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COHOMOLOGY OF NON-GENERIC CHARACTER STACKS

by Tommaso Scognamiglio

Abstract. — We study (compactly supported) cohomology of character stacks of punctured
Riemann surface with prescribed semisimple local monodromies at punctures. In the case of
generic local monodromies, the cohomology of these character stacks has been studied in [23, 39].
In this paper we extend the results and conjectures of [23] to the non-generic case. In particular
we compute the E-series and give a conjectural formula for the mixed Poincaré series. We prove
our conjecture in the case of the projective line with 4 punctures.

Résumé (Cohomologie des champs de caractères non génériques). — On étudie la cohomolo-
gie (à support compact) des champs de caractères pour les surfaces de Riemann épointées
avec monodromies locales semi-simples fixées. Dans le cas de monodromies locales génériques,
la cohomologie de ces champs de caractères a été étudiée dans [23, 39]. Dans cet article, on étend
les résultats et la conjecture de [23] au cas non générique. En particulier, on calcule la E-série et
on donne une formule conjecturale pour la série mixte de Poincaré. On démontre cette conjec-
ture dans le cas de la droite projective privée de 4 points.
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1288 T. Scognamiglio

1. Introduction

Consider a Riemann surface Σ of genus g ⩾ 0, a subset D = {p1, . . . , pk} ⊆ Σ

of k points and C = (C1, . . . ,Ck) a k-tuple of semisimple conjugacy classes of GLn(C).
In what follows, denote by GLn the group GLn(C).

The associated character stack MC is defined as the quotient stack

(1.0.1) MC :=
[{
ρ ∈ Hom(π1(Σ∖D),GLn)

∣∣ ρ(xi) ∈ Ci for i = 1, . . . , k
}/

GLn(C)
]
,

where each xi is a small loop around the point pi. These stacks classify local systems on
Σ∖D such that the monodromy around the point pi lies in Ci for i = 1, . . . , k, and are
naturally related to certain moduli spaces of (strongly) parabolic Higgs bundles on Σ

via the non-abelian Hodge correspondence, see for example the work of Simpson [45].
The stack MC has therefore the following explicit form in terms of matrix equations:

(1.0.2) MC =
[{

(A1, B1, . . . , Ag, Bg, X1, . . . , Xk) ∈ GL2g
n ×

∏k
j=1 Cj

∣∣∏g
i=1[Ai, Bi]

∏k
j=1Xj = 1

}/
GLn

]
.

In what follows, for a complex stack of finite type X, we will denote by H∗
c (X) :=

H∗
c (X,C) its compactly supported cohomology with C-coefficients. Recall that each

vector space Hi
c(X) is endowed with the weight filtration W i

•H
i
c(X). For more details

about the definition of these cohomology groups and their weight filtration see Sec-
tion 7.

We define the mixed Poincaré series Hc(X, q, t)

Hc(X, q, t) :=
∑
m,i

dim(W i
m/W

i
m−1)q

m/2ti.

The E-series E(X, q) is the specialization of Hc(X, q, t) obtained by plugging t = −1
and the Poincaré series Pc(X, t) is the specialization ofHc(X, q, t) obtained by plugging
q = 1.

1.1. Review of generic character stacks. — The cohomology of character stacks
and its mixed Hodge structure have been extensively studied from different perspec-
tives. So far, most of the results have been obtained in the case where the k-tuple C

is generic (see Section 7.2.1 for a precise definition of genericity).
In the generic case, the stack MC is smooth and it is a Gm-gerbe over the associated

GIT quotient, which we denote by MC. Therefore the cohomology of MC can easily be
deduced from that of the character variety MC.

We give here a quick review of the results obtained about the cohomology of generic
character stacks and varieties, see Section 7.2 for more details.

The first results concerning this subject were obtained in the case where k = 1

and C is a central conjugacy class. For n ∈ N and d ∈ Z, let Mn,d be the stack MC

for k = 1 and C = {e2πid/nIn} i.e.,

Mn,d =
[{

(A1, B1, . . . , Ag, Bg) ∈
∏2g
i=1 GLn |

∏g
i=1[Ai, Bi] = e−2πid/nIn

}/
GLn

]
.

The orbit C = {e2πid/n} is generic if and only if (n, d) = 1.
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Hitchin [26] computed the Poincaré polynomial Pc(Mn,d, t) in the generic case for
n = 2, using non-abelian Hodge correspondence and Morse theory on the moduli
space of Higgs bundles. Gothen [21] extended his result for n = 3.

Their approach was later extended to compute the Poincaré polynomial Pc(MC, t)

in the case where n = 2, any k and any generic k-tuple C by Boden and Yogokawa [4]
and where n = 3, any k and any generic k-tuple C by García-Prada, Gothen and
Muñoz [19].

However, Morse-theoretic techniques do not give information about the weight
filtration and were hard to generalize to any n.

Hausel and Rodriguez-Villegas [25] were the first to obtain a general result
about cohomology of character stacks for any n. The authors computed the E-series
E(Mn,d, q) of the stacks Mn,d for any coprime n, d, by counting points over finite
fields and proposed a conjectural formula for the mixed Poincaré series Hc(Mn,d, q, t).

Schiffmann [43] found an expression for the Poincaré series Pc(Mn,d, t) in the
generic case and Mellit [40] later checked that Schiffmann’s formula agrees with the
specialization of Hausel and Rodriguez-Villegas’ conjecture at q = 1.

Hausel, Letellier and Rodriguez-Villegas afterward generalized the results of [25]
and computed [23, Th. 1.2.3] the E-series E(MC, q) of the stacks MC for any generic
k-tuple C. We quickly explain more precisely their result since it is the starting point
of this paper. For more details, see Section 7.2.1.

Let P be the set of partitions. In [23], the authors introduced, for each multiparti-
tion µ ∈ Pk, a rational function Hµ(z, w) ∈ Q(z, w), defined in terms of Macdonald
polynomials (for a precise definition see Section 7.2.1). The authors [23, Th. 1.2.3]
showed that there is an equality

(1.1.1) E(MC, q) =
qdµ/2

q − 1
Hµ(
√
q, 1/
√
q),

where 2dµ = dim(MC) + 1 and µ = (µ1, . . . , µk) is the multipartition given by the
multiplicities of the eigenvalues of C1, . . . ,Ck respectively.

In the same paper, the authors [23, Conj. 1.2.1] proposed the following conjectural
formula for the mixed Poincaré series Hc(MC, q, t), which generalizes Hausel and
Rodriguez-Villegas’ conjecture stated in [25] and naturally deforms Eq. (1.1.1):

(1.1.2) Hc(MC, q, t) =
(qt2)dµ/2

qt2 − 1
Hµ(−t

√
q, 1/
√
q, ).

Mellit [39, Th. 7.12] later computed the Poincaré series Pc(MC, t) using the non-
abelian Hodge correspondence. His formula matches with the specialization at q = 1

of the conjectural formula (1.1.2) for the mixed Poincaré series.

1.2. Overview of the paper. — One of the aims of this paper is the study of the
cohomological invariants of the stacks MC in the case where C is not necessarily
generic. The cohomology of character stacks MC for non-generic k-tuples C has not
been much studied in the literature until recently.

The most explicit and general results in the non-generic case were obtained mainly
for the stacks Mn,d.

J.É.P. — M., 2024, tome 11



1290 T. Scognamiglio

Hausel and Rodriguez-Villegas [25, Th. 3.8.1] expressed the E-series for the stacks
Mn,0 in terms of the E-series for the generic character stacks Mn,1 by the following
formula:

(1.2.1) Exp
(∑
n∈N

E(Mn,1, q)

qn2(g−1)
Tn

)
=

∑
n∈N

E(Mn,0, q)

qn2(g−1)
Tn,

where Exp is the plethystic exponential in the ring of formal power series Q(q)[[T ]] (see
Section 2.3 for details about plethystic operations). The authors’ result is obtained
by counting points over finite fields.

Fix now r ∈ Q. Recently, Davison, Hennecart and Schlegel Mejia [9, Th. 14.3,
Cor. 14.7] proved the following formula expressing the compactly supported Poincaré
series of Mn,d for any n, d, in terms of the Poincaré series for the generic character
stacks Mn,1:

(1.2.2)
∑

(n,d)∈N>0×Z
d=rn

Pc(Mn,d,−t)
tn2(2g−2)

znwd = Exp

( ∑
(n,d)∈N>0×Z

d=rn

Pc(Mn,1,−t)
tn2(2g−2)

znwd
)

and formulated a similar conjecture for the mixed Poincaré series of Hc(Mn,d, q, t) for
any n, d (see the discussion after [9, Th. 14.10]).

They obtained this formula by relating the cohomology of a character stack with
the cohomology of the so-called BPS sheaves. The latter are certain perverse sheaves
defined on character varieties and are well-understood for the stacks Mn,d. More
precisely the non-abelian Hodge correspondence for stacks, proved in [9], and the
recent work of Koseki and Kinjo [29] about BPS sheaves for the moduli stack of Higgs
bundles, give a way to compute the cohomology of BPS sheaves for a stack Mn,d.

However, notice that since the authors use non-abelian Hodge correspondence
which does not preserve the weight filtration on cohomology, their method does not
allow to prove an analogous formula for the E-series or the mixed Poincaré series
of Mn,d.

Finally, the cohomology of BPS sheaves for character stacks MC is not understood
for an arbitrary C and so a generalization of Eq. (1.2.2) for an arbitrary C is still
unproved.

One of the main results of our paper is a generalization of Eq. (1.2.2) to arbitrary C

for the E-series E(MC, q) instead of the Poincaré series Pc(MC, t). As a result we get
an explicit formula for E(MC, q) for any k-tuple C, see Theorem 1.3.3 below and
Section 7.2.2.

We also give a conjectural formula (see Conjecture 1.3.5) for Hc(MC, q, t), which we
verify in the case of Σ = P1

C, |D| = 4 and a certain family of non-generic quadruples,
for more details see Section 8.

Conjecture 1.3.5 for the stacks Mn,d has already appeared in [9], see the discussion
there after Theorem 14.10.

Finally let us notice that our approach is very different from that of [9] as we do
not use non-abelian Hodge theory nor BPS sheaves.

J.É.P. — M., 2024, tome 11
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1.3. Main results. — An important tool to formulate and prove the main results
of this paper is the construction of character stacks as multiplicative quiver stacks,
as first introduced by Crawley-Boevey and Shaw [6, 7], which we quickly recall here
(see Section 6.2 for more details).

Notice that this construction is not needed for studying generic character stacks
and does not appear for example in the articles [23, 39]. However, it is a key point
in our paper, as it allows to distinguish between different levels of non-genericity for
non-generic character stacks.

Let s1, . . . , sk ∈ N be such that, for each i = 1, . . . , k, the conjugacy class Ci has
si+1 distinct eigenvalues γi,0, . . . , γi,si with multiplicities mi,0, . . . ,mi,si respectively.
Let Q = (I,Ω) be the following star-shaped quiver with g loops on the central vertex

◦[1,1] ◦[1,2] . . . ◦[1,s1]

◦[2,1] ◦[2,2] . . . ◦[2,s2]

◦0 · ·

· ·

· ·

◦[k,1] ◦[k,2] . . . ◦[k,sk]

···

Recall that for any β ∈ NI , there is a representation variety R(Q, β)◦,∗ and a
multiplicative moment map

Φ∗
β : R(Q, β)◦,∗ −→ GLβ :=

∏
i∈I

GLβi .

For any s ∈ (C∗)I , we denote by s the central element s := (siIβi
)i∈I ∈ GLβ . The

multiplicative quiver stack with parameters β, s is the quotient stack

M∗
s,β := [(Φ∗

β)
−1(s)/GLβ ].

Consider now the dimension vector αC ∈ NI defined as

(αC)[i,j] =

si∑
h=j

mi,h

for every j = 0, . . . , si, where we identify [i, 0] = 0 for each i = 1, . . . , k. Notice that
(αC)0 = n. Let moreover γC ∈ (C∗)I be defined as

(γC)[i,j] =

{∏k
i=1 γ

−1
i,0 if j = 0,

γ−1
i,j γi,j−1 otherwise.

In Theorem 7.2.8, we show that, for the elements αC, γC, there is an isomorphism of
stacks

(1.3.1) MC
∼= M∗

γC,αC
.

J.É.P. — M., 2024, tome 11



1292 T. Scognamiglio

Let now (NI)∗ ⊆ NI be the subset of vectors with non-increasing coordinates along
the legs and denote by H∗

γC,αC
⊆ (NI)∗ the subset defined as

H∗
γC,αC

= {δ ∈ (NI)∗ | γδC = 1 and δ ⩽ αC},

where γδC =
∏
i∈I(γC)

δi
i .

Example 1.3.1. — It can be checked that if H∗
γC,αC

= {αC} then the k-tuple C is
generic.

The subsets H∗
γC,αC

allow to define a natural stratification on the set of k-tuples C

and so of character stacks MC. The introduction of this stratification is one of the
key ingredients to study the cohomology of MC in the non-generic case. Notice that
although not explicitly defined, the subsets H∗

γC,αC
appear implicitly in [9].

1.3.1. E-series of character stacks. — For any β ∈ (NI)∗ and for any j = 1, . . . , k, the
integers (β[j,0] − β[j,1], . . . , β[j,sj−1] − β[j,sj ], β[j,sj ]) up to reordering form a partition
µjβ ∈ P. Denote by µβ ∈ Pk the multipartition µβ = (µ1

β , . . . , µ
k
β) and by Hβ(z, w)

the function Hµβ
(z, w).

Remark 1.3.2. — For a k-tuple C, the multipartition µαC
∈ Pk is the multipartition

given by the multiplicities of the orbits C1, . . . ,Ck respectively.
Moreover, it can be checked that dim(MC) = −2(αC, αC) + 1, where ( , ) is the

Euler form of Q. The result [23, Th. 1.2.3] of Hausel, Letellier and Rodriguez-Villegas
for a generic k-tuple C can then be rewritten as

(1.3.2) E(MC, q)

q−(αC,αC)
=
qHαC

(√
q, 1/
√
q
)

q − 1
.

The main result about character stacks of this paper (see Theorem 7.2.9) is the
following theorem:

Theorem 1.3.3. — For any k-tuple of semisimple orbits C, it holds:

(1.3.3) CoeffαC

(
Exp

( ∑
β∈H∗

γC,αC

qHβ
(√
q, 1/
√
q
)

q − 1
yβ

))
=
E(MC, q)

q−(αC,αC)
.

Remark 1.3.4. — One of the interesting aspects of Theorem 1.3.3 is that it expresses
the E-series E(MC, q) for any k-tuple C in terms of the functions Hβ(

√
q, 1/
√
q), i.e.,

in terms of the E-series for generic k-tuples.
Similar type of results, relating non-generic to generic, have already appeared else-

where, see for example the discussion in Section 1.2 and also Letellier’s paper [33].

In Section 7, we compute the E-series of the complex character stacks MC through
the approach introduced in [25, 23, 35], i.e., by reduction to finite fields and point
counting. Namely, recall that if there exists a rational function Q(t) ∈ Q(t) such that,
for any Fq-stack MC,Fq

obtained from MC by base change and any m, it holds

#MC,Fq
(Fqm) = Q(qm),

J.É.P. — M., 2024, tome 11
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we have an equality

E(MC, q) = Q(q),

for more details see Section 7.1.
However, the way we count rational points of character stacks in this paper is

quite different from that of [23]. The description of the rational functions Q(t) for
non-generic character stacks is given through the results of Section 5 and Section 6,
where we show how to compute the rational points of a multiplicative quiver stack
for a star-shaped quiver over Fq.

In the articles [24, 23], star-shaped quivers had already been introduced and used
to relate character varieties and quiver varieties for star-shaped quivers. However, the
authors did not use multiplicative quiver stacks and in particular they didn’t need
the isomorphism Eq. (1.3.1) to compute Fq-points of generic character stacks.

The results of Section 5 and Section 6 about the rational functions Q(t) will be
obtained as a consequence of the main technical result of this paper, which is Theo-
rem 4.1.2. The latter theorem is very general and applies to certain families of rational
functions called Log compatible.

Therefore, to prove Theorem 1.3.3 we will have to prove that the rational functions
involved in it satisfy this Log compatibility property.

Theorem 4.1.2 can be used to prove similar formulas in a different context :
quiver representations and multiplicities in tensor products of irreducible characters
of GLn(Fq), which are the main results of [44]. However, in the latter article we could
avoid using the technical Theorem 4.1.2, using a more categorical approach instead.

For the proof of Theorem 4.1.2, we will have to use combinatorial objects different
from the ones used for the generic case in [24, 23]. They we will be introduced in
Sections 3 and 4.

1.3.2. Conjecture for mixed Poincaré series of character stacks. — Hausel, Letellier and
Rodriguez-Villegas conjectural formula (1.1.2) for the mixed Poincaré series of char-
acter stacks for generic k-tuples and Theorem 1.3.3 suggest the following conjecture
for the mixed Poincaré series of character stacks. For more details see Section 8.

Conjecture 1.3.5. — For any k-tuple of semisimple orbits C, it holds:

(1.3.4) CoeffαC

(
Exp

( ∑
β∈H∗

γC,αC

(qt2)Hβ
(
t
√
q, 1/
√
q
)

qt2 − 1
yβ

))
=
Hc(MC, q,−t)
(qt2)−(αC,αC)

.

Remark 1.3.6. — The presence of the sign − in Hc(MC, q,−t) in Eq. (1.3.4) is due to
the combinatorial properties of the plethystic exponential Exp, see for example the
discussion in [8, §4.3].

In Section 8, we verify that Conjecture 1.3.5 holds in the case of Σ = P1
C, |D| = 4

and the family of non-generic quadruples (Cj)j=1,...,4, where Cj is the conjugacy class

J.É.P. — M., 2024, tome 11
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of the diagonal matrix (
λj 0

0 λ−1
j

)
and λ1, λ2, λ3, λ4 ∈ C∗ ∖ {1,−1} satisfy: for any ε1, . . . , ε4 ∈ {1,−1} such that
λε11 · · ·λ

ε4
4 = 1, then either ε1 = · · · = ε4 = 1 or ε1 = · · · = ε4 = −1.

1.4. Final remark. — In the generic case [23], the conjectural formula for the mixed
Poincaré series is written in the language of symmetric functions. More precisely,
let Λk the ring of functions with values in the rational functions Q(z, w) and sepa-
rately symmetric in k sets of infinite variables x1, . . . ,xk. Then the function Hµ(z, w)

mentioned in Section 1.1 is defined as

Hµ(z, w) := (z2 − 1)(1− w2)⟨CoeffTn(Log(Ω(z, w))), hµ⟩,

where Ω(z, w) ∈ Λk[[T ]] (see [23, §2.3.6] for a definition), hµ = hµ1(x1) · · ·hµk(xk)

is the complete symmetric functions and ⟨ , ⟩ is the natural extension to Λk of the
bilinear product on symmetric functions making Schur functions orthonormal.

One of the advantages of this approach is that the cohomology of every generic
character stack is encoded in the single object Ω(z, w). Moreover, this allows to im-
mediately generalize the results and the conjectures to the cohomology of generic
character stacks with non necessary semisimple local monodromies by replacing the
complete symmetric functions in the pairing by other symmetric functions (for in-
stance it would be Schur symmetric functions for conjugacy classes which are the
product of a unipotent conjugacy class with a central element, see for example [33]).

It would be interesting to “symmetrize” our main formulas and conjectures.

Acknowledgements. — The author is very grateful to Ben Davison, Emmanuel Letel-
lier, Fernando Rodriguez-Villegas and Olivier Schiffmann for many useful discussions
about the topics dealt in this paper. The author would also like to thank the anony-
mous referee for many useful comments about a first draft of this paper. This article
is a part of the author’s PhD thesis.

2. Preliminaries and notations

In this section, I will be a fixed finite set. In the cases relevant to the main result of
this paper on non-generic character stacks, I will be the set of vertices of a star-shaped
quiver.

In Section 2.2 and Section 2.3, we will introduce and recall the properties of some
combinatorial objects defined in terms of I, such as the multitypes and an associated
ring, which will be a key technical point of this paper and were not needed in the
works about the generic case [24, 23].

We endow the set NI with the partial order ⩽ such that, for α, β ∈ NI , we have
β ⩾ α if and only if βi ⩾ αi for each i ∈ I.

J.É.P. — M., 2024, tome 11
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2.1. Partitions and multipartitions. — Let P be the set of all partitions and P∗ ⊆ P

the subset of nonzero partitions. A partition λ will be denoted by λ = (λ1, λ2 . . . , λh)

with λ1 ⩾ λ2 ⩾ · · · ⩾ λh or by λ = (1m1 , 2m2 , . . . ) where mk is the number of
occurrences of the number k in the partition λ. We will denote by λ′ the partition
conjugate to λ.

The size of λ is |λ| =
∑
i λi and its length ℓ(λ) is the largest i such that λi ̸= 0.

For each n ∈ N, we denote by Pn the subset of partitions of size n. For two partitions
λ, µ, we set

⟨λ, µ⟩ =
∑
i

λ′iµ
′
i and n(λ) =

∑
i

(i− 1)λi.

We have that
⟨λ, λ⟩ = 2n(λ) + |λ|.

Recall that the set P admits different possible orderings. In the following, we will
denote by λ ⩽ µ the ordering induced by the lexicographic order.

The conjugacy classes of the symmetric group Sn are indexed by the partitions Pn.
For each λ ∈ Pn, denote by zλ the cardinality of the centralizer of an element of the
conjugacy class associated to λ. If λ = (1m1 , 2m2 , . . . , ), we have

zλ =
∏
j

j!jmj .

Moreover, recall that the set of irreducible characters of Sn is in bijection with Pn.
In our bijection we associate to the partition (n) the trivial character of Sn. We denote
the irreducible character of Sn associated to λ by χλ.

For any three partitions λ ∈ Pn, µ ∈ Pm, ν ∈ Pn+m, we denote by cνλ,µ the integer

cνλ,µ := ⟨χν , IndSn+m

Sn×Sm
(χλ ⊠ χµ)⟩.

Consider also the set of multipartitions PI . The elements of PI will be usually
be denoted in bold letters λ ∈ PI . To avoid confusion with the notation used for
partitions, we will use the notation λ = (λi)i∈I . For λ ∈ PI , the size |λ| ∈ NI of λ is
defined as

|λ|i := |λi|.

We also put n(λ) :=
∑
i∈I n(λ

i).
For an element α ∈ NI , we will denote by (1α) ∈ PI the multipartition ((1αi))i∈I

and by (α) ∈ PI the multipartition ((αi))i∈I .
The order ⩽ on P induces an ordering on PI through the lexicographical ordering,

which we still denote by ⩽.

2.2. Multitypes. — A multitype is a function ω : N× PI → N such that its support
(i.e., the elements (d,µ) such that ω(d,µ) ̸= 0) is finite and ω(0,λ) = ω(d, 0) = 0 for
any λ ∈ PI and d ∈ N.

On the set N × PI put the total order defined as follows. If d > d′ then (d,λ) >

(d′,µ), if |λ| > |µ| then (d,λ) > (d′,µ) and if |λ| = |µ| then (d,λ) > (d′,µ) if λ > µ.
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We can alternately think of a multitype ω as a non-decreasing sequence ω =

(d1,λ1) . . . (dr,λr), where the value ω(d,λ) corresponds to the number of times the
element (d,λ) appear in the sequence (d1,λ1) . . . (dr,λr).

We will denote by TI the set of multitypes. If |I| = 1, we call multitypes simply
types. For ω ∈ TI where ω = (d1,λ1) . . . (dr,λr) and d ∈ N>0, we denote by ψd(ω)

the multitype
ψd(ω) := (dd1,λ1) . . . (ddr,λr).

The size |ω| of a multitype ω is the following element of NI

|ω| :=
∑

(d,µ)∈N×PI

dω(d,µ)|µ|

and w(ω) is the quantity

w(ω) :=
∏

(d,µ)∈N×PI

dω(d,µ)ω(d,µ)!.

For α ∈ NI , we denote by Tα ⊆ TI the subset of multitypes of size α.
The sum of multitypes endows the set TI with an associative operation

∗ : TI × TI −→ TI .

More precisely, for ω1, ω2 ∈ TI , we define ω1 ∗ ω2 as the multitype such that

ω1 ∗ ω2(d,λ) := ω1(d,λ) + ω2(d,λ).

The reason for this choice of notation will be clear in Section 2.3.1, where we will use
the sum of multitypes to define an associative ring.

We view N×NI as a subset of N×PI by associating to (d, α) the element (d, (1α)).
We call a multitype ω semisimple if its support is contained in N × NI . Given a
semisimple ω we will see it as a function N × NI → N, which we still denote by ω,
where

ω(d, α) := ω(d, (1α)).

Whenever the context is clear, we will frequently switch between the two notations
for semisimple multitypes.

For each α ∈ NI , we denote by ωα the semisimple multitype such that ωα(1, α) = 1

and ωα(d, β) = 0 for every other element (d, β) ∈ N× NI .
We denote by Tss

I ⊆ TI the subset of semisimple multitypes. Notice that for any
semisimple multitype ω ∈ Tss

I , there exist d1, . . . , dr ∈ N>0 and α1, . . . , αr ∈ NI such
that

ω = ψd1(ωα1
) ∗ · · · ∗ ψdr (ωαr

).

For a multitype ω = (d1,λ1) . . . (dr,λr) ∈ TI , we define its semi-simplification
ωss ∈ Tss

I as the following semisimple multitype

ωss := (d1, (1
|λ1|)) . . . (dr, (1

|λr|)),

i.e., ωss = ψd1(ω|λ1|) ∗ · · · ∗ ψdr (ω|λr|).
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To a semisimple multitype ω = (d1, α1) . . . (dr, αr), we associate the following poly-
nomial Pω(t) ∈ Z[t]

Pω(t) :=

r∏
j=1

(tdj − 1).

Notice that for any α ∈ NI , we have
Pωα

(t) = t− 1.

For a semisimple multitype ω = (d1, β1) · · · (dr, βr) ∈ Tss
α , put

Coω :=

{
µ(d)dr−1(−1)r−1(r − 1)! if d1 = d2 = · · · = dr = d,

0 otherwise,

where µ denotes the ordinary Möbius function.
Lastly, we introduce the notion of levels for semisimple multitypes.

Definition 2.2.1. — For a subset V ⊆ NI and a semisimple multitype ω with
ω = ψd1(ωα1

) ∗ · · · ∗ ψdr (ωαr
),

we say that ω is of level V if αj ∈ V for each j = 1, . . . , r.

Example 2.2.2. — For any α ∈ NI , the multitype ωα is of level {α}. Conversely, the
only semisimple multitype ω ∈ Tss

α of level {α} is ωα.

2.3. Lambda rings and plethystic operations. — In this paragraph we recall the
definition and some properties of λ-rings. We follow [42, App. A].

Definition 2.3.1. — A λ-ring R is a commutative Q-algebra with homomorphisms
ψd : R → R for any d ⩾ 1 such that ψd′(ψd(r)) = ψdd′(r) for every d, d′ ∈ N>0 and
r ∈ R.

The morphisms ψd are called Adams operations. For any partition µ = (µ1, . . . , µh),
we denote by ψµ : R→ R the homomorphism defined as ψµ(r) = ψµ1

(r) · · ·ψµh
(r).

For every integer n ∈ N, denote by σn(f) the element

(2.3.1) σn(f) =
∑
λ∈Pn

ψλ(f)

zλ
.

For a λ-ring R, consider now the ring R[[yi]]i∈I . For α ∈ NI , put yα :=
∏
i∈I y

αi
i .

We endow the ring R[[yi]]i∈I with the λ-ring structure defined by the Adams operations
defined as

ψd(ry
α) := ψd(r)y

dα

for r ∈ R and α ∈ NI .
Denote by R[[yi]]

+
i∈I the ideal generated by the yi’s. The plethystic exponential is

the following map Exp : R[[yi]]
+
i∈I → 1 +R[[yi]]

+
i∈I :

(2.3.2) Exp(f) = exp
(∑
n⩾1

ψn(f)

n

)
.

