Finite quotients of abelian varieties with a Calabi-Yau resolution
[Quotients finis de variétés abéliennes admettant une résolution de Calabi-Yau]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1219-1286.

Soit A une variété abélienne et G un groupe fini agissant librement en codimension 2 par automorphismes sur A. On s’intéresse ici aux conditions d’existence d’une résolution du quotient singulier A/G qui soit une variété de Calabi-Yau. Tandis qu’en dimension 3, deux exemples de quotients admettant une telle résolution ont été construits par Oguiso dans un article de 1994, on montre ici qu’aucun quotient de la sorte n’existe en dimension 4. En dimension quelconque, on classifie les variétés abéliennes A susceptibles d’admettre des quotients de la sorte, à isogénie près.

Let A be an abelian variety, and GAut(A) a finite group acting freely in codimension two. We discuss whether the singular quotient A/G admits a resolution that is a Calabi-Yau manifold. While Oguiso constructed two examples in dimension 3, we show that there are none in dimension 4. We also classify up to isogeny the possible abelian varieties A in arbitrary dimension.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.277
Classification : 14J32, 14K22, 14E15, 14L30
Keywords: Crepant resolution, abelian variety with complex multiplication, Calabi-Yau manifold
Mot clés : Résolution crépante, variété abélienne à multiplication complexe, variété de Calabi-Yau

Cécile Gachet 1

1 Laboratoire J.A. Dieudonné, Université Côte d’Azur, CNRS UMR 7351, Parc Valrose 06108 Nice Cedex 2, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__1219_0,
     author = {C\'ecile Gachet},
     title = {Finite quotients of abelian varieties with {a~Calabi-Yau} resolution},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1219--1286},
     publisher = {\'Ecole polytechnique},
     volume = {11},
     year = {2024},
     doi = {10.5802/jep.277},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.277/}
}
TY  - JOUR
AU  - Cécile Gachet
TI  - Finite quotients of abelian varieties with a Calabi-Yau resolution
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 1219
EP  - 1286
VL  - 11
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.277/
DO  - 10.5802/jep.277
LA  - en
ID  - JEP_2024__11__1219_0
ER  - 
%0 Journal Article
%A Cécile Gachet
%T Finite quotients of abelian varieties with a Calabi-Yau resolution
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 1219-1286
%V 11
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.277/
%R 10.5802/jep.277
%G en
%F JEP_2024__11__1219_0
Cécile Gachet. Finite quotients of abelian varieties with a Calabi-Yau resolution. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1219-1286. doi : 10.5802/jep.277. https://jep.centre-mersenne.org/articles/10.5802/jep.277/

[1] E. Amerik & M. Verbitsky - “Rational curves and MBM classes on hyperkähler manifolds: a survey”, in Rationality of varieties, Progress in Math., vol. 342, Birkhäuser/Springer, Cham, 2021, p. 75-96 | DOI | Zbl

[2] M. Andreatta & J. Wiśniewski - “On the Kummer construction”, Rev. Mat. Univ. Complut. 23 (2010) no. 1, p. 191-215 | DOI | Zbl

[3] B. Bakker, H. Guenancia & C. Lehn - “Algebraic approximation and the decomposition theorem for Kähler Calabi-Yau varieties”, Invent. Math. 228 (2022) no. 3, p. 1255-1308 | DOI | Zbl

[4] A. Beauville - “Variétés kählériennes dont la première classe de Chern est nulle”, J. Differential Geom. 18 (1984), p. 755-782 | Zbl

[5] C. Birkar, G. Di Cerbo & R. Svaldi - “Boundedness of elliptic Calabi-Yau varieties with a rational section”, 2020 | arXiv

[6] C. Birkenhake & H. Lange - Complex abelian varieties, Grundlehren Math. Wissen., vol. 302, Springer-Verlag, Berlin, 2004 | DOI

[7] D. Burek - “Higher dimensional Calabi-Yau manifolds of Kummer type”, Math. Nachr. 293 (2020) no. 4, p. 638-650 | DOI | Zbl

[8] W. Chen, G. Di Cerbo, J. Han, C. Jiang & R. Svaldi - “Birational boundedness of rationally connected Calabi-Yau 3-folds”, Adv. Math. 378 (2021), article ID 107541, 32 pages | DOI | Zbl

[9] S. Cynk & K. Hulek - “Higher-dimensional modular Calabi-Yau manifolds”, Canad. Math. Bull. 50 (2007) no. 4, p. 486-503 | DOI | Zbl

[10] S. Cynk & M. Schütt - “Generalised Kummer constructions and Weil restrictions”, J. Number Theory 129 (2009) no. 8, p. 1965-1975 | DOI | Zbl

[11] O. Debarre - “Hyperkähler manifolds”, 2018 | arXiv

[12] G. Di Cerbo & R. Svaldi - “Birational boundedness of low-dimensional elliptic Calabi-Yau varieties with a section”, Compositio Math. 157 (2021) no. 8, p. 1766-1806 | DOI | Zbl

[13] S. Druel - “A decomposition theorem for singular spaces with trivial canonical class of dimension at most five”, Invent. Math. 211 (2018), p. 245-296 | DOI | Zbl

[14] D. Greb, H. Guénancia & S. Kebekus - “Klt varieties with trivial canonical class. Holonomy, differential forms and fundamental groups”, Geom. Topol. 23 (2019), p. 2051–2124 | DOI | Zbl

[15] R. Hartshorne - Algebraic Geometry, Graduate Texts in Math., vol. 52, Springer, 1977 | DOI

