vertices of I'g is B,
« I's has an edge between the vertices €; and ¢ if and only if g; ; € Jg N .

We denote by Qr be the set of edges of I's. The group S is F-stable if and only if I's
is o-stable.

Examrere 3.6.5. — Let I = {-} and T be the torus of diagonal matrices T C GLj,.
In this case, o is trivial. The graph I'r is thus the graph with no edges and m vertices,
while the graph 'z, = associated to ZgL,, is the complete graph with m vertices Kp,.

ExampLe 3.6.6. For any I and any a € N!| we have that 'z, =T,.
We can now state the following lemma, relating admissible graphs and subtori.

Lemva 3.6.7. — For any admissible torus S, the graph I's is admissible. Conversely,
for any o-stable admissible graph T' with set of vertices B, there is a unique F'-stable
admissible torus S C T such that ' =T.

Proof. — For an admissible subtorus S, we have that if €ij,€5,n € Jg then ;5 € Js.
From Remark 3.6.1 we deduce that I'g is admissible. Consider now an admissible I"
and the subset

Jr = {e;n € ® | there is an edge of I" which has vertices ¢;, 5 }.

From [13, Cor. 3.3.4], the subset Jr is a root subsystem and, from [46, Lem. 8.4.2],
we deduce that the torus

Sr = () Ker(e)
ecJr
is admissible and F'-stable with
(3.6.3) Ls, =T [] U-.
ecJr
It is not difficult to check that the graph associated to Sr is I'. O

Let S, S’ be two admissible subtori such that S O T,5" O T. From Lemma 3.6.7,
we deduce the following proposition

Prorosirion 3.6.8. — Given S,S8" C T, we have that S < S’ if and only if T's < T'g.
From Proposition 3.6.8, we deduce the following lemma.
Lemma 3.6.9. — For any S, S’ € Z such that S, S’ C T, we have an equality
pas,o) (s, L) = u(S,S").

Consider now an admissible graph T' € A(B,0) and the admissible F-stable
torus Sr associated to I'.

Prorosition 3.6.10. — With the notations introduced in Section 3.6.2, we have

[SF] = Wr.
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Fix now IV, T € A(B, o) such that I' < IT”, and denote by S = Sr and S’ = Sp.
We use the notations introduced before Lemma 3.6.4. We have S C S’. Assume that
the torus S is GL4(Fy) conjugated to [];_,(Zs,)a,-

The permutation o% : 3;1 — Bg’l determines an associated [F-stable subtorus
T; C GLg,, as explained in Sections 3.2.1 and 3.2.2. The admissible graphs F;‘,1
correspond to admissible tori SJ’- CT; CGLg,, foreach j=1,...,r.

From Lemma 3.6.9 and Lemma 3.6.4, we deduce the following proposition

Prorosition 3.6.11. — We have an equality
N AN o
n(s, 8" =1 mzs,.5) = [] sy,
j=1 j=1
where the last equality is a consequence of Proposition 3.6.3.

ExamprLe 3.6.12. Consider the set I = {1,2,3,4}, the dimension vector o =
(2,1,1,1) and the admissible tori Si,S3,55 € Z, of Example 3.4.8. Notice that
51,55, 53 are all contained in the maximal torus T' = Ty x G,,, X G,,, x G,,, where
T, C GLs is the maximal torus of diagonal matrices. More precisely, we have that
T = S3. With the notations just introduced, we have B = {e1,¢2,€3,4,€5}, 0 is the
identity and

By ={e1,e2}, Ba={es}, Bz={ea}, and By={e}.

The graph I's, associated to the torus S is

A N

€1 €3 €4 €5

\/

€2

The graph I's, associated to the torus S is

N

€2
The graph associated to Ss is
€1 €3 €4 €5

€2

Notice that I'g,,I's, <I's, and we have corresponding inclusions Si, Sy C S3.
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Examrre 3.6.13. Consider I = {1,2} and the dimension vector a = (2,2) € N/,
i.e., GL, = GLy x GLy and let T' C GL,, be the torus

TZTEXTEQGLQXGLQ,

where T, C GLs is the torus of Example 3.1.2. In this case, we have B = {e1,e2,23,4}
with

B1 ={e1,e2}, B2 ={e3,ea},
and o is the permutation o = (12)(34) € Ss. Let S C GLg be the admissible subtorus

S={((3 (52 1 AneF, ).

We have that S C T and the graph I'g is given by
€1 €3

€2 €4
Notice that I'g has two connected components which are both stabilized by o. With
the notations introduced before, we have therefore two orbits O, Oy with ‘Blfs =B,
and Bgs = By and d; = dy = 1. Denote by I's 1,I's 2 the restriction of I'g to By, B,
respectively.
Notice moreover that the associated elements (1, 82 are given by

ﬂl = (23())’ 62 = (072)
and, from Proposition 3.6.10 we have that
[S] = Wp, *Wg,-

The torus S is indeed Zg, x Zg, embedded block diagonally in GL,. Moreover, from
Proposition 3.6.11, we deduce that

(364) ,LL(S7 T) = :u"BhU(FS,lvFTE),U'ELG(FS,%FTE) = /L(Z%TE)Q?

where Zs = Zgr,,. Equation (3.6.4) can be checked directly from the definition of the
Moébius function p. We have

{Z/BI X Zgy, Zp, X T, Te X Zﬁz} = {SH € Za ‘ Zp, X Zg, < s" é T: x TE}'
From Eq. (3.5.2), we deduce that we have
1W(Zp, X Zp,, Zp, X Tc) = i(Zp, x Zg,, Tz x Zg,) = p(Z2,T;) = —1
and thus from Eq. (3.5.2) that we have
WS, To xT.) = —(—1—1+1)=1=pu(Z, T.)%

Consider now the admissible and o-stable graph I given by
€1 €3

<

€2 €4
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and denote by S’ = Srv. The torus S’ is given by
(3.6.5)

g 1 ax?—br —a+0b 1 ax?—bx —a+b ‘
\\z?—z \(a —b)z2? —ax +b2x?) 29—z \(a — b)zxd —az + ba?
a,b e E* }
In this case, the graph I has 2 connected components, which are swapped by o.
We have therefore a single orbit O; of length d; = 2 with

i ’
BY, ={e1,e3}, B, ={e2.e4}.

Notice that the associated dimension vector £} is 5] = (1, 1). Proposition 3.6.10 states
therefore that S’ is GL, (IF4)-conjugated to the torus

(Za1,1))2 € GLq,

which is also directly seen by the expression of S’ in Eq. (3.6.5). Notice that
o?=1d: By, — Bl
From Lemmas 3.6.4 and 3.6.9, we find therefore that

w8 T) = pyr 1aT10 1) = (Za), Zao) X Zo.)):

3.7. INCLUSION OF ADMISSIBLE sUBTORI. — Let v,v/ € T®. Fix a maximal torus T such

that S,» €T C GL,. Define the set P, .+ as
P, ={S€Z, |[S]=v,5< S}

In this paragraph we give a combinatorial description of P, . which will be used in
the proof of Theorem 4.1.2. Assume that

v ="1ba, (wp,) * - * g, (wg,) and v =g (ws)* - * g (wp).

Up to reordering the factors in the product v = H;:1 Ya; (wg,), we can assume
that there exists a strictly increasing sequence iy < --- < iy € {1,...,7} such that:

« (dj,B5) = (d1, 1) for j =1,... 11,

. (dy, B5) = (di,, Bs,) for all i,y < j <ip forp e {2,...,k},

o (di,, Bi,) # (di,, Bi,) for any p # s.
We have that iy = v((dy, 81)) and, for each h € {2,...,k}, we have that i, —ip_1 =
v((d;,, Bi,)). Let M, be the set of partitions of {1,...,¢} into r non-empty disjoint
subsets X1, ..., X, with the following properties:

. if h belongs to X;, then d;|d},,

. for every j =1,...,r, it holds Zhexj (d},/d;) By, = B;-
We will denote the element of M, ,, associated to the subsets Xi,...,X, by
(X1,...,X,). Consider now the group W defined as

Wy = Su(aiy 8i,0) X 7 X Suldiy Bi,))-
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The set M, . is endowed with an action of the group W, defined as follows. Consider
an element o = (01,...,0,) € W) and an element (X1,...,X,) € M, .. We put

T (X1 X)) = (Xos (1) Xora (11 Xera(irt1) -+ » X ())-
The group W/, acts freely on M, . We denote by M, ,, the quotient set M, . /W.
We will now define the following morphism
L

We denote by I the graph associated to S, with respect to the torus T. Let
{Bjr.’lh} j=1,..,t be the partition of the set B introduced in paragraph Section 3.6
h=1

for the graph I'V. Consider an F-stable admissible torus S C S, with [S] = v and the
corresponding o-stable graph I' < IV, i.e., Qr D Qr/. Let Oq,...,0O, be the r orbits
for the action of ¢ on the connected components of I" of length dy, ..., d, respectively
and assume to have fixed representatives I'y 1,...,I'; 1 for each of the orbits.

For each j = 1,...,r, there exists a subset X; C {1,...,¢} and, for each ¢ € Xj,
a subset Zy, C {1,...,d}}, such that I'; ; is the complete graph with vertices

Npgijp:ne

ZGX]‘ 2€Zy

The subsets X; do not depend on the choice of the representatives I'y 1,...,I", 1 and
form a partition of the set {1,...,t}. The partition (Xi,...,X,) belongs to M, .
Indeed, since the orbit O; has length d;, we must have that

(U UB)nl U B=2

LeX;j 2€2Z, LeX; z€2,

for any 0 < s <d; — 1 and

o5(L U BL)= U U B

LeX; 2€2Z, LeX; z€2,

Recall that O'(BZZ) = BEZH, where the index z of Bz; is considered modulo dj.
We deduce therefore that Z, is such that

(Z¢+s)NZs =2 mod d;
for each 0 < s < d; — 1 and
Zo+dj = Z; mod d;.
This implies that dj|d2 and that there exists ay € Z, such that
Zy={ar+djk | k=1,...,d,/d;}.

In particular, it holds that |Z,| = d}/d;, from which we deduce that

S g g,

d; /

tex; 7

We define then
T (S) = [(X1,..., X)),

where [(Xy,...,X,)] is the class of the element (X7, ...,X,) in the quotient M, .,-
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The morphism 7,/ is well-defined, i.e., does not depend on the choice of an order-
ing of the orbits Oy, ..., O, and it is surjective as we are taking the class [( X1, ..., X,)]
in the quotient M, .. for the action of W).

From the description of the subsets Z, given above, we deduce that, for each
[(X1,...,X,)], the fiber 7 L, ([(X1,..., X,)]) has cardinality

vV’

(3.7.1) (X0, XD = [T

4. 1LOG COMPATIBLE FUNCTIONS AND PLETHYSTIC IDENTITIES

In this Section, we recall the definition of a Log compatible family, first introduced
by Letellier [34] and we prove our main Theorem 4.1.2 about these families, which
will be the key tool to compute the E-series of non-generic character stacks.

We first introduce the following notation. Consider a family of rational functions
indexed by multitypes {F,,(t)}wer, € Q(¢). For any V C N/, we define the rational
function F, v (t) € Q(t) in the following way:

(4.0.1) Fay(®) =3 Fw(t)( ) P[S/](t)u(S’,Sw))

w(w)
w€Tq S'<Sw
S’ of level V

For V' = {a} we will use the notation Fj gen(t) = Fa {a}(t). From Proposition 3.6.3,
we have an equality

Fogen(t) = > Fo(f) (t =D Za, Su) = > Fa) (t —1)CO...

w€eTy w(w) w€eTy w(w>

4.1. PLETHYSM AND LOG COMPATIBILITY: MAIN RESULT. — We give the following defini-
tion of a Log compatible family {F, (¢)}uer, -

Dervition 4.1.1. — We say that {F,(t)}ueT, is Log compatible if for any o € N7,
w € T, and for every multitypes vq,...,v. and integers di,...,d, such that
g, (V1) * -+ % g, (1) = w, we have

ﬁ F,, (t%) = F,(t).

We have the following theorem:

Turorem 4.1.2. — For a Log compatible family {F,,(t) }wer, and any V C N!, we have
the following equality:
(4.1.1) Exp(z Fg,gen(t)yﬂ) =3 Fav(ty®

BeV aEeNT

Remark 4.1.3. — The notion of a Log compatible family and the definition of the
polynomials Fy, gen(t) had already been introduced in [34, §2.1.2] Letellier [34, Th. 2.2]
used these objects to show the case in which V = N’ of Theorem 4.1.2. However,
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Letellier’s proof does not seem to extend immediately to the case of any level V.
Notice that, for V = N, we have that

Fai(t) = 3 2ol (gresye)

To obtain the equality

Exp( > Fogen(t)y’) =

BeNT a€ENT weT,

Sreg |

the author of [34] uses in a key way two classical lemmas regarding plethystic opera-
tions, i.e., [34, Lem. 2.1] and [42, Lem. 22].

These two latter statements do not have an analog when we truncate the sum
inside the plethystic exponential Exp(z sev Fﬂ,gen(t)yﬂ) at a general V. For this
reason, we needed to study the combinatorial objects introduced in Section 2 and
Section 3. In particular, in the proof, we will need the following three main tools.

« We will use the ring of multitypes introduced in Section 2.3.1 and in particular
Lemma 2.3.4 to better understand the truncated exponentials Exp (> sevEp gen (t)y?).

« We use the results of Section 3.6.2 and in particular Proposition 3.6.11 to relate
the terms of the form C2 ---Cg appearing in the LHS of Eq. (4.1.1) to the terms of
the form (S, S,) appearing in the RHS of Eq. (4.1.1).

« We use the results of Section 3.7 to relate combinatorially the sums of the type

> S, Su)Psn(t)

S'<S,
S’ of level V

appearing in the RHS of Eq. (4.1.1) to the LHS of Eq. (4.1.1).
Proofof Theorem 4.1.2. We are going to give the proof through multiple steps.

Step I: rewriting the LHS of F'q. (4.1.1). We start by using the results of Section 2.3
concerning the ring of multitypes. In particular, we remark that there is a unique
morphism © of A\-rings
0:XK7P — Q1)
obtained by extending
O(wa) = Fa gen(t).
By Lemma 2.3.4, Eq. (4.1.1)) is thus equivalent to the following Identity

(4.1.2) > o) _ E,v(1).

veTsy w(y)
level V'
The RHS of Eq. (4.1.2) is given by

(113 v = ¥ 2O T Rq0us.s)

w€T, SCS,
level V

We are left with understanding the LHS of Eq. (4.1.2).
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Step I1: understanding the LHS of F'q. (4.1.2). Consider now v €T, dy,...,d, €Nsg
and B1,..., B, € NI such that
v =1aq, (wp,) * - xYa, (wg,)-
The value of ©(v)/w(v) is given by
1

wiv) 1

(2 Bl 1, 5,)

1 T
(4.1.4) Mj];[lzbdj(@(ﬂj)) = o)

wj Eng
r

wy =SB0 Y oy )

weTy w1 €Ty e, wr €T, =1
Pay (w1)*xha, (wr)=w

where the equality of (4.1.4) and (4.1.5) is a direct consequence of the Log compati-
bility of the family {F,(¢)}uer,-

Step I11: the function f, .. — Fix a multitype w € T, with w = (d}, A1) -+ (d}, A¢) for
multipartitions A1, ..., A; and its associated admissible torus S,, € GL,. Denote by
H, ., the set defined by

Hy,w = {(wl,...,wr) S T,Bl X -+ X Tﬂr

Yay (w1) * - * Yg, (wr) = w}
and by 0, : H, , — Z the function defined as

Ou((wr, ... wyp)) = H (Zg;, S, )-
j=1

Let M, s be the set introduced in Section 3.7. Consider the following function
fow : My wss — Hy
defined as:
fow((X1, ., X)) = (w1, .., wp),
where
w;i(d,A) = #{h € X; such that (d},/d;,A\n) = (d,\)}
for every (d,\) € N x PI.