Notice that for f, g ∈ R[[yi]]+i∈I , we have Exp(f + g) = Exp(f) Exp(g).
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Example 2.3.2. — Consider R = Q and |I| = 1. In the ring Q[[T ]] we have:

(2.3.3) Exp(T ) = exp
(∑
n⩾1

Tn

n

)
= exp

(
log

( 1

1− T

))
=

1

1− T

We have the following lemma (see the discussion before [42, Cor. 21]):

Lemma 2.3.3. — For any f ∈ R[[yi]]+i∈I , we have
(2.3.4) Exp(f) =

∑
n⩾1

σn(f).

The plethystic exponential admits an inverse operation
Log : 1 +R[[yi]]

+
i∈I −→ R[[yi]]

+
i∈I

known as the plethystic logarithm. The plethystic logarithm can either be defined by
the property Log(Exp(f)) = f or by the following explicit rule. For α ∈ NI we put

α := gcd(αi)i∈I

and we define Uα ∈ R by:
log(f) =

∑
α∈NI

Uα
α
yα.

Then we set
(2.3.5) Log(f) :=

∑
α∈NI

Vαy
α,

where
Vα :=

1

α

∑
d|α

µ(d)ψd(Uα/d).

Indeed, consider h =
∑
α∈NI hαy

α ∈ R[[yi]]+i∈I and f = Exp(h). We then have

log(Exp(h)) =
∑
d⩾1

ψd(h)

d
=

∑
d⩾1

∑
β∈NI

ψd(hβ)

d
ydβ =

∑
α∈NI

yα
∑
d|α

ψd(hα/d)

d
,

Uα = α
∑
d|α

ψd(hα/d)

d
.i.e.,

We then have

(2.3.6)

Vα =
1

α

∑
d|α

µ(d)ψd(Uα/d) =
1

α

∑
d|α

µ(d)ψd

(α
d

∑
d′|α/d

ψd′(hα/dd′)

d′

)
=

∑
d|α

µ(d)
∑
d′|α/d

ψdd′(hα/dd′)

dd′
=

∑
m|α

ψm(hα/m)
∑

d,d′ s.t.
dd′=m

µ (d) = hα,

where the last equality of Eq. (2.3.6) comes from the fact that∑
d,d′ s.t.
dd′=m

µ (d) =
∑
d|m

µ(d) = 0,

if m ̸= 1.
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2.3.1. Multitypes and plethysm. — Let Kss
I be the Q-vector space having as a base the

semisimple multitypes Tss
I . The size of the multitypes endows Kss

I with the structure
of an NI -graded vector space and the operation ∗ endows Kss

I with the structure of
an NI -graded Q-algebra.

The operation ψd on multitypes endows the Q-algebra Kss
I with the structure of a

λ-ring with Adams operations defined as

ψd(q1ω1 + · · ·+ qrωr) := q1ψd(ω1) + · · ·+ qrψd(ωr)

for any element q1ω1+ · · ·+qrωr ∈ Kss
I with q1, . . . , qr ∈ Q and ω1, . . . , ωr ∈ Tss

I . This
λ-ring is going to be a key tool to the proof of our main result 4.1.2.

Given a semisimple multitype ω = (d1, (1
α1)) . . . (dr, (1

αr )), in the ring Kss
I we have

an equality

ω = ψd1(ωα1
) ∗ · · · ∗ ψdr (ωαr

).

We therefore deduce that Kss
I is isomorphic to the ring of polynomials in the variables

ψd(ωα) for (d, α) ∈ N>0 × NI .
Consider now the ring K̂ss

I := Kss
I [[yi]]i∈I . For semisimple multitypes of level V ,

we have the following lemma:

Lemma 2.3.4. — For any V ⊆ NI , we have the following identity in the ring K̂ss
I :

(2.3.7) Exp
(∑
α∈V

ωαy
α
)
=

∑
ω∈Tss

I
of level V

ω

w(ω)
y|ω|.

Proof. — By Eq. (2.3.1), there is an equality

(2.3.8) Exp
(∑
α∈V

ωαy
α
)
=

∏
α∈V

(∑
n∈N

σn(ωα)y
nα

)
=

∏
α∈V

(∑
λ∈P

ψλ(ωα)

zλ
y|λ|α

)
.

For each semisimple multitype ω of level V , there exist unique β1 ̸= β2 ̸= . . . ̸= βh ∈ V
and integers d1,1, . . . d1,l1 , d2,1, . . . , dh,lh such that

ω = (d1,1, (1
β1))(d1,2, (1

β1)) · · · (dh,lh , (1βh)),

ω = ψd1,1(ωβ1
) ∗ · · · ∗ ψdh,lh

(ωβh
).i.e.,

Up to reordering, we can assume that for each j = 1, . . . , h, the integers (dj,1, . . . , dj,lj )
form a partition λj . We have thus an identity

ω =

h∏
j=1

ψλj
(ωβj

).

Notice moreover that zλ1
· · · zλh

= w(ω). We therefore deduce that the RHS of
Eq. (2.3.8) is equal to the RHS of Eq. (2.3.7). □
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3. Finite reductive groups, subtori and multitypes

In this chapter we will review the notions about the geometry of reductive groups
over Fq that we will need in the rest of the article. The main reference is the book [13].
We will start by fixing some notations about varieties over finite fields and Frobenius
morphisms.

3.1. Varieties over finite fields. — Let q = pr where p is a prime number, let Fq
be the field with q elements and Fq its algebraic closure. In the following, a variety
over Fq will be a pair (X,F ) where X is a reduced scheme of finite type over Fq and F
is an Fq- Frobenius morphism F : X → X (for more details see for example Milne’s
book [41] or [13, Ch. 4]).

Whenever the Fq-structure of X is clear, we will often drop the Frobenius morphism
in the notation and we will simply use the terminology "the Fq-variety X".

A morphism of Fq-varieties f : (X,F ) → (Y, F ) is a morphism f : X → Y which
commutes with the corresponding Frobenius maps.

Given an affine variety (X,F ) over Fq with Frobenius F : X → X, consider the
variety Xd equipped with the twisted Frobenius

Fd : X
d −→ Xd

defined as
Fd(x1, . . . xd) := (F (xd), F (x1), . . . , F (xd−1)).

In the following, we will denote the Fq-variety (Xd, Fd) simply by (X)d. Notice that
there is a bijection (X)d(Fq) = X(Fqd).

For n ∈ N, we denote by GLn the general linear group over Fq. The group GLn
is endowed with the canonical Frobenius morphism F ((ai,j)) = (aqi,j) for a matrix
(ai,j) ∈ GLn.

For α ∈ NI , we denote by GLα the group

GLα :=
∏
i∈I

GLαi

with the usual product Frobenius structure, and by GLα(Fq) the finite group
GLα(Fq) = GLFα .

Remark 3.1.1. — For each n, d ⩾ 1, we will define an embedding (GLn)d ⊆ GLnd
defined over Fq in the following way. Let ∆ : GLdn → GLnd be the block diagonal
embedding.

Notice that ∆ is not defined over Fq when GLdn is equipped with the Frobenius
structure Fd. Consider then the permutation σ ∈ Snd given by

σ = (1 (n+ 1) · · · (n(d− 1) + 1)) · · · (n 2n · · · dn)

and the associated permutation matrix Jσ ∈ GLnd.
Fix an element gσ ∈ GLnd such that g−1

σ F (gσ) = Jσ (such an element exists
because of the surjectivity of the Lang map, see for example [13, Th. 4.29]). The
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embedding
gσ∆g

−1
σ : (GLdn, Fd) −→ (GLnd, F )

is defined over Fq.
Similarly, we get an Fq-embedding of (GLα)d inside GLαd for any d ⩾ 1 and any

α ∈ NI .

Example 3.1.2. — Let n = 2. Fix x ∈ F∗
q2 ∖ F∗

q and let Tε be the torus

Tε :=

{
1

xq − x

(
axq − bx −a+ b

(a− b)xxq −ax+ bxq

)
| a, b ∈ Fq

∗
}
.

The torus Tε is F -stable and is GL2(Fq)-conjugated to the torus (Gm)2 embedded
inside GL2 as in Remark 3.1.1 above.

3.2. Reductive groups over finite fields. — We start by recalling the following
definition.

Definition 3.2.1
• A group T over Fq is called a torus if there is an isomorphism T ×Spec(Fq)

Spec(Fq) ∼= Gdm for a certain integer d. For a torus T , we denote by rank(T ) its
dimension.

• A torus T over Fq is called split if we have an Fq-isomorphism T ∼=Fq Grank(T )
m .

In this paragraph and in the rest of the article, G is going to be a reductive group
defined over Fq with a fixed Frobenius morphism F : G→ G. In the cases that interest
us in this article, G will always be a product of factors of type (GLn)d’s.

We denote by rank(G) the dimension of a maximal torus of G. Recall that we
always have an F -stable maximal subtorus T ⊆ G.

We denote by εG the rank of a maximal split F -stable subtorus of G. In general
εG ̸= rank(G). If rank(G) = εG, we say that G is split.

Example 3.2.2. — Consider the group (GLn)d. Let T ⊆ G be the maximal torus
Tn×· · ·×Tn ⊆ (GLn)d, where we denote by Tn ⊆ GLn the torus of diagonal matrices.
Notice that T is F -stable and dim(T ) = rank(G) = nd. However, it is possible to verify
that εG = n, i.e., (GLn)d is split if and only if d = 1.

For a maximal torus T , we denote by

X∗(T ) := Hom(T,Gm) and Y∗(T ) := Hom(Gm, T )

the group of characters and cocharacters of T respectively. Recall that these are free
abelian groups of rank equal to rank(G) and that there is a pairing

⟨ , ⟩ : Y∗(T )×X∗(T ) −→ Z,

where, for β ∈ Y∗(T ), α ∈ X∗(T ), we have

α ◦ β(z) = z⟨β,α⟩

for any z ∈ Gm.
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Denote by WG(T ) the Weyl group of T , i.e., WG(T ) = NG(T )/T . Notice that
WG(T ) acts on X∗(T ) as

w · α(t) = α(wtw−1)

for each w ∈ WG(T ), t ∈ T and α ∈ X∗(T ). For each w ∈ WG(T ), we denote by
w : X∗(T )→ X∗(T ) the corresponding endomorphism.

Recall that inside X∗(T ) there is the root system Φ(T ) ⊆ X∗(T ) given by the
characters appearing in the weight space decomposition of the adjoint action of T
on g = Lie(G). Recall that for any ε ∈ Φ(T ), there is an injective homomorphism
uε : Ga → G such that for any x ∈ Fq and any t ∈ T , we have

tuε(x)t
−1 = uε(ε(t)x).

We denote by Uε ⊆ G the subgroup Uε := Im(uε).
Moreover, inside Y∗(T ) there is the dual root system Φ∨(T ), provided with a canon-

ical bijection

Φ(T )←→ Φ∨(T )

ε←→ ε∨

such that ⟨ε∨, ε⟩ = 2 for every ε ∈ Φ(T ).
If T is F -stable, the Frobenius acts on the groups X∗(T ), Y∗(T ) as

F : X∗(T ) −→ X∗(T )

α 7−→ α ◦ F
and

F : Y∗(T ) −→ Y∗(T )

β 7−→ F ◦ β.

3.2.1. Twisted Frobenius of maximal tori. — Fix now an F -stable maximal torus
T ⊆ G. As T is F -stable, the Frobenius acts on the Weyl group too. Given two ele-
ments h1, h2 ∈WG(T ), we say that they are F -conjugated if there exists w ∈WG(T )

such that h1 = wh2F (w)
−1.

The set of F -conjugacy classes of WG(T ), usually denoted by H1(F,WG(T )),
parametrizes the GF -conjugacy classes of F -stable maximal tori in the following way.

Given an F -stable maximal torus T ′ there exists g ∈ G such that gTg−1 = T ′.
As F (T ′) = T ′ we see that ẇ = g−1F (g) belongs to NG(T ) and so determines an
associated element w ∈ WG(T ). The element w is well-defined up to conjugacy, i.e.,
the conjugacy class of w does not depend on g.

Conversely, for every w∈WG(T ), consider an element g∈G such that g−1F (g) = w.
Such an element exists thanks to the surjectivity of Lang’s map, see for example
[13, Th. 4.29]. To w we associate the torus gTg−1 = T ′. The GF -conjugacy class of
the torus gTg−1 does not depend on the choice of g neither on w, but rather on the
F -conjugacy class of w.

We can reformulate this correspondence in terms of the twisted Fq-structures of
the torus T . While the conjugation by g provides an isomorphism T ′ ∼= T over Fq, this
isomorphism is not in general an Fq-morphism (T ′, F ) → (T, F ). However, when T

is equipped with the Fq structure coming from the twisted Frobenius ẇF : T → T ,
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the conjugation by g is an Fq -isomorphism

(T ′, F ) ∼=Fq (T, ẇF ).

In the following, we assume to have fixed, for each w ∈ WG(T ), a corresponding
F -stable maximal torus Tw ⊆ G.

Example 3.2.3. — Consider the case of G = GLn and T = Tn the torus of diagonal
matrices. In this case, we have WG(Tn) = Sn and the F -action on Sn is trivial.
In particular, the F -conjugacy classes of Sn are the conjugacy classes of Sn and are
therefore indexed by the partitions Pn of size n.

For any λ = (λ1, . . . , λh) ∈ Pn, any associated torus F -stable maximal torus T ′ is
GLn(Fq)-conjugated to

(Gm)λ1 × · · · × (Gm)λh
,

i.e.,
(T ′, F ) ∼= (Gm)λ1 × · · · × (Gm)λh

.

Example 3.2.4. — Consider the group G = (GLn)d and the F -stable maximal torus T
introduced above. The Weyl group WG(T ) is isomorphic to Sdn and the corresponding
Frobenius action F : Sdn → Sdn is given by

F (σ1, . . . , σd) = (σd, σ1, . . . , σd−1).

The F -conjugacy classes of Sdn are in bijection with the conjugacy classes of Sn in
the following way. Consider τ = (τ1, . . . , τd), σ = (σ1, . . . , σd) ∈ Sdn. The element
τσF (τ)−1 is equal to (τ1σ1τ

−1
d , τ2σ2τ

−1
1 , . . . , τdσdτ

−1
d−1). We have

d−1∏
i=0

(τσF (τ)−1)d−i = τd(σdσd−1 · · ·σ1)τ−1
d = τd

(d−1∏
i=0

σd−i

)
τ−1
d .

We deduce therefore that σ, σ′ ∈ Sdn are F -conjugated if and only if
∏d−1
i=0 σd−i,∏d−1

i=0 σ
′
d−i are conjugated in Sn.

Consider a pair of F -stable maximal tori T, T ′ with

gT ′g−1 = T, ẇ = g−1F (g) ∈ NG(T ′) and w ∈WG(T
′)

as above. There is an isomorphism of abelian groups

Ψg : X∗(T
′) −→ X∗(T )

α 7−→ α(g−1(−)g)

such that Ψg(Φ(T
′)) = Φ(T ). In general, Ψg does not commute with the respective

Frobenius morphisms on X∗(T ), X∗(T
′) and indeed we have

(3.2.1) Ψ−1
g FΨg = w ◦ F : X∗(T

′) −→ X∗(T
′).
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3.2.2. The case of finite general linear groups. — For m ∈ N, let GLm be the general
linear group over Fq, with the canonical Fq-structure F : GLm → GLm. Consider the
maximal torus of diagonal matrices Tm ⊆ GLm. As mentioned before, in this case
WG(Tm) = Sm and the F -action on Sm is trivial.

Let εi ∈ X∗(Tm) be the homomorphism

εi





z1 0 0 0 . . . 0

0 z2 0 0 . . . 0

0 0 z3 0 . . . 0
...

...
...

. . . . . . 0
...

...
... . . .

. . . 0

0 0 0 0 0 zm




= zi.

The subset {ε1, . . . , εm} ⊂ X∗(Tm) is a basis of the free abelian group X∗(Tm), which
we denote by B(Tm). Notice that, for each i = 1, . . . ,m, we have that F (εi) = qεi.
Moreover, for such a basis, we have that

Φ(Tm) = {±εi ∓ εj | i ̸= j ∈ {1, . . . ,m}}.

For h, j ∈ {1, . . . ,m}, put εh,j := εh − εj . We denote by Φ+(Tm) the set of positive
roots with respect to the Borel subgroup of upper triangular matrices, i.e.,

Φ+(Tm) = {εi,j | i < j}.

For any other F -stable maximal torus T ⊆ GLm, fix g such that gTmg−1 = T and
the corresponding permutation w ∈ WG(Tm) = Sm, as at the end of Section 3.2.1
above. Put B(T ) := Ψg(B(Tm)).

Whenever the torus T is fixed and the context is clear we will denote by εi also
the element Ψg(εi) ∈ B(T ) and by εi,j the element Ψg(εi,j) ∈ Φ(T ). We set Φ+(T ) =

Ψg(Φ
+(Tm)).

Notice that, by Eq. (3.2.1), in the character group X∗(T ) we have

F (εi) = qεw(i).

Consider now α ∈ NI , put m = |α| :=
∑
i∈I αi and consider GLα as a subgroup

of GLm through the block diagonal embedding. Fix an F -stable maximal torus T ⊆
GLα ⊆ GLm. The torus T is a maximal torus for GLα and GLm. Consider then the
basis B(T ) introduced before.

Remark 3.2.5. — For i ∈ I, let πi : GLα → GLαi
the canonical projection. For a

maximal torus T ⊆ GLα, denote by Ti := πi(T ). We have inclusions

T ⊆
∏
i∈I

Ti ⊆
∏
i∈I

GLαi
.

As T is a maximal torus, we have thus an equality T =
∏
i∈I Ti. For dimensional

reasons, we deduce that, for each i ∈ I, Ti is a maximal torus of GLαi
. From the

identity T =
∏
i∈I Ti, we therefore deduce that there is an isomorphism X∗(T ) =⊕

i∈I X∗(Ti).
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We can choose g ∈ GLα such that gTmg−1 = T . We thus deduce that, putting
Bi(T ) = B(T ) ∩X∗(Ti), we obtain a partition

B(T ) =
⊔
i∈I

Bi(T )

such that each Bi(T ) is a basis of X∗(Ti) and Bi(T ) is w-stable for every i ∈ I.

3.3. Levi subgroups and parabolic subgroups of general linear groups

Recall that a parabolic subgroup P ⊆ G is a subgroup containing a Borel subgroup
and denote by UP ⊆ P its unipotent radical. A Levi factor of P is a reductive subgroup
L ⊆ P such that P = LUP . A Levi factor of a parabolic subgroup is called a Levi
subgroup of G.

Recall that, for any Levi subgroup L ⊆ G, there exists a maximal torus T ⊆ G

such that T ⊆ L. Moreover, the Levi subgroup L can be described in terms of the
root systems Φ(T ) as follows.

Consider the subset ΦL(T ) ⊆ Φ(T ) defined as

ΦL(T ) := {ε ∈ Φ(T ) | Ker(ε) ⊇ Z◦
L},

where Z◦
L is the connected component containing the identity of the center ZL ⊆ L.

We have the following lemma, see [46, Lem. 8.4.2].

Lemma 3.3.1. — The subset ΦL(T ) is a root subsystem of Φ(T ) and we have :

(1) CG(Z◦
L) = L.

(2) Z◦
L =

⋂
ε∈ΦL(T )(Ker(ε)◦).

(3) L = T
∏
ε∈ΦL(T ) Uε.

Example 3.3.2. — For G = GLn, Levi subgroups and parabolic subgroups can be
explicitly described as follows. For any n0, . . . , ns ∈ N such that n0 + · · · + ns = n,
the subgroup Ln0,...,ns defined as

Ln0,...,ns =



GLns
0 0 0 . . . 0

0 GLns−1
0 0 . . . 0

0 0 GLns−2
0 . . . 0

...
... 0

. . . . . .
...

...
...

... . . .
. . .

...
0 0 0 0 0 GLn0


is a Levi subgroup of G. We will denote the group Ln0,...,ns simply by

GLn0
× · · · ×GLns

⊆ GLn.
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We have that

ZL =



λsIns
0 0 0 . . . 0

0 λs−1Ins−1 0 0 . . . 0

0 0 λs−2Ins−2
0 . . . 0

...
... 0

. . . . . .
...

...
...

... . . .
. . .

...
0 0 0 0 0 λ0In0


,

for λ0, . . . , λs ∈ F∗
q . Notice in particular that ZL is connected. A parabolic subgroup P

containing GLn0
× · · · ×GLns

is given by the upper block triangular matrices

P =



GLns ∗ ∗ ∗ . . . ∗
0 GLns−1

∗ ∗ . . . ∗
0 0 GLns−2

∗ . . . ∗
...

... 0
. . . . . . ∗

...
...

... . . .
. . . ∗

0 0 0 0 0 GLn0


.

It is not difficult to verify that, for any Levi subgroup L ⊆ GLn, there exist n0, . . . , ns
such that n0 + · · ·+ ns = n and L is conjugated to

GLn0
× · · · ×GLns

.

Assume now that L is F -stable. In a way similar to what we said about F -stable
maximal tori in Example 3.2.3, we can show that there exist d0, . . . , dr ∈ N and
m0, . . . ,mr such that L is conjugated by an element of GLn(Fq) to the group

(GLm0)d0 × · · · × (GLmr )dr ,

i.e., there is an Fq-isomorphism

(L,F ) ∼= (GLm0
)d0 × · · · × (GLmr

)dr .

In this case we have an isomorphism

(ZL, F ) ∼= (Gm)d0 × · · · × (Gm)dr .

3.4. Admissible subtori of general linear groups

For α ∈ NI , put |α| :=
∑
i∈I αi and consider GLα as a subgroup of GL|α| via the

block diagonal embedding. Recall that I can be thought of as the set of vertices of a
star-shaped quiver. We introduce here the definition of the admissible subtori of GLα.

Admissible subtori will play a significant role in this paper. For instance, they
appear in the classification of the irreducible characters of the finite group GLα(Fq)
(see Section 5.7).

They are also a key part of the proof of Theorem 4.1.2, which will be the main
technical result needed to study the cohomology of non-generic character stacks.
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Definition 3.4.1. — A subtorus S of GLα is said admissible if there exists a Levi
subgroup LS ⊆ GL|α| such that ZLS

= S.

Example 3.4.2. — For any α ∈ NI , there is an admissible subtorus Zα ⊆ GLα, given
by Zα := ZGL|α| ⊆ GLα, i.e., the elements of Zα are of the form (λIαi

)i∈I , for λ ∈ F∗
q .

Remark 3.4.3. — If |I| = 1, admissible subtori are the centers of the Levi subgroups
of GLn. This latter type of tori has already appeared in [23, §4.2], where the authors
used them to count points of generic character stacks for Riemann surfaces over finite
fields.

As mentioned in the introduction, to generalize their results to the non-generic case
we will need to study, more generally, multiplicative quiver stacks over finite fields,
which will require a careful understanding of the case |I| > 1.

We have the following lemma (see [13, Prop. 3.4.6])

Lemma 3.4.4. — For an admissible S and a Levi subgroup LS such that ZLS
= S,

we have CGL|α|(S) = LS. In particular, the group LS is unique.

Remark 3.4.5. — From Lemma 3.4.4 above we deduce that S is F -stable if and only
if LS is F -stable.

Example 3.4.6. — Put |I| = 1 and let S ⊆ GL2 be the torus

S =
{(

λ 0
0 λ2

)
| λ ∈ F∗

q

}
.

Notice that CGL2(S) = T2, where T2 ⊆ GL2 is the torus of diagonal matrices. However,
ZT2

= T2 ̸= S. We deduce thus that the torus S is not admissible.

Consider an admissible subtorus S ⊆ GLα and the associated Levi subgroup LS ⊆
GL|α|. The group CGLα

(S) is a Levi subgroup of GLα (see [13, Prop. 3.4.7]), which we
will denote by L̃S . The group L̃S is equal to LS∩GLα as CGL|α|(S)∩GLα = CGLα

(S).
In particular, there exists a maximal torus T ⊆ GLα such that S ⊆ T ⊆ L̃S .

Conversely, consider an F -stable Levi subgroup L ⊆ GL|α| such that there exists
a maximal torus T ⊆ L ∩GLα. As ZL ⊆ T , the center ZL is an admissible subtorus
of GLα.

Example 3.4.7. — Notice that even if two admissible tori S, S′ are different, we can
have L̃S = L̃S′ . Consider for example S = Zα and S′ defined as

S′ = {(λiIαi
)i∈I | (λi)i∈I ∈ (F∗

q)
I}.

In general, we have S ̸= S′. However, for any α ∈ NI , for both tori we have

L̃S = L̃S′ = GLα.

In particular, it is not true in general that Z
L̃S

= S.
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For each α ∈ NI , denote by Zα the subset of F -stable admissible subtori of GLα
and denote by Z the set defined as

Z :=
⊔

α∈NI

Zα.

Example 3.4.8. — Consider I = {1, 2, 3, 4} and α = (2, 1, 1, 1) ∈ NI . We have that
|α| = 5. Consider for example the admissible subtori S1, S2, S3 ⊆ GLα given by

S1 =
{((

λ 0
0 µ

)
, λ, λ, λ

)
| λ, µ ∈ F∗

q

}
,

S2 =
{((

λ 0
0 µ

)
, λ, µ, λ

)
| λ, µ ∈ F∗

q

}
,

S3 =
{((

λ 0
0 µ

)
, γ, δ, η

)
| λ, µ, γ, δ, η ∈ F∗

q

}
.and

In this case, LS1
is GL5(Fq)-conjugated to GL4 ×GL1 and

L̃S1
= T2 ×GL1 ×GL1 ×GL1 ⊆ GL2 ×GL1 ×GL1 ×GL1,

where T2 ⊆ GL2 is the torus of diagonal matrices. Moreover, we have that LS2 is
GL5(Fq)-conjugated to GL2 ×GL3 and L̃S1 = L̃S2 .

Lastly, the Levi subgroup LS3 is the maximal torus of diagonal matrices T5 ⊆ GL5,
and L̃S3

= L̃S1
too.

For a multitype ω = (d1,λ1) . . . (dr,λr) of size α, we denote by Sω ∈ Zα the torus
defined as

(Z|λ1|)d1 × · · · × (Z|λr|)dr ⊆ GLα,

where (Z|λ1|)d1×· · ·×(Z|λr|)dr is considered a subtorus of GLα via the componentwise
block diagonal embedding. Denote by βj = |λj | ∈ NI , for each j = 1, . . . , r. For the
Levi subgroup Lω ⊆ GL|α| defined as

Lω = (GL|β1|)d1 × · · · × (GL|βr|)dr

embedded block diagonally, we have ZLω = Sω, i.e., Sω is admissible.
We will denote by L̃ω the Levi subgroup of GLα defined as L̃ω := Lω∩GLα. Notice

that the groups Lω, Sω, L̃ω depend only on the semi-simplification ωss of ω.

Remark 3.4.9. — Let ω ∈ Tα and d1, . . . , dr ∈ N and β1, . . . , βr ∈ NI with

ωss = ψd1(ωβ1
) ∗ · · · ∗ ψdr (ωβr

).

For each i ∈ I, consider the Levi subgroup

(GL(β1)i)d1 × · · · × (GL(βr)i)dr ⊆ GLαi

embedded block diagonally. The Levi subgroup L̃ω is given by

L̃ω =
∏
i∈I

(GL(β1)i)d1 × · · · × (GL(βr)i)dr .

From the description of the Levi subgroups of GL|α| given in Example 3.3.2,
we deduce the following lemma.
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Lemma 3.4.10. — For any F -stable admissible E ∈ Zα, there exists a unique semisim-
ple multitype, which we denote by [E], such that E is GLα(Fq)-conjugated to S[E].

Example 3.4.11. — For any α ∈ NI , we have that

[Zα] = ωα.

Let ∼ be the equivalence relation on Zα, induced by the conjugation by GLα(Fq)
and let Z := Z/ ∼ be the quotient set. The map Zα → Tss

α given by S → [S], induces
thus a bijection

Z ∼= Tss
I .

