[Quotients finis de variétés abéliennes admettant une résolution de Calabi-Yau]
Soit
Let
Accepté le :
Publié le :
DOI : 10.5802/jep.277
Keywords: Crepant resolution, abelian variety with complex multiplication, Calabi-Yau manifold
Mots-clés : Résolution crépante, variété abélienne à multiplication complexe, variété de Calabi-Yau
Cécile Gachet 1

@article{JEP_2024__11__1219_0, author = {C\'ecile Gachet}, title = {Finite quotients of abelian varieties with {a~Calabi-Yau} resolution}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1219--1286}, publisher = {\'Ecole polytechnique}, volume = {11}, year = {2024}, doi = {10.5802/jep.277}, mrnumber = {4812045}, zbl = {07928815}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.277/} }
TY - JOUR AU - Cécile Gachet TI - Finite quotients of abelian varieties with a Calabi-Yau resolution JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 1219 EP - 1286 VL - 11 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.277/ DO - 10.5802/jep.277 LA - en ID - JEP_2024__11__1219_0 ER -
%0 Journal Article %A Cécile Gachet %T Finite quotients of abelian varieties with a Calabi-Yau resolution %J Journal de l’École polytechnique — Mathématiques %D 2024 %P 1219-1286 %V 11 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.277/ %R 10.5802/jep.277 %G en %F JEP_2024__11__1219_0
Cécile Gachet. Finite quotients of abelian varieties with a Calabi-Yau resolution. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1219-1286. doi : 10.5802/jep.277. https://jep.centre-mersenne.org/articles/10.5802/jep.277/
[1] - “Rational curves and MBM classes on hyperkähler manifolds: a survey”, in Rationality of varieties, Progress in Math., vol. 342, Birkhäuser/Springer, Cham, 2021, p. 75-96 | DOI | Zbl
[2] - “On the Kummer construction”, Rev. Mat. Univ. Complut. 23 (2010) no. 1, p. 191-215 | DOI | MR | Zbl
[3] - “Algebraic approximation and the decomposition theorem for Kähler Calabi-Yau varieties”, Invent. Math. 228 (2022) no. 3, p. 1255-1308 | DOI | MR | Zbl
[4] - “Variétés kählériennes dont la première classe de Chern est nulle”, J. Differential Geom. 18 (1984), p. 755-782 | MR | Zbl
[5] - “Boundedness of elliptic Calabi-Yau varieties with a rational section”, 2020 | arXiv
[6] - Complex abelian varieties, Grundlehren Math. Wissen., vol. 302, Springer-Verlag, Berlin, 2004 | DOI
[7] - “Higher dimensional Calabi-Yau manifolds of Kummer type”, Math. Nachr. 293 (2020) no. 4, p. 638-650 | DOI | MR | Zbl
[8] - “Birational boundedness of rationally connected Calabi-Yau 3-folds”, Adv. Math. 378 (2021), article ID 107541, 32 pages | DOI | MR | Zbl
[9] - “Higher-dimensional modular Calabi-Yau manifolds”, Canad. Math. Bull. 50 (2007) no. 4, p. 486-503 | DOI | MR | Zbl
[10] - “Generalised Kummer constructions and Weil restrictions”, J. Number Theory 129 (2009) no. 8, p. 1965-1975 | DOI | MR | Zbl
[11] - “Hyperkähler manifolds”, 2018 | arXiv
[12] - “Birational boundedness of low-dimensional elliptic Calabi-Yau varieties with a section”, Compositio Math. 157 (2021) no. 8, p. 1766-1806 | DOI | MR | Zbl
[13] - “A decomposition theorem for singular spaces with trivial canonical class of dimension at most five”, Invent. Math. 211 (2018), p. 245-296 | DOI | MR | Zbl
[14] - “Klt varieties with trivial canonical class. Holonomy, differential forms and fundamental groups”, Geom. Topol. 23 (2019), p. 2051–2124 | DOI | MR | Zbl
[15] - Algebraic Geometry, Graduate Texts in Math., vol. 52, Springer, 1977 | DOI