We will now show that the function f, , is surjective and for each (w1, ...,w,), the
cardinality of the fiber is given by
_ w(d, A)!
bl = ] (.

anjanixpr L&A wn(d A

As done in Section 3.7 for the semisimple multitype v, for the multitype w =
(dy,A]) ... (d, A}) there exists a a strictly increasing sequence j; < --- < j. €
{1,...,t} such that:

o (d},N)) = (d}, A7) for j=1,..., 71,

o (df,N)) = (d] X)) for all jp_1 <j < jpforpe{2,....c}

. (d}p)x}p) #(d; N, )ifp#s.
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Recall that j,—jp—1 = w((d;-p, )\;p)) for every 1 < p < ¢, where we put jo = 0. To prove
the surjectivity of f,,,, fix (wi,...,w,) € H,, and define subsets X,,,...,Xu, C
{1,...,t} as

ij = I_l {h S {j@*lw"?jf}
=1

S W (@m) (5, 25,)) < B = et < Sy Y (wm) (5, 25,))

We have that (Xu,,...,Xw,) € Hyw and fo o (Xwys - Xo,)) = (wi,...,w,). With
a similar argument, we see that the cardinality of | f, ! (w1, ..., w,)| is the product, for
¢=1,...,cof the number of partitions of a set of cardinality w((d},, A},)) = je — je—1
into r sets of cardinality 1a, (w1)((d},, A},)), .., ¥a, (wr)((d},, N},)) respectively, i.e.,

LT (5, ;)
Fostorssenl =1l s i o (@, 3

(4.1.6)

= H w(d, A\)!
anjeixpr 1@ AN wn(d A

Step 1V: describing the summands inside the parenthesis of L'q. (4.1.5) for any w € T,

For any (w1,...,w,) € H, ., we have the following equality:

10 w(d, \)! w(w) IT=i [hex, (di/d)) .

(4.1.7) =
(@A wi(d, N we(d, ) w(w) - w(wy) -, d
As || X; ={1,...,t}, the right hand side of Eq. (4.1.7) is equal to
1
(4.1.8) w(w)

. r |1 X5
wleon) - wlor) T[T, %
For an element m = (X1, ..., X,) € M, .=, denote by d,,, = H;Zl dlj-Xj‘.
For each w € T,, we can thus rewrite the corresponding summand appearing in
the RHS of Eq. (4.1.5) as:

BORG s L ((wrew))

w(V) (W1seeeswr)EHy 0 w(wl) v ’w(wr)

Fu(t) P (t) ww)  u(frw(m))
(4.1.9) 7( > w(on )

w(v)w(w) ) w(wr) | firw(m))|

= LOBL) (5 5w lm))dn),

wwhww) A, S

me MVYWSS

where the last equality is a consequence of Egs. (4.1.6) to (4.1.8).

Step V: using the results of Section 3.7 to rewrite the second line of Eq. (4.1.9)

The set H,,, is endowed with the following action of /. We use the notations of
Section 3.7. An element o = (01,...,0,) € W) acts on (wy,...,w,) € Hy,, by

g- (wh s 7w7‘) = (w01(1)7 sy Woy (i) Woa (1) - - awok(r))'

JE.P — M., 2024, tome 11



COHOMOLOGY OF NON-GENERIC CHARACTER STACKS 1393

Notice that the function §, is W/, invariant and f, ., is W/, equivariant. The function
61/ o fl,7w . My’wss — Z

is therefore W), invariant and descends to a function M, .= — Z which we still denote
by 8, o fu .. Notice moreover that the quantity d,, is W/, invariant too and so d, is
well-defined for an element m € M, .

The second line of Eq. (4.1.9) is therefore equal to

(4110 BOBL(C S sty 2),
mem

For any m € M, .=, we have

roX e

dm|W,| dj ’ |X;]-1
L vl = d J .
w(v) H d; H j

j=1 j=1

By Eq. (3.7.1), we can thus rewrite the sum of Eq. (4.1.10) as
Fu(t) Py (1)

4111 Zwll) TVl 80 (Foo (T (5)))).

(4.111) o (S; (T (5))))

From Proposition 3.6.11, we see that ,(f, u (7 w=(S5))) = u(S,S,) and so, from
Eq. (4.1.9), we deduce that O(v)/w(v) is equal to

(4.1.12) Zw > (S, S.).

w€ETq Se Py’wss

Summing over the v € T% of level V, we have therefore:

Coeff,, (Exp(ﬁze‘:/ Fﬁ,gen(t)y6)> _ %T:SS SEZ;

of level V
F,(t)P,(t) F,(t)
= —l— S,S,) = Pog(t)u(S,S,)).
of leve(f 1% ' of level V'
The right hand side is equal to F, v (t) by Eq. (4.1.3). O

5 COMI’L'I‘ATION OF CONVOLUTION PRODUCT FOR PRODUCTS OF FINITE GENERAL

LINEAR GROUPS

In this section, we will use Theorem 4.1.2 to compute some invariants of certain
class functions of GL, (FF;). These results will be used to understand the cohomology
of multiplicative quiver stacks and character stacks for Riemann surfaces in Section 6.5
and Section 7.

We will start by reviewing some generalities about convolution product for the
class functions of a finite group. The finite groups that will interest us will be finite
reductive groups.
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In particular, consider the following situation. In this section, G is a reductive
group over F, with associated Frobenius F' : G — G. The finite group G is called
a finite reductive group. We will recall some generalities about the representation
theory of the group G in Section 5.2, Section 5.3. We follow the book [13].

We fix a prime £ such that (£, ¢) = 1 and an isomorphism Q, = C. We will identify
Q¢-vector spaces with C-vector spaces through this isomorphism in the following.

5.1. CONVOLUTION PRODUCT OF CLASS FUNCTIONS OF A FINITE GRouP. — Let H be a finite
group. We denote by C(H) the set of complex class functions, i.e., the functions
f : H — C which are constant on the conjugacy classes of H. We denote by 1 € C(H)
the constant function equal to 1. For f,g € C(H), we denote by (f,g) the quantity

1 N
Uy%=ﬁﬂ§:fme)

heH

Recall that a basis of C(H) is given by the irreducible characters of H. We will denote
the set of irreducible characters of H by H". The vector space C(H) can be endowed
with the following ring structure (C(H), x). Given two class functions f1, fo € C(H),
the convolution f; * f5 is the class function defined as

frxfalg) =Y filgh) fa(h71).
heH

Denote by C1(H) the set of conjugacy classes of H. For any O € Cl(H), we denote
by 1o € C(H) the characteristic function of O. For a central element n € H, we denote
by 1, the characteristic function 1y,,. Notice that for any class function f, there is
an equality

<f * 177717 1e> = .

Recall now that

(5.1.1) L= TIE?I) X.

x€EHY

We have therefore

fn) _ x(e)
(5.1.2) T _X§v<f*1nfl,x>m.

For any two class functions fi, fo : H — C and an irreducible character x € HV,
we have
(5.1.3) (o Food = (i) () L

x(e)
(see for example [27, Th. 2.13]). In particular, from Egs. (5.1.2) and (5.1.3), we deduce
the identity:

(5.1.4) J;;{n) = S 0 M) = S X(~1) x(e)

T & 2NN
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5.2. DEeLIGNE-Luszric INDUCTION. In this section, we review the definition of the
Deligne-Lusztig induction for finite reductive groups. This construction, which allows
to give a geometric description of the irreducible characters of finite reductive groups,
was first introduced in [11].

Consider an F-stable Levi subgroup L of G, a parabolic subgroup P having L as
Levi factor and denote by Up the unipotent radical of P. Recall that there is an
isomorphism

P/Up=L
and denote by 7y, : P — L the associated quotient map. In general P is not F-stable.
We can find an F-stable parabolic subgroup P O L if and only if e, = &¢.

Denote by £ the Lang map £ : G — G given by L(g) = g~ 'F(g). The variety
X1 =L YUp) has a left G¥-action and a right L¥-action by multiplication on the
left /right respectively. This action induces an action on the compactly supported étale
cohomology groups H! (X, Q,) and so endows the virtual vector space

H (X1,Qp) = @(-1)"He(X1, Q)
i>0
with the structure of a virtual G¥-representation-L¥". For an L% -representation M,
we define the Deligne-Lusztig induction Rf(M ) as the virtual G¥-representation
given by
Rg(M) =HX(X1,Q)) ®C[LF] M.
We will denote by Rg the induced linear map
RY : (L") — e(G").

Remark 5.2.1. — In the cases that will interest us in this article, i.e., when G is a
product of factors of the type (GL, )4, it will always be true that the functor RY
does not depend on the choice of the parabolic subgroup P 2 L (see for example [5,
Prop. 6.1.1]).

Consider now a split Levi subgroup L, i.e., such that e, = 5. In this case, we can
take an F-stable parabolic subgroup P O L. The variety X, is a Up-principal bundle
over the finite variety G¥' /UL and H} (X, Q,) is therefore concentrated in degree
2dim(Up), see the discussion before [13, Lem. 9.1.5] for more details.

If L is a split Levi subgroup, we have thus an equality

RE (M) =C[G" /U] ®¢pr) M
for every L¥-representation M. In the split case, we can give the following equivalent
F
description of this functor. For an L¥-representation M, denote by Inﬂf r (M) the nat-

ural lift to a P-representation through the quotient map 7. In [13, Prop.5.18 (1)],
the following lemma is shown :

Lemvia 5.2.2. — If L C G is a split F-stable Levi subgroup, we have an isomorphism
of functors:
R§ ~ Indgi (Inﬂfi).
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Lastly, we recall the following properties of Deligne-Lusztig induction.

Lemva 5.2.3. — For a reductive group G and a Levi subgroup L C G, we have:

(1) Given an F-stable Levi subgroup L' O L, there is an isomorphism of functors:
RS, (RE') = RY.

(2) Assume there exist reductive groups G1,Go and Levi subgroups Ly, Loy such
that G = G1 X Gy and L = Ly X Lo. For an Lf -representation My and an Lg -repre-
sentation Ms, there is a natural isomorphism

RY(My ® M,) = RYH(My) K RY?(My).

Proof. — The first point is shown in [13, Prop.9.1.8]. For the second point, we can
choose parabolic subgroups G; 2 P; O Ly and Gs O P> O Ly such that P, P, have
as Levi factor Ly, Lo respectively. The group P = P; X P, C G is thus a parabolic
subgroup having L as Levi factor and Up = Up, X Up,. We have therefore

“HUp) = L7H(Up,) x L7H(Up,)
and

HE(L7HUP),Qe) = HI (L7 (Up,), Qo) ® HE(L™(Up,), Qo)
as C[LY] ® C[L]-modules, from which we deduce that

RE (M1 ® M) = RY! (M) ® RY? (Ma). O

Remark 5.2.4. — Consider an F-stable Levi subgroup L’ O L and a linear character
0 : (L)Y — C*. By restriction, we can consider it as a character  : LY — C*. For any
f € @(L"), we have an identity RE (6f) = ORE (f) and therefore, by Lemma 5.2.3(1),
an equality RS (0f) = RS, (ORY (f)).

5.3. UNIPOTENT CHARACTERS. — Fix now an F-stable maximal torus 7' C G. We follow
the notations of [13, Ch.11].

Denote by W the Weyl group Wg(T') and by W the semi-direct group W x (F),
where (F') is the group generated by the finite order automorphism induced by F
on W. Denote by C(WF) the vector space of functions f : W — C constant on
F-conjugacy classes. Equivalently, a function f € C(WF) can be seen as a function
on the coset WF C W, invariant under W-conjugation. The vector space C(WF) is
endowed with the Hermitian product defined as

(f.9) Z flw

wGWF

for f,g € C(WF).

Examrere 5.3.1. — Let G = (GL, )4 and T be the torus of Example 3.2.4. In this case,
the morphism ¢ : €(S,) — C(WF) defined as ¢(f)(o1,...,04) = f(oq---01) is an
isomorphism. It is not difficult to see that the isomorphism 1 is an isometry too.
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In [13, Ch.11.6], it is shown how to associate to each x € (WV)¥ a function in
C(WF), which we denote by ¥. This association is isometric with respect to the
natural Hermitian products on both sides. The elements {X},cwv)r form moreover
a basis of C(WF).

Remark 5.3.2. — Consider the group G and the torus T' of Example 5.3.1 above.
An irreducible character y € WV is determined by partitions A',...,\% € P,, such
that x = XAI X.. -X)@‘d. The character x is F-stable if and only if A = - = X\ = ),
so that (WVY)¥ is in bijection with P,,.

For A € P, consider the associated function (x*)¥4 € C(WF). It is possible to
check that ¢ =1((x*)¥d) = x* € €(S,,).

In [13, Ch.11.6] for f € C(WF), a class function Ry : GI' — C is defined as

(5.3.1) Ry = ‘71” S F(w)RE, (1).
weW

In loc. cit., it shown that the map f — R; induces an isometry C(WF) — C(GF).
In particular, the elements {R5},cwvyr have norm 1 and are pairwise orthogonal
in C(GT).

Consider now an F-stable Levi subgroup L O T and the corresponding Weyl
group Wy, == W (T) which is an F-stable subgroup of W. Define the induction
map Indyy 7 : QWL F) — C(WF) as

A () = —— Y fhwER)).

Wl hewr,
h=lwF(h)ewy

In [13, Prop. 11.6.6] the following lemma is shown.
Levmma 5.3.3. — For any f € C(WLF), we have:
G _
(532) RL (Rf) - Rlnd%fF(f)'

Let G = (GLy)q and T be the torus considered above. In [13, Ch. 11.7], the follow-
ing lemma is shown.

Lemma 5.3.4. For each x € (WY)¥', the class function Rg is an irreducible char-
acter of (GL,)Y.

The irreducible characters of this form are called unipotent characters. In par-
ticular, for every A € P,, there is a corresponding irreducible character R4, €
XX\

C((GL,)E), which we will denote by R,.

From Lemma 5.2.3(2), we deduce that Lemma 5.3.4 is true more generally for any
group G of the form (GLy,)a, X -+ X (GLy, )4, . In this case, the unipotent characters
are in bijection with the multipartitions A € P,,, x --- x P, and we denote by Rx
the associated irreducible unipotent character.

JEP — M., 2024, lome 11



1328 T. ScoeNamiGLIO

Consider now a group G = (GLy, )a, X -+ X (GLy,.)q,. An argument similar to that
at the end of Example 3.3.2 shows that all F-stable Levi subgroups are isomorphic
to a group of the form (GLyy)a; X --+ X (GLp, )a,. From Eq. (5.3.2) we deduce the
following proposition.

Prorosition 5.3.5. — Let G = (GLy,)a, X -+ X (GLy, )a. and L C G an F-stable
Levi subgroup such that

(L, F) = (GLyy gy % -+ % (GLing )ay -

For any pu € Py X+ x Py, the character R%(Ru) belongs to the vector space spanned
by the unipotent characters of G¥'.

Lastly, consider an F-stable Levi subgroup L C G, a class function Ry € C(LF)
for f € @WLF) and a linear character 6 : L¥ — C*. Fix a central element v € GF'.
Notice that v € LT too. The Mackey formula [13, Prop. 10.1.2] implies the following
proposition.

Prorosition 5.3.6. We have an equality:
(5.3.3) RE(0Rs)(v) = RE (ORs)(e)0(7)-
5.4. CHARACTERS OF TORI AND GRAPHS. — Consider the group GL, and fix an F-stable

maximal torus T C GL,. We follow the notations of Section 3.6.

Recall that we have the dual root system ®¥ C Y, (T') which is endowed with a
canonical bijection ® <> ®V and that, for each h # j € {1,...,m}, we denote by 5,\:’j
the element associated to ej ; through this bijection.

Consider now a character § : T — C*. In this paragraph, we show how to associate
an admissible graph I'g with vertices B to the character 6.

In [13, Prop. 11.7.1], it is shown that there exists a canonical short exact sequence

1 —Y.(T) — Y (T) —TF — 1.

In particular, the character # : TF — C* induces by restriction a morphism 0
Y.(T) — C*. The graph T'y is defined as follows. The set of the vertices of I'y is
B = {e1,...,6m} and, for each h > j, there is an edge between ¢, and ¢, if and
only if

e ; € Ker(6).

From Remark 3.6.1, we deduce the following lemma.
Lemma 5.4.1. For any 0 : TT — C*, the graph Ty is admissible.

In particular, from Lemma 3.6.7, there exists a unique admissible subtorus Sy C
GL, such that I'g, = I'y.