Lastly, we give the following definition of levels for the admissible subtori.,

Definition 3.4.12. — Given S ∈ Z and V ⊆ NI , we say that S is of level V if [S] is
of level V (see Definition 2.2.1).

Example 3.4.13. — Consider the tori S1, S2, S3 introduced in Example 3.4.8. The
torus S1 is the product Z(1,1,1,1)×Z(1,0,0,0) embedded componentwise block diagonally
into GLα. The multitype [S1] is therefore the semisimple multitype

[S1] = (1, (1(1,1,1,1)))(1, (1(1,0,0,0))) = ω(1,1,1,1) ∗ ω(1,0,0,0).

Similarly, we have
[S2] = ω(1,0,1,0) ∗ ω(1,1,0,1)

and
[S3] = ω(1,0,0,0) ∗ ω(1,0,0,0) ∗ ω(0,1,0,0) ∗ ω(0,0,1,0) ∗ ω(0,0,0,1).

Notice that for V = {(1, 1, 1, 1), (1, 0, 0, 0)}, we have that S1 if of level V , while S2, S3

are not.

3.5. Regular elements and Möbius function for admissible tori. — In this para-
graph we give to Z the structure of a locally finite poset, with the ordering induced
by inclusion and we introduce the associated Möbius function

µ : Z× Z −→ Z

and we recall more generally some properties of the Möbius function of a locally finite
poset. The Möbius function µ is one the main technical ingredient in the proof of our
Theorem 4.1.2.

Remark 3.5.1. — The Möbius function µ had already been studied in [23, §4.2], in the
case of |I| = 1, where the authors used it to compute cohomology of generic character
stacks. In this case, the only values that are needed are the values µ(Zn, S), which
have already been computed in [22] (see Proposition 3.6.3 for more details).

However, to extend their result to the non-generic case in this article we needed
a better understanding of the values µ(S, S′) for any admissible subtori S, S′ and
any I. The next paragraphs develop the necessary tools to obtain the description of
the Möbius function µ that we will need in the proof of Theorem 4.1.2.
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3.5.1. Poset of F -stable admissible subtori. — For any two elements S, S′ of Zα, we say
that S ⩽ S′ if S ⊆ S′. Notice that Zα ⩽ S for any admissible S ⊆ GLα. For any
S ∈ Z, we denote by Sreg the subset of regular elements of S defined as

Sreg := {s ∈ S | s /∈ S′ for any S′ ⪇ S, S′ ∈ Z}.

We have the following disjoint union

S =
⊔

S′⩽S
(S′)reg

and so, taking F -fixed points,

(3.5.1) SF =
⊔

S′⩽S
((S′)reg)F .

In particular, we have an equality |SF | =
∑
S′⩽S |((S′)reg)F |. Notice that, if [S] =

ψd1(ωβ1
) ∗ · · · ∗ ψdr (ωβr

), we have

SF =

r∏
j=1

(Gm)dj (Fq) =
r∏
j=1

F∗
qdj

and therefore we have
|SF | = P[S](q).

3.5.2. Möbius functions of locally finite posets. — For a finite poset (X,⩽) denote by

µX : X ×X −→ Z

its associated Möbius functions. Recall that µX is defined by the following three
properties:

• µX(x, x) = 1 for each x ∈ X.
• µX(x, y) = 0 if x ̸⩽ y.
• For each x ≨ x′, we have

(3.5.2)
∑

x⩽x′′≨x′

µX(x, x′′) = −µX(x, x′)

The Möbius function has the following property.

Proposition 3.5.2. — Given f1, f2 : X → C such that

f1(x) =
∑
x′⩽x

f2(x
′),

we have an equality

(3.5.3) f2(x) =
∑
x′⩽x

f1(x
′)µX(x′, x).

Lastly, we recall the following standard lemma about Möbius functions.

Lemma 3.5.3. — Let (X,⩽), (Y,⩽) be two locally finite posets and equip X × Y with
the ordering defined as (x, y) ⩽ (x′, y′) if and only if x ⩽ x′ and y ⩽ y′. For the locally
finite poset (X × Y,⩽), we have

(3.5.4) µX×Y ((x, y), (x
′, y′)) = µX((x, x′))µY ((y, y

′)).
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Proof. — If (x, y) ̸⩽ (x′, y′), both sides of Eq. (3.5.4) are 0, since in this case we have
x ̸⩽ x′ or y ̸⩽ y′. We can therefore assume that (x, y) ⩽ (x′, y′). By induction we can
assume that

µX×Y ((x, y), (x
′′, y′′)) = µX((x, x′′))µY ((y, y

′′))

for all (x, y) < (x′′, y′′) < (x′, y′). From Eq. (3.5.2) we have therefore

(3.5.5) µX×Y ((x, y)(x
′, y′)) = −

∑
(x,y)⩽(x′′,y′′)<(x′,y′)

µX(x, x′′)µY (y, y
′′)

= −
( ∑
x⩽x′′<x′

µX(x, x′′)
∑

y⩽y′′⩽y′

µY (y, y
′′) + µX(x, x′)

∑
y⩽y′′<y′

µY (y, y
′′)
)
.

By Eq. (3.5.2),
∑
y⩽y′′⩽y′ µY (y, y

′′) = 0 and
∑
y⩽y′′<y′ µY (y, y

′′) = −µY (y, y′), and
therefore

µX×Y ((x, y)(x
′, y′)) = −µX(x, x′)

∑
y⩽y′′<y′

µY (y, y
′′) = µX(x, x′)µY (y, y

′). □

For x ∈ X, denote by [x,∞]X ⊆ X the poset

[x,∞] = {x′ ∈ X | x′ ⩾ x}.

Notice that, for each x′ ∈ [x,∞]X , from Eq. (3.5.2), we deduce that we have:

(3.5.6) µX(x, x′) = µ[x,∞]X (x, x′).

3.5.3. Möbius function for admissible subtori. — The ordering ⩽ endows the set Z with
the structure of a locally finite poset. We denote by

µ(−,−) : Z× Z −→ Z

the associated Möbius function.

Example 3.5.4. — Let f1, f2 : Z→ C be the functions defined as

f1(S) = |SF | and f2(S) = |(Sreg)F |.

By Eqs. (3.5.1) and (3.5.3), we have the following identity:

(3.5.7) |(Sreg)F | =
∑
S′⩽S

|(S′)F |µ(S′, S) =
∑
S′⩽S

P[S′](q)µ(S
′, S).

3.6. Levi subgroups and graphs. — In this paragraph, we will associate a finite
graph ΓS to each admissible subtorus S. This construction will be useful to under-
stand the Mobius function µ : Z×Z→ Z and to develop the combinatorial arguments
of Section 3.7, both of which will be key elements in our proof of Theorem 4.1.2 about
Log compatible functions.
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3.6.1. Notations on graphs. — Let Γ be a finite graph, M its set of vertices, and set
m = |M |. We say that Γ is of type Km if it is the complete graph associated to M ,
i.e., each pair of distinct vertices is connected exactly by one edge. We say that Γ is
admissible if each of its connected components is of type Kd for some d.

Remark 3.6.1. — Notice that the property of being admissible for a graph Γ can be
stated in the following equivalent way.

For any two m,m′ ∈ M , there is at most one edge of Γ joining m to m′ and,
if m1,m2,m3 ∈ M are such that there is an edge of Γ between m1 and m2 and an
edge of Γ between m2 and m3, there is an edge of Γ between m1 and m3.

3.6.2. Admissible graphs and maximal tori. — Let now α ∈ NI and m = |α| and fix
an F -stable maximal torus T ⊆ GLα ⊆ GLm.

Denote simply by B,Bi,Φ,Φ
+ the sets B(T ),Bi(T ),Φ(T ),Φ

+(T ) and by σ ∈ Sm
the permutation such that F (εj) = qεσ(j) for each εj ∈ B, introduced in Section 3.2.2.
Recall that we have a decomposition

B =
⊔
i∈I

Bi.

For any two admissible graphs Γ,Γ′ with set of vertices B and sets of edges ΩΓ,ΩΓ′

respectively, we say that Γ ⩽ Γ′ if ΩΓ ⊇ ΩΓ′ .
We denote by A(B, σ) the poset of admissible and σ-stable graph with set of

vertices B. Here σ-stable means that Γ has an edge between εi and εj if and only if
it has an edge between εσ(i) and εσ(j).

We denote by µB,σ(−,−) the associated Möbius function. Moreover, we will denote
the complete graph with vertices B by Γα ∈ A(B, σ).

Remark 3.6.2. — From Remark 3.6.1, we see that the poset A(B, σ) is the the poset
of σ-stable partitions of the set B with ordering given by the reversed inclusion, i.e.,
the fixed point set lattice considered in [22].

In the latter article, the authors computed certain values of the Möbius function
µB,σ and in particular the values µB,σ(Γα,Γ

′) for each Γ′. We will review this result
in Proposition 3.6.3.

We prefer to introduce this graph theoretic description, as in our opinion this can
ease the notations and give a more direct and visual understanding of the results of
this paragraph about the relationship between admissible graphs and admissible tori.

Fix now an admissible σ-stable graph Γ with set of vertices B. Notice that, as Γ

is σ-stable, σ acts by permutation on the set of connected components of Γ. Assume
that this action has r orbits of length d1, . . . , dr respectively, which we denote by
O1, . . . , Or.

For each j = 1, . . . , r, denote by BΓ
j ⊆ B the set of vertices contained in the

orbit Oj . Notice that each BΓ
j is σ-stable and there is an equality

B =
r⊔
j=1

BΓ
j .
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For each j = 1, . . . , r, choose a partition of BΓ
j into dj subsets

BΓ
j = BΓ

j,1 ⊔ · · · ⊔BΓ
j,dj

such that:
• each BΓ

j,h is given by the vertices of a connected component belonging to the
orbit Oj ,

• we have σ(BΓ
j,h) = BΓ

j,h+1 for each h = 1, . . . , dj (here we consider the indices
modulo dj).

For each j = 1, . . . , r, let βj ∈ NI be the element defined as

(βj)i := |BΓ
j,1 ∩Bi|

for i ∈ I. We denote by ωΓ ∈ Tss
α the semisimple multitype defined as

ωΓ := ψd1(ωβ1
) ∗ · · · ∗ ψdr (ωβr

).

The results of [22, Th. 4] imply the following proposition.

Proposition 3.6.3. — For each Γ ∈ A(B, σ), we have

µA(B,σ)(Γα,Γ) = CoωΓ
.

Denote now by Γj,h the restriction of Γ to the set BΓ
j,h. Notice that Γj,h is the

complete graph with vertices BΓ
j,h and so Γ is totally determined by the subsets

{BΓ
j,1}j=1,...,r. Notice, in addition, that for each j = 1, . . . , r, we have σdj (BΓ

j,1) = BΓ
j,1.

We have the following lemma.

Lemma 3.6.4. — There is an equivalence of posets

(3.6.1) [Γ,∞]A(B,σ)
∼=

r∏
j=1

[Γj,1,∞]A(BΓ
j,1,σ

dj )

and, for each Γ′ ⩾ Γ, denoting by Γ′
j,h the restriction of Γ′ to BΓ

j,h, we have

(3.6.2) µB,σ(Γ,Γ
′) =

r∏
j=1

µ
BΓ

j,1,σ
dj (Γj,1,Γ

′
j,1).

Proof. — Notice indeed that, given admissible graphs Γ′
j,1 with vertices BΓ

j,1 which
are σdj -stable, for each j = 1, . . . , r, there exist a unique σ-stable and admissible
graph Γ′ with vertices B containing as subgraphs Γ′

1,1, . . . ,Γ
′
r,1 and such that Γ′ ⩾ Γ.

Equation (3.6.2) is thus a consequence of Eq. (3.6.1) and Lemma 3.5.3. □

3.6.3. Admissible subtori and admissible graphs. — Fix now an admissible torus S⊆T .
Denote by JS ⊆ Φ the subset

JS := {ε ∈ Φ | S ⊆ Ker(ε)}.

From Lemma 3.3.1 we deduce that we have

S =
⋂
ε∈JS

Ker(ε) and LS = T
∏
ε∈JS

Uε.

Moreover, the subgroup S is F -stable if and only if JS is σ-stable.
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We now associate the following graph ΓS to the admissible torus S:
• the set of vertices of ΓS is B,
• ΓS has an edge between the vertices εi and εj if and only if εi,j ∈ JS ∩ Φ+.

We denote by ΩΓS
be the set of edges of ΓS . The group S is F -stable if and only if ΓS

is σ-stable.

Example 3.6.5. — Let I = {·} and T be the torus of diagonal matrices T ⊆ GLm.
In this case, σ is trivial. The graph ΓT is thus the graph with no edges and m vertices,
while the graph ΓZGLm

associated to ZGLm is the complete graph with m vertices Km.

Example 3.6.6. — For any I and any α ∈ NI , we have that ΓZα = Γα.

We can now state the following lemma, relating admissible graphs and subtori.

Lemma 3.6.7. — For any admissible torus S, the graph ΓS is admissible. Conversely,
for any σ-stable admissible graph Γ with set of vertices B, there is a unique F -stable
admissible torus S ⊆ T such that ΓS = Γ.

Proof. — For an admissible subtorus S, we have that if εi,j , εj,h ∈ JS then εi,h ∈ JS .
From Remark 3.6.1 we deduce that ΓS is admissible. Consider now an admissible Γ

and the subset

JΓ := {εj,h ∈ Φ | there is an edge of Γ which has vertices εj , εh}.

From [13, Cor. 3.3.4], the subset JΓ is a root subsystem and, from [46, Lem. 8.4.2],
we deduce that the torus

SΓ :=
⋂
ε∈JΓ

Ker(ε)

is admissible and F -stable with

(3.6.3) LSΓ
= T

∏
ε∈JΓ

Uε.

It is not difficult to check that the graph associated to SΓ is Γ. □

Let S, S′ be two admissible subtori such that S ⊇ T, S′ ⊇ T . From Lemma 3.6.7,
we deduce the following proposition

Proposition 3.6.8. — Given S, S′ ⊆ T , we have that S ⩽ S′ if and only if ΓS ⩽ ΓS′ .

From Proposition 3.6.8, we deduce the following lemma.

Lemma 3.6.9. — For any S, S′ ∈ Z such that S, S′ ⊆ T , we have an equality

µA(B,σ)(ΓS ,ΓS′) = µ(S, S′).

Consider now an admissible graph Γ ∈ A(B, σ) and the admissible F -stable
torus SΓ associated to Γ.

Proposition 3.6.10. — With the notations introduced in Section 3.6.2, we have

[SΓ] = ωΓ.
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Fix now Γ′,Γ ∈ A(B, σ) such that Γ ⩽ Γ′, and denote by S = SΓ and S′ = SΓ′ .
We use the notations introduced before Lemma 3.6.4. We have S ⊆ S′. Assume that
the torus S is GLα(Fq) conjugated to

∏r
j=1(Zβj )dj .

The permutation σdj : BΓ
j,1 → BΓ

j,1 determines an associated F -stable subtorus
Tj ⊆ GLβj , as explained in Sections 3.2.1 and 3.2.2. The admissible graphs Γ′

j,1

correspond to admissible tori S′
j ⊆ Tj ⊆ GLβj , for each j = 1, . . . , r.

From Lemma 3.6.9 and Lemma 3.6.4, we deduce the following proposition

Proposition 3.6.11. — We have an equality

µ(S, S′) =

r∏
j=1

µ(Zβj
, S′

j) =

r∏
j=1

Co[S′
j ]
,

where the last equality is a consequence of Proposition 3.6.3.

Example 3.6.12. — Consider the set I = {1, 2, 3, 4}, the dimension vector α =

(2, 1, 1, 1) and the admissible tori S1, S2, S3 ∈ Zα of Example 3.4.8. Notice that
S1, S2, S3 are all contained in the maximal torus T = T2 × Gm × Gm × Gm, where
T2 ⊆ GL2 is the maximal torus of diagonal matrices. More precisely, we have that
T = S3. With the notations just introduced, we have B = {ε1, ε2, ε3, ε4, ε5}, σ is the
identity and

B1 = {ε1, ε2}, B2 = {ε3}, B3 = {ε4}, and B4 = {ε5}.

The graph ΓS1 associated to the torus S1 is

ε1 ε3 ε4 ε5

ε2

The graph ΓS2 associated to the torus S2 is

ε1 ε3 ε4 ε5

ε2

The graph associated to S3 is
ε1 ε3 ε4 ε5

ε2

Notice that ΓS1
,ΓS2

⩽ ΓS3
and we have corresponding inclusions S1, S2 ⊆ S3.
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Example 3.6.13. — Consider I = {1, 2} and the dimension vector α = (2, 2) ∈ NI ,
i.e., GLα = GL2 ×GL2 and let T ⊆ GLα be the torus

T = Tε × Tε ⊆ GL2 ×GL2,

where Tε ⊆ GL2 is the torus of Example 3.1.2. In this case, we have B = {ε1, ε2, ε3, ε4}
with

B1 = {ε1, ε2}, B2 = {ε3, ε4},
and σ is the permutation σ = (12)(34) ∈ S4. Let S ⊆ GLβ be the admissible subtorus

S =
{((

λ 0
0 λ

)
,
( µ 0
0 µ

))
| λ, µ ∈ Fq

∗}
.

We have that S ⊆ T and the graph ΓS is given by
ε1 ε3

ε2 ε4

Notice that ΓS has two connected components which are both stabilized by σ. With
the notations introduced before, we have therefore two orbits O1, O2 with BΓS

1 = B1

and BΓS
2 = B2 and d1 = d2 = 1. Denote by ΓS,1,ΓS,2 the restriction of ΓS to B1,B2

respectively.
Notice moreover that the associated elements β1, β2 are given by

β1 = (2, 0), β2 = (0, 2)

and, from Proposition 3.6.10 we have that

[S] = ωβ1
∗ ωβ2

.

The torus S is indeed Zβ1 ×Zβ2 embedded block diagonally in GLα. Moreover, from
Proposition 3.6.11, we deduce that

(3.6.4) µ(S, T ) = µB1,σ(ΓS,1,ΓTε
)µB2,σ(ΓS,2,ΓTε

) = µ(Z2, Tε)
2,

where Z2 = ZGL2 . Equation (3.6.4) can be checked directly from the definition of the
Möbius function µ. We have

{Zβ1
× Zβ2

, Zβ1
× Tε, Tε × Zβ2

} = {S′′ ∈ Zα | Zβ1
× Zβ2

⩽ S′′ ≨ Tε × Tε}.

From Eq. (3.5.2), we deduce that we have

µ(Zβ1
× Zβ2

, Zβ1
× Tε) = µ(Zβ1

× Zβ2
, Tε × Zβ2

) = µ(Z2, Tε) = −1

and thus from Eq. (3.5.2) that we have

µ(S, Tε × Tε) = −(−1− 1 + 1) = 1 = µ(Z2, Tε)
2.

Consider now the admissible and σ-stable graph Γ′ given by
ε1 ε3

ε2 ε4
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and denote by S′ = SΓ′ . The torus S′ is given by

(3.6.5)

S′ =

{(
1

xq − x

(
axq − bx −a+ b

(a− b)xxq −ax+ bxq

)
,

1

xq − x

(
axq − bx −a+ b

(a− b)xxq −ax+ bxq

)) ∣∣∣
a, b ∈ Fq

∗
}
.

In this case, the graph Γ′ has 2 connected components, which are swapped by σ.
We have therefore a single orbit O1 of length d1 = 2 with

BΓ′

1,1 = {ε1, ε3}, BΓ′

1,2 = {ε2, ε4}.

Notice that the associated dimension vector β′
1 is β′

1 = (1, 1). Proposition 3.6.10 states
therefore that S′ is GLα(Fq)-conjugated to the torus

(Z(1,1))2 ⊆ GLα,

which is also directly seen by the expression of S′ in Eq. (3.6.5). Notice that

σ2 = Id : BΓ′

1,1 −→ BΓ′

1,1.

From Lemmas 3.6.4 and 3.6.9, we find therefore that

µ(S′, T ) = µBΓ′
1,1,Id

(Γ′
1,1,ΓT2

) = µ(Z(1,1), Z(1,0) × Z(0,1)).

3.7. Inclusion of admissible subtori. — Let ν, ν′ ∈ Tss
α . Fix a maximal torus T such

that Sν′ ⊆ T ⊆ GLα. Define the set Pν,ν′ as

Pν,ν′ := {S ∈ Zα | [S] = ν, S ⩽ Sν′}.

In this paragraph we give a combinatorial description of Pν,ν′ which will be used in
the proof of Theorem 4.1.2. Assume that

ν = ψd1(ωβ1
) ∗ · · · ∗ ψdr (ωβr

) and ν′ = ψd′1(ωβ′
1
) ∗ · · · ∗ ψd′t(ωβ′

t
).

Up to reordering the factors in the product ν =
∏r
j=1 ψdj (ωβj

), we can assume
that there exists a strictly increasing sequence i1 < · · · < ik ∈ {1, . . . , r} such that:

• (dj , βj) = (d1, β1) for j = 1, . . . , i1,
• (dj , βj) = (dip , βip) for all ip−1 < j ⩽ ip for p ∈ {2, . . . , k},
• (dip , βip) ̸= (dis , βis) for any p ̸= s.

We have that i1 = ν((d1, β1)) and, for each h ∈ {2, . . . , k}, we have that ih − ih−1 =

ν((dih , βih)). Let Mν,ν′ be the set of partitions of {1, . . . , t} into r non-empty disjoint
subsets X1, . . . , Xr with the following properties:

• if h belongs to Xi, then di|d′h,
• for every j = 1, . . . , r, it holds

∑
h∈Xj

(d′h/dj)β
′
h = βj .

We will denote the element of Mν,ν′ associated to the subsets X1, . . . , Xr by
(X1, . . . , Xr). Consider now the group W ′

ν defined as

W ′
ν := Sν((di1 ,βi1

)) × · · · × Sν((dik ,βik
)).
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The set Mν,ν′ is endowed with an action of the group W ′
ν defined as follows. Consider

an element σ = (σ1, . . . , σk) ∈W ′
ν and an element (X1, . . . , Xr) ∈Mν,ν′ . We put

σ · (X1, . . . , Xr) := (Xσ1(1), . . . , Xσ1(i1), Xσ2(i1+1), . . . , Xσk(r)).

The group W ′
ν acts freely on Mν,ν′ . We denote by Mν,ν′ the quotient set Mν,ν′/W ′

ν .
We will now define the following morphism

πν,ν′ : Pν,ν′ −→Mν,ν′ .

We denote by Γ′ the graph associated to Sν′ with respect to the torus T . Let
{BΓ′

j,h} j=1,...,t
h=1,...,d′j

be the partition of the set B introduced in paragraph Section 3.6

for the graph Γ′. Consider an F -stable admissible torus S ⊆ Sν′ with [S] = ν and the
corresponding σ-stable graph Γ ⩽ Γ′, i.e., ΩΓ ⊇ ΩΓ′ . Let O1, . . . , Or be the r orbits
for the action of σ on the connected components of Γ of length d1, . . . , dr respectively
and assume to have fixed representatives Γ1,1, . . . ,Γr,1 for each of the orbits.

For each j = 1, . . . , r, there exists a subset Xj ⊆ {1, . . . , t} and, for each ℓ ∈ Xj ,
a subset Zℓ ⊆ {1, . . . , d′ℓ}, such that Γj,1 is the complete graph with vertices⊔

ℓ∈Xj

⊔
z∈Zℓ

BΓ′

ℓ,z.

The subsets Xj do not depend on the choice of the representatives Γ1,1, . . . ,Γr,1 and
form a partition of the set {1, . . . , t}. The partition (X1, . . . , Xr) belongs to Mν,ν′ .
Indeed, since the orbit Oj has length dj , we must have that

σs
( ⊔
ℓ∈Xj

⊔
z∈Zℓ

BΓ′

ℓ,z

)
∩

⊔
ℓ∈Xj

⊔
z∈Zℓ

BΓ′

ℓ,z = ∅

for any 0 < s ⩽ dj − 1 and

σdj
( ⊔
ℓ∈Xj

⊔
z∈Zℓ

BΓ′

ℓ,z

)
=

⊔
ℓ∈Xj

⊔
z∈Zℓ

BΓ′

ℓ,z.

Recall that σ(BΓ′

ℓ,z) = BΓ′

ℓ,z+1, where the index z of BΓ′

ℓ,z is considered modulo d′ℓ.
We deduce therefore that Zℓ is such that

(Zℓ + s) ∩ Zs = ∅ mod dj

for each 0 < s ⩽ dj − 1 and
Zℓ + dj = Zj mod dj .

This implies that dj |d′ℓ and that there exists aℓ ∈ Zℓ such that

Zℓ =
{
aℓ + djk | k = 1, . . . , d′ℓ/dj

}
.

In particular, it holds that |Zℓ| = d′ℓ/dj , from which we deduce that∑
ℓ∈Xj

d′ℓ
dj
β′
ℓ = βj .

We define then
πν,ν′(S) := [(X1, . . . , Xr)],

where [(X1, . . . , Xr)] is the class of the element (X1, . . . , Xr) in the quotient Mω1,ω2
.
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The morphism πν,ν′ is well-defined, i.e., does not depend on the choice of an order-
ing of the orbits O1, . . . , Or and it is surjective as we are taking the class [(X1, . . . , Xr)]

in the quotient Mν,ν′ for the action of W ′
ν .

From the description of the subsets Zℓ given above, we deduce that, for each
[(X1, . . . , Xr)], the fiber π−1

ν,ν′([(X1, . . . , Xr)]) has cardinality

(3.7.1) |π−1
ν,ν′([(X1, . . . , Xr)])| =

r∏
j=1

d
|Xj |−1
j .

4. Log compatible functions and plethystic identities

In this Section, we recall the definition of a Log compatible family, first introduced
by Letellier [34] and we prove our main Theorem 4.1.2 about these families, which
will be the key tool to compute the E-series of non-generic character stacks.

We first introduce the following notation. Consider a family of rational functions
indexed by multitypes {Fω(t)}ω∈TI

⊆ Q(t). For any V ⊆ NI , we define the rational
function Fα,V (t) ∈ Q(t) in the following way:

(4.0.1) Fα,V (t) :=
∑
ω∈Tα

Fω(t)

w(ω)

( ∑
S′⩽Sω

S′ of levelV

P[S′](t)µ(S
′, Sω)

)
.

For V = {α} we will use the notation Fα,gen(t) := Fα,{α}(t). From Proposition 3.6.3,
we have an equality

Fα,gen(t) =
∑
ω∈Tα

Fω(t)

w(ω)
(t− 1)µ(Zα, Sω) =

∑
ω∈Tα

Fω(t)

w(ω)
(t− 1)Coωss .

4.1. Plethysm and log compatibility: main result. — We give the following defini-
tion of a Log compatible family {Fω(t)}ω∈TI

.

Definition 4.1.1. — We say that {Fω(t)}ω∈TI
is Log compatible if for any α ∈ NI ,

ω ∈ Tα and for every multitypes ν1, . . . , νr and integers d1, . . . , dr such that
ψd1(ν1) ∗ · · · ∗ ψdr (νr) = ω, we have

r∏
j=1

Fνj (t
dj ) = Fω(t).

We have the following theorem:

Theorem 4.1.2. — For a Log compatible family {Fω(t)}ω∈TI
and any V ⊆ NI , we have

the following equality:

(4.1.1) Exp
(∑
β∈V

Fβ,gen(t)y
β
)
=

∑
α∈NI

Fα,V (t)y
α.

Remark 4.1.3. — The notion of a Log compatible family and the definition of the
polynomials Fα,gen(t) had already been introduced in [34, §2.1.2] Letellier [34, Th. 2.2]
used these objects to show the case in which V = NI of Theorem 4.1.2. However,
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Letellier’s proof does not seem to extend immediately to the case of any level V .
Notice that, for V = NI , we have that

Fα,NI (t) =
∑
ω∈Tα

Fω(t)

w(ω)
|(Sreg

ω )F |.

