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FINITE QUOTIENTS OF ABELIAN VARIETIES WITH
A CALABI-YAU RESOLUTION

BY CEciLE GACHET

AsstracT. — Let A be an abelian variety, and G C Aut(A) a finite group acting freely in
codimension two. We discuss whether the singular quotient A/G admits a resolution that is a
Calabi-Yau manifold. While Oguiso constructed two examples in dimension 3, we show that
there are none in dimension 4. We also classify up to isogeny the possible abelian varieties A
in arbitrary dimension.

Résumi (Quotients finis de variétés abéliennes admettant une résolution de Calabi-Yau)

Soit A une variété abélienne et G un groupe fini agissant librement en codimension 2 par
automorphismes sur A. On s’intéresse ici aux conditions d’existence d’une résolution du quotient
singulier A/G qui soit une variété de Calabi-Yau. Tandis qu’en dimension 3, deux exemples de
quotients admettant une telle résolution ont été construits par Oguiso dans un article de 1994,
on montre ici qu’aucun quotient de la sorte n’existe en dimension 4. En dimension quelconque,
on classifie les variétés abéliennes A susceptibles d’admettre des quotients de la sorte, & isogénie
prés.
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1220 C. Gacngr

1. INnTRODUCTION

Since singularities are a byproduct of the Minimal Model Program, studying singu-
lar varieties with trivial canonical class, or singular K-trivial varieties, is an important
question in the birational classification of complex algebraic varieties. From this point
of view, the recent generalization of the Beauville-Bogomolov decomposition theorem
for smooth K-trivial varieties ([4]) to klt K-trivial varieties ([14, 13, 16, 3]) is highly
relevant. It indeed establishes that, after a finite quasiétale cover, any klt K-trivial
variety is a product of a smooth abelian variety, some irreducible holomorphic sym-
plectic varieties with canonical singularities, also called hyperkahler varieties, and
some Calabi-Yau varieties with canonical singularities. These three main families of
K-trivial varieties are the subject of large, mostly disjoint realms of the literature,
ranging from the well-known theory of abelian varieties (exposed notably in the refer-
ence books [6, 39]), through the thriving study of hyperkéhler varieties (see [11, 1, 19]
for surveys), to the unruly “Zoo of Calabi-Yau varieties”, populated by a huge amount
of examples ([22, 23] for K3 surfaces and Calabi-Yau threefolds embedded as hyper-
surfaces in toric varieties only), and whose boundedness is yet not established (see
[45, 44, 8, 12, 5] for recent breakthroughs).

A new feature appearing in the context of singular K-trivial varieties is that bi-
rational K-trivial varieties may have different Beauville-Bogomolov decomposition
types. For example, Kummer surfaces are K3 surfaces, but also minimal resolutions
of finite quasiétale quotients of abelian surfaces. Similar examples of dimension 3
exist, as in [30], as well as higher dimensional examples, cf. [9, 10, 33, 2, 7]. In arbi-
trary dimension, it is known that a crepant resolution or terminalization only changes
the type of a kit K-trivial variety if its decomposition entails an abelian factor ([13,
Prop. 4.10]).("

This paper aims at describing changes of the type of a K-trivial variety through a
birational morphism in the extremal case, i.e., when a singular variety with Beauville-
Bogomolov decomposition of purely abelian type is resolved by a Calabi-Yau manifold.
We work in the following set-up: By a Calabi-Yau manifold, we mean a smooth simply-
connected complex projective variety of dimension n with trivial canonical bundle,
without any global holomorphic differential form of degree 1 < i < n — 1. Extending
the terminology of [29], we define n-dimensional Calabi-Yau manifolds of type ng as
follows.

Tueorem 1.1 ([38], [24, Rem. 1.5]). — Let X be a Calabi- Yau manifold of dimension n.
The following are equivalent:

(D1t reflects the more general fact that the Beauville-Bogomolov decomposition type of a klt
K-trivial variety X with non-trivial fundamental group m1(Xreg) is not captured by its algebra of
global holomorphic differential forms HY (X, Qx H). Many examples supporting this fact are exposed
in [14, §14], and most notably, smooth K-trivial threefolds with Beauville-Bogomolov decomposition
of pure abelian type and algebra of global differential forms generated by the volume form (as for a
Calabi-Yau threefold) are classified in [32].
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FiniTE QUOTIENTS OF ABELIAN VARIETIES WITIH A CALABI- YAU RESOLUTION 1221

(i) There is a nef and big divisor D on X such that c2(X) - D""2 = 0.
(ii) There is an abelian variety A and a finite group G acting freely in codimension 2
on A such that X is a crepant resolution of A/G.

If it satisfies these conditions, X is called a Calabi-Yau manifold of type nyg.

Calabi-Yau threefolds of type 111y appear naturally when classifying extremal con-
tractions of Calabi-Yau threefolds [29], and fit in a more general circle of ideas on
how the cubic intersection form and the second Chern class determine the birational
geometry of a Calabi-Yau threefold (see, e.g., the work of Wilson [43], Oguiso and
Peternell [31]). Calabi-Yau threefolds of type IIIy were classified by Oguiso, as we now
recall.

Tueorem 1.2 ([30]). There are exactly two Calabi-Yau threefolds X3, X7 of type
IIly. They are the unique crepant resolution of Ej3 quotiented by the group generated
by jids, and of Eu73 quotiented by the group generated by:

0 -8  7—10uy
1—-6—-2u; 11 —uy
0 —1—2U7 6+3U7

where j = e¥7™/3 (7 = 2™/ up = G4+ GE 4+ G = (=1 +iV7)/2, and for any
complex number z € C\ R, we denote by E, the elliptic curve C/(Z @ 27Z).

Our first theorem restricts the isogeny type of A in arbitrary dimension.

Tueorem 1.3. Let A be an abelian variety of dimension n and G be a finite group
acting freely in codimension 2 on A. If A/G has a resolution that is a Calabi-Yau
manifold, then A is isogenous to E;" or to E,." and G is generated by its elements
that admit fized points in A.

Moreover, the local geometry of A/G is generally quite similar to the 3-dimensional
model (see Theorem 1.7 below). Two important consequences of this are the following
results.