We will denote by Ly = Ccr,,,, (Sp) and by Z; = Ly N GL,. The Levi subgroup Ly
is the connected centralizer of 6 in GL4|, defined in [11, Def.5.19] and Z; is the
connected centralizer of § in GL,.
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Examrre 5.4.2. Consider the subset I = {1,2,3,4}, the dimension vector o =
(2,1,1,1) and the torus T of diagonal matrices of Example 3.6.12. Notice that

7 ={((22):70.m) | Ay, € Fy b
Consider (81, 82) € Hom(F;, C*)? and let
0p,.5, : TH — C*
be defined as

08,85 (A, 1575 6,m) = Bi(Aydn)Ba (i)
If B # B2, the graph Ty, , is

A N

€1 €3 €4 €5

\/

€2
and the admissible torus Sp, , is therefore the torus S; of Example 3.4.8.
If 1 = B2, the graph I'p, , is

A N

€1 €3 €4 €5

| //J

€2

i.e., the complete graph with 5 vertices and the admissible torus Sy, , is thus Z,.
From [11, Prop. 5.11], we deduce the following proposition.

Prorosition 5.4.3. — For any 0 : TF — C*, the character 8 can be extended to a
character 6 : LY — C*.

JS CIIARACTERS OF TORI AND LEVI SUBGROUPS OF THE FINITE GENERAL LINEAR GROUPS

5.5.1. Characters of Levi subgroups. — Consider now G = GL,, an admissible
torus S, the associated Levi subgroups Ls = Cqr,,, (5) € GL|4 and Ls = LsNGL,.
Let T be an F-stable maximal torus T C GL,, such that Z;; OTDOS.

We use the notations introduced in Section 3.6.3, Section 5.4 for the graphs asso-
ciated to T, 5,0 in this situation.

Consider now a character 6 : LY — C*. By restriction, we obtain a character
6 : TF — C*, from which we define an associated admissible torus Sg and the corre-
sponding Levi subgroups Ly, Z;, as in Section 5.4. In general, we have that Sy < 5,
i.e., Ly O Lg (or equivalently 'y < I's). In this case, 'y = I'g if and only if Z; = E;
As recalled in Proposition 5.4.3, the character 6 can be extended to the connected cen-
tralizer 6 : Lg — C*. Since Ly 2O z/;, in particular, # can be extended to a character
0: Ly — C*.
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Conversely, for each character 6 : T¥ — C* such that Ly O Lg (i.e., Iy < I's),
the character # can be first extended to 6 : Lg — C* and then restricted to obtain a
linear character 6 : LE — C* and 0 : IT;F — C*.

We obtain therefore the following correspondence.

Prorosition 5.5.1. — There are bijections:
Hom(LE,C*) «— {# € Hom(T* ,C*) | Ty < T's}
{0 € Hom(Lg",C*) | Ty < Ts}.
Lastly, we give the following definition of a reduced character.

Derinition 5.5.2. — Given an F-stable Levi subgroup L C GL, and a character
6 : LY — C*, we say that 6 is reduced if there exists an admissible F-stable subtorus
S C GL, and an F-stable subtorus 7" 2 S such that

. L=Lg,

« for the connected centralizer Ly defined from T', we have E; = i}

5.5.2. Reduced characters and connected centralizers. — Let now G=GL,, (i.e., |[I|=1)
and consider an F-stable Levi subgroup L C GL,, and a linear character 6 : LY — C*.
The Levi subgroup L contains an F-stable maximal torus 7'. From 6, T, we determine
the connected centralizer Ly O L, as defined above. In this case, the character 0 is
reduced if Ly = L.

Remark 5.5.3. While the connected centralizer Ly does depend on the choice of
the torus 7', from [11, Prop. 5.11(ii) & Prop. 5.20] we deduce that for any two F-stable
maximal tori 7,7" C L and the corresponding connected centralizers Lg, Ly, there
exists an element g € GL,,(F,) such that gLgg~! = L},

In particular, the property of being reduced does not depend on the choice of the
maximal torus 7.

We will now describe the connected centralizers Ly for certain Levi subgroups
L C GL,, and certain linear characters # : LT — C*. This description is going to
be useful both for recalling the construction of irreducible characters of GL,, (F,) in
Section 5.6 and for the proof of Lemma 6.6.3, which is the key technical point to prove
our main result about multiplicative quiver stacks over IF;, Theorem 6.5.1.

For any two positive integers 7, d such that r|d, the norm map NIF:d JE ]F;d — For

induces by precomposition an injective homomorphism
[y q = Hom(Fy,,C*) — Hom(F;d, Cr).
We denote by I' the inductive limit via these maps
I:= li_ngHom(F;d, C*).

Notice that, for any n > 1, we can view Hom(F}.,C*) as a subgroup of I' through
the universal maps of the limit. The Frobenius morphism acts by precomposition on
cach term Hom(F7,,C*) (i.e., F(y) = v o F) and so defines a morphism F : I' — T.
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Consider the Levi subgroup
L = (GLp,)a, x -+ x (GLy, )a,

with ny,...,n., d1,...,d, positive integers such that dyn; +---+d,n, =n and let T
be the maximal torus

(Tnl)dl Ko X (an)dr'

The group L is isomorphic to GL,, (Fga)x---xGL,, (Fga, ). A character 6 : LF »C*
corresponds thus to an element (64,...,6,) € Hom(IFZd1 ,C*) x v X Hom(deT,C*)
such that

O(My,..., M,) =[] 0;(det(M;))
j=1
with Mj € GLnj (quj).

Lemva 5.5.4. The character 0 is reduced if and only if the F-orbits of 01, ...,0,
inside I' have length d1,...,d, respectively and are pairwise disjoint.

Proof. — Notice that, for any h € {1,...,n} there exist unique i, € {1,...,r} and
Jn € {1,...,d;, } such that

in—1 in
> ding <h <) den,
s=1 s=1
in—1 in—1
and Z dsns +mn;, (jn—1) <h < Z dsns + g, Jh-
s=1 s=1

For hy,hy € {1,...,n}, we have

0(c), p,) =1 ifandonlyif 07" =07
as elements of I', from which we deduce the lemma above. O

Consider now two F-stable Levi subgroups L € GL, and L’ C GL,  and the
Levi subgroup M = L x L' C GL,, embedded block diagonally, where m = n + n'.
Assume that L = (GLgp,)a, X -+ X (GLy,)q, and L' = (GLy)a; % -+ X (GLy2 )ar,
and consider two reduced characters  : L¥' — C* and ¢’ : (L')f — C* corresponding
to (01,...,6.),(01,...,0.) where 6, € Hom(]FZdi,C*),G; € Hom(F:dQ_,C*) for i =

1,...,7,7=1,...,s. Consider the character
y=0x0: M — C*.

Its connected centralizer M, admits the following description. For ¢ € {1,...,7},
consider the subset J; C {1,...,s} defined as

Ji={je{l,...,s} | d; = d; and the F-orbits inside I of 6;,0]

J
have nonempty intersection}.
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We have that either J; = & or J; = {j;} for an element j; € {1,..., s}, since the char-
acters 6,0’ are both reduced. Denote by I’ C {1,...,r} the subset I' := {i | J; = &}
and by J' C {1,...,s} the subset J' = {1,...,s} N i_; J;.

In a similar way to the one used to prove Lemma 5.5.4, we see that any connected
centralizer M, is GL,,(IF,)-conjugated to the Levi subgroup

M, = [[GL)a [T (GLn)a ] (GLn 45 )i
el’ jeJ’ ie(I’)e
Through this conjugation, the character « corresponds to the character : (MA'Y)F —C*
associated to ((0)ier, (0}) e, (0i)ie(r)e)-

5.6. IRREDUCIBLE CHARACTERS OF FINITE GENERAL LINEAR GROUP. — In this paragraph,
we quickly recall how to build the character table of the groups GL (F,). We start
from the following lemma, which will also be needed later. Its proof is a consequence
of [13, Lem. 11.4.3 & Lem. 11.4.4] and [36, Th. §].

Lemma 5.6.1. Consider G = GL, an F-stable Levi subgroup L C G and two
characters Ry, , Ry, € C(LY) with 1,02 € C(WLF). Let 6 : L¥ — C* be a reduced
character. We have

(RE(0Ry,), RE (0Ry,))Gr = (Roy, Ry e
Notice in particular that if o1 = @ = ¢ with ¢ € (W))F, Lemma 5.3.4 implies
(R (ORy), RE (OR;)) = (Ry, Ry) = 1.
In particular, the character Rf(@R@) is a virtual irreducible character, i.e., an irre-

ducible character up to a sign.
From these remarks, in [37, Th. 3.2], the following theorem is shown.

Tueorem 5.6.2. — For an irreducible character x € GLo(Fq)Y, we have
X = eceL RE (0R;),

where L is an F-stable Levi subgroup, ¢ € (W) and 6 : LY — C* is a reduced
character.

Two characters x1, X2 with associated data (L1,01,¢1) and (La, 02, ¢2) are equal if
and only if the triples (L1, 601,¢1), (L2, 82, p2) are GLo(Fy)-conjugated.

For an irreducible character x with associated datum (L, 6, ¢), we will call the pair
(L,0) the semisimple part of x. This is well-defined up to GL4 (F,)-conjugacy.

Remark 5.6.3. — Let G = GL,, and consider now an F-stable Levi subgroup L,
a character v : L — C* (not necessarily reduced) and a unipotent irreducible char-
acter Ry for ¢ € (W))*.

Let L. be a connected centralizer of vy. By Remark 5.2.4, we have an equality

Rf(yR;) = R (vR["(Ry)).
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Notice that from Proposition 5.3.5, we have that Ré”(RJ) belongs to the vec-
tor space spanned by the unipotent characters of L.. We deduce thus the following

proposition.

Prorosition 5.6.4. — For G = GL,, any F-stable Levi subgroup L C G, any ~ :
LY — C* and any ¢ € (WY)F, the character R%(’yRJ) belongs to the vector space
spanned by the irreducible characters of GLy,(Fq) with semisimple part (L.,7).

From Proposition 5.3.6 we deduce in particular the following proposition:

Prorosition 5.6.5. — Given x € GLY(F,) with x = E(;ELRE;(QRJ) and a central
element n = (Nilw,)icr, we have
x(1)
= 0(n).
x(e)
5.7. NPE OF AN IRREDUCIBLE CHARACTER. Let x € GL,(F,)" with associated datum

(L,0,¢). Up to GL,(F,)-conjugacy, L is equal to (GL,,)a, X -+ X (GLy,)q, and
p=Rxfor A=(N\1,...,\) € Py, x---x P, a multipartition. Up to reordering, the
(d;, \i)s define a type

wy = (di, A1) ... (dp, Ar) € Ty,

which is called the type of the irreducible character .

Examere 5.7.1. Consider a partition g = (u1,. .., un) € P, and the associated split
Levi subgroup L, = GL,, x GL,, x --- x GL,, C GL,. For each reduced character
0 : L] — C*, the type of the character RgM (0) is (1, (p1)) - (1, (1n))-

In a similar way, for any finite set I and any a € N, to each irreducible character
x € GL4(Fy)Y, we can associate a multitype w, € T, in the following way.

Let x = EGLaeLR%L" (Rz8), where 0 : LY — C* is a reduced character and R is
a unipotent character of L with ¢ € (W)/)¥". Consider an F-stable torus T C L and
the restricted character § : T — C*. As explained in Section 5.4, this determines a
Levi subgroup Ly C GL|,| with admissible center Sp C T and such that LyNGL, = L,
since 6 is reduced. Consider the semisimple multitype [Sg] = (d1, (1%1)) ... (d,, (1°7)).
As in the case of GL,,(F,), the character ¢ determines multipartition Aq,..., A, € Pl
such that |[A;| = 8;. Up to reordering, the (d;, A;)s define a multitype

Wy = (dl, )\1) e (dr, )\T)
For w € Ty and x € GL,(F,)Y, we will use the notation x ~ w if w, = w.
Examrere 5.7.2. — Let I = {1,2,3,4} and o = (2,1,1,1). Let T C GL3 be the

F-stable torus of diagonal matrices, consider 3 # v € Hom(F;, C*) and the associated
character (3,v) : T¥ — C*. Let x be the character xy € GL,(F,)"

x = RZ((B,7)) X+ o det Xy o det Ky o det .
Let f1 = (1,1,1,1) and B2 = (1,0,0,0). The associated multitype is
wy = (1, (B1))(1, (B2))-
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Remark 5.7.3. Given w € T,, consider an irreducible character x € GL, (Fy)Y of
type w. Fix S € Z, such that [S] = w*® (for instance S = S,,). We can assume then
that

GL,
X = EFS&‘GLQRE; (QRg)

with 0 : E;F — C* such that Sp = S and Rz a unipotent character of IT;F. Notice
that for any v : Lg¥ — C* such that S, = S, the character €Q€GLQR%‘* (YRy) is
irreducible and of type w.

The map from {7 : Lg" — C* | S, =5} to {x € GLy(Fq)" of multitype w} which
sends 7 to e—eaL, R%“ (vYRp) is surjective and its fibers have cardinality w(w), see

for example [34, Proof of Th.2.2] for the analogous statement for conjugacy classes
of GLq(Fy).

Recall that the value x(e)/|GLq4(F,)| for x € GLo(F,)" depends only on the mul-
titype of x. More precisely, for a partition A € P, let Hy(t) be the hook polynomial

Hy(t) =[] (1 = ")
SEA
For a multipartition A = (A);e; € P, we define Hx(t) = [[,c; Hxi(t). Given a
multitype w = (d1, A1) ... (dy, A;-), define HY (t) as
_1)f(w)
(5.7.1) HY(t) = = a,v,mrn(, () ) ,
g\t — 1—[;:1 H)\j (tdj)

where, if |A1| = B1,..., || = Br, we set
T

f@)=>"18] and n(w) = Zdjn(%’)

Jj=1

We have the following proposition (see [38, IV, 6.7]).

Prorosition 5.7.4. — For any x € GL4(F,)Y, we have:
x(e) %
(5.7.2) ———— =HY (q).
|GLa(Fy)] x
5.8. MuvrripLicATIVE PARAMETERS. — Given an element = (7;);cs € (IF;;)I and § €NY,
we define
776 — H ,'737
iel

We denote by H,, the subset of N’ defined as
3, = {5 € N | o =1}

and, for any o € N, we denote by H,, o the intersection H, o := Hy, N Néa. For an
admissible torus S € Z,, we say that S is of level 7 if it is of level 3, 4.
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Fix now a € NI, We still denote by n the central element n := (1;1,,) € GL4(F,).
Assume now to have fixed, for each S € Z,,, an F-stable maximal torus GL, 2 Tg 2 S
in such a way that if S <S’ then Ts =Ts/. Define then the functions gy, f, : Zo —=C as

ga(S) =" > 0n) and fy(S):= Y 0(n).

0:TE —»C~ 0:TE —»C~
F9 :FS FS SFS

Understanding the functions f,, g, is a key part of the proof of Theorem 5.9.3, which
is the main technical result needed to prove Theorem 7.2.9. By Eq. (3.5.3), we have
(5.8.1) gn(S) = Z (', 8) fn(S").
5/'<8
Notice that by the bijection of Proposition 5.5.1, for each S € Z,, we have
f(S) =Y 0(n).
0:LE—C*

Fix now S with associated semisimple multitype [S] = (di,51)...(d:, Br), where
Bi,..., B € NI Notice that there exists h € GL,(F,) such that

r

hSh_l = H(Z/BJ )dja

j=1
and so hLsh™ = [[(GLg, )a,-

j=1
In particular, a character 6 : Lg — C*, through the conjugation by h, corresponds to
an element (61,...,6,) € Hom(F7, ,C*) x --- x Hom(Fy,, ,C") such that

O(Ml, ey Mr) = f[ Gj(det(MJ))
j=1

with M; € GLjg,|(F 4;). As the element 1) € GLq (F) is central, we have the following
equality

(5-8.2) 6(n) = [T 6:(0™).
j=1

In particular, Eq.(5.8.2) implies that f,(S) # 0 if and only if n% = 1 for each
j=1,...,r ie, if and only if S is of level 7. From Eq. (5.8.1), we therefore deduce
that, for each S € Z,, we have

(583)  gy(S)= Y [Hom(L§.,C)u(S',S)= > Psy(@u(s',9).