To obtain the equality

Exp
(∑
β∈NI

Fβ,gen(t)y
β
)
=

∑
α∈NI

∑
ω∈Tα

Fω(t)

w(ω)
|(Sreg

ω )F |,

the author of [34] uses in a key way two classical lemmas regarding plethystic opera-
tions, i.e., [34, Lem. 2.1] and [42, Lem. 22].

These two latter statements do not have an analog when we truncate the sum
inside the plethystic exponential Exp

(∑
β∈V Fβ,gen(t)y

β
)

at a general V . For this
reason, we needed to study the combinatorial objects introduced in Section 2 and
Section 3. In particular, in the proof, we will need the following three main tools.

• We will use the ring of multitypes introduced in Section 2.3.1 and in particular
Lemma 2.3.4 to better understand the truncated exponentials Exp

(∑
β∈VFβ,gen(t)y

β
)
.

• We use the results of Section 3.6.2 and in particular Proposition 3.6.11 to relate
the terms of the form Coω1

· · ·Coωr
appearing in the LHS of Eq. (4.1.1) to the terms of

the form µ(S, Sω) appearing in the RHS of Eq. (4.1.1).
• We use the results of Section 3.7 to relate combinatorially the sums of the type∑

S′⩽Sω

S′ of level V

µ(S′, Sω)P[S′](t)

appearing in the RHS of Eq. (4.1.1) to the LHS of Eq. (4.1.1).

Proof of Theorem 4.1.2. — We are going to give the proof through multiple steps.

Step I: rewriting the LHS of Eq. (4.1.1). — We start by using the results of Section 2.3
concerning the ring of multitypes. In particular, we remark that there is a unique
morphism Θ of λ-rings

Θ : Kss
I −→ Q(t)

obtained by extending
Θ(ωα) = Fα,gen(t).

By Lemma 2.3.4, Eq. (4.1.1)) is thus equivalent to the following Identity

(4.1.2)
∑
ν∈Tss

α
level V

Θ(ν)

w(ν)
= Fα,V (t).

The RHS of Eq. (4.1.2) is given by

(4.1.3) Fα,V (t) =
∑
ω∈Tα

Fω(t)

w(ω)

( ∑
S⊆Sω
level V

P[S](t)µ(S, Sω)

)
.

We are left with understanding the LHS of Eq. (4.1.2).
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Step II: understanding the LHS of Eq. (4.1.2). — Consider now ν∈Tss
I , d1, . . . , dr∈N>0

and β1, . . . , βr ∈ NI such that

ν = ψd1(ωβ1) ∗ · · · ∗ ψdr (ωβr ).

The value of Θ(ν)/w(ν) is given by

1

w(ν)

r∏
j=1

ψdj (Θ(βj)) =
1

w(ν)

r∏
j=1

( ∑
ωj∈Tβj

Fωj
(tdj )

w(ωj)
(tdj − 1)µ(Zβj

, Sωj
)
)

(4.1.4)

=
∑
ω∈Tα

Fω(t)Pν(t)

w(ν)

( ∑
ω1∈Tβ1

,...,ωr∈Tβr

ψd1
(ω1)∗···∗ψdr (ωr)=ω

1

w(ω1) · · ·w(ωr)

r∏
j=1

µ(Zβj
, Sωj

)

)
,(4.1.5)

where the equality of (4.1.4) and (4.1.5) is a direct consequence of the Log compati-
bility of the family {Fω(t)}ω∈TI

.

Step III: the function fν,ω. — Fix a multitype ω ∈ Tα with ω = (d′1,λ1) · · · (d′t,λt) for
multipartitions λ1, . . . ,λt and its associated admissible torus Sω ⊆ GLα. Denote by
Hν,ω the set defined by

Hν,ω := {(ω1, . . . , ωr) ∈ Tβ1
× · · · × Tβr

| ψd1(ω1) ∗ · · · ∗ ψdr (ωr) = ω}

and by δν : Hν,ω → Z the function defined as

δν((ω1, . . . , ωr)) :=

r∏
j=1

µ(Zβj
, Sωj

).

Let Mν,ωss be the set introduced in Section 3.7. Consider the following function

fν,ω :Mν,ωss −→ Hν,ω

defined as:
fν,ω((X1, . . . , Xr)) = (ω1, . . . , ωr),

where
ωi(d,λ) = #{h ∈ Xi such that (d′h/di,λh) = (d,λ)}

for every (d,λ) ∈ N× PI .
We will now show that the function fν,ω is surjective and for each (ω1, . . . , ωr), the

cardinality of the fiber is given by

|f−1
ν,ω(ω1, . . . , ωr)| =

∏
(d,λ)∈N×PI

ω(d,λ)!

ω1(d,λ)! · · ·ωr(d,λ)!
.

As done in Section 3.7 for the semisimple multitype ν, for the multitype ω =

(d′1,λ
′
1) . . . (d

′
t,λ

′
t) there exists a a strictly increasing sequence j1 < · · · < jc ∈

{1, . . . , t} such that:
• (d′j ,λ

′
j) = (d′1,λ

′
1) for j = 1, . . . , j1,

• (d′j ,λ
′
j) = (d′jp ,λ

′
jp
) for all jp−1 < j ⩽ jp for p ∈ {2, . . . , c},

• (d′jp ,λ
′
jp
) ̸= (d′js ,λ

′
js
) if p ̸= s.
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Recall that jp−jp−1 = ω((d′jp ,λ
′
jp
)) for every 1 ⩽ p ⩽ c, where we put j0 = 0. To prove

the surjectivity of fν,ω, fix (ω1, . . . , ωr) ∈ Hν,ω and define subsets Xω1 , . . . , Xωr ⊆
{1, . . . , t} as

Xωj
=

c⊔
ℓ=1

{
h ∈ {jℓ−1, . . . , jℓ}

∣∣∣∑j−1
m=1 ψdm(ωm)((d′jℓ ,λ

′
jℓ
)) < h− jℓ−1 ⩽

∑j
m=1 ψdm(ωm)((d′jℓ ,λ

′
jℓ
))
}
.

We have that (Xω1
, . . . , Xωr

) ∈ Hν,ω and fν,ω((Xω1
, . . . , Xωr

)) = (ω1, . . . , ωr). With
a similar argument, we see that the cardinality of |f−1

ν,ω(ω1, . . . , ωr)| is the product, for
ℓ = 1, . . . , c of the number of partitions of a set of cardinality ω((d′jℓ ,λ

′
jℓ
)) = jℓ− jℓ−1

into r sets of cardinality ψd1(ω1)((d
′
jℓ
,λ′

jℓ
)), . . . , ψdr (ωr)((d

′
jℓ
,λ′

jℓ
)) respectively, i.e.,

(4.1.6)

|f−1
ν,ω(ω1, . . . , ωr)| =

c∏
ℓ=1

ω((d′jℓ ,λ
′
jℓ
))!

(ψd1(ω1)((d′jℓ ,λ
′
jℓ
)))! · · · (ψdr (ωr)((d′jℓ ,λ

′
jℓ
)))!

=
∏

(d,λ)∈N×PI

ω(d,λ)!

ω1(d,λ)! · · ·ωr(d,λ)!
.

Step IV: describing the summands inside the parenthesis of Eq. (4.1.5) for any ω ∈ Tα
For any (ω1, . . . , ωr) ∈ Hν,ω, we have the following equality:

(4.1.7)
∏

(d,λ)∈N×PI

ω(d,λ)!

ω1(d,λ)! · · ·ωr(d,λ)!
=

w(ω)

w(ω1) · · ·w(ωr)

∏r
j=1

∏
h∈Xj

(d′h/dj)∏t
l=1 d

′
l

.

As
⊔
Xj = {1, . . . , t}, the right hand side of Eq. (4.1.7) is equal to

(4.1.8) w(ω)

w(ω1) · · ·w(ωr)
1∏r

j=1 d
|Xj |
j

.

For an element m = (X1, . . . , Xr) ∈Mν,ωss , denote by dm =
∏r
j=1 d

|Xj |
j .

For each ω ∈ Tα, we can thus rewrite the corresponding summand appearing in
the RHS of Eq. (4.1.5) as:

(4.1.9)

Fω(t)Pν(t)

w(ν)

( ∑
(ω1,...,ωr)∈Hν,ω

1

w(ω1) · · ·w(ωr)
δν((ω1, . . . , ωr))

)
=
Fω(t)Pν(t)

w(ν)w(ω)

( ∑
m∈Mν,ωss

w(ω)

w(ω1) · · ·w(ωr)
δν(fν,ω(m))

|f−1
ν,ω(m)|

)
=
Fω(t)Pν(t)

w(ν)w(ω)

( ∑
m∈Mν,ωss

δν(fν,ω(m))dm

)
,

where the last equality is a consequence of Eqs. (4.1.6) to (4.1.8).

Step V: using the results of Section 3.7 to rewrite the second line of Eq. (4.1.9)

The set Hν,ω is endowed with the following action of W ′
ν . We use the notations of

Section 3.7. An element σ = (σ1, . . . , σk) ∈W ′
ν acts on (ω1, . . . , ωr) ∈ Hν,ω by

σ · (ω1, . . . , ωr) = (ωσ1(1), . . . , ωσ1(i1), ωσ2(1), . . . , ωσk(r)).
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Notice that the function δν is W ′
ν invariant and fν,ω is W ′

ν equivariant. The function

δν ◦ fν,ω :Mν,ωss −→ Z

is therefore W ′
ν invariant and descends to a function Mν,ωss → Z which we still denote

by δν ◦ fν,ω. Notice moreover that the quantity dm is W ′
ν invariant too and so dm is

well-defined for an element m ∈Mν,ωss .
The second line of Eq. (4.1.9) is therefore equal to

(4.1.10) Fω(t)Pν(t)

w(ω)

( ∑
m∈Mν,ωss

δν(fν,ω(m))
dm|W ′

ν |
w(ν)

)
.

For any m ∈Mν,ωss , we have

dm|W ′
ν |

w(ν)
=

r∏
j=1

d
|Xj |
j

dj
=

r∏
j=1

d
|Xj |−1
j .

By Eq. (3.7.1), we can thus rewrite the sum of Eq. (4.1.10) as

(4.1.11) Fω(t)Pν(t)

w(ω)

( ∑
S∈Pν,ωss

δν(fν,ω(πν,ωss(S)))
)
.

From Proposition 3.6.11, we see that δν(fν,ω(πν,ωss(S))) = µ(S, Sω) and so, from
Eq. (4.1.9), we deduce that Θ(ν)/w(ν) is equal to

(4.1.12)
∑
ω∈Tα

Fω(t)Pν(t)

w(ω)

∑
S∈Pν,ωss

µ(S, Sω).

Summing over the ν ∈ Tss
α of level V , we have therefore:

Coeffα

(
Exp

(∑
β∈V

Fβ,gen(t)y
β
))

=
∑
ν∈Tss

α
of level V

Θ(ν)

w(ν)

=
∑
ν∈Tss

α
of level V

∑
ω∈Tα

Fω(t)Pν(t)

w(ω)

∑
S∈Pν,ωss

µ(S, Sω) =
∑
ω∈Tα

Fω(t)

w(ω)

( ∑
S⩽Sω

of level V

P[S](t)µ(S, Sω)
)
.

The right hand side is equal to Fα,V (t) by Eq. (4.1.3). □

5. Computation of convolution product for products of finite general
linear groups

In this section, we will use Theorem 4.1.2 to compute some invariants of certain
class functions of GLα(Fq). These results will be used to understand the cohomology
of multiplicative quiver stacks and character stacks for Riemann surfaces in Section 6.5
and Section 7.

We will start by reviewing some generalities about convolution product for the
class functions of a finite group. The finite groups that will interest us will be finite
reductive groups.
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In particular, consider the following situation. In this section, G is a reductive
group over Fq with associated Frobenius F : G → G. The finite group GF is called
a finite reductive group. We will recall some generalities about the representation
theory of the group GF in Section 5.2, Section 5.3. We follow the book [13].

We fix a prime ℓ such that (ℓ, q) = 1 and an isomorphism Qℓ ∼= C. We will identify
Qℓ-vector spaces with C-vector spaces through this isomorphism in the following.

5.1. Convolution product of class functions of a finite group. — Let H be a finite
group. We denote by C(H) the set of complex class functions, i.e., the functions
f : H → C which are constant on the conjugacy classes of H. We denote by 1 ∈ C(H)

the constant function equal to 1. For f, g ∈ C(H), we denote by ⟨f, g⟩ the quantity

⟨f, g⟩ = 1

|H|
∑
h∈H

f(h)g(h).

Recall that a basis of C(H) is given by the irreducible characters of H. We will denote
the set of irreducible characters of H by H∨. The vector space C(H) can be endowed
with the following ring structure (C(H), ∗). Given two class functions f1, f2 ∈ C(H),
the convolution f1 ∗ f2 is the class function defined as

f1 ∗ f2(g) =
∑
h∈H

f1(gh)f2(h
−1).

Denote by Cl(H) the set of conjugacy classes of H. For any O ∈ Cl(H), we denote
by 1O ∈ C(H) the characteristic function of O. For a central element η ∈ H, we denote
by 1η the characteristic function 1{η}. Notice that for any class function f , there is
an equality

⟨f ∗ 1η−1 , 1e⟩ =
f(η)

|H|
.

Recall now that

(5.1.1) 1e =
∑
χ∈H∨

χ(e)

|H|
χ.

We have therefore

(5.1.2) f(η)

|H|
=

∑
χ∈H∨

⟨f ∗ 1η−1 , χ⟩ χ(e)
|H|

.

For any two class functions f1, f2 : H → C and an irreducible character χ ∈ H∨,
we have

(5.1.3) ⟨f1 ∗ f2, χ⟩ = ⟨f1, χ⟩ ⟨f2, χ⟩
|H|
χ(e)

(see for example [27, Th. 2.13]). In particular, from Eqs. (5.1.2) and (5.1.3), we deduce
the identity:

(5.1.4) f(η)

|H|
=

∑
χ∈H∨

⟨f, χ⟩ ⟨1η−1 , χ⟩ =
∑
χ∈H∨

⟨f, χ⟩ χ(η
−1)

χ(e)

χ(e)

|H|
.
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5.2. Deligne-Lusztig induction. — In this section, we review the definition of the
Deligne-Lusztig induction for finite reductive groups. This construction, which allows
to give a geometric description of the irreducible characters of finite reductive groups,
was first introduced in [11].

Consider an F -stable Levi subgroup L of G, a parabolic subgroup P having L as
Levi factor and denote by UP the unipotent radical of P . Recall that there is an
isomorphism

P/UP ∼= L

and denote by πL : P → L the associated quotient map. In general P is not F -stable.
We can find an F -stable parabolic subgroup P ⊇ L if and only if εL = εG.

Denote by L the Lang map L : G → G given by L(g) = g−1F (g). The variety
XL := L−1(UP ) has a left GF -action and a right LF -action by multiplication on the
left/right respectively. This action induces an action on the compactly supported étale
cohomology groups Hi

c(XL,Qℓ) and so endows the virtual vector space

H∗
c (XL,Qℓ) :=

⊕
i⩾0

(−1)iHi
c(XL,Qℓ)

with the structure of a virtual GF -representation-LF . For an LF -representation M ,
we define the Deligne-Lusztig induction RGL (M) as the virtual GF -representation
given by

RGL (M) = H∗
c (XL,Qℓ)⊗C[LF ] M.

We will denote by RGL the induced linear map

RGL : C(LF ) −→ C(GF ).

Remark 5.2.1. — In the cases that will interest us in this article, i.e., when G is a
product of factors of the type (GLn)d, it will always be true that the functor RGL
does not depend on the choice of the parabolic subgroup P ⊇ L (see for example [5,
Prop. 6.1.1]).

Consider now a split Levi subgroup L, i.e., such that εL = εG. In this case, we can
take an F -stable parabolic subgroup P ⊇ L. The variety XL is a UP -principal bundle
over the finite variety GF /UFP and H∗

c (XL,Qℓ) is therefore concentrated in degree
2 dim(UP ), see the discussion before [13, Lem. 9.1.5] for more details.

If L is a split Levi subgroup, we have thus an equality

RGL (M) = C[GF /UFP ]⊗C[LF ] M

for every LF -representation M . In the split case, we can give the following equivalent
description of this functor. For an LF -representation M , denote by InflP

F

LF (M) the nat-
ural lift to a PF -representation through the quotient map πL. In [13, Prop. 5.18 (1)],
the following lemma is shown :

Lemma 5.2.2. — If L ⊆ G is a split F -stable Levi subgroup, we have an isomorphism
of functors:

RGL
∼= IndG

F

PF (Infl
PF

LF ).
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Lastly, we recall the following properties of Deligne-Lusztig induction.

Lemma 5.2.3. — For a reductive group G and a Levi subgroup L ⊆ G, we have:
(1) Given an F -stable Levi subgroup L′ ⊇ L, there is an isomorphism of functors:

RGL′(RL
′

L ) ∼= RGL .
(2) Assume there exist reductive groups G1, G2 and Levi subgroups L1, L2 such

that G = G1 ×G2 and L = L1 ×L2. For an LF1 -representation M1 and an LF2 -repre-
sentation M2, there is a natural isomorphism

RGL (M1 ⊠M2) = RG1

L1
(M1)⊠RG2

L2
(M2).

Proof. — The first point is shown in [13, Prop. 9.1.8]. For the second point, we can
choose parabolic subgroups G1 ⊇ P1 ⊇ L1 and G2 ⊇ P2 ⊇ L2 such that P1, P2 have
as Levi factor L1, L2 respectively. The group P = P1 × P2 ⊆ G is thus a parabolic
subgroup having L as Levi factor and UP = UP1 × UP2 . We have therefore

L−1(UP ) = L−1(UP1
)× L−1(UP1

)

and
H∗

c (L
−1(UP ),Qℓ) ∼= H∗

c (L
−1(UP1

),Qℓ)⊗H∗
c (L

−1(UP2
),Qℓ),

as C[LF1 ]⊗ C[LF2 ]-modules, from which we deduce that

RGL (M1 ⊠M2) = RG1

L1
(M1)⊠RG2

L2
(M2). □

Remark 5.2.4. — Consider an F -stable Levi subgroup L′ ⊇ L and a linear character
θ : (L′)F → C∗. By restriction, we can consider it as a character θ : LF → C∗. For any
f ∈ C(LF ), we have an identity RL′

L (θf) = θRL
′

L (f) and therefore, by Lemma 5.2.3(1),
an equality RGL (θf) = RGL′(θRL

′

L (f)).

5.3. Unipotent characters. — Fix now an F -stable maximal torus T ⊆ G. We follow
the notations of [13, Ch. 11].

Denote by W the Weyl group WG(T ) and by W̃ the semi-direct group W ⋊ ⟨F ⟩,
where ⟨F ⟩ is the group generated by the finite order automorphism induced by F

on W . Denote by C(WF ) the vector space of functions f : W → C constant on
F -conjugacy classes. Equivalently, a function f ∈ C(WF ) can be seen as a function
on the coset WF ⊆ W̃ , invariant under W -conjugation. The vector space C(WF ) is
endowed with the Hermitian product defined as

⟨f, g⟩WF =
1

|W |
∑

w∈WF

f(w)g(w),

for f, g ∈ C(WF ).

Example 5.3.1. — Let G = (GLn)d and T be the torus of Example 3.2.4. In this case,
the morphism ψ : C(Sn) → C(WF ) defined as ψ(f)(σ1, . . . , σd) = f(σd · · ·σ1) is an
isomorphism. It is not difficult to see that the isomorphism ψ is an isometry too.
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In [13, Ch. 11.6], it is shown how to associate to each χ ∈ (W∨)F a function in
C(WF ), which we denote by χ̃. This association is isometric with respect to the
natural Hermitian products on both sides. The elements {χ̃}χ∈(W∨)F form moreover
a basis of C(WF ).

Remark 5.3.2. — Consider the group G and the torus T of Example 5.3.1 above.
An irreducible character χ ∈ W∨ is determined by partitions λ1, . . . , λd ∈ Pn such
that χ = χλ

1

⊠ · · ·⊠χλd . The character χ is F -stable if and only if λ1 = · · · = λd = λ,
so that (W∨)F is in bijection with Pn.

For λ ∈ Pn, consider the associated function ˜(χλ)⊠d ∈ C(WF ). It is possible to
check that ψ−1( ˜(χλ)⊠d) = χλ ∈ C(Sn).

In [13, Ch. 11.6] for f ∈ C(WF ), a class function Rf : GF → C is defined as

(5.3.1) Rf :=
1

|W |
∑
w∈W

f(w)RGTw
(1).

In loc. cit., it shown that the map f → Rf induces an isometry C(WF ) → C(GF ).
In particular, the elements {Rχ̃}χ∈(W∨)F have norm 1 and are pairwise orthogonal
in C(GF ).

Consider now an F -stable Levi subgroup L ⊇ T and the corresponding Weyl
group WL := WL(T ) which is an F -stable subgroup of W . Define the induction
map IndWF

WLF : C(WLF )→ C(WF ) as

IndWF
WLF (f)(w) =

1

|WL|
∑
h∈WL

h−1wF (h)∈WL

f(h−1wF (h)).

In [13, Prop. 11.6.6] the following lemma is shown.

Lemma 5.3.3. — For any f ∈ C(WLF ), we have:

(5.3.2) RGL (Rf ) = RIndWF
WLF (f).

Let G = (GLn)d and T be the torus considered above. In [13, Ch. 11.7], the follow-
ing lemma is shown.

Lemma 5.3.4. — For each χ ∈ (W∨)F , the class function Rχ̃ is an irreducible char-
acter of (GLn)

F
d .

The irreducible characters of this form are called unipotent characters. In par-
ticular, for every λ ∈ Pn, there is a corresponding irreducible character R

χ̃⊠d
λ

∈

C((GLn)
F
d ), which we will denote by Rλ.

From Lemma 5.2.3(2), we deduce that Lemma 5.3.4 is true more generally for any
group G of the form (GLn1

)d1 ×· · ·× (GLnr
)dr . In this case, the unipotent characters

are in bijection with the multipartitions λ ∈ Pn1
× · · · × Pnr

and we denote by Rλ

the associated irreducible unipotent character.
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Consider now a group G = (GLn1
)d1×· · ·×(GLnr

)dr . An argument similar to that
at the end of Example 3.3.2 shows that all F -stable Levi subgroups are isomorphic
to a group of the form (GLn′

1
)d′1 × · · · × (GLn′

s
)d′s . From Eq. (5.3.2) we deduce the

following proposition.

Proposition 5.3.5. — Let G = (GLn1)d1 × · · · × (GLnr )dr and L ⊆ G an F -stable
Levi subgroup such that

(L,F ) ∼= (GLn′
1
)d′1 × · · · × (GLn′

s
)d′s .

For any µ ∈ Pn′
1
×· · ·×Pn′

s
, the character RGL (Rµ) belongs to the vector space spanned

by the unipotent characters of GF .

Lastly, consider an F -stable Levi subgroup L ⊆ G, a class function Rf ∈ C(LF )

for f ∈ C(WLF ) and a linear character θ : LF → C∗. Fix a central element γ ∈ GF .
Notice that γ ∈ LF too. The Mackey formula [13, Prop. 10.1.2] implies the following
proposition.

Proposition 5.3.6. — We have an equality:

(5.3.3) RGL (θRf )(γ) = RGL (θRf )(e)θ(γ).

5.4. Characters of tori and graphs. — Consider the group GLα and fix an F -stable
maximal torus T ⊆ GLα. We follow the notations of Section 3.6.

Recall that we have the dual root system Φ∨ ⊆ Y∗(T ) which is endowed with a
canonical bijection Φ↔ Φ∨ and that, for each h ̸= j ∈ {1, . . . ,m}, we denote by ε∨h,j
the element associated to εh,j through this bijection.

Consider now a character θ : TF → C∗. In this paragraph, we show how to associate
an admissible graph Γθ with vertices B to the character θ.

In [13, Prop. 11.7.1], it is shown that there exists a canonical short exact sequence

1 −→ Y∗(T ) −→ Y∗(T ) −→ TF −→ 1.

In particular, the character θ : TF → C∗ induces by restriction a morphism θ̃ :

Y∗(T ) → C∗. The graph Γθ is defined as follows. The set of the vertices of Γθ is
B = {ε1, . . . , εm} and, for each h > j, there is an edge between εh and εj if and
only if

ε∨h,j ∈ Ker(θ̃).

From Remark 3.6.1, we deduce the following lemma.

Lemma 5.4.1. — For any θ : TF → C∗, the graph Γθ is admissible.

In particular, from Lemma 3.6.7, there exists a unique admissible subtorus Sθ ⊆
GLα such that ΓSθ

= Γθ.
We will denote by Lθ = CGL|α|(Sθ) and by L̃θ = Lθ ∩GLα. The Levi subgroup Lθ

is the connected centralizer of θ in GL|α|, defined in [11, Def. 5.19] and L̃θ is the
connected centralizer of θ in GLα.
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Example 5.4.2. — Consider the subset I = {1, 2, 3, 4}, the dimension vector α =

(2, 1, 1, 1) and the torus T of diagonal matrices of Example 3.6.12. Notice that

TF =
{((

λ 0
0 µ

)
, γ, δ, η

)
| λ, µ, γ, δ, η ∈ F∗

q

}
.

Consider (β1, β2) ∈ Hom(F∗
q ,C∗)2 and let

θβ1,β2
: TF −→ C∗

be defined as
θβ1,β2

(λ, µ, γ, δ, η) = β1(λγδη)β2(µ).

If β1 ̸= β2, the graph Γθβ1,β2
is

ε1 ε3 ε4 ε5

ε2

and the admissible torus Sθβ1,β2
is therefore the torus S1 of Example 3.4.8.

If β1 = β2, the graph Γθβ1,β1
is

ε1 ε3 ε4 ε5

ε2

i.e., the complete graph with 5 vertices and the admissible torus Sθβ1,β1
is thus Zα.

From [11, Prop. 5.11], we deduce the following proposition.

Proposition 5.4.3. — For any θ : TF → C∗, the character θ can be extended to a
character θ : LFθ → C∗.

5.5. Characters of tori and Levi subgroups of the finite general linear groups

5.5.1. Characters of Levi subgroups. — Consider now G = GLα, an admissible
torus S, the associated Levi subgroups LS = CGL|α|(S) ⊆ GL|α| and L̃S = LS ∩GLα.
Let T be an F -stable maximal torus T ⊆ GLα such that L̃S ⊇ T ⊇ S.

We use the notations introduced in Section 3.6.3, Section 5.4 for the graphs asso-
ciated to T, S, θ in this situation.

Consider now a character θ : LFS → C∗. By restriction, we obtain a character
θ : TF → C∗, from which we define an associated admissible torus Sθ and the corre-
sponding Levi subgroups Lθ, L̃θ, as in Section 5.4. In general, we have that Sθ ⩽ S,
i.e., Lθ ⊇ LS (or equivalently Γθ ⩽ ΓS). In this case, Γθ = ΓS if and only if L̃θ = L̃S .
As recalled in Proposition 5.4.3, the character θ can be extended to the connected cen-
tralizer θ : LFθ → C∗. Since Lθ ⊇ L̃θ, in particular, θ can be extended to a character
θ : L̃θ → C∗.
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Conversely, for each character θ : TF → C∗ such that Lθ ⊇ LS (i.e., Γθ ⩽ ΓS),
the character θ can be first extended to θ : LFθ → C∗ and then restricted to obtain a
linear character θ : LFS → C∗ and θ : L̃S

F → C∗.
We obtain therefore the following correspondence.

Proposition 5.5.1. — There are bijections:
Hom(LFS ,C∗)←→ {θ ∈ Hom(TF ,C∗) | Γθ ⩽ ΓS}

←→ {θ ∈ Hom(L̃S
F ,C∗) | Γθ ⩽ ΓS}.

Lastly, we give the following definition of a reduced character.