Tarorem 1.4. — Let A be an abelian variety and G be a finite group acting freely in
codimension 3 on A. Then the quotient A/G has a resolution X with c1(X) = 0 if
and only if G acts freely on A.

Tarorem 1.5. — Let A be an abelian fourfold and G be a finite group acting freely in
codimension 2 on A, yet not freely on A. If A/G has a resolution X with ¢1(X) =0,
then there is a finite étale Galois cover X of X that is a product of the form E x X3
or E x X7, where E is an elliptic curve and X3, X7 are the two Calabi-Yau threefolds
of Iy type.

In particular, there are no new, irreducible examples arising in dimension 4.
We know of no irreducible example in dimension n > 5 either, and the discussion
at the end of the introduction leads us to conjecture that there are none. The
importance of quotients that have a simply-connected, Calabi-Yau resolution within
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1229 C. Gacngr

the wider range of quotients that have a resolution X with ¢;(X) = 0 is highlighted
by a decomposition result in spirit of the Beauville-Bogomolov decomposition, see
Lemma 2.12.

On the way, we make a substantial use of a necessary criterion due to Yamagishi [46,
Th. 1.1] for certain quotient singularities to admit crepant resolutions. This criterion
can be stated as follows.

Prorosition 1.6. Let G C SL,(C) be a finite group acting freely in codimension 1
on C™, and let U C C" be a G-stable simply-connected analytic neighborhood of
0 € C™. If the singularity U/G admits a crepant resolution X¢, then the group G
s generated by junior elements.

It is worth noting that this criterion is a weaker version of the following conjecture
by Ito and Reid [18, 4.5].

CONJECTURE. Let G C SL,(C) be a finite group acting freely in codimension 1
on C", and let U C C™ be a G-stable simply-connected analytic neighborhood of
0 € C™. If the singularity U/G admits a crepant resolution X, then every maximal
cyclic subgroup of G is generated by a junior element.

On our way to proving Theorem 1.7 below, we look for more local arguments on
whether particular, explicit finite quotient singularities admit a crepant resolution.
This leads us to find a counterexample to the conjecture [18, 4.5] above, which is
strong evidence that the necessary criterion [46, Th.1.1], albeit far from sufficient
(see, e.g., [37, Ex.3.11]), would be hard to improve. Our counterexample features a
faithful representation of the group SLy(F3) ~ Qs X Z3 into SLg(C), and is presented
in more detail in Remark 8.15.

The structure of the paper is as follows. Sections 2 to 10 build up to the proof of
the main technical result.

Taeorem 1.7. Let A be an abelian variety of dimension n and G be a finite group
acting freely in codimension 2 on A. If A/G has a resolution that is a Calabi-Yau
manifold, then

(1) A isisogenous to E;" orto E,,", and G is generated by its elements that admit
fized points in A.

(2) For every translated abelian subvariety W C A, there is a integer k > 0 such
that the pointwise stabilizer

PStab(W) :={g € G |Yw € W, g(w) = w}
is isomorphic to Zs® if A is isogenous to E;™, orto Z:" if A is isogenous to E..".
(3) For every translated abelian subvariety W C A, if PStab(W) is isomorphic to

. Z3* for some k > 1, then there are k generators of it such that their matrices
are similar to diag(1,_3,74,7,7), and the j-eigenspaces of these matrices are in
direct sum.

JE.P — M., 2024, tome 11



FINITE QUOTIENTS OF ABELIAN VARIETIES WITH A CALABI-YAU RESOLUTION 1223

. Z7" for some k > 1, then there are k generators of it such that their matrices
are similar to diag(1,—s, (7, (72, (74), and all eigenspaces of these matrices with
etgenvalues other than 1 are in direct sum.

Our starting point in Section 2 is to recall the necessary condition [46, Th.1.1],
phrased above as Proposition 1.6 for a local quotient singularity to admit a crepant
resolution. This criterion sheds light on the importance of the so-called junior elements
of SL,,(C) when studying the birational geometry of finite quotient singularities in
dimension n. A junior element is a matrix M € SL,(C) of finite order d, whose
eigenvalues (e2/4); <j ., with 0 < ay < d — 1 satisfy 3 ay = d.

Matrices inducing actions on abelian varieties satisfy a rationality requirement
[6, Prop.1.2.3], which translates into arithmetic constraints on their characteristic
polynomial. These constraints allow us to classify matrices of junior elements g acting
on n-dimensional abelian varieties up to similarity: In Section 3, we prove that if a
junior element g acts on an abelian variety in a way that the generated group (g)
acts freely in codimension 2, then the matrix of ¢ is of one of twelve possible types
(see Proposition 3.1). In particular, the order of g and the number of non-trivial
eigenvalues of g are bounded independently of the dimension n.

The next step is to show that ten out of the twelve types of junior elements can
not belong to G, for a mix of local and global reasons. The proof spreads throughout
Sections 4, 5, 7 and 8. Let us sketch the idea of the argument in the simplest case,
namely if g is a junior element of composite order other than 6, with at most four
non-trivial eigenvalues. If such a junior element g belongs to G, then some non-
trivial power g% is not junior, and has a larger fixed locus in A. Fix an irreducible
component W of that larger fixed locus that is not in the fixed locus of g: the pointwise
stabilizer PStab(W) C G does not contain g, but the power g% Now, as W has
codimension less than 4, Section 4 shows that PStab(W) is cyclic generated by one
junior element h, and thus, up to possibly replacing h by another junior generator
of Fix(W), one has g = h®. For well-chosen «, this is enough to yield g = h, and
a contradiction.

This idea excludes seven out of the twelve types of junior elements (see Section 5.A).
The three types of junior elements of order 6 are excluded by technical variations in
the next sections. Ruling them out works along with classifying pointwise stabilizers in
higher codimension: In codimension 4 , Section 4 establishes cyclicity of the pointwise
stabilizers and Section 5 deduces that junior elements with four non-trivial eigenvalues
do not exist; in codimension 5 (Section 7), we first prove that junior elements with five
non-trivial eigenvalues do not exist (Section 7.A), then deduce cyclicity of the point-
wise stabilizers (Section 7.B). In codimension 6 (Section 8), we first classify pointwise
stabilizers which do not contain junior elements of type diag(1,_¢,w,w,w,w,w,w):
they are isomorphic to Zs, Zy, Z3 X Zs, Z7 X Zr, or SLy(F3) (Section 8.A). We use this
partial classification to rule out junior elements with six non-trivial eigenvalues (Sec-
tion 8.B), and we then finally refine the study of pointwise stabilizers in codimension 6
by ruling out SLy(F3) (Section 8.C).
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1224 C. GacHgr

There finally remain two types of possible junior elements, which are those already
appearing in dimension 3 in [30]: diag(1,_s, j,7,) and diag(1,_s, (7, G2, CG4).