S'<S S'<S
of level n of level n

5.9. Duar Lo compaTiBLITY
Consider a family of class functions {c, € €(GL.(F,))}.

Derinition 5.9.1. — The family {c,}aenr is said to be dual Log compatible if the
product (cq, x) depends only on the multitype of x and the value of {c,, x) for x ~ w is
of the form C,,(q) where {C,(t) € Q(t)}wer, is a family of rational functions such that
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forany dq,...,d, € Nandw, € Tg,,...,w, € Tg, such that g, (w1)*- - -+, (wr) = w,
it holds

(5.9.1) Co, (1) - C, (1) H Hy (t%) = Co(t)HY (1)

Jj=1

i.e., the family {C,,(t)HY (t)}wer, is Log compatible.

For each w € T, denote by C,,(t) := Cy,(t)HY (t). The family {C,, }wet, is therefore
Log compatible. For each v € N and for each 1 € (F})’, we will denote by Cq (1)
the polynomial 6'%%“! (t) introduced in Eq. (4.0.1).

ExamprLe 5.9.2. Let I ={-} and, for any n € N, let f,, : GL,,(F,;) — C be the class
function
fn(h) = #{(z,y) € GL,(Fy) x GL,(F,) | [x,y] = h}

for h € GL,,(F,). For any x € GL,,(F,)" of type w, it holds (f,, x) = 1/H_(g). More
generally, for any finite group G and any irreducible character Y € GV we have

(5.9.2) > x([ab]) = 161

(a,b)eG? X(l)

This equality is obtained by applying Schur’s lemma in a classical way as explained in
[25, §2.3]. Notice that, from the identity (f,,x) = 1/HY(q), we immediately deduce
that the family {f,}nen is dual Log compatible and, more precisely, for each w, the
associated function F,(t) is equal to 1.

The notion of dual Log compatible families will be one of the key elements to show
Theorem 7.2.9 about E-series of non-generic character stacks. Their importance comes
from the following theorem.

TaroreM 5.9.3. For any dual Log compatible family {co}oent and any n € (F;)I,
there is an equality

(5.9.3) C% = Coeff, (Exp (BEZ}; 5ﬂ’gen<q)y6)>

Proof. — By Theorem 4.1.2 and the Log compatibility of the family {C,,(t)}oeT,, to
show Eq. (5.9.3) it is enough to show that for any 1 € (F)’, we have

Ca (7’) _
m = Ca,n (Q)

By Eq. (5.1.4), we deduce the following equality

0047(77) - c X(Uﬁl) X(e)
(5.9.4) CLoF)] ~ XEG%;FW< s X) x(e) |GLo(F,)|
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Rearranging the sum of the RHS of Eq.(5.9.4) in terms of the multitypes of the
characters, we have:

x(n~! x(n™h)
(5.9.5) Z Z <CavX> x(e) Z C ( Z x(e) )

w€ETa xEGL4 ( w€Taq XEGL4 (Fq)Y
x~w X~w

By Proposition 5.6.5 and the description of the irreducible characters of GLy (F,) given
in Section 5.6, we can rewrite the RHS of Eq. (5.9.5) as follows, using the notations
of Section 5.8:

ORI SRTUR) B SEC () SR RITHERR)

w
wET, 0:Ts,, —C* wETq 5'<S.,
(596) I'g= l—‘SW of level 7]’1
= Ooz,n (Q),
where the equality at the middle is a consequence of Eq. (5.8.3) and the last equality
is a consequence of the fact that 3(, o, = I, -1 4. O

Revark 5.9.4. — For B € N and 7 € (F;)I, we say that 7 is generic with respect
to B if H, 5 = {B}.

For any 3, if ¢ is sufficiently big, there exists an element 7 of (JF;)I generic with
respect to it. From Eq. (5.9.3), we deduce that, if n is generic with respect to 3,
we have

(5.9.7) (% = Cp gen(q)-

In particular, for generic central elements, the quantity cg(n)/|GLg(F4)| is given by a
rational function in ¢ which does not depend on the choice of the generic n but only
on the dimension vector 5.

Fix now o € N/. Assume that ¢ is sufficiently big and for any 0 < 3 < a, choose
Ng.gen € (F7)! generic with respect to 5. Equation (5.9.3) and Eq. (5.9.7) give therefore
a way to express the multiplicity ¢ (n)/|GLqa(F,)| for any central element 7 € (F})
in terms of the analogous values for the generic parameters 7 gen.

The notion of dual Log compatibility is well behaved with respect to convolution,
as explained by the following lemma.

Levmva 5.9.5. — Let {fataent, {fh aent be two families of dual Log compatible class
functions. The family {ko}aent, defined as ko = (fo * f)/q>=ict o} is dual Log com-
patible.

Proof. — Let F,(t),F., ,(t) be the polynomials such that (fo,x) = F.(q) and
(fl.x) = Fl(q) for every x € GL4(F,)" of multitype w € T,. By Eq. (5.1.3), we see
that

Fu(@)Fl(q

(kay x) = %
HY(q)q?ier i
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Fix di,...,d, € Nand wy € Tg,,...,w, € Tg, such that g, (w1) * - - * g, (wy) = w.
To check Eq. (5.9.1) for the functions k,, we need to verify that

r d; / d; r !
H ij(t )FWJ(t ) . HHz‘(tdj) - M
HY () e BT LT (1) ie o

(5.9.8) HY(t).

j=1 =

Since the families {fo }aenr, {5 taent are dual Log compatible, this is equivalent to
verify the equality

T HY (t4)\? 1 ier o
(5'9‘9) (Hj_;_lv J( )> = T > E;E (8,)2°
o (t) Hj:l t2-i=1% 22ie1(Pj);
which is a direct consequence of Eq. (5.7.1). O
Remark 5.9.6. — From Lemma 5.9.5 above and Example 5.9.2, we deduce that for

any g > 1, the family of class function {f¢ : GL,(F,;) — C}, where

#{(55171117 e 7xg7yg) | Hgfl[‘r“y’b] = h}
g [ 1=
fah) = (g1

is dual Log compatible. In [25, §2.3], the authors prove by a direct computation
that (f9,x) = (|GLn(]Fq)\/)((1))2‘(]_17 from which it is possible to check dual Log
compatibility directly from Eq. (5.9.1).

6. MULTIPLICATIVE QUIVER STACKS FOR STAR-SHAPED QUIVERS AND

CHARACTER STACKS FOR BIE,\’IANN SURFACES

In this chapter, we will apply the results of Theorem 5.9.3 to the count of points
over finite fields of multiplicative quiver stacks and character stacks for Riemann
surfaces. We start by recalling the definitions and the constructions of these objects.

6.1. CHARACTER sTACKS FOR RIEMANN surraces. — Fix integers g,k € N, a Riemann
surface ¥ of genus g and a divisor D = {di,...,dr} C 3. In this paragraph we
recall the definition of the character stacks for the Riemann surface 3 with fixed
monodromies along D.

Let € = (€C4,...,Ck) be a k-tuple of conjugacy classes of GL,(C). Denote by Xe
the following variety

Xe = {p € Hom(m1 (X \ D), GL,(C)) | p(6s) € €, for h=1,...,k},

where, for each h = 1,...,k, d, is a loop around the point dj. The variety Xe is
the variety of representations of the fundamental group of ¥ ~ D with prescribed
monodromy around the points of D lying in Cy, ..., C; respectively.

Recall that the fundamental group 71 (X \ D) admits the following explicit presen-
tation

Wl(Z\D): <a1,b1,...,ag,bg,61,...,5k ‘ [a1,b1]---[ag,bg]51---5k = 1>
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Therefore, the variety Xe has the following explicit expression in terms of matrix
equations:
Xe = {(Al,Bl,...,Ag,Bg,Xl,...,Xk) € QLA (C)29 % €y x -~ x Gy |
(A1, Bi] -+ [Ag, Byl Xy - Xp = 1},

The character stack Me associated to (X, D, €) is defined as the quotient stack

Me = [Xe/GL,(C)].
We also consider the character variety Me, defined as the GIT quotient

Me = Xe //GL,(C).
We will also consider certain quotient stacks, defined from Springer resolution of

conjugacy classes, whose definition we briefly review here.

6.1.1. Springer resolutions of conjugacy classes. — In this paragraph, the base field
is C. Consider a Levi subgroup L C GL, (C) and a parabolic subgroup P D L having L
as Levi factor. Let Up C P be the unipotent radical. Fix an element z € Zy, and let Y,
be the variety

Y, == {(X,gP) € GL,(C) x GL,(C)/P | g~'Xg € 2Up}.

Let 7, : Y, — GL,(C) be the projection 7, ((gP, X)) = X. The following proposition
is well-known (see for instance [18] and the reference therein for unipotent orbits).

Prorosition 6.1.1. The image of 7. is the Zariski closure C of a conjugacy class
C C GL,(C) and the morphism m, is a resolution of singularities.

If z € (Z)*8, the map m, is an isomorphism between Y, and the conjugacy class
of z in GL,(C).

The morphism 7, : Y, — C C GL,(C) is called a partial Springer resolution. Its
image does not depend on the choice of the parabolic subgroup P.

Remark 6.1.2. The variety Y, can be described in the following equivalent way.
Consider ng, . .. ,ng such that L = GL,,, x---xGL,,. The element z € Z}, corresponds
therefore to zg, ..., zs € C* such that

2= (200ngs -, 2sIn,)-

Let P be the parabolic subgroup containing L as a Levi factor and which contains
the subgroup of upper triangular matrices. Identify GL, /P with the corresponding
partial flag variety in the classical way, i.e.,

j=i
We have
Y, = {(X,Cr") € GL,(C) x GL,(C)/P | X(F;) C F, for each j = 0,...,s

and the morphism induced by X on F;/J; 1 is 21y, }
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Consider now a k-tuple of Levi subgroups L = (Lq,..., L), a k-tuple of parabolic
subgroups P = (Py,...,P;) where each P; has L; as Levi factor and of central
elements z = (21,...,2;) € Z, X -+ Zp,.

Let now Xy, p . be the variety defined as

XL,P,Z = {(AhBla ce 7A97Bgvglple17 <. ) € GLig(C) X H::l erh
9 [AnBIXy - Xy = 1}
and My, p . the quotient stack

Mr p. =X p./GL,(C)].

Let € = (€y,...,Cx) be the k-tuple such that C; is the image of the projection

Y., — GL,. Notice that the projections 7., ,..., 7, induce a morphism

T XL,p7z — Xe
(A17B1u"'7AgaBg791P1;X17’">ngk;Xk) — (A1>B17"'7Ag7Bg7X17“' JXk)

As 7 is GL,(C)-equivariant, it descends to a morphism of quotient stacks, which we
still denote by 7 : Mg p . — Me.

Remark 6.1.3. — Notice that, if 21 € (Z1,)"™8,...,2; € (Z1,)"8, i.e., if each Cj is
semisimple, the morphism 7 is actually an isomorphism.

Remark 6.1.4. The morphism 7 is obtained by restricting the product of the par-
tial Springer resolutions Y, — Cj and then quotienting by GL,,. The decomposition
theorem (and its equivariant version) for partial Springer resolutions are well under-
stood in terms of the representation theory of Weyl groups. Although we will not
cover this in this article, it is natural to expect that the cohomological properties of
the morphism 7 could have a similar description.

In what follows, we will show how to relate the stacks Mg p . to multiplicative
quiver stacks for star-shaped quivers. We start by recalling some generalities about
quivers and their multiplicative moment maps and fixing some notations.

6.2. QUIVER REPRESENTATIONS. — A quiver @ is an oriented graph @ = (I,2), where I
is its set of vertices and €Q is its set of arrows. We will always assume that I, are
finite. For an arrow a : ¢ — j in Q we denote by i = t(a) its tail and by j = h(a) its
head.

Fix a field K. A representation M of @ over K is given by a (finite dimensional)
K-vector space M; for each vertex i € I and by linear maps M, : M,y — Mp(q) for
each a € Q.

Given two representations M, M’ of (), a morphism f : M — M’ is given by maps
fi : My — M such that, for all a € Q, the following equality holds: fj, o) Ma = M, fy(a)-
The category of representations of @ over K is denoted by Rep, (Q). For a represen-
tation M, the dimension vector dim M € N’ is the vector dim M = (dim M;);c;. It is
an isomorphism invariant of the category Repy (Q).
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For a representation M of dimension «, up to fixing a basis of the vector spaces M;
for each i € I, we can assume that M; = K. For a € , the linear map M, : K*(®) —
K"a) can be therefore identified with a matrix in Mat(ap(a)s Q(a)s K)-

Consider then the affine space

R(Q,a) = Q%Mat(ah(a)7at(a),K).
ac

We can endow R(Q, «) with the action of the group GL, = [[,.; GL4, defined as

icl
g- (Ma)aGQ = (gh(a)Magii))a€Q~
The orbits of this action are exactly the isomorphism classes of representations of Q
of dim = a.
Finally, denote by (—, —) : Z! x Z! — Z the Euler form of Q, defined as

(a,B) = Z%ﬂi - Z At(a)Bh(a)-

i€l a€cq)

6.3. STAR-SHAPED QUIVERS AND MULTIPLICATIVE QUIVER STACKS. Let Q@ = (I,9Q) be
the following star-shaped quiver with g loops on the central vertex

ol olt2 olt:s1]

ol21 22 ol2,s2]
&

oll «— olk2] olk:sx]

Let (NT)* C N’ be the subset of vectors with non-increasing coordinates along the
legs and, more generally, for any subset V' C N’| denote by V* =V n (N/)*.

Denote by @ the double quiver Q@ = (I,9Q) with the same set of vertices of Q
and as set of arrows Q = {a,a* | a € Q}, where a* : h(a) — t(a). For a repre-
sentation z € R(Q, ), for each h =1,...,k and j = 0,..., sy, we denote by zj, ; €
Mat(agp, 1, fn,j+1], i) the matrix associated to the arrow a having t(a) = [h, j+1] and
h(a) = [h, j], where we put xp, s, = 0. Similarly, for an element T € R(Q, o) we denote
by Ty i € Mat(aqp, 41, afn,j1, K) the matrix associated to the arrow a* € Q. Lastly,
for a representation T € R(Q, «), we denote by e1,...,eg, €7, ..., e; € Mat(ag, K) the
matrix associated to the g loops of @ and the corresponding reversed arrows of
respectively.

For a € NI let R(Q,a)° C R(Q,a) be the open subset of representations
(Za, T )acq such that (1 + z,xq+), (1 + ze+2,) is invertible for every a € . Let
moreover R(Q,a)** C R(Q,«)° be the open subset of representations (¥4, T4 )acq
such that z, is injective for each a € Q. Notice that R(Q, a)** = @ if a ¢ (N!)*.
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Assume to have fixed an ordering < on 2. The multiplicative moment map ®7 is
the GL,-equivariant morphism

R(Q,a)** — GL,

(6.3.1) 1

(Tg, Tar) — H (14 zqze (1 + xgrma) ™,
acN

where we are taking the ordered product with respect to <. For o € (K*)!, the
fiber (®},) ' (0) is GLq-stable and we define the multiplicative quiver stack M , of
parameter o, « as the quotient stack

Mg o= [(®5) 7" (0)/GLa].

Remark 6.3.1. — The isomorphism class of the multiplicative quiver stack M, , does
not depend on the ordering < of the arrows, see for example [7, Th. 1.4].

Examrere 6.3.2. — Let @ = (I,9) be the Jordan quiver, i.e., the quiver with one
vertex and one arrow. For n € N, the variety R(Q,n) is gl,,(K) x gl,,(K) and the
variety R(Q,n)* is given by

R(Q,n)>* = {(e,e*) € gl,,(K) x gl,,(K) | e,1+ ee*, 1+ e*e € GL,(K)}.

Notice that the variety R(Q,n)>* is isomorphic to GL, (K) x GL,(K) via the iso-
morphism

R(Q,n)>* — GL,(K) x GL,(K)
(e,e”) —> (e,e*1 +e%).

Through this identification, the multiplicative moment map ®; corresponds to the
morphism

®* : GL,(K) x GL,(K) — GL,(K)
3% (A, B) = [A, B].