[16] A. Höring & T. Peternell - “Algebraic integrability of foliations with numerically trivial canonical bundle”, Invent. Math. 216 (2019), p. 395-419 | DOI | Zbl

[17] I. Isaacs - Finite group theory, Graduate Studies in Math., vol. 92, American Mathematical Society, Providence, RI, 2008 | DOI

[18] Y. Ito & M. Reid - “The McKay correspondence for finite subgroups of SL(3,), in Higher-dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996, p. 221-240 | Zbl

[19] L. Kamenova - “Survey of finiteness results for hyperkähler manifolds”, in Phenomenological approach to algebraic geometry, Banach Center Publ., vol. 116, Polish Acad. Sci. Inst. Math., Warsaw, 2018, p. 77-86 | Zbl

[20] V. A. Khinich - “On the Gorenstein property of the ring of invariants of a Gorenstein ring”, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976) no. 1, p. 50-56 | Zbl

[21] J. Kollár - Singularities of the minimal model program, Cambridge Tracts in Math., vol. 200, Cambridge University Press, Cambridge, 2013 | DOI

[22] M. Kreuzer & H. Skarke - “Classification of reflexive polyhedra in three dimensions”, Adv. Theo. Math. Phys. 2 (1998) no. 4, p. 853-871 | DOI | Zbl

[23] M. Kreuzer & H. Skarke - “Complete classification of reflexive polyhedra in four dimensions”, Adv. Theo. Math. Phys. 4 (2000) no. 6, p. 1209-1230 | DOI | Zbl

[24] S. Lu & B. Taji - “A characterization of quotients of abelian varieties”, Internat. Math. Res. Notices 2018 (2018), p. 292-319 | Zbl

[25] J. Masley & H. Montgomery - “Cyclotomic fields with unique factorization”, J. reine angew. Math. 286/287 (1976), p. 248-256 | Zbl

[26] Y. Miyaoka - “The Chern classes and Kodaira dimension of a minimal variety”, in Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, p. 449-476 | DOI | Zbl

[27] D. R. Morrison & G. Stevens - “Terminal quotient singularities in dimensions three and four”, Proc. Amer. Math. Soc. 90 (1984) no. 1, p. 15-20 | DOI | Zbl

[28] Y. Namikawa - “A note on symplectic singularities”, 2001 | arXiv

[29] K. Oguiso - “On algebraic fiber space structures on a Calabi-Yau 3-fold”, Internat. J. Math. 4 (1993) no. 3, p. 439-465 | DOI | Zbl

[30] K. Oguiso - “On the complete classification of Calabi-Yau threefolds of type III 0 , in Higher-dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996, p. 329-339 | Zbl

[31] K. Oguiso & T. Peternell - “Calabi-Yau threefolds with positive second Chern class”, Comm. Anal. Geom. 6 (1998) no. 1, p. 153-172 | DOI | Zbl

[32] K. Oguiso & J. Sakurai - “Calabi-Yau threefolds of quotient type”, Asian J. Math. 5 (2001) no. 1, p. 43-77 | DOI | Zbl

[33] K. Paranjape & D. Ramakrishnan - “Quotients of E n by A n+1 and Calabi-Yau manifolds”, in Algebra and number theory, Hindustan Book Agency, Delhi, 2005, p. 90-98 | DOI | Zbl

[34] M. Reid - “Canonical 3-folds”, in Journées de Géometrie Algébrique d’Angers (Angers, 1979), Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, p. 273-310 | Zbl

[35] M. Reid - “Minimal models of canonical 3-folds”, in Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, p. 131-180 | DOI | Zbl

[36] D. J. S. Robinson - A course in the theory of groups, Graduate Texts in Math., vol. 80, Springer-Verlag, New York, 1996 | DOI

[37] K. Sato & Y. Sato - “Crepant property of Fujiki-Oka resolutions for Gorenstein abelian quotient singularities”, Nihonkai Math. J. 32 (2021) no. 1, p. 41-69 | Zbl

[38] N. I. Shepherd-Barron & P. M. H. Wilson - “Singular threefolds with numerically trivial first and second Chern classes”, J. Algebraic Geom. 3 (1994) no. 2, p. 265-281 | Zbl

[39] G. Shimura & Y. Taniyama - Complex multiplication of abelian varieties and its applications to number theory, Publ. of the M.S.J., vol. 6, The Mathematical Society of Japan, Tokyo, 1961

[40] Y.-S. Tai - “On the Kodaira dimension of the moduli space of abelian varieties”, Invent. Math. 68 (1982) no. 3, p. 425-439 | DOI | Zbl

[41] L. Washington - Introduction to cyclotomic fields, Graduate Texts in Math., vol. 83, Springer-Verlag, New York, 1997 | DOI

[42] K. Watanabe - “Certain invariant subrings are Gorenstein. II”, Osaka J. Math. 11 (1974), p. 1-8, ibid. 11 (1974), p. 379–388 | Zbl

[43] P. M. H. Wilson - “The Kähler cone on Calabi-Yau threefolds”, Invent. Math. 107 (1992) no. 3, p. 561-583 | DOI | Zbl

[44] P. M. H. Wilson - “Calabi–Yau threefolds with Picard number three”, 2020 | arXiv

[45] P. M. H. Wilson - “Boundedness questions for Calabi-Yau threefolds”, J. Algebraic Geom. 30 (2021) no. 4, p. 631-684 | DOI | Zbl

[46] R. Yamagishi - “On smoothness of minimal models of quotient singularities by finite subgroups of SL n (), Glasgow Math. J. 60 (2018) no. 3, p. 603-634 | DOI | Zbl

Cité par Sources :