This description of pointwise stabilizers in codimension up to 6 implies that any two
junior elements admitting a common fixed point commute. Together with a simple
argument about the isogeny type of A (see Section 6), it concludes the proof of
Theorem 1.7. In fact, the idea that the existence of certain automorphisms on an
abelian variety determines the isomorphism type of some special abelian subvarieties
is general ([39]), and it applies crucially throughout this paper, starting in Section 4.
From there, it is not so surprising that we are able to determine the isogeny type of A,
interpreting the fact that A/G admits a Calabi-Yau resolution as an irreducibility
property of the G-equivariant Poincaré decomposition of A.

Under the additional assumption that the group G is abelian, Theorem 1.7 and
the results of Section 6 suffice to generalize Theorem 1.5 to higher dimensions, i.e., to
the statement that, if A is an abelian variety of dimension n and G is a finite group
acting freely in codimension 2 on A such that A/G admits a Calabi-Yau resolution X,
then n = 3 and X is X3 or X7.

Also note that G is abelian if and only if any two junior elements g, h of G commute,
which by our results can be checked via their matrices acting on a vector space V
of dimension 3, 4, 5, or 6. Standard finite group theory allows us to explicitly bound
the order of (g,h) depending on this dimension and the isogeny type of A. If the
dimension is 3 or 4, the bounds are reasonable enough to launch a computer-assisted
search through all possible abstract groups (g, h). Among these, the only groups which,
in a faithful 3 or 4-dimensional representation, are generated by two junior elements
of the same type, are Zs, Z7, and the finite simple group SL3(F2) of order 168. But a
geometric argument on fixed loci excludes SL3(Fs), whence the wished contradiction.
This reproves the classification of [30] in dimension 3, and settles Theorem 1.5.

When V has dimension 5 or 6, we could also bound the order of (g, h) explicitly.
For example, we could consider the image of the faithful representation M & M in
SLj aim(v)(Q), and use the classification of irreducible maximal finite integral matrix
groups in dimension less than 12 by V. Felsch, G. Nebe, W. Plesken, and B. Souvignier
to obtain a bound on the order of (g, k). But the bounds obtained in this way are too
large for the SmallGroup library. One needs to better understand the arising matrix
groups of larger order, and build a reasonably smaller finite list of possibilities for the
abstract group (g, h). It will then remain to figure out geometric ways for ruling out
those potential groups in the list other than Zs, Z7, Z3 X Zs3, and Z7 X Z7.

Some of our proofs resort to computer-searches among all finite groups of certain
fixed orders (relying on the SmallGroup library of GAP). The computer-assisted results
used in Section 4.C were actually originally proved by hand using elementary repre-
sentation theory and Sylow theory. Such arguments being standard in finite group
theory, we chose to keep their exposition concise for the sake of readability, and pre-
ferred invoking computer-checked facts as black boxes when needed. This approach
also has the advantage of better separating abstract group-theoretic arguments on G
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from properties of the particular representation G < GL(H"(T4)). All programs used
are available in the appendix.

Acknowledgements. — 1 am grateful to my adviser Andreas Horing for fruitful dis-
cussions. This paper has greatly benefit from an anonymous referee’s report, and I
want to thank them for their time, care, commitment, and for bringing the highly
relevant results of [46] to my attention. Finally, I thank Julia Schneider for suggesting
to state and prove Theorem 1.4, and Stéphane Druel, for proposing the current, better
statement of Theorem 1.4.

2. SomE RESULTS IN McKAY CORRESPONDENCE

Derinirion 2.1. — Let g be a matrix in GL,,(C). Assume that it has finite order d.
Since g% = id, ¢ is diagonalizable and has eigenvalues of the form e?7®/¢ for integers
0<a; <+ <ay, <d—1. (We allow redundancies.)

We define the ranked vector of eigenvalues of g as the tuple (e27%/4); ;o).

The age of g is set to be the number (a; + -+ + a,,)/d. If it equals 1, we say that g
is junior.
DeriNtrion 2.2 If A is an abelian variety of dimension n and g € Aut(A) has finite
order, then g can be written as:

g:[z] € Av— [M(g9)z +T(g)] € A,

where M (g) is a matrix of finite order in GL,(C), T(g) a vector in C™. If ¢ fixes any
point a of A, it can be represented locally in a neighborhood of a by its matrix M(g).
Hence, it makes sense to say that the automorphism g is junior if g fixes at least one
point in A and the matrix M (g) is junior.

Remark 2.3. Note that if g € Aut(A) admits a fixed point, then (g) contains no
translation, so g and its matrix M (g) have the same order.

Junior elements play a key role in the study of finite quotient singularities, as the
following theorem emphasizes.

Tueorem 2.4 ([18]). — Let G be a finite subgroup of SL, (C). Suppose that the finite
Gorenstein quotient C"/G has a minimal model X. Then there is a natural one-
to-one correspondence between conjugacy classes of junior elements in G and prime
exceptional divisors in X.

Remark 2.5. Note that such a minimal model X always exists as a relative minimal
model of a resolution X — C"/G, by [21, 1.30.6].

Quotient singularities are Q-factorial, so they can not be resolved by small bira-
tional morphisms. This yields a simple corollary of the theorem.

Cororrary 2.6 ([18]). — Let G be a finite subgroup of SL,(C). If the Gorenstein
quotient singularity C" /G admits a crepant resolution, then there is a junior element
gea@qG.

JEP — M., 2024, lome 11



1226 C. Gacngr

In fact, [18, §4.5] conjectures that under the same hypotheses, if the singularity
C™/G admits a crepant resolution, then any maximal cyclic subgroup of G contains
a junior element. A counterexample to this conjecture is however presented in Re-
mark 8.15.

We will also use a slightly stronger version of Corollary 2.6 for quotients by finite
subgroups of GL,,(C). The formulation is inspired by [27, Th.2.3].