Definition 5.5.2. — Given an F -stable Levi subgroup L ⊆ GLα and a character
θ : LF → C∗, we say that θ is reduced if there exists an admissible F -stable subtorus
S ⊆ GLα and an F -stable subtorus T ⊇ S such that

• L = L̃S ,
• for the connected centralizer Lθ defined from T , we have L̃θ = L̃S .

5.5.2. Reduced characters and connected centralizers. — Let now G=GLn (i.e., |I|=1)
and consider an F -stable Levi subgroup L ⊆ GLn and a linear character θ : LF → C∗.
The Levi subgroup L contains an F -stable maximal torus T . From θ, T , we determine
the connected centralizer Lθ ⊇ L, as defined above. In this case, the character θ is
reduced if Lθ = L.

Remark 5.5.3. — While the connected centralizer Lθ does depend on the choice of
the torus T , from [11, Prop. 5.11(ii) & Prop. 5.20] we deduce that for any two F -stable
maximal tori T, T ′ ⊆ L and the corresponding connected centralizers Lθ, L′

θ, there
exists an element g ∈ GLn(Fq) such that gLθg−1 = L′

θ.
In particular, the property of being reduced does not depend on the choice of the

maximal torus T .

We will now describe the connected centralizers Lθ for certain Levi subgroups
L ⊆ GLn and certain linear characters θ : LF → C∗. This description is going to
be useful both for recalling the construction of irreducible characters of GLn(Fq) in
Section 5.6 and for the proof of Lemma 6.6.3, which is the key technical point to prove
our main result about multiplicative quiver stacks over Fq, Theorem 6.5.1.

For any two positive integers r, d such that r|d, the norm map NF∗
qd
/F∗

qr
: F∗

qd → F∗
qr

induces by precomposition an injective homomorphism

Γr,d := Hom(F∗
qr ,C∗) −→ Hom(F∗

qd ,C
∗).

We denote by Γ the inductive limit via these maps

Γ := lim−→Hom(F∗
qd ,C

∗).

Notice that, for any n ⩾ 1, we can view Hom(F∗
qn ,C∗) as a subgroup of Γ through

the universal maps of the limit. The Frobenius morphism acts by precomposition on
each term Hom(F∗

qd ,C
∗) (i.e., F (γ) = γ ◦ F ) and so defines a morphism F : Γ→ Γ.
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Consider the Levi subgroup

L = (GLn1)d1 × · · · × (GLnr )dr

with n1, . . . , nr, d1, . . . , dr positive integers such that d1n1+ · · ·+ drnr = n and let T
be the maximal torus

(Tn1
)d1 × · · · × (Tnr

)dr .

The group LF is isomorphic to GLn1
(Fqd1 )×· · ·×GLnr

(Fqdr ). A character θ : LF→C∗

corresponds thus to an element (θ1, . . . , θr) ∈ Hom(F∗
qd1
,C∗) × · · · × Hom(F∗

qdr ,C
∗)

such that

θ(M1, . . . ,Mr) =

r∏
j=1

θj(det(Mj))

with Mj ∈ GLnj
(Fqdj ).

Lemma 5.5.4. — The character θ is reduced if and only if the F -orbits of θ1, . . . , θr
inside Γ have length d1, . . . , dr respectively and are pairwise disjoint.

Proof. — Notice that, for any h ∈ {1, . . . , n} there exist unique ih ∈ {1, . . . , r} and
jh ∈ {1, . . . , dih} such that

ih−1∑
s=1

dsns < h ⩽
ih∑
s=1

dsns

ih−1∑
s=1

dsns + nih(jh − 1) < h ⩽
ih−1∑
s=1

dsns + nihjh.and

For h1, h2 ∈ {1, . . . , n}, we have

θ̃(ε∨h1,h2
) = 1 if and only if θq

jh1

ih1
= θq

jh2

ih2

as elements of Γ, from which we deduce the lemma above. □

Consider now two F -stable Levi subgroups L ⊆ GLn and L′ ⊆ GLn′ and the
Levi subgroup M = L × L′ ⊆ GLm embedded block diagonally, where m = n + n′.
Assume that L = (GLn1)d1 × · · · × (GLnr )dr and L′ = (GLn′

1
)d′1 × · · · × (GLn′

s
)d′s

and consider two reduced characters θ : LF → C∗ and θ′ : (L′)F → C∗ corresponding
to (θ1, . . . , θr), (θ

′
1, . . . , θ

′
s) where θi ∈ Hom(F∗

qdi
,C∗), θ′j ∈ Hom(F∗

q
d′
j
,C∗) for i =

1, . . . , r, j = 1, . . . , s. Consider the character

γ = θ × θ′ :MF −→ C∗.

Its connected centralizer Mγ admits the following description. For i ∈ {1, . . . , r},
consider the subset Ji ⊆ {1, . . . , s} defined as

Ji :=
{
j ∈ {1, . . . , s} | d′j = di and the F -orbits inside Γ of θi, θ′j

have nonempty intersection
}
.
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We have that either Ji = ∅ or Ji = {ji} for an element ji ∈ {1, . . . , s}, since the char-
acters θ, θ′ are both reduced. Denote by I ′ ⊆ {1, . . . , r} the subset I ′ := {i | Ji = ∅}
and by J ′ ⊆ {1, . . . , s} the subset J ′ = {1, . . . , s}∖

⊔r
i=1 Ji.

In a similar way to the one used to prove Lemma 5.5.4, we see that any connected
centralizer Mγ is GLn(Fq)-conjugated to the Levi subgroup

M ′
γ =

∏
i∈I′

(GLni)di
∏
j∈J′

(GLn′
j
)d′j

∏
i∈(I′)c

(GLni+n′
ji
)di .

Through this conjugation, the character γ corresponds to the character γ: (M ′
γ)
F→C∗

associated to ((θi)i∈I′ , (θ
′
j)j∈J′ , (θi)i∈(I′)c).

5.6. Irreducible characters of finite general linear group. — In this paragraph,
we quickly recall how to build the character table of the groups GLα(Fq). We start
from the following lemma, which will also be needed later. Its proof is a consequence
of [13, Lem. 11.4.3 & Lem. 11.4.4] and [36, Th. 8].

Lemma 5.6.1. — Consider G = GLα, an F -stable Levi subgroup L ⊆ G and two
characters Rφ1

, Rφ2
∈ C(LF ) with φ1, φ2 ∈ C(WLF ). Let θ : LF → C∗ be a reduced

character. We have

⟨RGL (θRφ1
), RGL (θRφ2

)⟩GF = ⟨Rφ1
, Rφ2

⟩LF .

Notice in particular that if φ1 = φ2 = ψ̃ with ψ ∈ (W∨
L )

F , Lemma 5.3.4 implies

⟨RGL (θRψ̃), R
G
L (θRψ̃)⟩ = ⟨Rψ̃, Rψ̃⟩ = 1.

In particular, the character RGL (θRψ̃) is a virtual irreducible character, i.e., an irre-
ducible character up to a sign.

From these remarks, in [37, Th. 3.2], the following theorem is shown.

Theorem 5.6.2. — For an irreducible character χ ∈ GLα(Fq)∨, we have

χ = εGεLR
G
L (θRφ̃),

where L is an F -stable Levi subgroup, φ ∈ (W∨
L )

F and θ : LF → C∗ is a reduced
character.

Two characters χ1, χ2 with associated data (L1, θ1, φ1) and (L2, θ2, φ2) are equal if
and only if the triples (L1, θ1, φ1), (L2, θ2, φ2) are GLα(Fq)-conjugated.

For an irreducible character χ with associated datum (L, θ, φ), we will call the pair
(L, θ) the semisimple part of χ. This is well-defined up to GLα(Fq)-conjugacy.

Remark 5.6.3. — Let G = GLn and consider now an F -stable Levi subgroup L,
a character γ : LF → C∗ (not necessarily reduced) and a unipotent irreducible char-
acter Rψ̃ for ψ ∈ (W∨

L )
F .

Let Lγ be a connected centralizer of γ. By Remark 5.2.4, we have an equality

RGL (γRψ̃) = RGLγ
(γR

Lγ

L (Rψ̃)).
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Notice that from Proposition 5.3.5, we have that RLγ

L (Rψ̃) belongs to the vec-
tor space spanned by the unipotent characters of Lγ . We deduce thus the following
proposition.

Proposition 5.6.4. — For G = GLn, any F -stable Levi subgroup L ⊆ G, any γ :

LF → C∗ and any ψ ∈ (W∨
L )

F , the character RGL (γRψ̃) belongs to the vector space
spanned by the irreducible characters of GLn(Fq) with semisimple part (Lγ , γ).

From Proposition 5.3.6 we deduce in particular the following proposition:

Proposition 5.6.5. — Given χ ∈ GL∨
α(Fq) with χ = εGεLR

G
L (θRψ̃) and a central

element η = (ηiIαi
)i∈I , we have

χ(η)

χ(e)
= θ(η).

5.7. Type of an irreducible character. — Let χ ∈ GLn(Fq)∨ with associated datum
(L, θ, φ). Up to GLn(Fq)-conjugacy, L is equal to (GLn1)d1 × · · · × (GLnr )dr and
φ = Rλ for λ = (λ1, . . . , λr) ∈ Pn1

×· · ·×Pnr
a multipartition. Up to reordering, the

(di, λi)s define a type
ωχ := (d1, λ1) . . . (dr, λr) ∈ Tn,

which is called the type of the irreducible character χ.

Example 5.7.1. — Consider a partition µ = (µ1, . . . , µh) ∈ Pn and the associated split
Levi subgroup Lµ = GLµ1

×GLµ2
× · · · ×GLµh

⊆ GLn. For each reduced character
θ : LFµ → C∗, the type of the character RGLµ

(θ) is (1, (µ1)) · · · (1, (µh)).

In a similar way, for any finite set I and any α ∈ NI , to each irreducible character
χ ∈ GLα(Fq)∨, we can associate a multitype ωχ ∈ Tα in the following way.

Let χ = εGLα
εLR

GLα

L (Rφ̃θ), where θ : LF → C∗ is a reduced character and Rφ̃ is
a unipotent character of LF with φ ∈ (W∨

L )
F . Consider an F -stable torus T ⊆ L and

the restricted character θ : TF → C∗. As explained in Section 5.4, this determines a
Levi subgroup Lθ ⊆ GL|α| with admissible center Sθ ⊆ T and such that Lθ∩GLα = L,
since θ is reduced. Consider the semisimple multitype [Sθ] = (d1, (1

β1)) . . . (dr, (1
βr )).

As in the case of GLn(Fq), the character φ determines multipartition λ1, . . . ,λr ∈ PI

such that |λj | = βj . Up to reordering, the (di,λi)s define a multitype

ωχ := (d1,λ1) . . . (dr,λr).

For ω ∈ TI and χ ∈ GLα(Fq)∨, we will use the notation χ ∼ ω if ωχ = ω.

Example 5.7.2. — Let I = {1, 2, 3, 4} and α = (2, 1, 1, 1). Let T ⊆ GL2 be the
F -stable torus of diagonal matrices, consider β ̸= γ ∈ Hom(F∗

q ,C∗) and the associated
character (β, γ) : TF → C∗. Let χ be the character χ ∈ GLα(Fq)∨

χ = RGT ((β, γ))⊠ γ ◦ det⊠γ ◦ det⊠γ ◦ det .

Let β1 = (1, 1, 1, 1) and β2 = (1, 0, 0, 0). The associated multitype is

ωχ = (1, (β1))(1, (β2)).
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Remark 5.7.3. — Given ω ∈ Tα, consider an irreducible character χ ∈ GLα(Fq)∨ of
type ω. Fix S ∈ Zα such that [S] = ωss (for instance S = Sω). We can assume then
that

χ = ε
L̃S
εGLα

RGLα

L̃S
(θRφ̃)

with θ : L̃S
F → C∗ such that Sθ = S and Rφ̃ a unipotent character of L̃SF . Notice

that for any γ : L̃S
F → C∗ such that Sγ = S, the character ε

L̃S
εGLαR

GLα

L̃S
(γRφ̃) is

irreducible and of type ω.
The map from {γ : L̃S

F → C∗ | Sγ = S} to {χ ∈ GLα(Fq)∨ of multitype ω} which
sends γ to ε

L̃S
εGLαR

GLα

L̃S
(γRφ̃) is surjective and its fibers have cardinality w(ω), see

for example [34, Proof of Th. 2.2] for the analogous statement for conjugacy classes
of GLα(Fq).

Recall that the value χ(e)/|GLα(Fq)| for χ ∈ GLα(Fq)∨ depends only on the mul-
titype of χ. More precisely, for a partition λ ∈ P, let Hλ(t) be the hook polynomial

Hλ(t) :=
∏
s∈λ

(1− th(s)).

For a multipartition λ = (λi)i∈I ∈ PI , we define Hλ(t) :=
∏
i∈I Hλi(t). Given a

multitype ω = (d1,λ1) . . . (dr,λr), define H∨
ω (t) as

(5.7.1) H∨
ω (t) :=

(−1)f(ω)

q

(∑
i∈I

αi(αi−1)

2 −n(ω)
) ∏r

j=1Hλj
(tdj )

,

where, if |λ1| = β1, . . . , |λr| = βr, we set

f(ω) :=

r∑
j=1

|βj | and n(ω) :=

r∑
j=1

djn(λj).

We have the following proposition (see [38, IV, 6.7]).

Proposition 5.7.4. — For any χ ∈ GLα(Fq)∨, we have:

(5.7.2) χ(e)

|GLα(Fq)|
= H∨

ωχ
(q).

5.8. Multiplicative parameters. — Given an element η=(ηi)i∈I ∈(F∗
q)
I and δ∈NI ,

we define
ηδ :=

∏
i∈I

ηδii .

We denote by Hη the subset of NI defined as

Hη := {δ ∈ NI | ηδ = 1}

and, for any α ∈ NI , we denote by Hη,α the intersection Hη,α := Hη ∩ NI⩽α. For an
admissible torus S ∈ Zα, we say that S is of level η if it is of level Hη,α.
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Fix now α ∈ NI . We still denote by η the central element η := (ηiIαi
) ∈ GLα(Fq).

Assume now to have fixed, for each S ∈ Zα, an F -stable maximal torus GLα ⊇ TS ⊇ S
in such a way that if S⩽S′ then TS=TS′ . Define then the functions gη, fη : Zα→C as

gη(S) :=
∑

θ:TF
S →C∗

Γθ=ΓS

θ(η) and fη(S) :=
∑

θ:TF
S →C∗

Γθ⩽ΓS

θ(η).

Understanding the functions fη, gη is a key part of the proof of Theorem 5.9.3, which
is the main technical result needed to prove Theorem 7.2.9. By Eq. (3.5.3), we have
(5.8.1) gη(S) =

∑
S′⩽S

µ(S′, S)fη(S
′).

Notice that by the bijection of Proposition 5.5.1, for each S ∈ Zα, we have
fη(S) =

∑
θ:LF

S→C∗

θ(η).

Fix now S with associated semisimple multitype [S] = (d1, β1) . . . (dr, βr), where
β1, . . . , βr ∈ NI . Notice that there exists h ∈ GLα(Fq) such that

hSh−1 =

r∏
j=1

(Zβj )dj ,

hLSh
−1 =

r∏
j=1

(GL|βj |)dj .and so

In particular, a character θ : LFS → C∗, through the conjugation by h, corresponds to
an element (θ1, . . . , θr) ∈ Hom(F∗

qd1
,C∗)× · · · ×Hom(F∗

qdr ,C
∗) such that

θ(M1, . . . ,Mr) =

r∏
j=1

θj(det(Mj))

with Mj ∈ GL|βj |(Fqdj ). As the element η ∈ GLα(Fq) is central, we have the following
equality

(5.8.2) θ(η) =

r∏
j=1

θj(η
βj ).

In particular, Eq. (5.8.2) implies that fη(S) ̸= 0 if and only if ηβj = 1 for each
j = 1, . . . , r, i.e., if and only if S is of level η. From Eq. (5.8.1), we therefore deduce
that, for each S ∈ Zα, we have
(5.8.3) gη(S) =

∑
S′⩽S

of level η

|Hom(LFS′ ,C∗)|µ(S′, S) =
∑
S′⩽S

of level η

P[S′](q)µ(S
′, S).

5.9. Dual Log compatiblity

Consider a family of class functions {cα ∈ C(GLα(Fq))}.

Definition 5.9.1. — The family {cα}α∈NI is said to be dual Log compatible if the
product ⟨cα, χ⟩ depends only on the multitype of χ and the value of ⟨cα, χ⟩ for χ ∼ ω is
of the form Cω(q) where {Cω(t) ∈ Q(t)}ω∈TI

is a family of rational functions such that
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for any d1, . . . , dr ∈ N and ω1 ∈ Tβ1
, . . . , ωr ∈ Tβr

such that ψd1(ω1)∗· · ·∗ψdr (ωr) = ω,
it holds

(5.9.1) Cω1
(td1) · · ·Cωr

(tdr )

r∏
j=1

H∨
ωj
(tdj ) = Cω(t)H

∨
ω (t).

i.e., the family {Cω(t)H∨
ω (t)}ω∈TI

is Log compatible.

For each ω ∈ T, denote by C̃ω(t) := Cω(t)H
∨
ω (t). The family {C̃ω}ω∈TI

is therefore
Log compatible. For each α ∈ NI and for each η ∈ (F∗

q)
I , we will denote by C̃α,η(t)

the polynomial C̃α,Hη,α
(t) introduced in Eq. (4.0.1).

Example 5.9.2. — Let I = {·} and, for any n ∈ N, let fn : GLn(Fq)→ C be the class
function

fn(h) := #{(x, y) ∈ GLn(Fq)×GLn(Fq) | [x, y] = h}

for h ∈ GLn(Fq). For any χ ∈ GLn(Fq)∨ of type ω, it holds ⟨fn, χ⟩ = 1/H∨
ω (q). More

generally, for any finite group G and any irreducible character χ ∈ G∨ we have

(5.9.2)
∑

(a,b)∈G2

χ([a, b]) =
|G|
χ(1)

.

This equality is obtained by applying Schur’s lemma in a classical way as explained in
[25, §2.3]. Notice that, from the identity ⟨fn, χ⟩ = 1/H∨

ω (q), we immediately deduce
that the family {fn}n∈N is dual Log compatible and, more precisely, for each ω, the
associated function F̃ω(t) is equal to 1.

The notion of dual Log compatible families will be one of the key elements to show
Theorem 7.2.9 about E-series of non-generic character stacks. Their importance comes
from the following theorem.

Theorem 5.9.3. — For any dual Log compatible family {cα}α∈NI and any η ∈ (F∗
q)
I ,

there is an equality

(5.9.3) cα(η)

|GLα(Fq)|
= Coeffα

(
Exp

( ∑
β∈Hη

C̃β,gen(q)y
β
))

Proof. — By Theorem 4.1.2 and the Log compatibility of the family {C̃ω(t)}ω∈TI
, to

show Eq. (5.9.3) it is enough to show that for any η ∈ (F∗
q)
I , we have

cα(η)

|GLα(Fq)|
= C̃α,η(q).

By Eq. (5.1.4), we deduce the following equality

(5.9.4) cα(η)

|GLα(Fq)|
=

∑
χ∈GLα(Fq)∨

⟨cα, χ⟩
χ(η−1)

χ(e)

χ(e)

|GLα(Fq)|
.
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Rearranging the sum of the RHS of Eq. (5.9.4) in terms of the multitypes of the
characters, we have:

(5.9.5)
∑
ω∈Tα

∑
χ∈GLα(Fq)

∨

χ∼ω

⟨cα, χ⟩
χ(η−1)

χ(e)
H∨
ω (q) =

∑
ω∈Tα

C̃ω(q)

( ∑
χ∈GLα(Fq)

∨

χ∼ω

χ(η−1)

χ(e)

)
.

By Proposition 5.6.5 and the description of the irreducible characters of GLα(Fq) given
in Section 5.6, we can rewrite the RHS of Eq. (5.9.5) as follows, using the notations
of Section 5.8:

(5.9.6)

∑
ω∈Tα

C̃ω(q)

w(ω)

( ∑
θ:TSω→C∗

Γθ=ΓSω

θ(η−1)

)
=

∑
ω∈Tα

C̃ω(q)

w(ω)

( ∑
S′⩽Sω

of level η−1

P[S′](q)µ(S
′, Sω)

)

= C̃α,η(q),

where the equality at the middle is a consequence of Eq. (5.8.3) and the last equality
is a consequence of the fact that Hη,α = Hη−1,α. □

Remark 5.9.4. — For β ∈ NI and η ∈ (F∗
q)
I , we say that η is generic with respect

to β if Hη,β = {β}.
For any β, if q is sufficiently big, there exists an element η of (F∗

q)
I generic with

respect to it. From Eq. (5.9.3), we deduce that, if η is generic with respect to β,
we have

(5.9.7) cβ(η)

|GLβ(Fq)|
= C̃β,gen(q).

In particular, for generic central elements, the quantity cβ(η)/|GLβ(Fq)| is given by a
rational function in q which does not depend on the choice of the generic η but only
on the dimension vector β.

Fix now α ∈ NI . Assume that q is sufficiently big and for any 0 < β ⩽ α, choose
ηβ,gen ∈ (F∗

q)
I generic with respect to β. Equation (5.9.3) and Eq. (5.9.7) give therefore

a way to express the multiplicity cα(η)/|GLα(Fq)| for any central element η ∈ (F∗
q)
I

in terms of the analogous values for the generic parameters ηβ,gen.

The notion of dual Log compatibility is well behaved with respect to convolution,
as explained by the following lemma.

Lemma 5.9.5. — Let {fα}α∈NI , {f ′α}α∈NI be two families of dual Log compatible class
functions. The family {kα}α∈NI , defined as kα := (fα ∗ f ′α)/q

∑
i∈I α

2
i is dual Log com-

patible.

Proof. — Let Fω(t), F
′
ω,α(t) be the polynomials such that ⟨fα, χ⟩ = Fω(q) and

⟨f ′α, χ⟩ = F ′
ω(q) for every χ ∈ GLα(Fq)∨ of multitype ω ∈ Tα. By Eq. (5.1.3), we see

that
⟨kα, χ⟩ =

Fω(q)F
′
ω(q)

H∨
ω (q)q

∑
i∈I α

2
i

.
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Fix d1, . . . , dr ∈ N and ω1 ∈ Tβ1
, . . . , ωr ∈ Tβr

such that ψd1(ω1) ∗ · · · ∗ ψdr (ωr) = ω.
To check Eq. (5.9.1) for the functions kα, we need to verify that

(5.9.8)
r∏
j=1

Fωj
(tdj )F ′

ωj
(tdj )

H∨
ωj
(tdj )tdj

∑
i∈I(βj)2i

r∏
j=1

H∨
ωj
(tdj ) =

Fω(t)F
′
ω(t)

H∨
ω (t)t

∑
i∈I α

2
i

H∨
ω (t).

Since the families {fα}α∈NI , {f ′α}α∈NI are dual Log compatible, this is equivalent to
verify the equality

(5.9.9)
(∏r

j=1H
∨
ωj
(tdj )

H∨
ω (t)

)2

=
t
∑

i∈I α
2
i∏r

j=1 t
∑r

j=1 dj
∑

i∈I(βj)2i
,

which is a direct consequence of Eq. (5.7.1). □

Remark 5.9.6. — From Lemma 5.9.5 above and Example 5.9.2, we deduce that for
any g ⩾ 1, the family of class function {fgn : GLn(Fq)→ C}, where

fgn(h) :=
#{(x1, y1, . . . , xg, yg) |

∏g
i=1[xi, yi] = h}

q(n2(g−1))

is dual Log compatible. In [25, §2.3], the authors prove by a direct computation
that ⟨fgn, χ⟩ =

(
|GLn(Fq)|/χ(1)

)2g−1, from which it is possible to check dual Log
compatibility directly from Eq. (5.9.1).

6. Multiplicative quiver stacks for star-shaped quivers and
character stacks for Riemann surfaces

In this chapter, we will apply the results of Theorem 5.9.3 to the count of points
over finite fields of multiplicative quiver stacks and character stacks for Riemann
surfaces. We start by recalling the definitions and the constructions of these objects.

6.1. Character stacks for Riemann surfaces. — Fix integers g, k ∈ N, a Riemann
surface Σ of genus g and a divisor D = {d1, . . . , dk} ⊆ Σ. In this paragraph we
recall the definition of the character stacks for the Riemann surface Σ with fixed
monodromies along D.

Let C = (C1, . . . ,Ck) be a k-tuple of conjugacy classes of GLn(C). Denote by XC

the following variety

XC :=
{
ρ ∈ Hom(π1(Σ∖D),GLn(C)) | ρ(δh) ∈ Ch for h = 1, . . . , k

}
,

where, for each h = 1, . . . , k, δh is a loop around the point dh. The variety XC is
the variety of representations of the fundamental group of Σ ∖ D with prescribed
monodromy around the points of D lying in C1, . . . ,Ck respectively.

Recall that the fundamental group π1(Σ∖D) admits the following explicit presen-
tation

π1(Σ∖D) = ⟨a1, b1, . . . , ag, bg, δ1, . . . , δk | [a1, b1] · · · [ag, bg]δ1 · · · δk = 1⟩.
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Therefore, the variety XC has the following explicit expression in terms of matrix
equations:

XC =
{
(A1, B1, . . . , Ag, Bg, X1, . . . , Xk) ∈ GLn(C)2g × C1 × · · · × Ck |

[A1, B1] · · · [Ag, Bg]X1 · · ·Xk = 1
}
.

The character stack MC associated to (Σ, D,C) is defined as the quotient stack

MC := [XC/GLn(C)].

We also consider the character variety MC, defined as the GIT quotient

MC := XC//GLn(C).

We will also consider certain quotient stacks, defined from Springer resolution of
conjugacy classes, whose definition we briefly review here.

6.1.1. Springer resolutions of conjugacy classes. — In this paragraph, the base field
is C. Consider a Levi subgroup L ⊆ GLn(C) and a parabolic subgroup P ⊇ L having L
as Levi factor. Let UP ⊆ P be the unipotent radical. Fix an element z ∈ ZL and let Yz
be the variety

Yz :=
{
(X, gP ) ∈ GLn(C)×GLn(C)/P | g−1Xg ∈ zUP

}
.

Let πz : Yz → GLn(C) be the projection πz((gP,X)) = X. The following proposition
is well-known (see for instance [18] and the reference therein for unipotent orbits).

Proposition 6.1.1. — The image of πz is the Zariski closure C of a conjugacy class
C ⊆ GLn(C) and the morphism πz is a resolution of singularities.

If z ∈ (ZL)
reg, the map πz is an isomorphism between Yz and the conjugacy class

of z in GLn(C).

The morphism πz : Yz → C ⊆ GLn(C) is called a partial Springer resolution. Its
image does not depend on the choice of the parabolic subgroup P .

Remark 6.1.2. — The variety Yz can be described in the following equivalent way.
Consider n0, . . . , ns such that L ∼= GLn0

×· · ·×GLns
. The element z ∈ ZL corresponds

therefore to z0, . . . , zs ∈ C∗ such that

z = (z0In0
, . . . , zsIns

).

Let P be the parabolic subgroup containing L as a Levi factor and which contains
the subgroup of upper triangular matrices. Identify GLn/P with the corresponding
partial flag variety in the classical way, i.e.,

(6.1.1) GLn/P ∼=
{
F = (Fs ⊆ Fs−1 ⊆ · · · ⊆ F0 = Cn) | dim(Fi) =

∑s
j=i nj

}
.

We have

Yz =
{
(X,F) ∈ GLn(C)×GLn(C)/P | X(Fj) ⊆ Fj for each j = 0, . . . , s

and the morphism induced by X on Fj/Fj+1 is zjInj

}
.
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Consider now a k-tuple of Levi subgroups L = (L1, . . . , Lk), a k-tuple of parabolic
subgroups P = (P1, . . . , Pk) where each Pi has Li as Levi factor and of central
elements z = (z1, . . . , zk) ∈ ZL1 × · · ·ZLk

.
Let now XL,P ,z be the variety defined as

XL,P ,z :=
{
(A1, B1, . . . , Ag, Bg, g1P1, X1, . . . ) ∈ GL2g

n (C)×
∏k
h=1 Yzh |∏g

i=1[Ai, Bi]X1 · · ·Xk = 1
}

and ML,P ,z the quotient stack

ML,P ,z := [XL,P ,z/GLn(C)].