For a point Z € (®%) (o), we have the following relationships. At the central
vertex, we have:

g k
(6.3.2) H (T4 eef)(1+e5er)” H (14 2h,07h,0) = 00lag-

Forany h=1,...,kand j =1,...,s,, we have
* * —1
(I +anjap )L+ 2h 1%n-1)" = Opngilag, s
which can be rewritten as
(6.3.3) .’L‘h’jﬂ;‘z’j — o[h,j]m;’jflmh,j,l = (J[h,j} — 1)1(1[,1,].].
For j = sp,, we have

* —
Olh,sn]Th,s,—1Th,sn—1 = (1 - J[h7<9h])IOé[}1,sh]'
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6.4. MuLTIPLICATIVE QUIVER STACKS AND CHARACTER STACKS: THE MAIN ISOMORPHISM

Consider a k-tuple of Levi subgroups L = (Lq,..., L), a k-tuple of parabolic
subgroups P = (P,..., Py) such that P, has L, as Levi factor for every h and a
k-tuple of central elements z = (z1,...,2x) € Zp, X -+ X Zp,, as in Section 6.1.1.

Assume that, for each h = 1,...,k, Ly is the Levi subgroup of GL, (C)

Ly = H GLy, (C)

j=0
and
2n = (2h,00np o5+ - - ,zhﬁshlnhy%)
with zn0,...,2n,s, € C".
Consider now a star-shaped quiver Q = (I,) with g loops on the central vertex
and k legs of length si,..., s, respectively. Define the following dimension vector

ar € (N)*. Foreach h=1,...,kand j =0,..., sy, put

sh
(6.4.1) (@), = Z"h,j
1=

where we are identifying [h, 0] = 0. Define the following element o, € (C*)I.

k _
(02)o = Hj:l Zj,(%’
(Uz)[h,j] = Zhd‘,lzlz} if j > 1.

We have the following result, relating multiplicative quiver stacks for star-shaped
quivers and Springer resolutions of conjugacy classes.

Tueorem 6.4.1. For any L, P, z as above, there is an isomorphism of stacks
M, =Mg.p,z

QL,0z

In the proof, we suppose ¢ = 0 and we put ¢ = 0,,a = «ar to simplify the
notations. The case of g > 0 is a combination of the arguments used in this proof and
that of [6, Prop. 2].

Proof. — We define the morphism
f(@2)7H0) — Xr.ps.
For an element T € (®)~!(o), consider the flag
Fjz = (C" 2Im(zj0) 2 Im(zjozj1) 2 -+ 2 Im(zjo- - 3j5,-1))
Notice that, for each h =0,...,s; — 1, we have
dim(Im(zj,0- - 25n)) = jat1)s

since x;, is injective for each j and r. In particular, J; z belongs to the partial flag
variety GL,,/P;. We define therefore

f@) = (F1z, 210 + 21,071,077 0s T2z 28,0 + 21,0Tk,0T0)-
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For each h = 1,...,k, put X = 250 + 2n,0Th,07}, o- Notice that from Eq. (6.3.2),
we have that

X1 Xp=1.
To check that the morphism f is well-defined we need to check thus the following two
conditions.

(1) The flag Fp 7 is X}, invariant for each h.
(2) The morphism that X} induces on the quotient space

Im(zpo- - zhj-1)/Im(xno- - zn ),

and which we denote by X, ;, is equal to 2y j1,, ;. Here we set Im(xzp,,—1) = C".

From Eq. (6.3.3), by recurrence, we deduce that for each h = 1,...,k and each
7=0,...,s, — 1 and v € C*r4l  we have

(6.4.2) Xj(wno- Thj—1(v)) = 20,0%n,0 " Th,j (V) + 21,0Th,0%} 0Th,0 " "~ Th,j (V)
Zh,0
= ————Tpo " Thj-1(V) + Tho  ThThTy ;(V),
Oh,1] """ Olh,j]

where we have set zp 5, =z}, . = 0. Notice that

Zh,0
Olh,1] " " Th,j]
From Eq. (6.4.2), we deduce therefore that properties (1) and (2) above are fulfilled
for each h,j and therefore f is well-defined.

Set I" = I~ {0} and GL,, := [, ;s GLq,. We have thus
(6.4.3) GL, = GL, x GL..

= Zh,j-

It can be verified that the action of GL! on (®%)~!(c) is schematically free and
therefore the multiplicative quiver stack [(®7)~!(c)/GL,] is actually an algebraic
variety. In addition, notice that the map f is GL/ -invariant. Denote by

f: (@) (0)/GL, — XL p.s
the associated morphism. From the identity (6.4.3), in order to show that
M:;,a = ML,P,Z;

it is sufficient to show that fiS an isomorphism.
We define the morphism 6 : Xr, p, — (®%)~!(c)/GL.,. Consider an element

(F1, X1,...,Fp, Xi) € XL P2
Foreach h=1,...,kand j=1,..., sy, fix a basis of the vector space F}, ; and denote by
T j—1 2 COMmdl —y COmi=1]

the matrix such that zj, ;175 j—1 is the matrix of the inclusion Fj ; C Fp ;1 in the
respective fixed basis. By definition of Xy, p ., we have

(Xn = 2n,310)(Fnj) € Fn v,
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i.e., Xy — zp, ;I defines a morphism J3 ; — J4 ;11 and we denote by

m;j : Chodl — Choi+1]

its associated matrix in the fixed basis. By definition, for each h = 1,..., k, we have
(6.4.4) Xy =2p0+ Zh,Ol'h,Ox;(y
Moreover, for each j = 1,...,sp, we have that z, jz; 2}, ; is the matrix associated

to the morphism
Xj — Zh7jln : fch — .rfh,j
and a7}, ;_12p,j—12h,j—1 is the matrix associated to the morphism
Xj - Zhﬁjfl.[n : ffh’j — gjhyj

in the respective basis. In particular, we have

* * .
(6.4.5) Zh,jTjhTh ;= Zhj—1Th j_1Th,j—1 = (2hj = Zh,j—1)Lap,

and, since zp, j_1/2n,j = 075, we find
(6.4.6) TjhTh ;= O[hg1Th,j—1Thj—1 = (1 = o ) ag, ;-
By Eq. (6.3.3), we deduce that (zpj, 2} ;) n=1,., defines a point T € (@) (o)

j=0,...,sn,—1
and we put

9(?1,X17...,3'k,Xk) =7.

From Eq. (6.4.4) and the definition of T, we deduce that 6 and fare inverse to one

another, i.e., that f is an isomorphism. O
Consider now a k-tuple of semisimple conjugacy classes € = (Cy, ..., Cx) such that
each €y, is semisimple (i.e., C, = C;,) and it is the conjugacy class of a diagonal ma-
trix C}, with distinct eigenvalues v4.0,...,7n,s, € C* and multiplicities np o, ..., 74 s,
respectively.
Let Q = (I,Q) be the star-shaped quiver introduced in Section 6.3, with g loops
on the central vertex and k legs of length s1,..., s respectively. Let ae € (N')* be

the dimension vector defined as
Sh
(ae)ny) = Znh,z
t=j

and ve € (C*)! the element defined as

[, v ifj=o,
(’Ye)[z‘,j] = { Lo

Yi.. jl Vi,j—1 otherwise.

From Remark 6.1.3 and Theorem 6.4.1, we deduce the following theorem:

Turorem 6.4.2. For any k-tuple of semisimple conjugacy classes C, there is an
isomorphism of stacks
~ *
MG = M’Yc,ae'
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Remark 6.4.3. The relation between multiplicative moment map for star-shaped
quivers and character stacks and varieties was first introduced in the articles
[6, Prop. 2] and [7, Lem. 8.2].

The analogous of Theorem 6.4.2 for the corresponding GIT quotients, i.e., that
Me = M, . has been shown in [47, Prop. 4.1]. In loc. cit., the author actually shows
a stronger statement. In particular, he does not consider only k-tuples of semisimple
conjugacy classes.

In this case, it is necessary to slightly modify the definition of the multiplicative

moment map and define it as a map
@5 : R(Q,)° — GLa,

i.e., we are not requiring that all the maps xj ; are injective. The proof of Theo-
rem 6.4.1 is quite similar to that of [47, Prop. 4.1]. The main difference is that, in the
case of GIT quotients, in the part of the proof of Theorem 6.4.1 where we use that
we restricted to R(Q,a)>*, i.e., that the action of GL/, is free, Yamakawa instead
uses the fundamental theorem of invariant theory. This latter type of technique has
already been introduced in [30].

6.5. DuarL LoG cOMPATIBILITY FOR MOMENT MAP. — In this section, we show how to
relate the results about dual Log compatible families of Section 5.9 to the study of
multiplicative quiver stacks for star-shaped quivers.

Consider now the construction of Section 6.3 in the case in which K = ;. We de-
note by mq : GLo(F,) — C the class function defined as

*\—1 F
) o (@O

q—(a,oc)
Notice that, for o € (F}), we have an equality

Me (0) _ #M:,a (Fq)
|GLa(Fq)| g~ (o)

For the family of class functions {mg },enr we have the following theorem:

Tueorem 6.5.1. — The family {maq}oent is dual Log compatible

The proof of Theorem 6.5.1 will be given in Section 6.6 below. For the conse-
quences of Theorem 6.5.1 on the computation of the cohomology of character stacks
of Riemann surfaces over C, see Section 7.

6.6. Proor or Turorem 6.5.1. — Theorem 6.5.1 will be proved in several steps.

We start by showing Theorem 6.5.1 in the case where QQ = (I, ) is the star-shaped
quiver with two vertices I = {0, 1} and one arrow a : 1 — 0 between them (i.e., g =0
and k = 1). This is usually called the Kronecker quiver.

Remark 6.6.1. — The proof of the case of the Kronecker quiver (i.e., of Lemma 6.6.3
below) is the main technical point of the proof of Theorem 6.5.1. The proof of this
lemma involves computations in the character ring of GL,, (F,).

JEP — M., 2024, tome 11



COHOMOLOGY OF NON-GENERIC CHARACTER STACKS 1347

In particular, we will have to understand combinatorially multiplicities of the type
(XO,Rf(Xl X x2)), where xo € GL,,(Fy)Y, L = GL,, X GL, with n +n’ = m and
x1 € GL,(F,)Y, x2 € GL,(F,)¥. We will mainly need two results about representa-
tions of finite reductive groups that we recalled before.

. Proposition 5.6.4 regarding the decomposition into irreducible GL,,(F,)-repre-
sentations of the Deligne-Lusztig induction of an irreducible L-representation, with
L C GL,, an F-stable Levi subgroup.

o The description of certain connected centralizers in the case of GL,, given in
Section 5.5.2.

We show how to extend the result from the case of the Kronecker quiver to any

star-shaped quiver in the proof of Theorem 6.5.1.

For the Kronecker quiver ), a dimension vector « is thus a pair a = (ag, 1) € N2
and the function mq(go, g1) for a pair (go, g1) € GLq, (Fq) X GLq, (F,) is given by

__ #H
ma(go, g1) = W7

where H is the set
H = {f € Hom™(Fg*, Fg°), f* € Hom(Fg°, Fg*) [ 1+ ff* = go, 1+ f*f =97}

Remark 6.6.2. — Notice that given f € Hominj(IFg‘l,]Fg‘O) and f* € Hom(IFgo,Fgt)
such that 1 + ff* € GLg,(F,), then 1 4 f*f is invertible too. It is enough to check
that 1 + f*f is injective. Given x,y € Fgt such that (1 + f*f)(z) = (1 + f*f)(v),
we have indeed

fo(+ff)@)=fo(l+ " f)y)
and, given that fo(1+ f*f) = (14 ff*)o f and 1+ ff* is invertible, we deduce that
f(z) = f(y) and so that x = y.

Lemma 6.6.5. In the case in which Q is the Kronecker quiver, the family {mq }qent
is dual Log compatible.

Proof. — We have that m, = 0if a ¢ (N?)*. Fix then a € (N/)* and set ap = ag—a;.
Fix an irreducible character xy = xoXyx1 € GL4(F,)Y with x; € GLq, (Fy)" fori =0, 1.
We have:
1 * * —
(661) <moc7X> = —(a,) Z X0(1+ff )Xl((1+f f) 1)'
|GLq (Fg)lg—( inj (po1 e
f€Hom J(]FqlJFqO)

f"€Hom(Fy0,Ft)
St 1+f " €CLag (Fy)

Step I: rewriting the RIHS of Eq. (6.6.1). Let J, € Hom™ (Fg*,Fg°) be the block
matrix given by the identity on the first o; rows and 0 everywhere else and let P, be
the stabilizer of J,, inside GL,,. Notice that P, is isomorphic to the parabolic subgroup
P C GL,,, given by the matrices which preserve the image of J,. We denote by L C P
the Levi subgroup given by GL,, X GL,, embedded block diagonally.
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The action of GL,(F,) on Hom™ (Fgr,Fgo) is transitive and we can therefore
identity the latter set with GLq (Fg)/Pa(Fq) via the map which sends (go, 91) Pa(Fq) —
goJagfl. We can thus rewrite the sum above as :

(6.6.2) L
o |GLa(Fq)|q7(a’Q)

x > > xo(l+g0dagi ) xa((1+ frg0dagi ) 7).
(90,91) Pa (Fq) f*EHom(Fg0,Fo1)
€GLa(Fq)/PaFq) st. 14goJagy  f*EGLag (Fy)

For each (go, g1)Pa(F,) we can rewrite the last term of Eq. (6.6.2)) as
(6.6.3) > xo(go(l+ Jagi  fr90)g0 ) xa(g1(1+ g1 Fg0de) Hgr ).

f* GHom(IF?O ,]Ff;l)
s.b. 14+Jagy " f*g0€GLag (Fy)

As x0, x1 are class functions, we can rewrite the sum in Eq. (6.6.3) as
(6.6.4) > o+ Jagr ' frg0) xa((L+ g7 Frg0da) 7).

f* €Hom (F0 Fo1)
s.t. 1+Jagf1f*90€GLa0 (Fq)

Moreover, for each (go,g1) € GLa(F,), we have a bijection
{f* € Hom(Fg°,F3") [ 1+ Jof* € GLq,}
+— {f* € Hom(Fy°,Fg*) [ 1+ Jagr frg0 € GLa, }
fr—gfia’
and so
(6:6:5) Yo X0+ Jagi a0)xa((L 497t g0 Ta) )

f*GHom(IF;’O,Ff;l)
st 14+Jagy ' f*90€GLay (Fy) -
1 o= > o+ Jaf a4+ 7).
f*€Hom(Fg0 Fo1)
st. 1+Jo f*EGLag (Fq)

From Eq. (6.6.5), we deduce that the sum in Eq. (6.6.2) can be rewritten as
1 * * —
(6.6.6) P () Z Xo(1+ Jaf") xa (L4 f"Ja) 1)'
|Pa(Fq)|q ’ £* CHom(Fo0 Fo1)
5.t 1+Ja /" €GLag (Fy)

Writing f* as a block matrix (A|B) with A € Mat(ay,F,) and B € Mat(ag, a1, F,),
where ay = ag — a1, we have

1+AB
14 J, f* =
ot ( ) 1)
and 1+ f*J, =1+ A. We can rewrite the sum of Eq. (6.6.6) as
1
6.6.7 N N,
(66.7) [P (F)lg- (@) Yoo (W E)
MEGLa, (Fy)

BeMat(az,a1,F,)
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Moreover, for any M € GL,, (F,), we have that x1(M ') = xj(M) and we can thus
rewrite the sum in Eq. (6.6.7) as

(6.68) e X (¥ R)ken.

MeGLa, (Fy)
BeMat(az,a1,Fq)

Step I1: relating the sum in Eq. (6.6.8) to computations in the character ring of GLq, (Fq)
Consider now the class function H € C(GLq, (Fy) X GLq, (Fy)) defined as
x2(1)

H = Y. (eRx )r()
X2€GLay (Fy)¥ @2
By Eq. (5.1.1), for any (N, M) € GL,,(F,) X GL4, (F,) we have
0 i N £,
H((N,M)) =9 | .
X3 (M) otherwise.