Prorosition 2.7 ([34, 35, 40]). Let G be a finite subgroup of GL,,(C). If the Goren-
stein quotient singularity C"/G admits a crepant resolution, then there is a junior
element g € G.

2.A. A LOCAL NECESSARY CRITERION. The following result, due to [46], provides a
valuable necessary criterion for the existence of a crepant resolution to an affine
quotient singularity, in the spirit of [18].

Provosirion 2.8. — Let G C SL,,(C) be a finite group acting freely in codimension 1
on C", If the affine quotient singularity C™/G admits a crepant resolution, then the
group G is generated by junior elements.

The following corollary allows us to apply this proposition to some finite groups
which are a priori contained in GL,,(C) and not SL, (C). We recall that a K -trivial
variety is a smooth projective variety X with Kx ~ Ox.

CororLrary 2.9. — Let G be a finite group acting freely in codimension 1 on an abelian
variety A. Suppose that A/G has a K -trivial resolution X . Then for every pointa € A,
the stabilizer Stab(a) := {g € G | g(a) = a} is generated by junior elements.

Proof. — Since X is K-trivial, we have h"(X,0x) = 1, where n denotes the di-
mension of X. Since A/G has rational singularities, this yields h™"(A/G,04/¢) = 1,
hence there exists a non-zero G-invariant element in H™(A, O 4). Since A is an abelian
variety, the action of G on H"(A,04) = \" H'(A,04) is given by the dual of the
determinant representation det M : G — GL,(C) — C*. The fact that there is a
non-zero invariant element shows that det M is trivial, i.e., M(G) C SL,(C).

Fix a € A. Note that, near the point a, the variety A/G is locally analytically
isomorphic to the affine quotient singularity C™/Stab(a) near the origin 0 — with
the action by M : Stab(a) — SL,(C). Since A/G admits a crepant resolution, the
affine quotient singularity C™/Stab(a) admits a crepant resolution too. Applying
Proposition 2.8 yields that the subgroup M (Stab(a)) < SL,,(C) is generated by junior
elements, and this concludes. O

2.B. A GLOBAL RESULT ALONG THE SAME LINES. — We also prove a global result along
the same lines as Proposition 2.8.

Lemmva 2.10. — Let G be a finite group acting freely in codimension 1 on an abelian
variety A. Suppose that A/G has a resolution X¢ with c1(Xg) =0 and m1(X¢g) = {1}
Then G is generated by its elements admitting fixed points in A.
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Proof. Let Gy < G be the normal subgroup of G generated by elements admitting
fixed points. We want to prove that Gy = G. We have a commutative diagram given
by the fiber product:

Xo—1 4 x,

l q }-G

By definition of Gy, for every a € A, the stabilizers of a in G and Gy coincide.
Hence, ¢ is étale, and ¢ is étale too by base change. But Xg is simply-connected
and X is connected, so deg(q) =1 and Gy = G. O

Remark 2.11. — If G is a finite group acting freely in codimension 1 on an abelian
variety A so that A/G has a resolution X with ¢;(X) = 0 and 7 (X) = {1}, then G
may still contain elements that admit no fixed point. Without loss of generality,
we can assume that G contains no translation, up to replacing A by an isogenous
abelian variety, but that is the best we can do.

2.C. A REDUCTION RESULT INSPIRED BY THE BEAUVILLE-B()G()M()L()V DECOMPOSITION

We conclude this section with a reduction result in the spirit of the Beauville—
Bogomolov decomposition. We reiterate that we include simply connectedness in the
definition of a Calabi—Yau variety.

Lemma 2.12. — Let X be a smooth projective variety with ¢1(X) = 0. Assume that X
is a resolution of a quotient A/G, where A is an abelian variety, and G is a finite
group acting freely in codimension 2 on A. Then, there is a finite étale Galois cover
p: X — X such that

T
X =Bx H Y,
i=1
where B is an abelian variety, and each Y; is a Calabi-Yau variety of dimension at
least 3 that resolves a quotient B;/H;, where B; is an abelian variety and H; is a
finite group acting freely in codimension 2 on B;.

Proof. — Let n denote the dimension of X. Pulling back an ample divisor on A/G
to X, we have a nef and big Cartier divisor D on X such that cp(X) - D""2 = 0.
By the Beauville-Bogomolov decomposition theorem [4], we can take a finite étale
Galois cover p : X — X that decomposes as

X:BxﬁYixﬁZj,
i=1 j=1

where B is an abelian variety, each Y; is a Calabi-Yau variety of dimension at least 3,
and each Z; is an irreducible holomorphic symplectic variety. Since h'(Y;, Oy;) = 0

JEP — M., 2024, lome 11



1228 C. Gacngr

for each i and h'(Z;,0z,) = 0 for each j, we can use [15, Exer. IIL.12.6] to write

T S
p*D=ppDp+> piLi+ Y q;M;,
i=1 j=1

where Dp, L;, M; are divisors on B, Y;, Z; respectively, and pp, p;, ¢; are the projec-
tions onto B, Y;, Z;. By the projection formula and since D™ > 0, it is easy to check
that each of the divisors Dpg, L;, M; is nef and big.

As the tangent bundle of X decomposes into a direct sum of the tangent bundles
of B, of the Y;, and of the Z;, we also note that

ea(X) =) piea(Yi) + > qjea(Z)).
i=1 j=1

Since the second Chern class of a K-trivial variety of dimension m has non-negative
intersection number with the product of (m — 2) nef divisors [26], and since ¢3(X) -
D=2 = 0, we obtain c3(Y;) -L?imyﬁz = 0 for all 7 and ¢2(Z;) -M;hm Zi=2 — 0 for all j.
By [24, Rem. 1.5], [38], this shows that each Y; resolves a quotient B;/H;, where B; is
an abelian variety and H; is a finite group acting freely in codimension 2 on B;, and
that each Z; resolves a quotient C;/K;, where C; is an abelian variety and Kj is a
finite group acting freely in codimension 2 on Cj.