Let C = (C1, . . . ,Ck) be the k-tuple such that Cj is the image of the projection
Yzj → GLn. Notice that the projections πz1 , . . . , πzh induce a morphism

π : XL,P ,z −→ XC

(A1, B1, . . . , Ag, Bg, g1P1, X1, . . . , gkPk, Xk) 7−→ (A1, B1, . . . , Ag, Bg, X1, . . . , Xk).

As π is GLn(C)-equivariant, it descends to a morphism of quotient stacks, which we
still denote by π : ML,P ,z →MC.

Remark 6.1.3. — Notice that, if z1 ∈ (ZL1
)reg, . . . , zk ∈ (ZLk

)reg, i.e., if each Ch is
semisimple, the morphism π is actually an isomorphism.

Remark 6.1.4. — The morphism π is obtained by restricting the product of the par-
tial Springer resolutions Yzh → Ch and then quotienting by GLn. The decomposition
theorem (and its equivariant version) for partial Springer resolutions are well under-
stood in terms of the representation theory of Weyl groups. Although we will not
cover this in this article, it is natural to expect that the cohomological properties of
the morphism π could have a similar description.

In what follows, we will show how to relate the stacks ML,P ,z to multiplicative
quiver stacks for star-shaped quivers. We start by recalling some generalities about
quivers and their multiplicative moment maps and fixing some notations.

6.2. Quiver representations. — A quiver Q is an oriented graph Q = (I,Ω), where I
is its set of vertices and Ω is its set of arrows. We will always assume that I,Ω are
finite. For an arrow a : i → j in Ω we denote by i = t(a) its tail and by j = h(a) its
head.

Fix a field K. A representation M of Q over K is given by a (finite dimensional)
K-vector space Mi for each vertex i ∈ I and by linear maps Ma : Mt(a) →Mh(a) for
each a ∈ Ω.

Given two representations M,M ′ of Q, a morphism f :M →M ′ is given by maps
fi :Mi →M ′

i such that, for all a ∈ Ω, the following equality holds: fh(a)Ma =M ′
aft(a).

The category of representations of Q over K is denoted by RepK(Q). For a represen-
tation M , the dimension vector dimM ∈ NI is the vector dimM = (dimMi)i∈I . It is
an isomorphism invariant of the category RepK(Q).
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For a representation M of dimension α, up to fixing a basis of the vector spaces Mi

for each i ∈ I, we can assume that Mi = Kαi . For a ∈ Ω, the linear map Ma : Kt(a) →
Kh(a) can be therefore identified with a matrix in Mat(αh(a), αt(a),K).

Consider then the affine space

R(Q,α) :=
⊕
a∈Ω

Mat(αh(a), αt(a),K).

We can endow R(Q,α) with the action of the group GLα =
∏
i∈I GLαi

defined as

g · (Ma)a∈Ω = (gh(a)Mag
−1
t(a))a∈Ω.

The orbits of this action are exactly the isomorphism classes of representations of Q
of dim = α.

Finally, denote by (−,−) : ZI × ZI → Z the Euler form of Q, defined as

(α, β) =
∑
i∈I

αiβi −
∑
a∈Ω

αt(a)βh(a).

6.3. Star-shaped quivers and multiplicative quiver stacks. — Let Q = (I,Ω) be
the following star-shaped quiver with g loops on the central vertex

◦[1,1] ◦[1,2] . . . ◦[1,s1]

◦[2,1] ◦[2,2] . . . ◦[2,s2]

◦0 · ·

· ·

· ·

◦[k,1] ◦[k,2] . . . ◦[k,sk]

···

Let (NI)∗ ⊆ NI be the subset of vectors with non-increasing coordinates along the
legs and, more generally, for any subset V ⊆ NI , denote by V ∗ := V ∩ (NI)∗.

Denote by Q the double quiver Q = (I,Ω) with the same set of vertices of Q
and as set of arrows Ω = {a, a∗ | a ∈ Ω}, where a∗ : h(a) → t(a). For a repre-
sentation x ∈ R(Q,α), for each h = 1, . . . , k and j = 0, . . . , sh, we denote by xh,j ∈
Mat(α[h,j], α[h,j+1],K) the matrix associated to the arrow a having t(a) = [h, j+1] and
h(a) = [h, j], where we put xh,sh = 0. Similarly, for an element x ∈ R(Q,α) we denote
by x∗h,j ∈ Mat(α[h,j+1], α[h,j],K) the matrix associated to the arrow a∗ ∈ Ω. Lastly,
for a representation x ∈ R(Q,α), we denote by e1, . . . , eg, e∗1, . . . , e∗g ∈ Mat(α0,K) the
matrix associated to the g loops of Q and the corresponding reversed arrows of Q
respectively.

For α ∈ NI , let R(Q,α)◦ ⊆ R(Q,α) be the open subset of representations
(xa, xa∗)a∈Ω such that (1 + xaxa∗), (1 + xa∗xa) is invertible for every a ∈ Ω. Let
moreover R(Q,α)◦,∗ ⊆ R(Q,α)◦ be the open subset of representations (xa, xa∗)a∈Ω

such that xa is injective for each a ∈ Ω. Notice that R(Q,α)◦,∗ = ∅ if α /∈ (NI)∗.
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Assume to have fixed an ordering < on Ω. The multiplicative moment map Φ∗
α is

the GLα-equivariant morphism

(6.3.1)
Φ∗
α : R(Q,α)◦,∗ −→ GLα

(xa, xa∗) 7−→
∏
a∈Ω

(1 + xaxa∗)(1 + xa∗xa)
−1,

where we are taking the ordered product with respect to <. For σ ∈ (K∗)I , the
fiber (Φ∗

α)
−1(σ) is GLα-stable and we define the multiplicative quiver stack M∗

σ,α of
parameter σ, α as the quotient stack

M∗
σ,α := [(Φ∗

α)
−1(σ)/GLα].

Remark 6.3.1. — The isomorphism class of the multiplicative quiver stack M∗
σ,α does

not depend on the ordering < of the arrows, see for example [7, Th. 1.4].

Example 6.3.2. — Let Q = (I,Ω) be the Jordan quiver, i.e., the quiver with one
vertex and one arrow. For n ∈ N, the variety R(Q,n) is gln(K) × gln(K) and the
variety R(Q,n)◦,∗ is given by

R(Q,n)◦,∗ =
{
(e, e∗) ∈ gln(K)× gln(K) | e, 1 + ee∗, 1 + e∗e ∈ GLn(K)

}
.

Notice that the variety R(Q,n)◦,∗ is isomorphic to GLn(K) × GLn(K) via the iso-
morphism

R(Q,n)◦,∗ −→ GLn(K)×GLn(K)

(e, e∗) 7−→ (e, e−1 + e∗).

Through this identification, the multiplicative moment map Φ∗
n corresponds to the

morphism

Φ∗
n : GLn(K)×GLn(K) −→ GLn(K)

Φ∗
n(A,B) = [A,B].

For a point x ∈ (Φ∗
α)

−1(σ), we have the following relationships. At the central
vertex, we have:

(6.3.2)
g∏
l=1

(1 + ele
∗
l )(1 + e∗l el)

−1
k∏
h=1

(1 + xh,0x
∗
h,0) = σ0Iα0

.

For any h = 1, . . . , k and j = 1, . . . , sh, we have

(1 + xh,jx
∗
h,j)(1 + x∗h,j−1xh,j−1)

−1 = σ[h,j]Iα[h,j]
,

which can be rewritten as

(6.3.3) xh,jx
∗
h,j − σ[h,j]x∗h,j−1xh,j−1 = (σ[h,j] − 1)Iα[h,j]

.

For j = sh, we have

σ[h,sh]x
∗
h,sh−1xh,sh−1 = (1− σ[h,sh])Iα[h,sh]

.
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6.4. Multiplicative quiver stacks and character stacks: the main isomorphism

Consider a k-tuple of Levi subgroups L = (L1, . . . , Lk), a k-tuple of parabolic
subgroups P = (P1, . . . , Pk) such that Ph has Lh as Levi factor for every h and a
k-tuple of central elements z = (z1, . . . , zk) ∈ ZL1

× · · · × ZLk
, as in Section 6.1.1.

Assume that, for each h = 1, . . . , k, Lh is the Levi subgroup of GLn(C)

Lh =

sh∏
j=0

GLnh,j
(C)

and
zh = (zh,0Inh,0

, . . . , zh,shInh,sh
)

with zh,0, . . . , zh,sh ∈ C∗.
Consider now a star-shaped quiver Q = (I,Ω) with g loops on the central vertex

and k legs of length s1, . . . , sk respectively. Define the following dimension vector
αL ∈ (NI)∗. For each h = 1, . . . , k and j = 0, . . . , sh, put

(6.4.1) (αL)[h,j] :=

sh∑
l=j

nh,j

where we are identifying [h, 0] = 0. Define the following element σz ∈ (C∗)I .{
(σz)0 :=

∏k
j=1 z

−1
j,0 ,

(σz)[h,j] := zh,j−1z
−1
h,j if j ⩾ 1.

We have the following result, relating multiplicative quiver stacks for star-shaped
quivers and Springer resolutions of conjugacy classes.

Theorem 6.4.1. — For any L,P , z as above, there is an isomorphism of stacks

M∗
αL,σz

∼= ML,P ,z.

In the proof, we suppose g = 0 and we put σ = σz, α = αL to simplify the
notations. The case of g > 0 is a combination of the arguments used in this proof and
that of [6, Prop. 2].

Proof. — We define the morphism

f : (Φ∗
α)

−1(σ) −→ XL,P ,z.

For an element x ∈ (Φ∗
α)

−1(σ), consider the flag

Fj,x = (Cn ⊇ Im(xj,0) ⊇ Im(xj,0xj,1) ⊇ · · · ⊇ Im(xj,0 · · ·xj,sj−1)).

Notice that, for each h = 0, . . . , sj − 1, we have

dim(Im(xj,0 · · ·xj,h)) = α[j,h+1],

since xj,r is injective for each j and r. In particular, Fj,x belongs to the partial flag
variety GLn/Pj . We define therefore

f(x) = (F1,x, z1,0 + z1,0x1,0x
∗
1,0,F2,x, . . . , zk,0 + zk,0xk,0x

∗
k,0).
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For each h = 1, . . . , k, put Xh := zh,0 + zh,0xh,0x
∗
h,0. Notice that from Eq. (6.3.2),

we have that
X1 · · ·Xk = 1.

To check that the morphism f is well-defined we need to check thus the following two
conditions.

(1) The flag Fh,x is Xh invariant for each h.
(2) The morphism that Xh induces on the quotient space

Im(xh,0 · · ·xh,j−1)/ Im(xh,0 · · ·xh,j),

and which we denote by Xh,j , is equal to zh,jInh,j
. Here we set Im(xh,−1) = Cn.

From Eq. (6.3.3), by recurrence, we deduce that for each h = 1, . . . , k and each
j = 0, . . . , sh − 1 and v ∈ Cα[h,j] , we have

(6.4.2) Xj(xh,0 · · ·xh,j−1(v)) = zh,0xh,0 · · ·xh,j(v) + zh,0xh,0x
∗
h,0xh,0 · · ·xh,j(v)

=
zh,0

σ[h,1] · · ·σ[h,j]
xh,0 · · ·xh,j−1(v) + xh,0 · · ·xh,jxh,jx∗h,j(v),

where we have set xh,sh = x∗h,sh = 0. Notice that
zh,0

σ[h,1] · · ·σ[h,j]
= zh,j .

From Eq. (6.4.2), we deduce therefore that properties (1) and (2) above are fulfilled
for each h, j and therefore f is well-defined.

Set I ′ = I ∖ {0} and GL′
α :=

∏
i∈I′ GLαi . We have thus

(6.4.3) GLα = GLn ×GL′
α.

It can be verified that the action of GL′
α on (Φ∗

α)
−1(σ) is schematically free and

therefore the multiplicative quiver stack [(Φ∗
α)

−1(σ)/GL′
α] is actually an algebraic

variety. In addition, notice that the map f is GL′
α-invariant. Denote by

f̃ : (Φ∗
α)

−1(σ)/GL′
α −→ XL,P ,z

the associated morphism. From the identity (6.4.3), in order to show that

M∗
α,σ
∼= ML,P ,z,

it is sufficient to show that f̃ is an isomorphism.
We define the morphism θ : XL,P ,z → (Φ∗

α)
−1(σ)/GL′

α. Consider an element

(F1, X1, . . . ,Fk, Xk) ∈ XL,P ,z.

For each h=1, . . . , k and j=1, . . . , sh, fix a basis of the vector space Fh,j and denote by

xh,j−1 : Cα[h,j] −→ Cα[h,j−1]

the matrix such that zh,j−1xh,j−1 is the matrix of the inclusion Fh,j ⊆ Fh,j−1 in the
respective fixed basis. By definition of XL,P ,z, we have

(Xh − zh,jIn)(Fh,j) ⊆ Fh,j+1,
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i.e., Xh − zh,jIn defines a morphism Fh,j → Fh,j+1 and we denote by

x∗h,j : Cα[h,j] −→ Cα[h,j+1]

its associated matrix in the fixed basis. By definition, for each h = 1, . . . , k, we have

(6.4.4) Xh = zh,0 + zh,0xh,0x
∗
h,0.

Moreover, for each j = 1, . . . , sh, we have that zh,jxj,hx∗h,j is the matrix associated
to the morphism

Xj − zh,jIn : Fh,j −→ Fh,j

and x∗h,j−1zh,j−1xh,j−1 is the matrix associated to the morphism

Xj − zh,j−1In : Fh,j −→ Fh,j

in the respective basis. In particular, we have

(6.4.5) zh,jxj,hx
∗
h,j − zh,j−1x

∗
h,j−1xh,j−1 = (zh,j − zh,j−1)Iα[h,j]

and, since zh,j−1/zh,j = σ[h,j], we find

(6.4.6) xj,hx
∗
h,j − σ[h,j]x∗h,j−1xh,j−1 = (1− σ[h,j])Iα[h,j]

.

By Eq. (6.3.3), we deduce that (xh,j , x
∗
h,j) h=1,...,k

j=0,...,sh−1
defines a point x ∈ (Φ∗

α)
−1(σ)

and we put
θ(F1, X1, . . . ,Fk, Xk) = x.

From Eq. (6.4.4) and the definition of x, we deduce that θ and f̃ are inverse to one
another, i.e., that f̃ is an isomorphism. □

Consider now a k-tuple of semisimple conjugacy classes C = (C1, . . . ,Ck) such that
each Ch is semisimple (i.e., Ch = Ch) and it is the conjugacy class of a diagonal ma-
trix Ch with distinct eigenvalues γh,0, . . . , γh,sh ∈ C∗ and multiplicities nh,0, . . . , nh,sh
respectively.

Let Q = (I,Ω) be the star-shaped quiver introduced in Section 6.3, with g loops
on the central vertex and k legs of length s1, . . . , sk respectively. Let αC ∈ (NI)∗ be
the dimension vector defined as

(αC)[h,j] =

sh∑
ℓ=j

nh,ℓ

and γC ∈ (C∗)I the element defined as

(γC)[i,j] =

{∏k
i=1 γ

−1
i,0 if j = 0,

γ−1
i,j γi,j−1 otherwise.

From Remark 6.1.3 and Theorem 6.4.1, we deduce the following theorem:

Theorem 6.4.2. — For any k-tuple of semisimple conjugacy classes C, there is an
isomorphism of stacks

MC
∼= M∗

γC,αC
.
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Remark 6.4.3. — The relation between multiplicative moment map for star-shaped
quivers and character stacks and varieties was first introduced in the articles
[6, Prop. 2] and [7, Lem. 8.2].

The analogous of Theorem 6.4.2 for the corresponding GIT quotients, i.e., that
MC
∼=M∗

γC,αC
has been shown in [47, Prop. 4.1]. In loc. cit., the author actually shows

a stronger statement. In particular, he does not consider only k-tuples of semisimple
conjugacy classes.

In this case, it is necessary to slightly modify the definition of the multiplicative
moment map and define it as a map

Φℓβ : R(Q,α)◦ −→ GLα,

i.e., we are not requiring that all the maps xh,j are injective. The proof of Theo-
rem 6.4.1 is quite similar to that of [47, Prop. 4.1]. The main difference is that, in the
case of GIT quotients, in the part of the proof of Theorem 6.4.1 where we use that
we restricted to R(Q,α)◦,∗, i.e., that the action of GL′

α is free, Yamakawa instead
uses the fundamental theorem of invariant theory. This latter type of technique has
already been introduced in [30].

6.5. Dual Log compatibility for moment map. — In this section, we show how to
relate the results about dual Log compatible families of Section 5.9 to the study of
multiplicative quiver stacks for star-shaped quivers.

Consider now the construction of Section 6.3 in the case in which K = Fq. We de-
note by mα : GLα(Fq)→ C the class function defined as

mα(g) :=
|(Φ∗

α)
−1(g)F |

q−(α,α)
.

Notice that, for σ ∈ (F∗
q)
I , we have an equality

mα(σ)

|GLα(Fq)|
=

#M∗
σ,α(Fq)

q−(α,α)
.

For the family of class functions {mα}α∈NI we have the following theorem:

Theorem 6.5.1. — The family {mα}α∈NI is dual Log compatible

The proof of Theorem 6.5.1 will be given in Section 6.6 below. For the conse-
quences of Theorem 6.5.1 on the computation of the cohomology of character stacks
of Riemann surfaces over C, see Section 7.

6.6. Proof of Theorem 6.5.1. — Theorem 6.5.1 will be proved in several steps.
We start by showing Theorem 6.5.1 in the case where Q = (I,Ω) is the star-shaped

quiver with two vertices I = {0, 1} and one arrow a : 1→ 0 between them (i.e., g = 0

and k = 1). This is usually called the Kronecker quiver.

Remark 6.6.1. — The proof of the case of the Kronecker quiver (i.e., of Lemma 6.6.3
below) is the main technical point of the proof of Theorem 6.5.1. The proof of this
lemma involves computations in the character ring of GLn(Fq).
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In particular, we will have to understand combinatorially multiplicities of the type
⟨χ0, R

G
L (χ1 ⊠ χ2)⟩, where χ0 ∈ GLm(Fq)∨, L = GLn × GLn′ with n + n′ = m and

χ1 ∈ GLn(Fq)∨, χ2 ∈ GLn′(Fq)∨. We will mainly need two results about representa-
tions of finite reductive groups that we recalled before.

• Proposition 5.6.4 regarding the decomposition into irreducible GLn(Fq)-repre-
sentations of the Deligne-Lusztig induction of an irreducible LF -representation, with
L ⊆ GLn an F -stable Levi subgroup.

• The description of certain connected centralizers in the case of GLn given in
Section 5.5.2.

We show how to extend the result from the case of the Kronecker quiver to any
star-shaped quiver in the proof of Theorem 6.5.1.

For the Kronecker quiver Q, a dimension vector α is thus a pair α = (α0, α1) ∈ N2

and the function mα(g0, g1) for a pair (g0, g1) ∈ GLα0(Fq)×GLα1(Fq) is given by

mα(g0, g1) =
#H

qα0α1−α2
0−α2

1

,

where H is the set

H =
{
f ∈ Hominj(Fα1

q ,Fα0
q ), f∗ ∈ Hom(Fα0

q ,Fα1
q ) | 1 + ff∗ = g0, 1 + f∗f = g−1

1

}
.

Remark 6.6.2. — Notice that given f ∈ Hominj(Fα1
q ,Fα0

q ) and f∗ ∈ Hom(Fα0
q ,Fα1

q )

such that 1 + ff∗ ∈ GLα0
(Fq), then 1 + f∗f is invertible too. It is enough to check

that 1 + f∗f is injective. Given x, y ∈ Fα1
q such that (1 + f∗f)(x) = (1 + f∗f)(y),

we have indeed
f ◦ (1 + f∗f)(x) = f ◦ (1 + f∗f)(y)

and, given that f ◦ (1+ f∗f) = (1+ ff∗) ◦ f and 1+ ff∗ is invertible, we deduce that
f(x) = f(y) and so that x = y.

Lemma 6.6.3. — In the case in which Q is the Kronecker quiver, the family {mα}α∈NI

is dual Log compatible.

Proof. — We have that mα ≡ 0 if α ̸∈ (NI)∗. Fix then α ∈ (NI)∗ and set α2 = α0−α1.
Fix an irreducible character χ = χ0⊠χ1 ∈ GLα(Fq)∨ with χi ∈ GLαi(Fq)∨ for i = 0, 1.
We have:

(6.6.1) ⟨mα, χ⟩ =
1

|GLα(Fq)|q−(α,α)

∑
f∈Hominj(Fα1

q ,Fα0
q )

f∗∈Hom(Fα0
q ,Fα1

q )

s.t 1+ff∗∈GLα0 (Fq)

χ0(1 + ff∗)χ1((1 + f∗f)−1).

Step I: rewriting the RHS of Eq. (6.6.1). — Let Jα ∈ Hominj(Fα1
q ,Fα0

q ) be the block
matrix given by the identity on the first α1 rows and 0 everywhere else and let Pα be
the stabilizer of Jα inside GLα. Notice that Pα is isomorphic to the parabolic subgroup
P ⊆ GLα0

, given by the matrices which preserve the image of Jα. We denote by L ⊆ P
the Levi subgroup given by GLα1

×GLα2
embedded block diagonally.
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The action of GLα(Fq) on Hominj(Fα1
q ,Fα0

q ) is transitive and we can therefore
identity the latter set with GLα(Fq)/Pα(Fq) via the map which sends (g0, g1)Pα(Fq)→
g0Jαg

−1
1 . We can thus rewrite the sum above as :

(6.6.2) 1

|GLα(Fq)|q−(α,α)

×
∑

(g0,g1)Pα(Fq)
∈GLα(Fq)/Pα(Fq)

∑
f∗∈Hom(Fα0

q ,Fα1
q )

s.t. 1+g0Jαg
−1
1 f∗∈GLα0 (Fq)

χ0(1 + g0Jαg
−1
1 f∗)χ1((1 + f∗g0Jαg

−1
1 )−1).

For each (g0, g1)Pα(Fq) we can rewrite the last term of Eq. (6.6.2)) as

(6.6.3)
∑

f∗∈Hom(Fα0
q ,Fα1

q )

s.t. 1+Jαg
−1
1 f∗g0∈GLα0 (Fq)

χ0(g0(1 + Jαg
−1
1 f∗g0)g

−1
0 )χ1(g1(1 + g−1

1 f∗g0Jα)
−1g−1

1 ).

As χ0, χ1 are class functions, we can rewrite the sum in Eq. (6.6.3) as

(6.6.4)
∑

f∗∈Hom(Fα0
q ,Fα1

q )

s.t. 1+Jαg
−1
1 f∗g0∈GLα0 (Fq)

χ0(1 + Jαg
−1
1 f∗g0)χ1((1 + g−1

1 f∗g0Jα)
−1).

Moreover, for each (g0, g1) ∈ GLα(Fq), we have a bijection{
f∗ ∈ Hom(Fα0

q ,Fα1
q ) | 1 + Jαf

∗ ∈ GLα0
}

←→ {f∗ ∈ Hom(Fα0
q ,Fα1

q ) | 1 + Jαg
−1
1 f∗g0 ∈ GLα0

}
f∗ 7−→ g1f

∗g−1
0 ,

and so

(6.6.5)
∑

f∗∈Hom(Fα0
q ,Fα1

q )

s.t. 1+Jαg
−1
1 f∗g0∈GLα0 (Fq)

χ0(1 + Jαg
−1
1 f∗g0)χ1((1 + g−1

1 f∗g0Jα)
−1)

=
∑

f∗∈Hom(Fα0
q ,Fα1

q )

s.t. 1+Jαf
∗∈GLα0

(Fq)

χ0(1 + Jαf
∗)χ1((1 + f∗Jα)

−1).

From Eq. (6.6.5), we deduce that the sum in Eq. (6.6.2) can be rewritten as

(6.6.6) 1

|Pα(Fq)|q−(α,α)

∑
f∗∈Hom(Fα0

q ,Fα1
q )

s.t. 1+Jαf
∗∈GLα0 (Fq)

χ0(1 + Jαf
∗)χ1((1 + f∗Jα)

−1).

Writing f∗ as a block matrix (A|B) with A ∈ Mat(α1,Fq) and B ∈ Mat(α2, α1,Fq),
where α2 = α0 − α1, we have

1 + Jαf
∗ =

(
1 +A B

0 1

)
and 1 + f∗Jα = 1 +A. We can rewrite the sum of Eq. (6.6.6) as

(6.6.7) 1

|Pα(Fq)|q−(α,α)

∑
M∈GLα1 (Fq)

B∈Mat(α2,α1,Fq)

χ0

((
M B
0 1

))
χ1(M

−1).
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Moreover, for any M ∈ GLα1
(Fq), we have that χ1(M

−1) = χ∗
1(M) and we can thus

rewrite the sum in Eq. (6.6.7) as

(6.6.8) 1

|Pα(Fq)|q−(α,α)

∑
M∈GLα1

(Fq)

B∈Mat(α2,α1,Fq)

χ0

((
M B
0 1

))
χ∗
1(M).

Step II: relating the sum in Eq. (6.6.8) to computations in the character ring of GLα0
(Fq)

Consider now the class function H ∈ C(GLα2
(Fq)×GLα1

(Fq)) defined as

H :=
∑

χ2∈GLα2
(Fq)∨

(χ2 ⊠ χ∗
1)

χ2(1)

GLα2
(Fq)

.

By Eq. (5.1.1), for any (N,M) ∈ GLα2(Fq)×GLα1(Fq) we have

H((N,M)) =

{
0 if N ̸= 1,

χ∗
1(M) otherwise.

We deduce that the sum in Eq. (6.6.8) can be rewritten as

(6.6.9) 1

|P (Fq)|q−(α,α)

∑
χ2∈GLα2 (Fq)∨

∑
h∈P (Fq)

χ0(h) Infl
P
L (χ

∗
1 ⊠ χ2)(h)

χ2(1)

|GLα2
(Fq)|

,

where we use that |P (Fq)| = |Pα(Fq)|. Denote by ResP : C(GLα0
(Fq)) → C(P (Fq))

the restriction of class functions. It follows that the quantity in Eq. (6.6.9) is equal to

(6.6.10) 1

q−(α,α)

∑
χ2∈GLα2

(Fq)∨

⟨ResP (χ0), Infl
P
L (χ1 ⊠ χ2)⟩

χ2(1)

|GLα2
(Fq)|

,

which, by Frobenius reciprocity, is equal to

(6.6.11) =
1

q−(α,α)

∑
χ2∈GLα2

(Fq)∨

⟨χ0, R
G
L (χ1 ⊠ χ2)⟩

χ2(1)

|GLα2(Fq)|
.

Step III: understanding the RHS of Eq. (6.6.11) for characters of unipotent type

Suppose now that the type of χ = χ0 ⊠ χ1 is (1,λ), where λ = (λ0, λ1) with
λ0 ∈ Pα0

, λ1 ∈ Pα1
. We then have χ0 = (γ ◦ det)Rλ0 and χ1 = (γ ◦ det)Rλ1 , with

γ ∈ Hom(F∗
q ,C∗).

Let χ2 = εGLα2
εL2R

GLα2

L2
(θ2Rφ̃2

) for a certain φ2 ∈ (WL2)
F and a certain reduced

θ2 : LF2 → C∗. From Lemma 5.2.3, we have an equality

RGL (χ1 ⊠ χ2) = εGLα2
εL2

RGGLα1
×L2

(
((γ ◦ det)× θ2)(Rλ1 ⊠Rφ̃2

)
)
.