[16] - “Algebraic integrability of foliations with numerically trivial canonical bundle”, Invent. Math. 216 (2019), p. 395-419 | DOI | MR | Zbl
[17] - Finite group theory, Graduate Studies in Math., vol. 92, American Mathematical Society, Providence, RI, 2008 | DOI
[18] - “The McKay correspondence for finite subgroups of
[19] - “Survey of finiteness results for hyperkähler manifolds”, in Phenomenological approach to algebraic geometry, Banach Center Publ., vol. 116, Polish Acad. Sci. Inst. Math., Warsaw, 2018, p. 77-86 | Zbl
[20] - “On the Gorenstein property of the ring of invariants of a Gorenstein ring”, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976) no. 1, p. 50-56 | MR | Zbl
[21] - Singularities of the minimal model program, Cambridge Tracts in Math., vol. 200, Cambridge University Press, Cambridge, 2013 | DOI
[22] - “Classification of reflexive polyhedra in three dimensions”, Adv. Theo. Math. Phys. 2 (1998) no. 4, p. 853-871 | DOI | MR | Zbl
[23] - “Complete classification of reflexive polyhedra in four dimensions”, Adv. Theo. Math. Phys. 4 (2000) no. 6, p. 1209-1230 | DOI | MR | Zbl
[24] - “A characterization of quotients of abelian varieties”, Internat. Math. Res. Notices 2018 (2018), p. 292-319 | MR | Zbl
[25] - “Cyclotomic fields with unique factorization”, J. reine angew. Math. 286/287 (1976), p. 248-256 | MR | Zbl
[26] - “The Chern classes and Kodaira dimension of a minimal variety”, in Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, p. 449-476 | DOI | Zbl
[27] - “Terminal quotient singularities in dimensions three and four”, Proc. Amer. Math. Soc. 90 (1984) no. 1, p. 15-20 | DOI | MR | Zbl
[28] - “A note on symplectic singularities”, 2001 | arXiv
[29] - “On algebraic fiber space structures on a Calabi-Yau
[30] - “On the complete classification of Calabi-Yau threefolds of type
[31] - “Calabi-Yau threefolds with positive second Chern class”, Comm. Anal. Geom. 6 (1998) no. 1, p. 153-172 | DOI | MR | Zbl
[32] - “Calabi-Yau threefolds of quotient type”, Asian J. Math. 5 (2001) no. 1, p. 43-77 | DOI | MR | Zbl
[33] - “Quotients of
[34] - “Canonical
[35] - “Minimal models of canonical
[36] - A course in the theory of groups, Graduate Texts in Math., vol. 80, Springer-Verlag, New York, 1996 | DOI
[37] - “Crepant property of Fujiki-Oka resolutions for Gorenstein abelian quotient singularities”, Nihonkai Math. J. 32 (2021) no. 1, p. 41-69 | MR | Zbl
[38] - “Singular threefolds with numerically trivial first and second Chern classes”, J. Algebraic Geom. 3 (1994) no. 2, p. 265-281 | MR | Zbl
[39] - Complex multiplication of abelian varieties and its applications to number theory, Publ. of the M.S.J., vol. 6, The Mathematical Society of Japan, Tokyo, 1961
[40] - “On the Kodaira dimension of the moduli space of abelian varieties”, Invent. Math. 68 (1982) no. 3, p. 425-439 | DOI | MR | Zbl
[41] - Introduction to cyclotomic fields, Graduate Texts in Math., vol. 83, Springer-Verlag, New York, 1997 | DOI
[42] - “Certain invariant subrings are Gorenstein. II”, Osaka J. Math. 11 (1974), p. 1-8, ibid. 11 (1974), p. 379–388 | MR | Zbl
[43] - “The Kähler cone on Calabi-Yau threefolds”, Invent. Math. 107 (1992) no. 3, p. 561-583 | DOI | MR | Zbl
[44] - “Calabi–Yau threefolds with Picard number three”, 2020 | arXiv
[45] - “Boundedness questions for Calabi-Yau threefolds”, J. Algebraic Geom. 30 (2021) no. 4, p. 631-684 | DOI | MR | Zbl
[46] - “On smoothness of minimal models of quotient singularities by finite subgroups of
Cité par Sources :