To conclude, we note that each of the finite quotients C;/K; has a symplectic reso-
lution Z; and is smooth in codimension 2. Hence [28, Th., Cor. 1] applies, and C; /K
has terminal singularities. As a terminal Q-factorial variety that is K-trivial, it can-
not have a K-trivial resolution. So there are no irreducible holomorphic symplectic
factors Z; in X , and this concludes this proof. O

3. THE TWELVE TYPES OF JUNIOR ELEMENTS ON AN ABELIAN VARIETY

Section 2 just shows that, if we want a finite singular quotient of an abelian variety
A/G to have a resolution X with ¢;(X) = 0, the group G must contain some junior
elements. The fact that in our set-up, G must also act freely in codimension 2 on A
is restrictive enough that there are only twelve possibilities for the ranked vector of
eigenvalues of a junior element g € G.

Prorosition 3.1. — Let A be an abelian variety of dimension n, and g € Aut(A) be a
Junior element such that (g) acts freely in codimension 2. Then the order d of g and
the ranked vector of eigenvalues of g are in one of the twelve columns of Table 1.

The proof goes by elementary arithmetic and meticulous case disjunctions. The
following terminology should simplify the exposition.

Derinition 3.2, — A multiset A is the data of a set A and a function m : A — Z~g,
called the multiplicity function. Intuitively, a multiset is like a set where elements are
allowed to appear more than once.
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TasLe 1. Possible ranked vectors of eigenvalues for junior elements
in G. For d € N, we denote (4 = €2/ and in particular j = ¢2/7/3
and w = €27/6, For k € N, 1, refers to a sequence of k times the
symbol 1 in a row.

d 3 4 6
(e2imar/d) (1,-3,7,5,7) (1p—4,7,1,1,1) (1p—g,w,w,w,—1)
d 6 6 !
(e2imar/d)| (1,5, w,w,w,w,j) | (Ln_g,w,w,w,w,w,w)| (Ln_s, (7,62 ¢
d ] 12 15
(e2iﬂak/d) (1n_4,{8,(:8, Cg’, Cg’) (1n—47C127C127<f27<f2) (1n—4a <1576125’C%5’C§5)
d 16 20 24

(€7 )] (L G0, G G G| (L G0, Gl Gl G| (L G, G G )

If a multiset A = (A4, m) is finite, i.e., its underlying set A = {a1,...,a} is finite,
we may write A in the following form:

{{a17"'aa17"'7ak7"'7ak}}'
——— —_———
m(ay) times m(ax) times

Double-braces are used to avoid confusion between the multiset and the underlying
set.

Let A = (A, m) be a finite multiset.

« If @ € Z~g, we denote by A** the multiset (A4, am).

. If A a subset of Q, and p, ¢ are rational numbers, with ¢ # 0, we denote by
p + gA the multiset (p + gA, m’), where the multiplicity function m’ : p+ qA — Z<g
is obtained composing the affine base change x € p+ ¢A — (x — p)/q € A with m.

o The cardinal of A is:

Al =" m(a).

acA
« More generally, if f: A — Q is a function, we define:

S fa) == 3 m(a)f(a).

acA acA
« If A= (A,m) and B = (B,n) are two multisets, we define their union:

AUB:=(AUB,1a4m+ 1pn),
where 14, 1 are the indicator functions of A and B.

Norarion 3.3. — For d € N, we denote by ®, the d-th cyclotomic polynomial, and
by ¢(d) the degree of ®4. In other terms, ¢ is the Euler indicator function.
For integers a, b, the greatest common divisor of @ and b is denoted a A b.
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We establish a sequence of three useful lemmas.

Lemva 3.4. — Let u be a positive integer strictly greater than 2. Then we have:
2 2
(2J(u and $(u) §8> or (2 | u andm <4)
u U
< w€[3,10]U{12,14,15,16,18,20,21, 24, 30, 36, 42}.
Proof. — Write u = p{* - pg?---pp*, where p; < --- < p; are prime numbers, and
ai, ..., positive integers, so that:
k
o(u)? i—2
R Hl(pi —1)%p 7
1=

Each of the k factors of this product is greater or equal to 1, unless p{"* = 2 in which
case the first factor is 1/2.
Hence, if u satisfies:

$(u)’

u

2
< 8or (2|uandM<4),
u

then each factor satisfies:
(3.1) (pi —1)°pf 2 <8,

which yields p; € {2,3,5,7}. Writing v = 2°3°577°, where o, 3,7, > 0 and using
Inequality (3.1) again bounds a < 4, 8 < 2, v < 1, § < 1. Among the finitely
many possibilities left, it is easy to check that the solutions exactly are u € [3,10] U
{12,14,15,16, 18, 20, 21, 24, 30, 36, 42}. O

Lemva 3.5. — Let u > 2 and d > 3 be integers, such that u divides d. Suppose that
there are a positive integer a and a multiset A such that:

Au-A)={{acd-1]]u= d }}a

dAa

and such that the quantity:
a

SA,d(u) = Z m

acA
satisfies Sa q(u) < 1. Then u, (1)/dA, o, Sa,q(u) are classified in Table 2.

Proof. — We start by noting that the underlying sets satisfy

Au(d—A):{ae[[l,d—l]} |u= dia},

and are in an order-preserving bijection with L := {¢ € [1l,u — 1] | £ Au = 1} via
a ua

a/\d:FQL’

and g:feL'—>d—£€AU(d—A).
u

fracAU(d—A) —
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TasLe 2. Possibilities for u, (1/d)A, «, Sa,q(u) such that Sa g(u) <1

u (1/d)A Saa(u) <1
21 {1/2} 1/2

2 {1/2,1/2} 1

1 {1/3},{2/3} 1/3,2/3
32 {1/3,1/3},{1/3,2/3} 2/3,1

3 {1/3,1/3,1/3} 1

1 {1/4},{1/4} 1/4,3/4
42 {1/4,1/4} {1/4,3/4} 1/2,1

3 {1/4,1/4,1/4} 3/4

4 {1/4,1/4,1/4,1/4} 1
501 {1/5,2/5},{1/5,3/5} 3/5,4/5

1 {1/6},{5/6} 1/6,5/6

2 {1/6,1/6},{1/6,5/6} 1/3,1
6|3 {1/6,1/6,1/6} 1/2

4 {1/6,1/6,1/6,1/6} 2/3

5 {1/6,1/6,1/6,1/6,1/6} 5/6

6 {1/6,1/6,1/6,1/6,1/6,1/6} 1
71 {1/7,2/7,3/7} ,{1/7,2/7,4)7} 6/7,1
8|1 {1/8,3/8},{1/8,5/8} 1/2,3/4