We deduce that the sum in Eq. (6.6.8) can be rewritten as

1 xz(1)
(669) T () Z Z XO I1'lﬂL Xl D X2)(h> )
PENa @~ S |GLa, (Fy)|

where we use that |P(F,)| = |P.(F,)|. Denote by Resp : C(GLq, (Fy)) — C(P(F,))
the restriction of class functions. It follows that the quantity in Eq. (6.6.9) is equal to

1 xa(1
(6.6.10) g e’ > (Resp(xo), Infly (x1 ® x2)) GLLIE?’
q ’ XQGGLWZ(]FQ)V | Ocz( q)|
which, by Frobenius reciprocity, is equal to
1 x2(1)
(6.6.11) = a2 (o REGaRxa) L
O A |GLa, (Fg)|

Step I11: understanding the RHS of Iq. (6.6.11) for characters of unipotent type

Suppose now that the type of x = xo X x1 is (1,A), where A = (A%, \!) with
A€ Py, AL €P,,. We then have xo = (7o det)Ryo and x1 = (v o det)Ry1, with
v € Hom(Fy, C*).

Let x2 = gL, L, 1 Lz (62 R5;) for a certain ¢, € (Wr,)F and a certain reduced
6, : LY — C*. From Lemma 5.2.3, we have an equality

RY (x1 ¥ X2) = €GL,, 61, REL,, x1, (v 0 det) x 62)(Ry K Ryz;)).

Let L’ be the connected centralizer of (y o det) x 6y : GLg, (F,) x L¥ — C*.
By Proposition 5.6.4, the character RY (x1 X x2) belongs to the vector space spanned
by irreducible characters with semisimple part (L', (7 o det) x 63).

The multiplicity ((y o det)Ry,, RF ((yodet)Ry1 X x2)) is therefore equal to 0 if L’
is different from GL,,. Since 6, : LY — C* is reduced, from the remarks made in
Section 5.5.2, we deduce that if L' = GL,,, we must have that Ly = GL,, and that x»
is given by (v o det)Ryz for A\? € P,,.
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From Remark 5.2.4, the RHS of Eq. (6.6.10) is thus equal to:

(6:612) — 3 ((rodet) R, (vodet) RS (R R Ry)) ot .
477 seem,, g 2 "M H(g)
From Eq. (5.3.2), the sum in Eq. (6.6.12) is equal to
(1)

(6.6.13)

S
Z <X>\07Indsa0xs (X}\l X X)\2)> ag(ag—1)
A2EPa, T g F "N H,a(q)

Z C)\1 A2 ,(_1)a2

)\26? az(a22 1) "(A2)H)\2 (q) '

q_(ava)

For any pair of partitions (A, 1) denote by C ,,(t) € Q(¢) the function defined as

0 if Al < [ul,
C>\7u(t) _ 1 Z N (_1)\)\|—|#|

C
PEN PR I RPTET
I/E?|)\|,|H| 2 ( )HV(t)

otherwise.

The reasoning above shows that for any x € GL(F,)" of type (1, ), there is an
equality

<mouX> = C,\O,,\I(Q>-

Step 1V: understanding the RHS of Eq. (6.6.11) for characters of any type. — Let now
§ € NI and consider y = xo X x1 € GLs(F,)" of multitype w € Ts, where w =
(di, A1)+ (dr, Ar), where for j = 1,...,7 we have Aj = (A, A}) € P? and we put 3; =
|A;|. Consider the Levi subgroups LO = [[;=1(GLg;),)a; and Ly = [[;_,(GLg;), )a,-
There exist reduced characters ° : LE — C* and 91 LY — C* such that

GLgl

=RE (°Ryo ®-- K Ry) and 1 =R, " (0'Ryu R K Ry),

and 69, 6! are associated to the same r-tuple

(61,...,6,) € Hom(F},,,C*) x --- x Hom(F},,,C"),
via the correspondence of Section 5.5.2. We denote by Ag, A; € P” the multipartitions
o= (A, 20, A = (AL AL,

To verify the dual Log compatibility of the family {mq },ent, it is enough to check
that we have

(6.6.14) (ms, x) H C)\O ,\1 H(1 by )( 7)

Notice that, if § ¢ (N7)*, there must exist 8; such that 8; ¢ (N7)*, i.e., such that
/\? < /\;. Equation (6.6.14) therefore is true as both sides are equal to 0.
Assume then that § € (N?)*. From Eq. (6.6.10), there is an equality

Xz

1
(6.6.15) (ms, x) = m Z <X0,R%(X1 X x2)) |GL§2(Ig‘q)|

X2 EGLSQ (Fq)v
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where M = GLs, x GLs, C G. Let x2 = EGL52€L2R€2 (6*Rg;), with Ly C GLs, a
Levi subgroup and 62 : LI — C* a reduced character. From Lemma 5.2.3, there is an
equality
R§;(x1 Bx2) = R, .1, (0" x 6*)(Rx; K R3,)).

Let L’ be the connected centralizer of ' x 62 : L; x Ly — C*. From Proposition 5.6.4,
we have that (xo, R§;(x1 X x2)) = 0 if the semisimple part (L', 8 x 2) is not conju-
gated to (Lo, 0°).

From the discussion in Section 5.5.2, we deduce that, if (L, 0 x 62) is conjugated
to (L°,6°), we must have that [A9] > |A]], i.e., B; € (N)* for each j =1,...,7.

If there exists j € {1,...,7} such that 3; ¢ (N/)*, Eq.(6.6.14) is thus verified as
both sides are equal to 0.

If B1,...,B, € (N)*, from the remarks made in 5.5.2, we deduce that there exists
a unique pair (Lz,6?), up to GLs, (F,)-conjugacy, such that (L, 6 x §2) is conjugated
to (L°,6°). In particular, we can take L to be

T
Ly = H(GL(ﬁj)z)dj
j=1

and 62 : LY — C* the reduced character associated to the r-tuple (61, ..., 6,.). We have
therefore

(RE (0°Rx-), RE 1, ((0" x 0?)Rx- W Rx;))

(6616) (ma)= 3 w0
)\72:()\%,...,)\2)
ET(ﬁl)QXmX:P(ﬁr)z (71)(51)2‘#(57‘)2
%G1 s g2 —
q 2 22 Zj:l d; ()‘?) Hj:l H}\?(qd])

By Remark 5.6.3, we have
(6.6.17) (Rf (0°Rx:), RY, 1, ((0" x 0°) R~ K Rxy))

= (RE, (0°Rsg), RE, (0°RL) (B X Ry)))
and by Lemma 5.6.1 the RHS of Eq. (6.6.17) is equal to

T

(GLs ) )a,;
H<R>‘2 ’ R(GL(B;)l)dj X(GLg;)5)d, (RA; X RA?)>(GL(ﬁj)0)dj (Fq)-
j=1

By Remark 5.3.2 and Lemma 5.3.3, for each j = 1,...,r, we deduce an equality

(GL(g,)0)d
(6618) <R)\<;, R(GL(g;)?)dj X(GL(Bj)z)dj (R)\; X R)\?»(GL(EJ')O)‘!;‘ (Fq)

_ I dswj)o g X _ N
= <X)\‘J?7 it Se6,) x (ﬂj)z(XA; X/\JQ-»S(B]-)O _CA;-)\?'

From Eq. (6.6.18), we deduce that we have

1 r \0 (—1)(Bi)2
(6.6.19) (ms, X) = —G3 55 H( Z VSV iy )
q—(0:6)+62(32—-1)/2 el % g d; (AJ)H)\g(qdj)
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From Eq. (6.6.19) above, we deduce that we have

o di (TN =N P =X P+ 1P =G ) /2
(ms, ) _szqu(IJH A== I HUAG =125 /2)

(6.6.20) H§:1 CA?,A} @) g~ 0 +5:(82-1)/2

From the fact that 63 = §2 + 07 — 2006 and, for each j =1,...,7,
INZ12 = G112 = 210311,
and Eq. (5.9.9), we deduce that we have

nglqdj(\k?\lkilflx\;’\zf\k}\2+(|>\§\2*M§D/2) q T di (= (A9 /2) = (1A} 12/2))
q—(8.0)+62(52-1)/2 - q—93/2)=(5%/2)
H,(q)

Il H(\{,Aj)(qd") .
From the identity above and Eq. (6.6.20), we deduce therefore equality (6.6.14). O

We now show how Lemma 6.6.3 implies Theorem 6.5.1.

Proof of Theorem 6.5.1. — We proceed by induction on the cardinality of I.

Let |I| = 1. The quiver @ has thus 1 vertex and g loops. Example 6.3.2 shows that
in this case, for each n € N, we have an equality m,, = fZ, where fJ : GL,(F,) —» C
is the function defined as

fi(h) = #{(z1, 1, 7x9ﬂy9) € GLn(Fq)zg | H?:l[xivyi] = h}
n q(n*(g=1))

introduced in Remark 5.9.6. It was thereby shown that {f9},cn is a dual Log com-
patible family.

Assume now to have shown Theorem 6.5.1 for all star-shaped quivers with k legs
and m vertices and fix a star-shaped quiver @ = (I,) with |I| = m + 1. We can
assume that s, > 1.

Let Q = (I,9) be the subquiver of Q with set of vertices I = I — {[k, s;]} and as
set of arrows the arrows of ) between elements of I. N

For a dimension vector o € N, we denote by & the element of N obtained by
the natural projection N/ — N’ and we denote by 7, the natural projection 7, :
GL4(F,) — GL&(F,).

For o € N’ let mg be the function associated to the star-shaped quiver @ = (IN , SNI)
and & and denote by n, : GL(F,) — C the class function defined by

ma Ty h .

% i By = 1,
na(h) = g s

0 otherwise.

According to Eq. (5.1.1), the function n, can be rewritten as:

ma(ma(h X(1
(6.6.21) na(h) = % > X(Pfk 1)) IGL()(F)I'
q ol XEGLay, , 1(Fq)¥ Aol 14
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From Eq.(6.6.21) and the dual Log compatibility of the functions {mg}, we can
deduce that the family of functions {n,}aens is dual Log compatible. Indeed, for
each x € GL4(F,), write x = X X xi, with ¥ € GLz(F,)" and x € GLZ[k,Sk](Fq).
We have

1
(6.6.22) (na,x) = ——— na(h)x(h)
|GLa (Fo )| h€GLa (Fq)
> ma@)z(%))( gl v X% )
EEGL&(Fq) |GL&(]Fq)| |GLa[kv5k](]Fq)| DCEGLQ[k,sk](]Fq)V ‘GLa[k’sk](FqM
thGLa[k,sk]

— 2
= (ma, X)q" " Hy  (q),

and therefore, if we put wy, = w, wy = w and wy, = wy, we have

_ 2
(6.6.23) (na, X)H,;(q) = (ma, X)Hg (q)a" ™= (H,, (q))°-
Since the family {mg}; yr is dual Log compatible, from Eq. (6.6.23) we deduce that
showing Eq. (6.6.21) is equivalent to showing that, for any n € N, any v € T,, and
any di,...,d, and types vy,...,v, such that v = ¢g, (v1) * - - x g (1), we have
GOV )

Lo (7)) e
which is a direct consequence of Eq. (5.7.2).

Let now I = I — {[k,sx — 1], [k, s¢]} and, for o € N, denote by @ the element
of N/ obtained by the natural projection N/ — N’ and by 7, : GL(F,) — GLz(F,)

the associated projection. For a pair (8,7) € N2, denote by m(lgw the class function

(6.6.24)

associated to the Kronecker quiver and the dimension vector (8,+) for it, which was
studied in Lemma 6.6.3.
Consider then the function k, : GLy(F,) — C defined by
s

Kr
Qlk,sp, —1] Ok, s, k,sk—l]ah[k,sk])

ka(h) = q- Yierod

0 otherwise.

if T (h) =1,

As above, according to Eq. (5.1.1), the function k, can be rewritten as

Kr
X(l) ma[k,sk—l],a[k,sk](h[kaskfl]’h[k’sk])

|GLa(F,)| STl

(6.625) Kka(h)= > x(Ta(h))

XEGLZL(Fy)

From Eq. (6.6.25) and Lemma 6.6.3, similarly to what we did to show Eq. (6.6.21),
we deduce that the family of functions {kq}oenr is dual Log compatible. By Lem-
ma 5.9.5, the family of class functions

{ Ng * ko }
quEIO‘? aeN!

is dual Log compatible too.
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Lastly, a direct calculation shows that, for every o € N’ we have

—_— Ne * Ko
«a=—=——-
qziela%

Lemma 5.9.5 therefore implies that the family {m,},enr is dual Log compatible. O

6.7. REMARKS. Consider any quiver @ = (1, ). As done for a star-shaped quiver in
Section 6.3, we can define the open subset R(Q,a)° C R(Q,a) and the multiplicative
moment map

uS s R(Q,a)° — GL,

(Tay Tax )acn — H (1+ zaze-)(1+ xa*xa)—l.
ace)

For an element s € (K*)!, the multiplicative quiver stack M; , associated to s is
defined as the quotient stack

Mo = [(12) ™" (5)/GLa)-

Consider the case in which K = F,. We denote by ¢, : GLy(F;) — C the class
function given by

02) 7 0)"]

Ca(g) = q—(%a)

We expect that the following result is true:
Consecrure 6.7.1. The family of class functions {co }oent is dual Log compatible.

In the same way as we proved Theorem 6.5.1, to prove Conjecture 6.7.1 above, it is
enough to show it in the cases where ) has a single vertex or ) is the Kronecker
quiver.

It would be natural to expect that the proofs in these cases are a natural gen-
eralization of the proofs of Remark 5.9.6 and Lemma 6.6.3. However, in both cases
we used in a key way the fact that we considered representations of @ which were
injective along the arrows of 2. Without the injectivity hypothesis, the combinatorics
involved becomes more complicated.

Exampre 6.7.2. — Let @Q be the Jordan quiver and @ = n € N. The function ¢, :
GL,(F,) — C is given by

en(g) = #{e,e* €gl,(Fy) | (1+ee”), (1+e"e) € GL,, (Fy) & (1+ee®)(1+e*e) ! = g},

Notice that there is no straightforward way to adapt the strategy of proof of Exam-
ple 5.9.2 to compute the quantity (c,, x) for an irreducible character x € GL,,(F,)".
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7. COHOMOLOGY OF CHARACTER STACKS

7.1. Mixep PoiNcarg seriEs oF ARTIN sTacks. — Let X be an algebraic stack of finite
type over an algebraically closed field K. Compactly supported cohomology for alge-
braic stacks have been fully developed in [31], where the authors develop a full theory
of six-functors formalism for stacks.

In the following, we will always assume that K = C and X is a quotient stack
[X/G], where X is a G-quasi projective variety and G is a linear algebraic group.
For such a stack [X/G], compactly supported cohomology can be defined in a simpler
way, which is an algebro-geometric version of the Borel construction of equivariant
cohomology in differential geometry.

Historically, this was initially taken as a definition of G-equivariant compactly sup-
ported cohomology or G-equivariant Borel-Moore homology of X. We briefly review
this construction, for more details see [14] where the authors define in a similar way
the equivariant Chow groups or [10, §2.5].

Consider an embedding G C GL.(C). For any m € N, denote by V,, =
Hom(C™,C"). Notice that G acts on the right on the vector space V,, and acts
freely on the open dense subset U,, = Hom™™(C™, C"), given by surjective homo-
morphisms.

Consider the left action of G on X x V,,, defined as g - (z,u) = (g-z,u-g~1). It is
a known fact that the action of G on U, is schematically free and the quotient stack
[X x U,,/G] is thus a scheme, which is usually denoted by X xg U,,, see for instance
[14, Prop. 23].

Let Z,, = Vi, \ Up,. The codimension codimy, (Z,,) goes to oo for m — +oo.
We put then

HY([X/G),C) = HI? W Vm)(X xq Uy, C)

for m sufficiently big. This definition does not depend on m if m is sufficiently big,
see for example [10, Prop. 2.16].

We denote by H*([X/G]) = HX([X/G],C). We can endow these latter cohomology
groups with the weight filtration W} H*([X/G]), defined as

WIHU(X/G)) = W} (v, HEP2 (X <6 Un)

for m sufficiently big. In this case too, [10, Prop. 2.16] shows that this definition does
not depend on m if m is sufficiently big.
For X over C, we define the mixed-Poincaré series HC(DC, q,t) as

(7.1.1) (X;q,t Zdlm WE Wk g™/ 4k

Notice that the specialization H.(X, 1,t) of H.(X, ¢,t) at ¢ = 1 is equal to the Poincaré
series P.(X,t) of the stack X. When Y, (—1)* dim(W} /WkE _,) is finite for each m,
we define the E-series:

(7.1.2) E(X,q) = He(X;q, — Zdlm W /W) (=1)* g™,
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We have the following theorem, for a proof see [35, Th. 2.5].