Let L′ be the connected centralizer of (γ ◦ det) × θ2 : GLα1(Fq) × LF2 → C∗.
By Proposition 5.6.4, the character RGL (χ1 ⊠χ2) belongs to the vector space spanned
by irreducible characters with semisimple part (L′, (γ ◦ det)× θ2).

The multiplicity ⟨(γ ◦ det)Rλ0
, RGL ((γ ◦ det)Rλ1 ⊠ χ2)⟩ is therefore equal to 0 if L′

is different from GLα0 . Since θ2 : LF2 → C∗ is reduced, from the remarks made in
Section 5.5.2, we deduce that if L′ = GLα0

, we must have that L2 = GLα2
and that χ2

is given by (γ ◦ det)Rλ2 for λ2 ∈ Pα2
.
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From Remark 5.2.4, the RHS of Eq. (6.6.10) is thus equal to:

(6.6.12) 1

q−(α,α)

∑
λ2∈Pα2

⟨(γ ◦det)Rλ0 , (γ ◦det)RGL (Rλ1 ⊠Rλ2)⟩ (−1)α2

q
α2(α2−1)

2 −n(λ2)Hλ2(q)
.

From Eq. (5.3.2), the sum in Eq. (6.6.12) is equal to

(6.6.13) 1

q−(α,α)

∑
λ2∈Pα2

⟨χλ0 , Ind
Sα0

Sα1×Sα2
(χλ1 ⊠ χλ2)⟩ (−1)α2

q
α2(α2−1)

2 −n(λ2)Hλ2(q)

=
1

q−(α,α)

∑
λ2∈Pα2

cλ
0

λ1,λ2

(−1)α2

q
α2(α2−1)

2 −n(λ2)Hλ2(q)
.

For any pair of partitions (λ, µ) denote by Cλ,µ(t) ∈ Q(t) the function defined as

Cλ,µ(t) =


0 if |λ| < |µ|,

1

t|λ||µ|−|λ|2−|µ|2
∑

ν∈P|λ|−|µ|

cλµ,ν
(−1)|λ|−|µ|

t
|ν|(|ν|−1)

2 −n(ν)Hν(t)
otherwise.

The reasoning above shows that for any χ ∈ GLα(Fq)∨ of type (1,λ), there is an
equality

⟨mα, χ⟩ = Cλ0,λ1(q).

Step IV: understanding the RHS of Eq. (6.6.11) for characters of any type. — Let now
δ ∈ NI and consider χ = χ0 ⊠ χ1 ∈ GLδ(Fq)∨ of multitype ω ∈ Tδ, where ω =

(d1,λ1) · · · (dr,λr), where for j = 1, . . . , r we have λj = (λ0j , λ
1
j ) ∈ P2 and we put βj =

|λj |. Consider the Levi subgroups L0 =
∏r
j=1(GL(βj)0)dj and L1 =

∏r
j=1(GL(βj)1)dj .

There exist reduced characters θ0 : LF0 → C∗ and θ1 : LF1 → C∗ such that

χ0 = RGL0
(θ0Rλ0

1
⊠ · · ·⊠Rλ0

r
) and χ1 = R

GLδ1

L1
(θ1Rλ1

1
⊠ · · ·⊠Rλ1

r
),

and θ0, θ1 are associated to the same r-tuple

(θ1, . . . , θr) ∈ Hom(F∗
qd1 ,C

∗)× · · · ×Hom(F∗
qdr ,C

∗),

via the correspondence of Section 5.5.2. We denote by λ0,λ1 ∈ Pr the multipartitions
λ0 = (λ01, . . . , λ

0
r), λ1 = (λ11, . . . , λ

1
r).

To verify the dual Log compatibility of the family {mα}α∈NI , it is enough to check
that we have

(6.6.14) ⟨mδ, χ⟩H∨
ω (q) =

r∏
j=1

Cλ0
j ,λ

1
j
(qdj )H∨

(1,λj)
(qdj )

Notice that, if δ ̸∈ (NI)∗, there must exist βj such that βj ̸∈ (NI)∗, i.e., such that
λ0j < λ1j . Equation (6.6.14) therefore is true as both sides are equal to 0.

Assume then that δ ∈ (NI)∗. From Eq. (6.6.10), there is an equality

(6.6.15) ⟨mδ, χ⟩ =
1

q−(δ,δ)

∑
χ2∈GLδ2

(Fq)∨

⟨χ0, R
G
M (χ1 ⊠ χ2)⟩

χ2(1)

|GLδ2(Fq)|
,
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where M = GLδ1 × GLδ2 ⊆ G. Let χ2 = εGLδ2
εL2

RGL2
(θ2Rφ̃2

), with L2 ⊆ GLδ2 a
Levi subgroup and θ2 : LF2 → C∗ a reduced character. From Lemma 5.2.3, there is an
equality

RGM (χ1 ⊠ χ2) = RGL1×L2
((θ1 × θ2)(Rλ1

⊠Rφ̃2
)).

Let L′ be the connected centralizer of θ1×θ2 : L1×L2 → C∗. From Proposition 5.6.4,
we have that ⟨χ0, R

G
M (χ1 ⊠ χ2)⟩ = 0 if the semisimple part (L′, θ1 × θ2) is not conju-

gated to (L0, θ
0).

From the discussion in Section 5.5.2, we deduce that, if (L′, θ1 × θ2) is conjugated
to (L0, θ0), we must have that |λ0j | ⩾ |λ1j |, i.e., βj ∈ (NI)∗ for each j = 1, . . . , r.

If there exists j ∈ {1, . . . , r} such that βj ̸∈ (NI)∗, Eq. (6.6.14) is thus verified as
both sides are equal to 0.

If β1, . . . , βr ∈ (NI)∗, from the remarks made in 5.5.2, we deduce that there exists
a unique pair (L2, θ

2), up to GLδ2(Fq)-conjugacy, such that (L′, θ1×θ2) is conjugated
to (L0, θ0). In particular, we can take L2 to be

L2 =

r∏
j=1

(GL(βj)2)dj

and θ2 : LF2 → C∗ the reduced character associated to the r-tuple (θ1, . . . , θr). We have
therefore

(6.6.16) ⟨mδ, χ⟩ =
∑

λ2=(λ2
1,...,λ

2
r)

∈P(β1)2
×···×P(βr)2

⟨RGL0
(θ0Rλ0

), RGL1×L2
((θ1 × θ2)Rλ1

⊠Rλ2
)⟩

q−(δ,δ)

× (−1)(β1)2+···(βr)2

q
δ2(δ2−1)

2 −
∑r

j=1 djn(λ
2
j )
∏r
j=1Hλ2

j
(qdj )

.

By Remark 5.6.3, we have

(6.6.17) ⟨RGL0
(θ0Rλ0

), RGL1×L2
((θ1 × θ2)Rλ1

⊠Rλ2
)⟩

= ⟨RGL0
(θ0Rλ0

), RGL0
(θ0RL0

L1×L2
(Rλ1

⊠Rλ2
))

and by Lemma 5.6.1 the RHS of Eq. (6.6.17) is equal to
r∏
j=1

⟨Rλ0
j
, R

(GL(βj)0
)dj

(GL(βj)1
)dj×(GL(βj)2

)dj
(Rλ1

j
⊠Rλ2

j
)⟩(GL(βj)0

)dj (Fq).

By Remark 5.3.2 and Lemma 5.3.3, for each j = 1, . . . , r, we deduce an equality

(6.6.18) ⟨Rλ0
j
, R

(GL(βj)0
)dj

(GL(βj)1
)dj×(GL(βj)2

)dj
(Rλ1

j
⊠Rλ2

j
)⟩(GL(βj)0

)dj (Fq)

= ⟨χλ0
j
, Ind

S(βj)0

S(βj)1
×S(βj)2(χλ1

j
⊠ χλ2

j
)⟩S(βj)0

= c
λ0
j

λ1
j ,λ

2
j
.

From Eq. (6.6.18), we deduce that we have

(6.6.19) ⟨mδ, χ⟩ =
1

q−(δ,δ)+δ2(δ2−1)/2

r∏
j=1

( ∑
λ2
j∈P(βj)2

c
λ0
j

λ1
j ,λ

2
j

(−1)(βj)2

q−djn(λ
2
j )Hλ2

j
(qdj )

)
.
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From Eq. (6.6.19) above, we deduce that we have

(6.6.20) ⟨mδ, χ⟩∏r
j=1 Cλ0

j ,λ
1
j
(qdj )

=

∏r
j=1 q

dj(|λ0
j ||λ

1
j |−|λ0

j |
2−|λ1

j |
2+(|λ2

j |
2−|λ2

j |)/2)

q−(δ,δ)+δ2(δ2−1)/2
.

From the fact that δ22 = δ20 + δ21 − 2δ0δ1 and, for each j = 1, . . . , r,

|λ2j |2 = |λ0j |2 + |λ1j |2 − 2|λ0j ||λ1j |,

and Eq. (5.9.9), we deduce that we have∏r
j=1 q

dj(|λ0
j ||λ

1
j |−|λ0

j |
2−|λ1

j |
2+(|λ2

j |
2−|λ2

j |)/2)

q−(δ,δ)+δ2(δ2−1)/2
=
q
∑r

j=1 dj(−(|λ0
j |

2/2)−(|λ1
j |

2/2))

q−(δ20/2)−(δ21/2)

=
H∨
ω (q)∏r

j=1H
∨
(1,λj)

(qdj )
.

From the identity above and Eq. (6.6.20), we deduce therefore equality (6.6.14). □

We now show how Lemma 6.6.3 implies Theorem 6.5.1.

Proof of Theorem 6.5.1. — We proceed by induction on the cardinality of I.
Let |I| = 1. The quiver Q has thus 1 vertex and g loops. Example 6.3.2 shows that

in this case, for each n ∈ N, we have an equality mn = fgn, where fgn : GLn(Fq)→ C
is the function defined as

fgn(h) =
#{(x1, y1, . . . , xg, yg) ∈ GLn(Fq)2g |

∏g
i=1[xi, yi] = h}

q(n2(g−1))

introduced in Remark 5.9.6. It was thereby shown that {fgn}n∈N is a dual Log com-
patible family.

Assume now to have shown Theorem 6.5.1 for all star-shaped quivers with k legs
and m vertices and fix a star-shaped quiver Q = (I,Ω) with |I| = m + 1. We can
assume that sk > 1.

Let Q̃ = (Ĩ , Ω̃) be the subquiver of Q with set of vertices Ĩ = I − {[k, sk]} and as
set of arrows the arrows of Q between elements of Ĩ.

For a dimension vector α ∈ NI , we denote by α̃ the element of NĨ obtained by
the natural projection NI → NĨ and we denote by πα the natural projection πα :

GLα(Fq)→ GLα̃(Fq).
For α ∈ NI , let mα̃ be the function associated to the star-shaped quiver Q̃ = (Ĩ , Ω̃)

and α̃ and denote by nα : GLα(Fq)→ C the class function defined by

nα(h) =


mα̃(πα(h))

q
−α2

[k,sk]

if h[k,sk] = 1,

0 otherwise.

According to Eq. (5.1.1), the function nα can be rewritten as:

(6.6.21) nα(h) =
mα̃(πα(h))

q
−α2

[k,sk]

∑
X∈GLα[k,sk]

(Fq)∨

X(h[k,sk])
X(1)

|GLα[k,sk]
(Fq)|

.
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From Eq. (6.6.21) and the dual Log compatibility of the functions {mα̃}, we can
deduce that the family of functions {nα}α∈NI is dual Log compatible. Indeed, for
each χ ∈ GLα(Fq), write χ = χ̃ ⊠ χk, with χ̃ ∈ GLα̃(Fq)∨ and χk ∈ GL∨

α[k,sk]
(Fq).

We have

(6.6.22) ⟨nα, χ⟩ =
1

|GLα(Fq)|
∑

h∈GLα(Fq)

nα(h)χ(h)

( ∑
h̃∈GLα̃(Fq)

mα̃(h̃)χ̃(h̃)

|GLα̃(Fq)|

)( qα
2
[k,sk]

|GLα[k,sk]
(Fq)|

∑
X∈GLα[k,sk]

(Fq)
∨

hk∈GLα[k,sk]

X(1)Xχk(hk)

|GLα[k,sk]
(Fq)|

)

= ⟨mα̃, χ̃⟩qα
2
[k,sk]H∨

ωχk
(q),

and therefore, if we put ωχ = ω, ωχ̃ = ω̃ and ωχk
= ωk, we have

(6.6.23) ⟨nα, χ⟩H∨
ω (q) = ⟨mα̃, χ̃⟩H∨

ω̃ (q)q
α2

[k,sk](H∨
ωk
(q))2.

Since the family {mα̃}α̃∈NĨ is dual Log compatible, from Eq. (6.6.23) we deduce that
showing Eq. (6.6.21) is equivalent to showing that, for any n ∈ N, any ν ∈ Tn and
any d1, . . . , dr and types ν1, . . . , νr such that ν = ψd1(ν1) ∗ · · · ∗ ψdr (νr), we have

(6.6.24) (H∨
ν (t))

2∏r
j=1(H

∨
νj (t

dj ))2
=

∏r
j=1 t

dj |νj |2

tn2 ,

which is a direct consequence of Eq. (5.7.2).
Let now I = I − {[k, sk − 1], [k, sk]} and, for α ∈ NI , denote by α the element

of NI obtained by the natural projection NI → NI and by πα : GLα(Fq)→ GLα(Fq)
the associated projection. For a pair (β, γ) ∈ N2, denote by mKr

(β,γ) the class function
associated to the Kronecker quiver and the dimension vector (β, γ) for it, which was
studied in Lemma 6.6.3.

Consider then the function kα : GLα(Fq)→ C defined by

kα(h) =


mKr
α[k,sk−1],α[k,sk]

(h[k,sk−1], h[k,sk])

q−
∑

i∈I α
2
i

if πα(h) = 1,

0 otherwise.

As above, according to Eq. (5.1.1), the function kα can be rewritten as

(6.6.25) kα(h) =
∑

χ∈GL∨
α(Fq)

χ(πα(h))
χ(1)

|GLα(Fq)|
mKr
α[k,sk−1],α[k,sk]

(h[k,sk−1], h[k,sk])

q−
∑

i∈I α
2
i

.

From Eq. (6.6.25) and Lemma 6.6.3, similarly to what we did to show Eq. (6.6.21),
we deduce that the family of functions {kα}α∈NI is dual Log compatible. By Lem-
ma 5.9.5, the family of class functions{

nα ∗ kα
q
∑

i∈I α
2
i

}
α∈NI

is dual Log compatible too.
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Lastly, a direct calculation shows that, for every α ∈ NI , we have

mα =
nα ∗ kα
q
∑

i∈I α
2
i

.

Lemma 5.9.5 therefore implies that the family {mα}α∈NI is dual Log compatible. □

6.7. Remarks. — Consider any quiver Q = (I,Ω). As done for a star-shaped quiver in
Section 6.3, we can define the open subset R(Q,α)◦ ⊆ R(Q,α) and the multiplicative
moment map

µ◦
α : R(Q,α)◦ −→ GLα

(xa, xa∗)a∈Ω 7−→
∏
a∈Ω

(1 + xaxa∗)(1 + xa∗xa)
−1.

For an element s ∈ (K∗)I , the multiplicative quiver stack Ms,α associated to s is
defined as the quotient stack

Ms,α := [(µ◦
α)

−1(s)/GLα].

Consider the case in which K = Fq. We denote by cα : GLα(Fq) → C the class
function given by

cα(g) :=
|(µ◦

α)
−1(g)F |

q−(α,α)
.

We expect that the following result is true:

Conjecture 6.7.1. — The family of class functions {cα}α∈NI is dual Log compatible.

In the same way as we proved Theorem 6.5.1, to prove Conjecture 6.7.1 above, it is
enough to show it in the cases where Q has a single vertex or Q is the Kronecker
quiver.

It would be natural to expect that the proofs in these cases are a natural gen-
eralization of the proofs of Remark 5.9.6 and Lemma 6.6.3. However, in both cases
we used in a key way the fact that we considered representations of Q which were
injective along the arrows of Ω. Without the injectivity hypothesis, the combinatorics
involved becomes more complicated.

Example 6.7.2. — Let Q be the Jordan quiver and α = n ∈ N. The function cn :

GLn(Fq)→ C is given by

cn(g) = #
{
e, e∗ ∈ gln(Fq) | (1+ee∗), (1+e∗e) ∈ GLn(Fq) & (1+ee∗)(1+e∗e)−1 = g

}
.

Notice that there is no straightforward way to adapt the strategy of proof of Exam-
ple 5.9.2 to compute the quantity ⟨cn, χ⟩ for an irreducible character χ ∈ GLn(Fq)∨.
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7. Cohomology of character stacks

7.1. Mixed Poincaré series of Artin stacks. — Let X be an algebraic stack of finite
type over an algebraically closed field K. Compactly supported cohomology for alge-
braic stacks have been fully developed in [31], where the authors develop a full theory
of six-functors formalism for stacks.

In the following, we will always assume that K = C and X is a quotient stack
[X/G], where X is a G-quasi projective variety and G is a linear algebraic group.
For such a stack [X/G], compactly supported cohomology can be defined in a simpler
way, which is an algebro-geometric version of the Borel construction of equivariant
cohomology in differential geometry.

Historically, this was initially taken as a definition of G-equivariant compactly sup-
ported cohomology or G-equivariant Borel-Moore homology of X. We briefly review
this construction, for more details see [14] where the authors define in a similar way
the equivariant Chow groups or [10, §2.5].

Consider an embedding G ⊆ GLr(C). For any m ∈ N, denote by Vm =

Hom(Cm,Cr). Notice that G acts on the right on the vector space Vm and acts
freely on the open dense subset Um = Homsurj(Cm,Cr), given by surjective homo-
morphisms.

Consider the left action of G on X × Vm defined as g · (x, u) = (g · x, u · g−1). It is
a known fact that the action of G on Um is schematically free and the quotient stack
[X ×Um/G] is thus a scheme, which is usually denoted by X ×G Um, see for instance
[14, Prop. 23].

Let Zm = Vm ∖ Um. The codimension codimVm
(Zm) goes to ∞ for m → +∞.

We put then
Hi

c([X/G],C) := Hi+2dim(Vm)
c (X ×G Um,C)

for m sufficiently big. This definition does not depend on m if m is sufficiently big,
see for example [10, Prop. 2.16].

We denote by H∗
c ([X/G]) := H∗

c ([X/G],C). We can endow these latter cohomology
groups with the weight filtration W ∗

• H
∗
c ([X/G]), defined as

W i
jH

i
c([X/G]) =W i

j+dim(Vm)H
i+2dim(Vm)
c (X ×G Um)

for m sufficiently big. In this case too, [10, Prop. 2.16] shows that this definition does
not depend on m if m is sufficiently big.

For X over C, we define the mixed-Poincaré series Hc(X, q, t) as

(7.1.1) Hc(X; q, t) :=
∑
k,m

dim(W k
m/W

k
m−1)q

m/2tk.

Notice that the specialization Hc(X, 1, t) of Hc(X, q, t) at q = 1 is equal to the Poincaré
series Pc(X, t) of the stack X. When

∑
k(−1)k dim(W k

m/W
k
m−1) is finite for each m,

we define the E-series:

(7.1.2) E(X, q) := Hc(X; q,−1) =
∑
m,k

dim(W k
m/W

k
m−1)(−1)kqm/2.

J.É.P. — M., 2024, tome 11



1356 T. Scognamiglio

We have the following theorem, for a proof see [35, Th. 2.5].

Theorem 7.1.1. — For a quotient stack X = [X/G] where G is a connected linear
algebraic group and X an affine variety, the E-series E(X, q) is well-defined and
E(X, q) = E(X, q)E(BG, q) where BG is the classifying stack of G.

Consider now a complex stack X such that its E-series is well-defined. Let now E

be a Z-finitely generated algebra and Y be an E-stack. Assume that there exists
ψ : E → C such that Y×Spec(R),ψ Spec(C) ∼= X. The stack Y is called a spreading out
of X.

For any φ : E → Fq, denote by Xφ := Y×Spec(R),φSpec(Fq). We say that the stack X

is (strongly) rational count if there exists an open U ⊆ Spec(E) and a rational function
Q(t) such that for any φ : E → Fq with φ(Spec(Fq)) ⊆ U , it holds

#Xφ(Fqn) = Q(qn)

for every n ⩾ 1.
In [35, Th. 2.9] the following result is shown.

Theorem 7.1.2. — For a (strongly) rational count quotient stack X, there is an iden-
tity:

(7.1.3) E(X, q) = Q(q).

Remark 7.1.3. — Let X = [X/G] be a complex quotient stack with G a connected
linear algebraic group. Let E be a Z-subalgebra as above and Y1, Y2 be E-schemes
which are spreading out of X,G respectively. The stack Y := [Y1/Y2] is a spreading
out of X.

Notice that for any homomorphism φ : E → Fq, there is an isomorphism Xφ =

[Xφ/Gφ] and by [3, Lem. 2.5.1] there is therefore an equality

(7.1.4) #Xφ(Fqn) =
#Xφ(Fqn)
#Gφ(Fqn)

.

In particular, the stack X is rational count if and only the variety X is polynomial
count, i.e., there exists S(t) ∈ Q[t] such that S(qn) = #Xφ(Fqn) for φ having image
in an appropriate open of Spec(E). This was already remarked in [35, Rem. 2.7].

Consider a reductive algebraic group G. In [12] it is shown that each cohomology
group Hm

c (BG) is pure of weight m. In [12] this is stated for cohomology rather
than cohomology with compact support. The latter case is an immediate consequence
thanks to Poincaré duality.

From Theorem 7.1.2, we deduce the following lemma:

Lemma 7.1.4. — Suppose that G is (strongly) polynomial count. The classifying stack
BG is strongly polynomial count and we have

Hc(BG, q, t) = E(BG, qt2) =
1

E(G, qt2)
.
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Example 7.1.5. — We deduce, for instance, that, for each n ∈ N, we have

(7.1.5) Hc(BGLn, q, t) =
1

(qt2)n(n−1)/2

1

(qt2 − 1) · · · ((qt2)n − 1)

and
(7.1.6) Hc(B PGLn, q, t) =

1

(qt2)n(n−1)/2

1

((qt2)2 − 1) · · · ((qt2)n − 1)
.

Lastly, we will need the following proposition about the cohomology of a quotient
stack [X/G]. Assume that G = GLn and the center Gm ⊆ GLn acts trivially on the
scheme X. There is thus an induced action of PGLn on X and a canonical morphism
h : [X/GLn]→ [X/PGLn].

Proposition 7.1.6. — Let X be a C-variety with a GLn-action trivial on the center.
We have
(7.1.7) Hc([X/GLn], q, t) =

Hc([X/PGLn], q, t)

qt2 − 1
.

Proof. — We start by the case in which X = Spec(C) and we look at the canonical
morphism π : BGLn → B PGLn. In this case, Eq. (7.1.7) is a direct consequence of
Eqs. (7.1.5) and (7.1.6). There is a Cartesian diagram:

BGm BGLn

Spec(C) B PGLn

π
ψ

where ψ : Spec(C) → B PGLn is the canonical projection. Since ψ is a smooth
covering, for each q ∈ Z, the sheaf Rqπ!C is a local system with fiber Hq

c (BGm).
Moreover, as PGLn is connected, each local system is trivial over B PGLn, see

for example [1, Prop. 6.13]. In particular, the Leray spectral sequence for compactly
supported cohomology and the morphism π in second page is

Ep,q2 : Hp
c (B PGLn)⊗Hq

c (BGm) =⇒ Hp+q
c (BGLn).

From Eq. (7.1.7), we deduce that the spectral sequence collapses at page 2, i.e., that
the canonical morphism

Hp
c (BGLn) −→ Hp

c (BGm)

is surjective for every p.
Consider now a general X. In this case too, we have a Leray spectral sequence for

compactly supported cohomology with second page

Ep,q2 = Hp
c ([X/PGLn], R

qh!C) =⇒ Hp+q
c ([X/GLn]).

Notice that there is 2-Cartesian diagram

[X/GLn] BGLn

[X/PGLn] B PGLn
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where the morphism π : BGLn → B PGLn on the right is the canonical morphism
between classifying spaces. In particular, we have

Rqh!C ∼= r∗Rqπ!C,

where we put r : [X/PGLn] → B PGLn. We deduce thus that each Rqh!C is trivial.
Moreover, the associated map

Hp
c ([X/GLn]) −→ Hp

c (BGm)

is surjective, since the map Hp
c (BGLn)→ Hp

c (BGm) is surjective, as remarked above.
Therefore, the spectral sequence Ep,q2 collapses at page 2 and we obtain an isomor-
phism

H∗
c ([X/GLn]) = H∗

c ([X/PGLn])⊗H∗
c (BGm). □

7.2. E-series of multiplicative quiver stacks and character stacks. — In this para-
graph, we apply Theorem 6.5.1 to the computation of E-series of multiplicative quiver
stacks and character stacks. We first recall the results of Hausel, Letellier, Rodriguez-
Villegas about the E-series E(MC, q) in the case where C is a generic k-tuple of
semisimple conjugacy classes.

7.2.1. Cohomological results for generic k-tuples. — Let C be a k-tuple of semisimple
conjugacy classes of GLn(C). Let Q = (I,Ω) be the associated quiver and γC ∈ (C∗)I ,
αC ∈ (NI)∗ the associated parameters, introduced in Section 6.

In [23, Def. 2.1.1], the authors give the following definition of a generic k-tuple C.

Definition 7.2.1. — A k-tuple C of semisimple conjugacy classes is said generic if,
given a subspace W of Cn which is stabilized by some Xi ∈ Ci, for each i = 1, . . . , k,
such that

∏k
i=1 det(Xi|W ) = 1, then either W = {0} or W = Cn.

Remark 7.2.2. — For any β ∈ (NI)∗, there exists a generic k-tuple C′ such that
αC′ = β, see for example [23, Lem. 2.1.2].

Lemma 7.2.3. — If H∗
γC,αC

= {αC} the k-tuple C is generic. On the other hand, if C
is generic, there are no δ, ε ∈ H∗

γC,αC
∖ {αC} such that δ + ε = αC.

Proof. — Suppose that for a k-tuple C there exists a proper subspace 0 ⊂ W ⊂ Cn

and X1 ∈ C1, . . . , Xk ∈ Ck such that Xi(W ) ⊆W for each i and
k∏
i=1

det(Xi|W ) = 1.

For i = 1 . . . , k and j = 0, . . . , si, put Vγi,j = Ker(Xi− γi,jIn) and Wγi,j =W ∩ Vγi,j .
Notice that, for each i, we have

W =
si⊕
j=0

Wγi,j and det(Xi|W ) =

si∏
j=0

γ
dimWγi,j

i,j .
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Consider now the dimension vector β ∈ (NI)∗ defined as

β[i,j] =

si∑
h=j

dim(Wγi,j ).

We have that β < αC. Moreover, we have

(7.2.1)

γβC =

k∏
i=1

γ−β0

i,0

si∏
j=1

(γ−1
i,j γi,j−1)

β[i,j]

=

k∏
i=1

γ
−

∑si
h=0 dimWγi,j

i,0

si∏
j=1

γ
−

∑si
h=j dimWγi,j

i,j γ
∑si

h=j dimWγi,j

i,j−1

=

k∏
i=1

si∏
j=0

γ
− dimWγi,j

i,j =

k∏
i=1

det(Xi|W )−1 = 1.

Conversely, suppose that there exists β ∈ H∗
γC,αC

∖ {αC} such that ε := αC − β
belongs to H∗

γC,αC
∖ {αC} too. Since ε ∈ (NI)∗, for each j, h, we have

β[h,j] − β[h,j=1] ⩽ (αC)[h,j] − (αC)[h,j+1] = mh,j ,

where mh,j is the multiplicity of the eigenvalue γh,j in the orbit Cj . Put m = β0 and let
W = Cm ⊆ Cn be the span of the first m vectors of the canonical basis. We have that
m < n, since ε ∈ (NI)∗. For each i = 1, . . . , k, there exists a diagonal matrix Xi ∈ Ci

such that its first m diagonal entries are given by β[i,si] times the element γi,si , then
β[i,si−1]−β[i,si] times the element γi,si−1 and so on. The subspace W is Xi-stable for
each i = 1, . . . , k and, moreover,

det(Xi|W ) = γβC = 1,

from which we deduce that C is not generic. □

For generic k-tuples, we have the following general combinatorial formula com-
puting the E-series of the associated character stacks, shown by Hausel, Letellier,
Rodriguez-Villegas.