2 {1/8,1/8,3/8,3/8} 1
91 {1/9,2/9,4/9},{1/9,2/9,5/9} 7/9,8/9
101 {1/10,3/10},{1/10,7/10} 2/5,4/5

2 {1/10,1/10,3/10, 3/10} 4/5
12|1 {1/12,5/12},{1/12,7/12} 1/2,2/3

2 {1/12,1/12,5/12,5/12} 1
141 {1/14,3/14,5/14} ,{1/14,3/14,9/14} 9/14,13/14
15(1|{1/15,2/15,4/15,7/15} ,{1/15,2/15,4/15,8/15}| 14/15,1
16]1 {1/16,3/16,5/16,7/16} 1
18|1 {1/18,5/18,7/18} ,{1/18,5/18,11/18} 13/18,17/18
201 {1/20,3/20,7/20,9/20} 1
241 {1/24,5/24,7/24,11/24} 1
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So |A] = ¢(u)/2. Since f is injective, the restriction f|4 takes at least ¢(u)/2 distinct
values in its image set inside L, so that:

1 «
(3.2) 1>SA,d(“):EZf(a)>E< > E)'
acA 1<4<u/2
CAu=1

Let us denote by X(u) the sum  ;</<y/2 £. We have the following coarse estimates:

LAu=1
B(u)/2 9 B(u)/2 2
P(u) e P(u)
u > X(u) > ;_1 0> g and, if w is even, u > ¥(u) > ;_1 (20-1) > 1

Applying Lemma 3.4, these coarse estimates yield finitely many possibilities for u.
Computing explicitly (1/u)X(u) for the possible values and applying Inequality (3.2)
again, we exclude a few of them, finally obtaining that:

e [2,10] U {12, 14,15, 16,18, 20, 24}

For each u, we then list by hand the finitely many possibilities for the multiplicity «
and the multiset (1/d)A, and this is how we construct Table 2. O

Lemya 3.6. Let k € N. For each m € [1,k], let u,, > 2 and d,, > 3 be integers,
such that u,, divides d,,, and suppose that there are a positive integer ou, and a
multiset A,,, such that:

AU (s~ A) = {{a € [y 1] [ty = dﬁ‘ija}}m”.

Suppose additionally that: .
> Sayd, (Um) =1.
m=1
Then the data of k and of all up,, cm, ﬁAm is classified in Table 3.
Proof. — Tt is easily derived by hand from Table 2. O
We also recall a simple fact from the theory of abelian varieties:

Levmma 3.7. — Let A be an abelian variety of dimension n, and g € Aut(A) of finite
order. Denote by P(g) the characteristic polynomial of M(g). Then P(g)P(g) is a
product of cyclotomic polynomials.

Proof. — By [6, Prop.1.2.3], the matrix M(g) ® M(g) in GL2,(C) is similar to an
element of GLg,(Q). Hence, P(g)P(g) is a polynomial over Q. Since g has finite
order, the roots of this polynomial are roots of unity. Remembering that cyclotomic
polynomials are the minimal polynomials of roots of unity over Q, an easy induction
shows that there is a product II of cyclotomic polynomial that has the exact same roots
as P(g)%. But since both cyclotomic polynomials and characteristic polynomials
are unitary, it means that P(g)P(g) = II O

We can now prove Proposition 3.1.
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TasLe 3. Classification of the data described in Lemma 3.6

ut,...,ukloa, ..., ok (1/d1)As,...,(1/dp)Ar  |freeness in codimension 2
2 2 {1/2,1/2} X
2,3,6 1,1,1 {1/2},{1/3},{1/6} X
2,4 1,2 {1/2},{1/4,1/4} X
2,6 1,3 {1/2},{1/6,1/6,1/6}
2,8 1,1 {1/2},{1/8,3/8}
2,12 1,1 {1/2},{1/12,5/12}
3 2 {1/3,2/3}
3 {1/3,1/3,1/3}
3,4,6 1,2,1 {1/3},{1/4,1/4} ,{1/6}
3,6 1,2 {2/3},{1/6,1/6}
1,4 {1/3},{1/6,1/6,1/6,1/6}
2,2 {1/3,1/3},{1/6,1/6} X
3,12 1,1 {1/3}.{1/12,7/12} X
4 2 {1/4,3/4} X
4 {1/4,1/4,1/4,1/4}
4,6 2,3 | {1/4,1/4},{1/6,1/6,1/6} X
4,8 1,1 {1/4},{1/8,5/8} X
2,1 {1/4,1/4},{1/8,3/8} X
4,12 2,1 {1/4,1/4},{1/12,5/12} X
5,10 1,1 {1/5,2/5},{1/10,3/10} X
6 2 {1/6,5/6} X
6 |{1/6,1/6,1/6,1/6,1/6,1/6}
6,8 3,1 | {1/6,1/6,1/6},{1/8,3/8} X
6,12 2,1 {1/6,1/6},{1/12,7/12} X
3,1 |{1/6,1/6,1/6},{1/12,5/12}
7 1 {1/7,2/7,4)7}
8 2 {1/8,1/8,3/8,3/8}
8,12 1,1 {1/8,3/8},{1/12,5/12} X
12 2 {1/12,1/12,5/12,5/12}
15 1 {1/15,2/15,4/15,8/15}
16 1 {1/16,3/16,5/16,7/16}
20 1 {1/20,3/20,7/20,9/20}
24 1 {1/24,5/24,7/24,11/24}
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Proof'of Proposition 3.1. Denote by d the order of the junior element g, denote
by (e279%/9), <<, its ranked vector of eigenvalues, and by P(g) the characteristic
polynomial of its matrix M(g). As g itself acts freely in codimension 2 and g is junior,
it must be that d > 3

By Lemma 3.7, there are positive integers k, (um )1<m<k ordered increasingly, and
(om)1<m<k, such that:

n k
(33) X - Bty (X — Emaild) = P(g)Pg) = [] Bu,,
j=1 m=1
Note that ®,, (e27%/4) = 0, or equivalently ®,, (e2iv%/d) = 0, if and only if
um = d/(d A aj). We define the following partition of [1,n]
for m e [Lk], In:={jel,n]|um=4d/(dNaj)};
A ={{a; | j € I,}}, as a multiset.
By Identity 3.3, for m € [1, k] we have:
(3.4) An,U(d—-A,) ={{rell,d=1] | up =d/(dAr)=0}}"*m