Turorem 7.1.1. — For a quotient stack X = [X/G] where G is a connected linear
algebraic group and X an affine variety, the E-series E(X,q) is well-defined and
E(X,q) = E(X,q)E(BG, q) where BG is the classifying stack of G.

Consider now a complex stack X such that its E-series is well-defined. Let now E
be a Z-finitely generated algebra and Y be an FE-stack. Assume that there exists
¢ : E — C such that Y Xgpec(r),» Spec(C) = X. The stack Y is called a spreading out
of X.

For any ¢ : E — F,, denote by X¥ := Y Xgpee(r),oSpec(Fy). We say that the stack X
is (strongly) rational count if there exists an open U C Spec(E) and a rational function
Q(t) such that for any ¢ : E — F, with ¢(Spec(F,4)) C U, it holds

#X?(Fgn) = Q(q")

for every n > 1.
In [35, Th.2.9] the following result is shown.

Turorem 7.1.2. — For a (strongly) rational count quotient stack X, there is an iden-
tity:
(7.1.3) E(X,q) = Q(q).

Remark 7.1.3. — Let X = [X/G] be a complex quotient stack with G a connected
linear algebraic group. Let E be a Z-subalgebra as above and Y7,Y5 be E-schemes
which are spreading out of X, G respectively. The stack Y = [V7/Y3] is a spreading
out of X.

Notice that for any homomorphism ¢ : £ — Iy, there is an isomorphism X¢ =
[X?/G¥] and by [3, Lem. 2.5.1] there is therefore an equality

HX(E,)
#GW (Fq") '
In particular, the stack X is rational count if and only the variety X is polynomial
count, i.e., there exists S(¢) € Q[¢t] such that S(¢") = #X?(F,») for ¢ having image
in an appropriate open of Spec(E). This was already remarked in [35, Rem. 2.7].

(7.1.4) #X7 (Fgn)

Consider a reductive algebraic group G. In [12] it is shown that each cohomology
group H™(BG) is pure of weight m. In [12] this is stated for cohomology rather
than cohomology with compact support. The latter case is an immediate consequence
thanks to Poincaré duality.

From Theorem 7.1.2, we deduce the following lemma:

Levma 7.1.4. Suppose that G is (strongly) polynomial count. The classifying stack
BG is strongly polynomial count and we have
1
H.(BG,q,t) = E(BG, qt*) = ———-.
(BG,q,t) = E(BG, qt”) EG, )
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Examere 7.1.5. We deduce, for instance, that, for each n € N, we have
1 1
7.1.5 H.(BCL,,q,t) =
1 (B :1) = Gyt (e = 1) (G~ )
and
1 1
(7.1.6) H.(BPGL,,q,t) =

(@007 (@@ = 1) (@)~ 1)
Lastly, we will need the following proposition about the cohomology of a quotient
stack [X/G]. Assume that G = GL,, and the center G,, C GL,, acts trivially on the

scheme X. There is thus an induced action of PGL,, on X and a canonical morphism
h:[X/GL,] — [X/PGL,].

Prorosition 7.1.6. — Let X be a C-variety with a GL,,-action trivial on the center.
We have

(717) Hc([X/GLn],q,t) _ HC([X/ PGLn]v(Lt).

qt? —1

Proof. — We start by the case in which X = Spec(C) and we look at the canonical
morphism 7 : BGL,, — BPGL,. In this case, Eq. (7.1.7) is a direct consequence of
Egs. (7.1.5) and (7.1.6). There is a Cartesian diagram:

BG,, — BGL,,

Uk

Spec(C) —— BPGL,

where ¢ : Spec(C) — BPGL,, is the canonical projection. Since 1 is a smooth
covering, for each ¢ € Z, the sheaf R7mC is a local system with fiber HI(BG,,).

Moreover, as PGL,, is connected, each local system is trivial over B PGL,,, see
for example [1, Prop. 6.13]. In particular, the Leray spectral sequence for compactly
supported cohomology and the morphism 7 in second page is

EP: HP(BPGL,) ® HY(BG,,) = H?'9(BGLy,).

From Eq. (7.1.7), we deduce that the spectral sequence collapses at page 2, i.e., that
the canonical morphism

is surjective for every p.
Consider now a general X. In this case too, we have a Leray spectral sequence for
compactly supported cohomology with second page

EY? = H? ([X/PGL,], R"MC) = HPT([X/GL,)).
Notice that there is 2-Cartesian diagram

[X/GL,] — BGL,

| !

[X/PGL,] — BPGL,
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where the morphism 7 : BGL,, - BPGL,, on the right is the canonical morphism
between classifying spaces. In particular, we have

R C = r*RimC,

where we put r : [X/PGL,] — BPGL,,. We deduce thus that each R C is trivial.
Moreover, the associated map

HY([X/GLy]) — HZ(BGm)

is surjective, since the map H?(BGL,) — HP(BG,,) is surjective, as remarked above.
Therefore, the spectral sequence EL'? collapses at page 2 and we obtain an isomor-
phism

HE ([X/GLy]) = HE ([X/ PGLy]) © HZ (BGp,). 0

7.2. EE-SERIES OF MULTIPLICATIVE QUIVER STACKS AND CHARACTER STACKS. — In this para-
graph, we apply Theorem 6.5.1 to the computation of E-series of multiplicative quiver
stacks and character stacks. We first recall the results of Hausel, Letellier, Rodriguez-
Villegas about the E-series E(Me,q) in the case where € is a generic k-tuple of
semisimple conjugacy classes.

7.2.1. Cohomological results for generic k-tuples. — Let € be a k-tuple of semisimple
conjugacy classes of GL,,(C). Let Q = (I,Q) be the associated quiver and ve € (C*)!,
ae € (N)* the associated parameters, introduced in Section 6.

In [23, Def. 2.1.1], the authors give the following definition of a generic k-tuple C.

Derinition 7.2.1. — A k-tuple € of semisimple conjugacy classes is said generic if,
given a subspace W of C™ which is stabilized by some X; € C;, for each i =1,... k,
such that Hle det(X;|w) = 1, then either W = {0} or W = C".

Remark 7.2.2. — For any 8 € (N!)*, there exists a generic k-tuple €’ such that
ae = B, see for example [23, Lem. 2.1.2].

Levmva 7.2.3. If 3z, oo = {ac} the k-tuple C is generic. On the other hand, if €
is generic, there are no 6,& € 35 .~ {ae} such that 6 + ¢ = ae.

Proof. — Suppose that for a k-tuple € there exists a proper subspace 0 C W C C™
and X7 € Cy,..., X} € € such that X;(W) C W for each i and

k
[ det(xilw) = 1.
i=1
Fori=1...,kand j=0,...,s;, put V,, . = Ker(X; —v; ;I,) and W,, , =WnV, .
Notice that, for each i, we have

T ST dim W,
W = @ W’Yi,,j and det(Xz|W) — ’YZ"ljm Yi,j .
j=0

J= j=0

JE.P — M., 2024, tome 11



COHOMOLOGY OF NON-GENERIC CHARACTER STACKS 1359

Consider now the dimension vector 3 € (N’)* defined as
B[i7j] = Z dlm(W%] )
h=j

We have that 8 < ae. Moreover, we have
k S;
ﬂ — —F0 -1 i,q
Ye = H%‘,o H('Yi,j 'Yi,j—l)ﬂ[ 4
i=1 j=1
LS dimW, S S dimW, o S dim W
_ = 2o Aim Wy, = 2p=; dim Wy, hej Aim W,
(72.1) =1 I Vi
i=1 j=1

ks . k
_ H H ’Yi—’jdlmWwi,j _ Hdet(Xi|W)_1 —1

i=1;=0 i=1
Conversely, suppose that there exists § € 3 . ~ {ae} such that € = aec —
belongs to Hz . ~ {ae} too. Since e € (N/)*, for each j, h, we have

Bingl — Bing=11 < (ae)n,j) — (@e)(n,j+1] = Mhj,
where my, ; is the multiplicity of the eigenvalue 73 ; in the orbit C;. Put m = §y and let
W = C™ C C™ be the span of the first m vectors of the canonical basis. We have that
m < n, since ¢ € (N/)*. For each i = 1,...,k, there exists a diagonal matrix X; € €;
such that its first m diagonal entries are given by f; 5,) times the element ; s,, then
Bli,s;—1] — Bli,s;) times the element 7; s, 1 and so on. The subspace W is X;-stable for
each ¢ = 1,..., k and, moreover,

det(X;|lw) =g =1,
from which we deduce that € is not generic. |

For generic k-tuples, we have the following general combinatorial formula com-
puting the E-series of the associated character stacks, shown by Hausel, Letellier,
Rodriguez-Villegas.

Let 1 = {11,212 },..., @k = {Tk 1, ... } be k sets of infinitely many variables
and let us denote by Ay := A(x1,..., ) the ring of functions over Q(z, w) separetely
symmetric in each set of variables. On Ay there is a natural A-ring structure, induced
by the operations ¥4 : A, — A defined as

baf(@, ... wx)) = f(2f,.. ., 2}),
and there is a natural bilinear form obtained by extending by linearity
k

(fu(@a) - fu(@r), gr(@1) - grl@r)) = [[(fir 9,

i=1
where (,) is the bilinear form on the ring of symmetric functions making the Schur
functions s, an orthonormal basis. For a multipartition p = (ut, ..., puF) € PF we de-
note by h,, = hyi(x1) - - hyr (k) the associated complete symmetric function.
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For any A\ € P, let H(z,w) be the hook function:

(Z2a(s)+1 _ w2l(s)+1)2g

(7.2.2) Ha(z,w) = H (2200042 — 2U03)) (22a() _ 2U(>)72)
SEX

and the associated series Q(z,w) € Ag[T]

k

(7.2.3) Qz,w) =Y Halz,w) [[ Ha(@s, 2, w)TH,
AeP 1=1

where Hj(x;,q,t) are the (modified) Macdonald symmetric polynomials (for a defi-
nition see [20, 1.11]).
For any p € PF, in [23] the rational function Hy,(z,w) is defined as

(7.2.4) Hy, (2, w) = (2% — 1)(1 — w®){Coeffn (Log(Q(z, w))), hy, ).
For any 3 € (N/)* and for any j = 1,...,k, the integers
(Brg.00 = Bty -+ Bjss; 11 = Blis,)s Bissl)s

up to reordering, form a partition uf; € P. Denote by pg € P*¥ the multipartition
ps = (uj, ..., ) and by Hg(z,w) the function Hy,, (z, w).
Hausel, Letellier, Rodriguez-Villegas [23, Th. 5.2.3] showed the following result:

Treonew 7.2.4. For any generic k-tuple C, we have:
(7.2.5) EMe,q)  qHae (va,1//q)
L. q—(amae) - q-— 1 .

Remark 7.2.5. The result of [23, Th.5.2.3] is stated in a slightly different way.
In particular, to verify the equivalence of the results of [23] and Theorem 7.2.4, one
needs to verify that —2(ae, ae) + 1 = dim(Me). The proof of the latter equality can
be found at the beginning of [24, Ch.5.2].

In the same paper, the authors [23, Conj. 1.2.1] proposed the following conjectural
identity for the mixed Poincaré series of the character stack Mg, when C is generic,
naturally deforming Eq. (7.2.5):

Consecture 7.2.6. — For any generic k-tuple C of semisimple conjugacy classes,
we have

Hc(M&Qat) (qtz)Hae (—t\/@,l/\/a)

(th)f(ac,ac) - qt2 1

Remark 7.2.7. — Theorem 7.2.4 and Conjecture 7.2.6 in the article [23] are stated for
the corresponding generic character variety Mg, rather than the character stack Me.
The equivalences of the statements of [23] with those presented here comes from
Proposition 7.1.6.
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7.2.2. Main resull. Consider a star-shaped Q = (I,9). For any o € (C*)! and any
B € (N!), we will construct a spreading out of the stack M3, 5 in the following way.
Let Ey = Z[zi,x; '];cs be the ring in |I| invertible variables. For any § € N,
denote by 2 € Ey the element 2° := [],; 20" Let Ny = (NLg)* \ H, 5. Consider
the multiplicative set S C E, generated by the elements 2° — 1 for § € No.5. Denote
by J C ST1E, the ideal generated by (z° — 1) for § € }, s and let E be the quotient

E = S_lEo/.].

Notice that, given a field K, a map ¢ : E — K corresponds to an element v, € (K *)I
such that 3, s = 3y 5. Let Ao be the polynomial E-algebra in 23 .o s(a)t(a)
variables corresponding to the entries of matrices (4, Z4+ )acq- Let W C Ag be the
multiplicative system generated by det(1 + z,24+),det(1 4+ z4+2,) for a € Q and let
Al == W Ag. Consider the ideal J C A} generated by the entries of

[T+ 2aza) (1 + 2rza) " = [(@ila)
a€f il
and let
A=A/
Let Y = Spec(A) and let Y* C Y be the open subset given by y € Y such that for
any algebraically closed field K and any morphism Spec(K) — Y with image y, cor-

responding to an element (24, Za+)aca € R(Q,a, K), the maps (z,)ecq are injective.
Let now 1 : E — C be the map induced by the element o € (C*)!. Notice that

y* ><Spec(E'),w Spec((C) = ((I)E)_l(a)

and therefore Y* is a spreading out of (@73)’1(0). Similarly, for any ¢ : E — Fy
corresponding to an element 7, € (F})! with H,_ 5 = Hy 5, we have

(25)7(0))? = (25) " (70)-

Let GL,, g be the E-group scheme [[,.; GL4, g. The stack Y* = [Y*/GL, g| is
therefore a spreading out of M ;.

From Remark 7.1.3 and the results of Theorem 5.9.3 and Theorem 6.5.1, we deduce
that the stack M;’; g 1s rational count and we have

EM 5,q) .
?ﬁ’,ﬁﬁ) = Coeff (Exp( Z Ma,gen(q)y5>>

0EH,

iel

(7.2.6)

where M57gen(t) are the rational functions associated to the dual Log compatible
family {ms}sens, as in Section 5.9. Notice that Msgen(t) = 0 if § ¢ (NY)*. From
Remark 7.2.2 and Lemma 7.2.3, we deduce that for any § € (N/)* we have
~ qHs (va,1/v/q
Ms gen(q) = M
q—1
We can resume all the arguments above in the following theorem:
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TrueorEM 7.2.8. For any B € (NI)* and any o € (C*)!, we have:

EME 4, H 1
EI_(‘;’Z)(]) = Coeffg (Exp( Z o W 2V (;/a 1/\/6) y‘s)).
b 4
7.2.3. L-series for character stacks with semisimple monodromies
From Theorem 7.2.8 and the isomorphism of Theorem 6.4.2, we deduce the follow-
ing theorem about E-series for character stacks associated to k-tuples of semisimple
conjugacy classes.

Turorem 7.2.9. — For any k-tuple C of semisimple conjugacy classes of GL,(C),

we have:
H 1
(72.7) B D) _ oo, (Exp( y e (Val/va) yﬁ))_
q ae,xe _— q-— 1
ve.ee

Remark 7.2.10. — Notice that Eq.(7.2.7) implies that the E-series F(Me,q) does

not depend on the values on the eigenvalues {Vj,h} j=1,....k but only on the subset
h=0,...,s;
j{j;’e,ae :

8. Mixep POINCARE SERIES OF CHARACTER STACKS FOR ]P’(%: WITH FOUR PUNCTURES
From Theorem 7.2.9, it seems natural to formulate the following generalization of

Conjecture 7.2.6

Consecrure 8.0.1. For any k-tuple of semisimple conjugacy classes C, we have:

H.(Me, g, —t) Z (qt*)Hs (tv/a.1//a) yff)).

8.0.1
( ) (th)—(a(g,ae) qt2 _ 1

= Coeft,. <Exp(

"
BEIC ne

Remark 8.0.2. As mentioned in the introduction, the — sign in the term
H.(Me,q,—t) of Eq.(8.0.1) is due to the properties of the plethystic exponential
Exp, see for instance [8, §4.3].

In a nutshell, the plethystic exponential Exp : Q(t)[y:]]jc; — 1 + Q(¢)[y:] 2, can
be seen as the decategorification of the symmetric power functor on the category of
cohomologically graded and N’-graded vector spaces.