Let x1 = {x1,1, x1,2 . . . }, . . . ,xk = {xk,1, . . . } be k sets of infinitely many variables
and let us denote by Λk := Λ(x1, . . . ,xk) the ring of functions over Q(z, w) separetely
symmetric in each set of variables. On Λk there is a natural λ-ring structure, induced
by the operations ψd : Λk → Λk defined as

ψd(f(x1, . . . ,xk)) = f(xd1, . . . ,x
d
k),

and there is a natural bilinear form obtained by extending by linearity

⟨f1(x1) · · · fk(xk), g1(x1) · · · gk(xk)⟩ =
k∏
i=1

⟨fi, gi⟩,

where ⟨ , ⟩ is the bilinear form on the ring of symmetric functions making the Schur
functions sµ an orthonormal basis. For a multipartition µ = (µ1, . . . , µk) ∈ Pk, we de-
note by hµ = hµ1(x1) · · ·hµk(xk) the associated complete symmetric function.
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For any λ ∈ P, let Hλ(z, w) be the hook function:

(7.2.2) Hλ(z, w) =
∏
s∈λ

(z2a(s)+1 − w2l(s)+1)2g

(z2a(s)+2 − w2l(s))(z2a(s) − w2l(s)+2)

and the associated series Ω(z, w) ∈ Λk[[T ]]

(7.2.3) Ω(z, w) =
∑
λ∈P

Hλ(z, w)

k∏
i=1

Hλ(xi, z
2, w2)T |λ|,

where Hλ(xi, q, t) are the (modified) Macdonald symmetric polynomials (for a defi-
nition see [20, I.11]).

For any µ ∈ Pkn, in [23] the rational function Hµ(z, w) is defined as

(7.2.4) Hµ(z, w) := (z2 − 1)(1− w2)
〈
CoeffTn(Log(Ω(z, w))), hµ

〉
.

For any β ∈ (NI)∗ and for any j = 1, . . . , k, the integers

(β[j,0] − β[j,1], . . . , β[j,sj−1] − β[j,sj ], β[j,sj ]),

up to reordering, form a partition µjβ ∈ P. Denote by µβ ∈ Pk the multipartition
µβ = (µ1

β , . . . , µ
k
β) and by Hβ(z, w) the function Hµβ

(z, w).
Hausel, Letellier, Rodriguez-Villegas [23, Th. 5.2.3] showed the following result:

Theorem 7.2.4. — For any generic k-tuple C, we have:

(7.2.5) E(MC, q)

q−(αC,αC)
=
qHαC

(√
q, 1/
√
q
)

q − 1
.

Remark 7.2.5. — The result of [23, Th. 5.2.3] is stated in a slightly different way.
In particular, to verify the equivalence of the results of [23] and Theorem 7.2.4, one
needs to verify that −2(αC, αC) + 1 = dim(MC). The proof of the latter equality can
be found at the beginning of [24, Ch. 5.2].

In the same paper, the authors [23, Conj. 1.2.1] proposed the following conjectural
identity for the mixed Poincaré series of the character stack MC, when C is generic,
naturally deforming Eq. (7.2.5):

Conjecture 7.2.6. — For any generic k-tuple C of semisimple conjugacy classes,
we have

Hc(MC, q, t)

(qt2)−(αC,αC)
=

(qt2)HαC

(
−t√q, 1/√q

)
qt2 − 1

.

Remark 7.2.7. — Theorem 7.2.4 and Conjecture 7.2.6 in the article [23] are stated for
the corresponding generic character variety MC, rather than the character stack MC.
The equivalences of the statements of [23] with those presented here comes from
Proposition 7.1.6.
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7.2.2. Main result. — Consider a star-shaped Q = (I,Ω). For any σ ∈ (C∗)I and any
β ∈ (NI), we will construct a spreading out of the stack M∗

σ,β in the following way.
Let E0 = Z[xi, x−1

i ]i∈I be the ring in |I| invertible variables. For any δ ∈ NI ,
denote by xδ ∈ E0 the element xδ :=

∏
i∈I x

δi
i . Let Nσ,β = (NI⩽β)∗ ∖Hσ,β . Consider

the multiplicative set S ⊆ E0 generated by the elements xδ − 1 for δ ∈ Nσ,β . Denote
by J ⊆ S−1E0 the ideal generated by (xδ − 1) for δ ∈ Hσ,β and let E be the quotient

E := S−1E0/J.

Notice that, given a field K, a map φ : E → K corresponds to an element γφ ∈ (K∗)I

such that Hγφ,β = Hσ,β . Let A0 be the polynomial E-algebra in 2
∑
a∈Ω s(a)t(a)

variables corresponding to the entries of matrices (xa, xa∗)a∈Ω. Let W ⊆ A0 be the
multiplicative system generated by det(1 + xaxa∗),det(1 + xa∗xa) for a ∈ Ω and let
A′

0 := W−1A0. Consider the ideal I ⊆ A′
0 generated by the entries of∏

a∈Ω

(1 + xaxa∗)(1 + xa∗xa)
−1 −

∏
i∈I

(xiIαi
)

and let
A = A′

0/I.

Let Y = Spec(A) and let Y ∗ ⊆ Y be the open subset given by y ∈ Y such that for
any algebraically closed field K and any morphism Spec(K)→ Y with image y, cor-
responding to an element (xa, xa∗)a∈Ω ∈ R(Q,α,K), the maps (xa)a∈Ω are injective.

Let now ψ : E → C be the map induced by the element σ ∈ (C∗)I . Notice that

Y ∗ ×Spec(E),ψ Spec(C) ∼= (Φ∗
β)

−1(σ)

and therefore Y ∗ is a spreading out of (Φ∗
β)

−1(σ). Similarly, for any φ : E → Fq
corresponding to an element γφ ∈ (F∗

q)
I with Hγφ,β = Hσ,β , we have

((Φ∗
β)

−1(σ))φ = (Φ∗
β)

−1(γφ).

Let GLα,E be the E-group scheme
∏
i∈I GLαi,E . The stack Y∗ = [Y ∗/GLα,E ] is

therefore a spreading out of M∗
σ,β .

From Remark 7.1.3 and the results of Theorem 5.9.3 and Theorem 6.5.1, we deduce
that the stack M∗

σ,β is rational count and we have

(7.2.6)
E(M∗

σ,β , q)

q−(β,β)
= Coeffβ

(
Exp

( ∑
δ∈Hσ

M̃δ,gen(q)y
β
))

where M̃δ,gen(t) are the rational functions associated to the dual Log compatible
family {mδ}δ∈NI , as in Section 5.9. Notice that M̃δ,gen(t) = 0 if δ /∈ (NI)∗. From
Remark 7.2.2 and Lemma 7.2.3, we deduce that for any δ ∈ (NI)∗ we have

M̃δ,gen(q) =
qHδ

(√
q, 1/
√
q
)

q − 1
.

We can resume all the arguments above in the following theorem:

J.É.P. — M., 2024, tome 11



1362 T. Scognamiglio

Theorem 7.2.8. — For any β ∈ (NI)∗ and any σ ∈ (C∗)I , we have:
E(M∗

σ,β , q)

q−(β,β)
= Coeffβ

(
Exp

( ∑
δ∈H∗

σ,β

qHδ
(√
q, 1/
√
q
)

q − 1
yδ
))

.

7.2.3. E-series for character stacks with semisimple monodromies

From Theorem 7.2.8 and the isomorphism of Theorem 6.4.2, we deduce the follow-
ing theorem about E-series for character stacks associated to k-tuples of semisimple
conjugacy classes.

Theorem 7.2.9. — For any k-tuple C of semisimple conjugacy classes of GLn(C),
we have:

(7.2.7) E(MC, q)

q−(αC,αC)
= CoeffαC

(
Exp

( ∑
β∈H∗

γC,αC

qHβ
(√
q, 1/
√
q
)

q − 1
yβ

))
.

Remark 7.2.10. — Notice that Eq. (7.2.7) implies that the E-series E(MC, q) does
not depend on the values on the eigenvalues {γj,h} j=1,...,k

h=0,...,sj

but only on the subset

H∗
γC,αC

.

8. Mixed Poincaré series of character stacks for P1
C with four punctures

From Theorem 7.2.9, it seems natural to formulate the following generalization of
Conjecture 7.2.6

Conjecture 8.0.1. — For any k-tuple of semisimple conjugacy classes C, we have:

(8.0.1) Hc(MC, q,−t)
(qt2)−(αC,αC)

= CoeffαC

(
Exp

( ∑
β∈H∗

γC,αC

(qt2)Hβ
(
t
√
q, 1/
√
q
)

qt2 − 1
yβ

))
.

Remark 8.0.2. — As mentioned in the introduction, the − sign in the term
Hc(MC, q,−t) of Eq. (8.0.1) is due to the properties of the plethystic exponential
Exp, see for instance [8, §4.3].

In a nutshell, the plethystic exponential Exp : Q(t)[yi]]
+
i∈I → 1 + Q(t)[[yi]]

+
i∈I can

be seen as the decategorification of the symmetric power functor on the category of
cohomologically graded and NI -graded vector spaces.

The − sign comes then from Koszul’s sign rule for the cohomological grading.
We remark that Theorem 7.2.9 is the specialization at t = 1 of Conjecture 8.0.1.

In this section, we will verify Conjecture 8.0.1 for a certain family of non-generic
character stacks.

Let Σ = P1
C (i.e., g = 0), k = 4 and n = 2. Let D = {x1, . . . , x4} ⊆ P1

C. For
j = 1, . . . , 4, pick λj ∈ C∗ with λj ̸= ±1 and denote by Cj the conjugacy class of the
diagonal matrix (

λj 0

0 λ−1
j

)
.
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Let C be the k-tuple C = (C1, . . . ,C4). The variety XC is therefore

XC = {(X1, . . . , X4) ∈ C1 × · · · × C4 | X1X2X3X4 = 1}.

Denote by MC the GIT quotient MC := XC//GL2(C). Recall that the points of MC are
in bijection with the isomorphism classes of semisimple representations of π(Σ ∖D)

inside XC.
The study of the geometry of the character varieties MC goes back to Fricke and

Klein [17], who gave a description of them in terms of cubic surfaces. Denote by
ai = λi + λ−1

i . The character variety MC is isomorphic to the cubic surface defined
by the following equation in 3 variables x, y, z

(8.0.2) xyz + x2 + y2 + z2 − (a1a2 + a3a4)x− (a2a3 + a1a4)y − (a1a3 + a2a4)z

+ a1a2a3a4 + a21 + a22 + a23 + a24 − 4 = 0.

If C is generic, this description identifies MC with a smooth (affine) Del Pezzo cubic
surface (see [16, Th. 6.1.4]), i.e., a smooth cubic projective surface with a triangle cut
out of it. The cohomology of this kind of surfaces is well-known. In particular, if C is
generic, it holds:

Hc(MC, q, t) = q2t4 + 4qt2 + t2.

If C is generic, we have that MC = [XC/PGL2]. From Proposition 7.1.6, we have

Hc(MC, q, t) =
q2t4 + 4qt2 + t2

qt2 − 1
.

The identity above agrees with Hausel, Letellier, Rodriguez-Villegas Conjecture 7.2.6,
as explained in [23, §1.5].

Pick now λ1, . . . , λ4 ∈ C∗ ∖ {1,−1} with the following property. For ε1, . . . , ε4 ∈
{1,−1} such that λε11 · · ·λ

ε4
4 = 1, then either ε1 = · · · = ε4 = 1 or ε1 = · · · = ε4 = −1.

Notice that in this case, the associated k-tuple C is not generic.
In the following section, we will compute the mixed Poincaré series Hc(MC, q, t)

and verify that it respects Conjecture 8.0.1.
For the character stack MC, the associated quiver Q = (I,Ω) is the star-shaped

quiver with one central vertex and four arrows pointing inwards. We denote the central
vertex by 0 and the other vertices by [i, 1] for i = 1, . . . , 4. The dimension vector αC

is the dimension vector for Q defined as (αC)0 = 2 and (αC)[i,1] = 1 for i = 1, . . . , 4.
The quiver Q with the dimension vector α is depicted below.

1

1 2 1

1

The associated parameter γC is given by

(γC)0 = (λ1λ2λ3λ4)
−1 = 1
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and, for i = 1, . . . , 4

(γC)[i,1] = λ2i .

Denote by β1, β2∈ (NI)∗ the elements defined as (β1)0=1, (β1)[i,1]=1 and (β2)1=1,
(β2)[i,1] = 0 for i = 1, . . . , 4. Notice that H∗

γC,αC
= {α, β1, β2}. There are equalities

Hβ1
(t
√
q, 1/
√
q) = Hβ2 (t

√
q, 1/
√
q) = 1.

Conjecture 8.0.1 predicts then the following equality

Hc(MC, q,−t) =
qt2HαC

(
t
√
q, 1/
√
q
)

qt2 − 1
+
q2t4Hβ1

(
t
√
q, 1/
√
q
)
Hβ2

(
t
√
q, 1/
√
q
)

(qt2 − 1)2

=
q2t4 + 4qt2 + t2

qt2 − 1
+

q2t4

(qt2 − 1)2
=
q3t6 + 4q2t4 + qt4 − 4qt2 − t2

(qt2 − 1)2
.(8.0.3)

Since the terms in t of the RHS of Eq. (8.0.3) all have even degrees, in this case
Conjecture 8.0.1 is equivalent to the equality

(8.0.4) Hc(MC, q, t) =
q3t6 + 4q2t4 + qt4 − 4qt2 − t2

(qt2 − 1)2
.

8.1. Cohomology computations

Denote by M′
C the quotient stack M′

C = [XC/PGL2]. From Proposition 7.1.6,
we have

(8.1.1) Hc(MC, q, t) =
Hc(M

′
C, q, t)

qt2 − 1
.

We can then reduce ourselves to compute the cohomology of the stack M′
C.

Inside XC there is the open (dense) subset which we denote by Xs
C ⊆ XC, given by

quadruple (X1, X2, X3, X4) ∈ C1×· · ·×C4 corresponding to irreducible representations
of π1(Σ∖D). Recall that Xs

C is smooth (see for example [15, Prop. 5.2.8]). Denote by
Ns

C the quotient stack [Xs
C/PGL2]. Notice that the action of PGL2 is schematically

free on Xs
C and therefore the stack Ns

C is an algebraic variety.
The non irreducible representations of XC all have the same semisimplification,

up to isomorphism, which corresponds to the point m ∈ MC, associated to the iso-
morphism class of the representation

(8.1.2) m =

((
λ1 0

0 λ−1
1

)
,

(
λ2 0

0 λ−1
2

)
,

(
λ3 0

0 λ−1
3

)
,

(
λ4 0

0 λ−1
4

))
.

We denote by O ⊆ XC the closed GL2(C)-orbit associated to m. A representation
x ∈ XC which is neither irreducible nor semisimple, i.e., which belongs neither to Xs

C

nor to O, can be of the following two types. Either x is isomorphic to a quadruple of
the form

m+
a,b,c :=

((
λ1 0

0 λ−1
1

)
,

(
λ2 a

0 λ−1
2

)
,

(
λ3 b

0 λ−1
3

)
,

(
λ4 c

0 λ−1
4

))
with (a, b, c) ∈ C3 ∖ {(0, 0, 0)} and

(8.1.3) λ1λ2λ3c+ λ1λ2µ4b+ λ1λ2λ3c = 0,
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or of the form

m−
a,b,c :=

((
λ1 0

0 λ−1
1

)
,

(
λ2 0

a λ−1
2

)
,

(
λ3 0

b λ−1
3

)
,

(
λ4 0

c λ−1
4

))
with (a, b, c) ∈ C3 ∖ {(0, 0, 0)} and

(8.1.4) λ4λ
−1
1 λ3a+ λ−1

1 λ−1
2 λ4b+ λ−1

1 λ−1
2 λ−1

3 c = 0.

We denote by Z+
C ⊆ XC and by Z−

C ⊆ XC the locally closed subsets of repre-
sentations isomorphic to elements of the form m+

(a,b,c) or m−
(a,b,c) for some (a, b, c) ∈

C3 ∖ {(0, 0, 0)} satisfying the conditions of Eqs. (8.1.3) and (8.1.4) respectively.

8.1.1. Cohomology of the character variety in the non-generic case. — As mentioned
before, the variety MC is a cubic surface defined by Eq. (8.0.2). Denote by MC ⊆ P3

C
the associated projective cubic surface. Notice that MC is obtained by adding to MC

the triangle at infinity xyz = 0, which we will denote by U ⊆MC.
Unlike the case in which C is generic, for our choice of quadruples the surface MC

is singular, with m being is its only singular point. We have moreover an isomorphism
Ns

C
∼= MC ∖ {m}. It is a well-known result (see for example [32]) that for such a

singular cubic surface MC, there exists a resolution of singularities

f : M̃C −→MC

such that f−1(m) ∼= P1
C and f is an isomorphism over MC ∖ {m}, i.e., MC ∖ {m} ∼=

M̃C ∖ f−1({m}). Moreover, it is known that M̃C is the blow-up of P2
C at 6 points.

There is thus an equality

Hc(M̃C, q, t) = q2t4 + 7qt2 + 1.

Using the long exact sequence in compactly supported cohomology for the open-closed
decomposition M̃C = f−1(MC ∖ {m}) ⊔ f−1(m), we deduce that we have

Hc(MC ∖ {m}, q, t) = Hc(f
−1(MC ∖ {m}), q, t) = q2t4 + 6qt2,

and so,
Hc(MC, q, t) = q2t4 + 6qt2 + 1.

It is not difficult to check that the compactly supported Poincaré polynomial of U
is Hc(U, q, t) = 3qt2+ t+1. Applying the long exact sequence in compactly-supported
cohomology for the open-closed decomposition MC =MC ⊔ U we find

(8.1.5) Hc(MC, q, t) = q2t4 + 3qt2 + t2.

From Eq. (8.1.5), using the long exact sequence for the open-closed decomposition
MC = (MC ∖ {m}) ⊔ {m} we deduce that we have:

(8.1.6) Hc(N
s
C, q, t) = Hc(MC ∖ {m}, q, t) = q2t4 + 3qt2 + t2 + t.
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8.1.2. Cohomology of the character stack in the non-generic case. — We introduce the
following notations. Let YC = XC ∖ O and NC = [YC/PGL2]. The action of PGL2

on YC is set-theoretically free so that NC is at least an algebraic space. Notice that
there is an isomorphism [O/PGL2] ∼= BGm and an open-closed decomposition

M′
C = NC ⊔ [O/PGL2].

Applying the long-exact sequence for compactly supported cohomology for the open-
closed decomposition above and knowing that H∗

c (BGm) is concentrated in strictly
negative even degrees, we obtain

(8.1.7) Hc(M
′
C, q, t) = Hc(NC, q, t) +Hc(BGm, q, t) = Hc(NC, q, t) +

1

qt2 − 1
.

We have thus reduced ourselves to compute the mixed Poincaré series Hc(NC, q, t).
Let Y +

C = YC ∖ Z−
C and Y −

C = YC ∖ Z+
C . Notice that, a priori, Y +

C , Y
−
C are only

constructible subsets of XC. Therefore we don’t have a good definition of the quotient
stacks [Y +

C /PGL2], [Y
−
C /PGL2] neither of their cohomology.

To solve this problem, we start by the following preliminary lemma.

Lemma 8.1.1. — Let G be a linear algebraic group over C acting on the left on a
C-scheme X. Let H ⩽ G be a closed subgroup. Suppose that there exists a G-equi-
variant map p : X → G/H, where G acts on G/H by left multiplication. Set XH =

p−1(eH). The group H acts on XH and there is an isomorphism of quotient stacks

(8.1.8) [X/G] ∼= [XH/H].

Moreover, if X is an affine variety and G,H are reductive, there is an isomorphism
of varieties:

(8.1.9) X//G ∼= XH//H.

Proof. — Notice firstly that, if X is affine and G,H are reductive, the isomorphism
(8.1.9) is implied by the isomorphism (8.1.8) as the varieties XH//H,X//G are good
moduli spaces for the stacks [XH/H], [X/G] respectively (see [2, Rem. 4.8]). We now
prove isomorphism (8.1.8).

Notice that in general there is always a map α : [XH/H] → [X/G]. We must
construct an inverse β : [XH/H]→ [X/G].

Fix a scheme S and recall that the objects of the groupoid [X/G](S) are pairs
(P,φ) where P → S is a principal G-bundle and φ : P → X is a G-equivariant map
and similarly for [XH/H](S). We define β(P,φ) := (PH , φH) to fit in the following
diagram, where both squares are Cartesian:

PH XH eH

P X G/H.

φH

φ π
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It can be checked that PH is a principal H-bundle over S and φH is H-equivariant,
so that β actually defines a morphism

β : [X/G] −→ [XH/H].

The morphism β is an inverse to α. □

We will apply Lemma 8.1.1 above in the case where X = XC, G = PGL2 and
H ⊆ PGL2 is the maximal torus of diagonal matrices as follows. In the following,
we identify H ∼= Gm, via the map Gm → PGL2, which sends z ∈ C∗ to the class
of

(
z 0
0 1

)
.

Recall that there is an isomorphism C1
∼= G/H. Via this latter isomorphism, the

projection on the first factor induces a G-equivariant morphism

p : XC −→ G/H ∼= C1

(X1, X2, X3, X4) 7−→ X1.

Notice that

(XC)H =
{
X2 ∈ C2, X3 ∈ C3, X4 ∈ C4 | X2X3X4 =

(
λ−1
1 0
0 λ1

)}
.

Denote by (MC)H := (XC)H//H. Lemma 8.1.1 implies that there is an isomorphism

(MC)H ∼=MC.

We use similar notations for (NC)H , (N
s
C)H . Re-applying Lemma 8.1.1, we see that

there is an isomorphism (Ns
C)H
∼= Ns

C. In particular,

(8.1.10) Hc((N
s
C)H , q, t) = q2t4 + 3qt2 + t2 + t.

Consider now the character θ+ : H = Gm → Gm given by θ+(z) = z. The char-
acter θ induces a linearization of the H-action on the affine variety (XC)H (see for
example [28, §2]). Using Mumford’s criterion (see [28, Prop. 2.5]), we check below that
the semistable points (XC)

ss,θ+

H are given by

(XC)
ss,θ+

H = (Y +
C )H .

In particular, (Y +
C )H is an open subset of (XC)H and it is thus an algebraic variety.

We denote by (N+
C )H the quotient stack (N+

C )H = [Y +
C /H]. Since the action of H

on (Y +
C )H is free, the stack (N+

C )H is an algebraic variety. Denote by f+ : (N+
C )H →

(MC)H the canonical (proper) map.
We have indeed four type of points inside (XC)H :
• Notice that O ∩ (XC)H is the singleton {m}, corresponding to the quadruple

(8.1.2). The point m, being a Gm fixed point, is unstable. Indeed, considering the
1-parameter subgroup λ : Gm → Gm given by λ(z) = z−1, we have ⟨θ+, λ⟩ = −1 < 0

while it exists limt→0 λ(t) ·m = m.
• The points of (Xs

C)H are stable. Each x ∈ (XC)H corresponds to an irreducible
representation. For a 1-parameter subgroup λ : Gm → Gm, the limit limt→0 λ(t) · x
exists if and only if λ is trivial, i.e., ⟨θ+, λ⟩ = 0.
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• The points of (Z+
C )H are semistable. Notice that (Z+

C )H is given by points of the
form m+

(a,b,c) as in Section 8.1, for (a, b, c) ∈ C3 ∖ {(0, 0, 0)} which fulfills Eq. (8.1.3).
For λ : Gm → Gm given by λ(t) = tn for n ∈ Z and t ∈ C∗, we have

λ(t) ·m+
(a,b,c) = m(tna,tnb,tnc).

In particular, we see that the limit limt→0 λ(t) ·m+
(a,b,c) exists (and it is given by m)

if and only if n ⩾ 0, i.e., if and only if ⟨θ+, λ⟩ ⩾ 0.
• By a similar reasoning, the points of (Z−

C )H are unstable.
We have that (f+)−1(m) = (Z+

C )H/H. From the description of the elements of XC

given at the beginning of Section 8.1, we see that (Z+
C )H is isomorphic to C2∖{(0, 0)}.

Via this identification Gm acts on C2 ∖ {(0, 0)} by scalar multiplication on both
coordinates. We have therefore:

(Z+
C )H/H ∼= (C2 ∖ {(0, 0)})/Gm = P1

C.

Consider now the Leray spectral sequence for compactly supported cohomology

Ep,q2 : Hp
c ((MC)H , R

qf+∗ Q) =⇒ Hp+q
c ((N+

C )H ,Q).

Notice that Rqf+∗ Q ̸= 0 if and only if q = 0, 2. More precisely, we have f+∗ Q = Q and
R2f+∗ Q = (im)∗Q, where im is the closed embedding

im : {m} −→ (MC)H .

Recall that the differential maps of the spectral sequence go in the direction

dp,qr : Ep,qr −→ Ep+r,q−r+1
r .

As Rqf+∗ Q is 0 for odd q, the differential dp,q2 is the zero map for each p, q and therefore
we have Ep,q3 = Ep,q2 for each p, q. Moreover, the differentials on the third page go in
the direction dp,q3 : Ep,q3 →Ep+3,q−2

3 and if q ̸=0, 2, the vector space Ep,q3 is equal to 0.
If q = 0, we have E3,−3

3 = {0} and so dp,q3 = 0. Lastly, if q = 2, we have Ep,q3 = {0}
if p ⩾ 1 and if p = 0, we have E3,0

3 = H3
c ((MC)H ,Q) = {0}.

We deduce therefore that the differential maps dp,q3 are all zero. In a similar way,
it is possible to verify that dp,qr = 0 if r ⩾ 2, for any p, q and so that the spectral
sequence degenerates at the second page.

For each n, there is therefore an equality

Hn
c ((N

+
C )H ,Q) =

⊕
p+q=n

Hp
c ((MC)H , R

qf+∗ Q).

From the description of the sheaves Rqf+∗ Q given above, we deduce that we have

(8.1.11) Hc((N
+
C )H , q, t) = q2t4 + 4qt2 + t2.

A similar reasoning can be applied to the opposite linearization, induced by the
character θ− : Gm → Gm given by θ−(z) = z−1. In this case, in a similar way we can
argue that the semistable points (XC)

ss,θ−

H are given by (Y −
C )H .

For the corresponding quotient (N−
C )H there is therefore an equality

(8.1.12) Hc((N
−
C )H , q, t) = q2t4 + 4qt2 + t2.
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Denote now by j+, j− the open embeddings

j+ : (N+
C )H −→ (NC)H and j+ : (N−

C )H −→ (NC)H

and by j the open embedding (Ns
C)H → (NC)H . Notice that there is a short exact

sequence of sheaves on (NC)H :

0 −→ j!C −→ j+! C⊕ j−! C −→ C −→ 0,

and therefore an associated long exact sequence in compactly supported cohomology

Hi−1
c ((NC)H) −→ Hi

c((N
s
C)H) −→ Hi

c((N
+
C )H)⊕Hi

c((N
−
C )H) −→ Hi

c((NC)H).

From Lemma 8.1.1, we deduce that there is an isomorphism (NC)H ∼= NC. From the
long exact sequence above and Eqs. (8.1.10) to (8.1.12), it is therefore not difficult to
show that

(8.1.13) Hc(NC, q, t) = q2t4 + 5qt2 + t2 + 1.

Plugging this result into Eq. (8.1.7) and using identity (8.1.1), we obtain finally iden-
tity (8.0.3).
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