Moreover, since g is junior:

n ) k CL]
(3.5) 1:2#:22 ZZ dm ZSAm,dum

j=1 m=1j€el,, m=1j€el,,
So, possibly leaving out the data of index 1, if u; = 1 (which is determined by
the multiplicity oy € N, since then A; = {{04,}} and Sa, 4(u1) = 0), Lemma 3.6
applies, showing that there are finitely many possibilities for

ky (um)i<m<ks (@m)i<mshks (L/d)Am) ¢k

and listing them. We exclude by hand a lot of these possibilities using the assumption
that (g) acts freely in codimension 2 on A, i.e., that for all £ € [[1,d—1], there must be
distinct indices j1(£), j2(£), j3(£) € [1,7n], such that none of the fa;, 4 /d is an integer.
What remains then is precisely the list in Table 1. (|

4. CYCI,ICI'I‘Y OF THE POINTWISE STABILIZERS OF LOCI OF CODIMENSION 3 AND 4

We now know that G is generated by junior elements, which we have classified into
twelve different types. However, this is by far insufficient to determine the structure
of G. Even locally, for W C A a subvariety, the pointwise stabilizer

PStab(W) :=={g € G |Yw € W, g(w) = w}

could as well be cyclic and generated by one junior element, as it could be more
complicated, e.g., if it contained non-commuting junior elements.

In this section, we show that in fact, if W has codimension 3 or 4 in A, PStab(W) is
trivial or cyclic, generated by one junior element. Let us outline the proof. Section 4.A
reduces to proving this in the case when W is a point in an abelian variety B of
dimension 3 or 4. Up to conjugating the whole group G by a translation, we therefore
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just work on the case W = {0}. Assuming PStab(W¥) is not trivial, we can then
find a junior element g € PStab(V), that is of one of the twelve types of Section 3.
Section 4.B exhibits a correlation between the type of g and the isogeny type (possibly
even isomorphism type) of the abelian variety B on which it acts. A corollary is that
if g, h € PStab(WW) are two junior elements, then they should either have the same
type, or one is of type (1,_4,w,w,w,—1) and the other (1,_3,7,7,5), or one is of
type (1,-4,%,1,7,7) and the other (171,47 C12,C12, (s, C{’Q). In particular, if PStab(W/)
is cyclic, it must indeed be generated by one junior element. The conclusive Section 4.C
is the most technical. For any given abelian three- or fourfold B of one of the types
just defined, we classify all finite subgroups of

Aut(B,0) := {f € Awt(B) | f(0) =0, ie., T(f) = 0}

that act freely in codimension 2 on B and are generated by junior elements. The main
idea is to bound the order of such groups, to scrutinize the finite list arising, and to
rule out all but the cyclic case of the list by the assumption on generators.

4.A. REDUCTION TO A 3 OR 4-DIMENSIONAL QUESTION

Derinition 4.1. — Let A be an abelian variety. An abelian subvariety of A is a closed
subvariety of A that is also a subgroup of the abelian group (A,+). A translated
abelian subvariety of A is the image by a translation of an abelian subvariety of A.

We say that two translated abelian subvarieties B and C of A are complementary
if one of the following equivalent statements hold:

(i) BN C is non-empty and, for some p € BN C, it holds:

H°({p}, T5) ® H ({p}, Tc) = H’({p}, Ta).

(ii) The addition map i : B x C' — A is an isogeny.

Proof. (i) = (ii): as the translation by (p, p), respectively by 2p, is an isomorphism
from B x C to (B —p) x (C —p), respectively of A, it is enough to prove the statement
for p = 0. As dim(A) = dim(B x C) and the varieties are regular, we simply check
that i is quasi-finite. Since B N C' is the intersection of two abelian subvarieties of A
satisfying:

HO({O}vTB) N HO({O}7TC) = {0}7

the set BN —C is discrete in A, hence finite. For a € Im(i), say a = i(ap, ac), we can
express the fiber i7!(a) = {(b+ap,—b+ac) | b € BN —C}, so it is finite, and i is
indeed quasi-finite.

(ii) = (i): fix ¢9 € C. The addition 7 is onto, so let (p,¢) € B x C be such that
p+c = 2¢q. Clearly, p = 2co—c € BNC, and as i is locally analytically an isomorphism,

H°({p},Tp) ® H°({p}, Tc) = H ({2p},Ta) = H°({p}, Ta). 0

Remark 4.2, — If B and C are complementary translated abelian subvarieties of an
abelian variety A, and t € A is any point, then B + ¢ and C' are complementary as
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well. Our notion of complementarity is weaker than the notion defined for abelian
subvarieties in [6, p. 125].

Let us now state our reduction result. Note that it applies not only in codimen-
sion 3 and 4, but in any higher codimension as well. For a finite group G acting on a
projective variety X, we denote by Fix(G) = {x € X | PStab(z) = G}.

Prorosition 4.3. — Let A be an abelian variety, G be a finite group acting freely in
codimension 2 on A. Suppose that the quotient A/G admits a K-trivial resolution.
Let H be a non-trivial subgroup of G such that Fix(H) is non-empty, and let W be
an irreducible component of Fix(H). Then:

(1) The variety W is a translated abelian subvariety of A, and for any t € W, there
is a translated abelian subvariety B of A which is PStab(W)-stable, contains t, and
is complementary to W in A.

(2) If t and B are as in (1), then an element g € PStab(W) is junior if and only
if gl € Aut(B,t) is a junior element.

(3) The group PStab(W) C Aut(B,t) is generated by junior elements.

Proof of Proposition 4.3. Up to conjugating the G-action by the translation by ¢,
we can assume that t = 0 € W. Let us establish (1). First, the fact that W is an
abelian subvariety of A follows from a strong induction on the order of H, using
[6, 13.1.2.a)] for the induction step. Second, as G is finite, we can take a G-invariant
polarization L on A. We can apply [6, Prop.13.5.1]: there is a unique complemen-
tary abelian subvariety (B, L|g) to (W, L|w) in (4, L), and it is PStab(1¥)-stable.
By Remark 4.2, B and W are complementary in our sense as well.