The — sign comes then from Koszul’s sign rule for the cohomological grading.
We remark that Theorem 7.2.9 is the specialization at ¢ = 1 of Conjecture 8.0.1.

In this section, we will verify Conjecture 8.0.1 for a certain family of non-generic
character stacks.

Let ¥ = PL (ie., g =0), k =4and n = 2. Let D = {x1,...,24} C P{. For
Jj=1,...,4, pick A; € C* with A\; # £1 and denote by C; the conjugacy class of the

diagonal matrix
~1] -
0 A
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Let € be the k-tuple € = (Cy,...,C4). The variety Xe is therefore
X(g = {(Xl,...,X4) € 61 X X 64 | X1X2X3X4 = ].}

Denote by Me the GIT quotient Me = Xe //GL2(C). Recall that the points of Me are
in bijection with the isomorphism classes of semisimple representations of 7(X \ D)
inside Xe.

The study of the geometry of the character varieties Me goes back to Fricke and
Klein [17], who gave a description of them in terms of cubic surfaces. Denote by
a; = X + A L. The character variety Me is isomorphic to the cubic surface defined
by the following equation in 3 variables z, ¥, z

(8.0.2) zyz+ 22 +y? 422 — (ara2 + azaq)x — (agas + ara4)y — (a1a3 + agaq)z
+a1a2a3a4+a?+a§+a§+a42174:0.

If € is generic, this description identifies Me with a smooth (affine) Del Pezzo cubic
surface (see [16, Th.6.1.4]), i.e., a smooth cubic projective surface with a triangle cut
out of it. The cohomology of this kind of surfaces is well-known. In particular, if C is
generic, it holds:
H.(Me,q,t) = ¢*t* + 4qt* + t2.
If C is generic, we have that Me = [Xe/PGLg]. From Proposition 7.1.6, we have
R
gtz — 1 ’
The identity above agrees with Hausel, Letellier, Rodriguez-Villegas Conjecture 7.2.6,
as explained in [23, §1.5].
Pick now A1,..., Ay € C* \ {1, -1} with the following property. For €1,...,4 €
{1, -1} such that AJ* --- A§{* = 1, then eithere; = -+ =gy =1lore; = =¢g4 = —1.
Notice that in this case, the associated k-tuple € is not generic.

HC(MCa Q7t) =

In the following section, we will compute the mixed Poincaré series H.(Me,q,t)
and verify that it respects Conjecture 8.0.1.

For the character stack Me, the associated quiver @ = (I,Q) is the star-shaped
quiver with one central vertex and four arrows pointing inwards. We denote the central

vertex by 0 and the other vertices by [i,1] for i = 1,...,4. The dimension vector ae
is the dimension vector for @ defined as (ae)o = 2 and (ae) =1 fori=1,...,4.
The quiver  with the dimension vector « is depicted below.

1

The associated parameter e is given by

(ve)o = (MA2ds3 )t =1
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and, fori=1,...,4

(7@)[1,1] = A?'
Denote by B1, 82 € (NY)* the elements defined as (1) =1, (B1)p, =1 and (B2)1=1,
(B2)jiq) = 0 for i =1,...,4. Notice that 3*_ , = {a,p1,B2}. There are equalities

Hp, (tv/4, 1/v/a@) = Ha, (1/2.1/y/3) = 1.

Conjecture 8.0.1 predicts then the following equality

Ho(Me.q. 1) = QHoe (1v2.1/V) | 1, (V3.1 2) B, (1.1 vA)

qt* — 1 (qt* —1)?
(8 0 3) _ q2t4 + 4qt2 + t2 q2t4 _ q3t6 + 4q2t4 + qt4 _ 4qt2 _ t2
0. TR R (e Ve 1) '

Since the terms in ¢t of the RHS of Eq.(8.0.3) all have even degrees, in this case
Conjecture 8.0.1 is equivalent to the equality
@t + 4g?tt + qtt — 4qt? — 12

(qt? —1)? '

(8.0.4) HC(M@,q,t) =

8.1. COHOMOLOGY COMPUTATIONS

Denote by M}, the quotient stack M = [Xe¢/PGLy]. From Proposition 7.1.6,
we have
H c(Méw q,1)

qt?2 -1
We can then reduce ourselves to compute the cohomology of the stack Mf.

Inside X¢ there is the open (dense) subset which we denote by X§ C Xe, given by
quadruple (X7, X5, X3, X4) € C1 X---xCy corresponding to irreducible representations
of m1 (X \ D). Recall that X¢ is smooth (see for example [15, Prop. 5.2.8]). Denote by
N% the quotient stack [X§/PGLs]. Notice that the action of PGL, is schematically
free on X§ and therefore the stack N is an algebraic variety.

The non irreducible representations of X¢e all have the same semisimplification,

(8.1.1) He(Me,q,t) =

up to isomorphism, which corresponds to the point m € Mg, associated to the iso-
morphism class of the representation

sra = () () (60) (50)

We denote by O C Xe the closed GLo(C)-orbit associated to m. A representation
x € Xe which is neither irreducible nor semisimple, i.e., which belongs neither to X3
nor to O, can be of the following two types. Either z is isomorphic to a quadruple of

the form
o= ((5300) - (5500)- (6402)- (3 500))
a,b,c 0 )\;1 ’ 0 )\51 ) 0 )\;1 ) 0 )‘Zl
with (a,b,¢) € C* ~ {(0,0,0)} and
(813) A1 A2 A3c + )\1/\2,&4() + A1 A2 A3¢c =0,
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or of the form

e (M0 Ao O A3 0 M O
abe A0 A T Na AN b A e At
with (a,b,¢) € C* < {(0,0,0)} and

(8.1.4) MAT Aza + AT A AT A e = 0.

We denote by Zg C Xe and by Z, C Xe the locally closed subsets of repre-
sentations isomorphic to elements of the form m(fl be) O Mg p.0) for some (a,b,c) €
C3? < {(0,0,0)} satisfying the conditions of Eqgs. (8.1.3) and (8.1.4) respectively.

8.1.1. Cohomology of the character variety in the non-generic case. — As mentioned
before, the variety Me is a cubic surface defined by Eq. (8.0.2). Denote by Me C P2
the associated projective cubic surface. Notice that Me is obtained by adding to Me
the triangle at infinity zyz = 0, which we will denote by U C Me.

Unlike the case in which € is generic, for our choice of quadruples the surface Me
is singular, with m being is its only singular point. We have moreover an isomorphism
Ng = Me ~ {m}. It is a well-known result (see for example [32]) that for such a
singular cubic surface M, there exists a resolution of singularities

ftﬁe—)ﬁe

such that f~'(m) = P} and f is an isomorphism over Me \ {m}, i.e., Me \ {m} =
Me ~ f~1({m}). Moreover, it is known that Mg is the blow-up of P% at 6 points.
There is thus an equality

Ho(Me,q,t) = ¢*t* + Tqt> + 1.

Using the long exact sequence in compactly supported cohomology for the open-closed
decomposition Me = f~1(Me ~ {m})U f~!(m), we deduce that we have

Ho(Me ~{m},q,t) = Ho(f~'(Me ~ {m}),q,t) = ¢*t" + 6qt*,

and so,
H.(Me,q,t) = ¢*t* 4 6qt* + 1.

It is not difficult to check that the compactly supported Poincaré polynomial of U
is H.(U, q,t) = 3qt? +t+1. Applying the long exact sequence in compactly-supported
cohomology for the open-closed decomposition Me = Me U U we find

(8.1.5) H.(Me,q,t) = ¢*t* + 3qt* + 2.

From Eq. (8.1.5), using the long exact sequence for the open-closed decomposition
Me = (Me ~ {m}) U{m} we deduce that we have:

(8.1.6) H (NS, q,t) = Ho(Me ~ {m},q,t) = ¢*t* + 3qt> + 1> + t.

JEP — M., 2024, lome 11



1366 T. ScoeNamiGLIO

8.1.2. Cohomology of the character stack in the non-generic case. We introduce the
following notations. Let Yo = Xe \ O and Ne = [Ye/PGLy]. The action of PGLs
on Ye is set-theoretically free so that Ne is at least an algebraic space. Notice that
there is an isomorphism [0/ PGLgy] & BG,, and an open-closed decomposition

', = Ne U [0/ PGLo].

Applying the long-exact sequence for compactly supported cohomology for the open-
closed decomposition above and knowing that HZ(BG,,) is concentrated in strictly
negative even degrees, we obtain

(8.1.7)  H.(Mg,q,t) = H.(Ne,q,t) + H.(BGp,, q,t) = H.(Ne,q, t) + 2T
We have thus reduced ourselves to compute the mixed Poincaré series H.(Ne, g, t).
Let Ygr =YeNZ; and Y, = Ye N Zé,r. Notice that, a priori, Yg,Yg are only
constructible subsets of Xe. Therefore we don’t have a good definition of the quotient
stacks [Yg"/PGLo], [Yg / PGLy] neither of their cohomology.
To solve this problem, we start by the following preliminary lemma.

Lemma 8.1.1. — Let G be a linear algebraic group over C acting on the left on a
C-scheme X. Let H < G be a closed subgroup. Suppose that there exists a G-equi-
variant map p : X — G/H, where G acts on G/H by left multiplication. Set Xpg =
p~L(eH). The group H acts on Xy and there is an isomorphism of quotient stacks

(8.1.8) (X/G] = [Xy/H].

Moreover, if X is an affine variety and G, H are reductive, there is an isomorphism
of varieties:

(8.1.9) X/))G= Xy //H.

Proof. — Notice firstly that, if X is affine and G, H are reductive, the isomorphism
(8.1.9) is implied by the isomorphism (8.1.8) as the varieties Xy //H, X//G are good
moduli spaces for the stacks [Xp/H], [X/G] respectively (see [2, Rem. 4.8]). We now
prove isomorphism (8.1.8).

Notice that in general there is always a map « : [Xg/H] — [X/G]. We must
construct an inverse § : [Xy/H| — [X/G].

Fix a scheme S and recall that the objects of the groupoid [X/G](S) are pairs
(P, ) where P — S is a principal G-bundle and ¢ : P — X is a G-equivariant map
and similarly for [Xg/H]|(S). We define 5(P, ) == (Py,pn) to fit in the following
diagram, where both squares are Cartesian:

Py P xy, cH
|
1£ td )J( T, G/H.
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It can be checked that Py is a principal H-bundle over S and ¢y is H-equivariant,
so that 8 actually defines a morphism

B:[X/G] — [Xu/H].
The morphism [ is an inverse to «. (|

We will apply Lemma 8.1.1 above in the case where X = Xe, G = PGLy and
H C PGLs is the maximal torus of diagonal matrices as follows. In the following,
we identify H = G,,, via the map G,, — PGLs, which sends z € C* to the class
of (§9)-

Recall that there is an isomorphism C; = G/H. Via this latter isomorphism, the
projection on the first factor induces a G-equivariant morphism

p:Xe — G/H >~
(Xl,XQ,X37X4) — X1~
Notice that

(XC)H = {XQ €Cy,X3€C3,X4€Cy ‘ XoX3Xy = ()‘(1;1 ;)1 )}

Denote by (Me) g == (Xe)u//H. Lemma 8.1.1 implies that there is an isomorphism
(Me)n = Me.

We use similar notations for (Ne)m, (N)q. Re-applying Lemma 8.1.1, we see that
there is an isomorphism (N§) g = Ng. In particular,

(8.1.10) H ((N$) i, q,t) = ¢*t* + 3qt* + 12 + t.

Consider now the character 61 : H = G,,, — G,,, given by 07 (z) = 2. The char-
acter 6 induces a linearization of the H-action on the affine variety (Xe)g (see for
example [28, §2]). Using Mumford’s criterion (see [28, Prop. 2.5]), we check below that

07

the semistable points (X¢)};° are given by

< 9T
(Xe)i" = (Y )m

In particular, (Y5 )n is an open subset of (X¢)g and it is thus an algebraic variety.
We denote by (N&)u the quotient stack (N&)g = [V /H]. Since the action of H
on (Y )p is free, the stack (N&)y is an algebraic variety. Denote by f* : (Ng)y —
(Me) g the canonical (proper) map.

We have indeed four type of points inside (Xe)g:

« Notice that O N (Xe)p is the singleton {m}, corresponding to the quadruple
(8.1.2). The point m, being a G,, fixed point, is unstable. Indeed, considering the
1-parameter subgroup A : G,,, — G,, given by A\(2) = 271, we have (07,\) = -1 < 0
while it exists lim; o A(t) - m = m.

« The points of (X§)n are stable. Each x € (X¢)p corresponds to an irreducible
representation. For a 1-parameter subgroup A : G,,, = G, the limit lim;_,0 A(2) - =
exists if and only if A is trivial, i.e., (67, A) = 0.
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. The points of (Z3 )y are semistable. Notice that (Z7 )y is given by points of the
form ma bc) @ in Section 8.1, for (a,b,¢) € C* . {(0,0,0)} which fulfills Eq. (8.1.3).

For A : G,, — G,, given by A(t) =" for n € Z and t € C*, we have

Alt) 'mab,c) = My(tna,inb,trc)-

In particular, we see that the limit lim;_,o A(%) - ma be) exists (and it is given by m)
if and only if n > 0, i.e., if and only if (8%, \) > 0.

« By a similar reasoning, the points of (Z )y are unstable.

We have that (f*)~!(m) = (Z¢)u/H. From the description of the elements of Xe
given at the beginning of Section 8.1, we see that (Z¢) g is isomorphic to C?~.{(0,0)}.

Via this identification G,, acts on C? . {(0,0)} by scalar multiplication on both
coordinates. We have therefore:

(Ze)u/H = (C* ~{(0,0)})/Gm = P¢.
Consider now the Leray spectral sequence for compactly supported cohomology
By HY(Me)m, RUfFQ) = HIYI((Ng)m, Q).

Notice that RYfFQ # 0 if and only if ¢ = 0, 2. More precisely, we have fQ = Q and
R2fFQ = (im)«Q, where i, is the closed embedding

im : {m} — (Me)n.
Recall that the differential maps of the spectral sequence go in the direction

dpt ;. EPd — pprrasrl

As R1fQis 0 for odd g, the differential d5'? is the zero map for each p, ¢ and therefore
we have E5'? = EP? for each p, g. Moreover, the differentials on the third page go in
the direction d? : EZ— EET3972 and if ¢#0, 2, the vector space E5' is equal to 0.

If ¢ = 0, we have B3 = {0} and so d8'? = 0. Lastly, if ¢ = 2, we have E2¢ = {0}
if p>1 and if p =0, we have Eg”o = H3((Me)y,Q) = {0}.

We deduce therefore that the differential maps d5'? are all zero. In a similar way,
it is possible to verify that d?? = 0 if » > 2, for any p,q and so that the spectral
sequence degenerates at the second page.

For each n, there is therefore an equality

HY((N&)m, Q) = @ HE(Me)u, RS Q).
ptg=n
From the description of the sheaves RfFQ given above, we deduce that we have
(8.1.11) Ho(N ) m.q.t) = ¢*t* + 4qt* + 2.

A similar reasoning can be applied to the opposite linearization, induced by the
character 0~ : G,, — G,, given by 0~ (z) = z~!. In this case, in a similar way we can
ss,0”

argue that the semistable points (X¢)},~ are given by (Yg )n.
For the corresponding quotient (N )g there is therefore an equality

(8.1.12) Ho((Ng)m,q,t) = ¢*t* + 4qt® + 2.
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Denote now by 5+, the open embeddings
T NOm — Ne)g and j7: (Ng)m — (Ne)n

and by j the open embedding (N%)g — (Ne)m. Notice that there is a short exact
sequence of sheaves on (Ne)g:

0— jC—jCaj;C—C—0,
and therefore an associated long exact sequence in compactly supported cohomology
HH (Ne)r) — Ho(NQ) i) — Ho(Ng)m) ® Ho(Ng)u) — Hi(Ne)m)-

From Lemma 8.1.1, we deduce that there is an isomorphism (Ne)g = Ne. From the
long exact sequence above and Egs. (8.1.10) to (8.1.12), it is therefore not difficult to
show that

(8.1.13) H.(Ne,q,t) = ¢*t* + 5qt* +* + 1.

Plugging this result into Eq. (8.1.7) and using identity (8.1.1), we obtain finally iden-
tity (8.0.3).
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