We now prove (2): let g € PStab(W). As g fixes all points of BN W, its restriction
g|p has a fixed point. As g(B) = B, we have:

M(g) = (iddirg(W) M((;B)) 7

and thus ¢ is indeed junior if and only if ¢|5 is.

We move on to (3). Take a general point w € W such that Stab(w) = PStab(W)
and apply Corollary 2.9 at the point w: It shows that PStab(W) is generated by junior
elements. ]

4.B. THE ABELIAN VARIETIES CORRESPONDING TO THE TWELVE JUNIORS. — Let A be an
abelian variety of dimension n, G be a finite group acting freely in codimension 2 on A
such that A/G has a resolution X with ¢;(X) = 0. By Proposition 2.7, G C Aut(A)
must entail a junior element presented in Table 1 (up to its translation part, and up
to similarity for its linear part). The fact that, in some coordinates, a given matrix of
Table 1 acts as an automorphism on the abelian variety A imposes some restrictions.
Using the theory of abelian varieties with complex multiplication, these restrictions
are investigated by Proposition 4.6.
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Norarion 4.4. Let us define the following quadratic integers.

—1+i/7 ) 1414v15 . .
ur = %’ ug = iv/2, urs = 5 Y20 = iV/5, ugy = V6.

We also define the following conjugated algebraic integers, which are quadratic over
the totally real extension Q(2v/2) of Q.

e = iV4A+2V2, vig=iV4—2V2.

For z € C \ R, we define the elliptic curve E, := C/Z @ zZ. If z is a quadratic
integer, then we denote by Z[z] the Z-algebra that it generates. It holds Z[z] =
Z® zZ C C.

We also define the simple abelian surface Sy, 40,4 := C?/Z[(u16, v16)]-

Remark 4.5. — Note that the simplicity of Sy, 4.4,, follows from [39, Prop. 27].
With these notations, we can state the main result of the subsection.

Prorosition 4.6. Let A be an abelian variety. Suppose that there is a junior ele-
ment g € Aut(A), and that (g) acts freely in codimension 2 on A. Denote by W an
irreducible component of Fix(g) := {a € A | g(a) = a}. Let B be a complementary
to W in A. Then the isogeny type of B is entirely determined by the type of the junior
element g by Table 4, unless g is of type (1p—4,w,w,w,—1). Moreover, the isomor-
phism type of a {(g)-stable complementary By to W in A is also entirely determined
by the type of g, unless g is of type (1_4,w,w,w, —1) or (1,—5,w,w,w,w,j).

Norarion 4.7. — Let V be a C-vector space, f: V — V be a linear map. We denote
by Eval(f) the set of eigenvalues of f in C, by EVal(f) the multiset of eigenvalues of f
in C counted with multiplicities. If A € Eval(f), we denote by Ef()) the eigenspace
of f for the eigenvalue .

We denote by Z(®,4) the set of primitive d-th roots of unity in C.

Let us first carry out an important computation, that makes plain where these
special types of abelian varieties come from. Let k > 3 be an integer. There is a natural
action of (; ® 1 on the algebra Z[(;] ® C. We compute its eigenvalues. By definition,
Z[¢x) ® C is the quotient algebra C[X]/(®Py), multiplication by (i ® 1 corresponding
to multiplication by the class X + ®;,C[X]. So £ € C is an eigenvalue with eigenvector
P + 9, C[X] if and only if P ¢ C[X] and X P — (P € 9,C[X], or equivalently, £ is a
root of @ and P € (P /(X — £))C[X]. Hence the linear decomposition

(4.1) ZGloC= @ Ege()
cez(dy)

Now, consider a subset Sy, of Z(®}) such that Sy, USy, = Z(®},). For example, if we
let g be a junior element of one of the twelve types in Table 1, and we assume that g
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TasLe 4. Correspondence between types of junior elements and types

of abelian varieties.

C. Gacngr

type of g isogeny type of B |isomorphism type of Bg;
(Ln-3,5:5:J) E;? E;*
(Lp—a,4,4,1,1) E* E*
1p—g,w,w,w,—1) |E x Ej3 for some E not determined
(15, w,w,w,w,j) Ejs not determined
(1p—6, w,w,w,w, w,w) E,° E,°
(Ln—3. ¢ G2 G E,* E.,*
(Ln—a, s G802, G8) By Eu'
(1n—4,C12,C12, T2, (o) E E*
(1n—4, C15,CF5, 50 CFs) E.." E,.*
(1n—4, 16, CP6, Ci6: CT6) Surevne Surevre
(Ln—4, 20, ¢305 C30» G0 By’ By,
(104, Coas (34, G345 C31) Byt By,

has an eigenvalue of order k, we could set S, = Si(g) = Eval(g) N Z(®}). This defines
a Z-linear inclusion

(4.2) F(SK) 1 Z[G] —— @D Eeogr(€) ~ C*R/2,

£ESk

It is worth noting that the Z-linear inclusion f(Sk) @ f(Sk) corresponds to the
natural inclusion of Z[(j] in Z[(x] ® C given by Identity 4.1.
The following lemma is key.

Lemva 4.8, — If Sk, = Sk(g) for a junior element g of Table 1, then the corresponding
abelian variety C**F)/2 /Tm(f(Sy)) is described in Table 5.

Remark 4.9. For k = 3,4, 6,8,12, we consider the sets S := {5}, {i}, {5}, {Cs, &%},
and {C12, C12°} respectively, and Lemma 4.8 is [6, Cor. 13.3.4, Cor. 13.3.6]. In the other
cases, the computation relies on the same ideas as [6, Cor. 13.3.6], as we will soon see.

To complete the proof Lemma 4.8 for k = 7,15,16, 20,24, we use a part of [39,
Proof of Th. 3, p. 46], recalled here without proof.

Levva 4.10. — Let K = Q(«) be a totally imaginary extension of Q of degree 2m,
that is a quadratic extension of a totally real extension Ky of Q. Let F be a finite
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TasLe 5. Computing C?*)/2/ Tm(f(Sy,)) for given Sy stemming from
a junior element.

k Sk C?"M)/2 ) Tm(f(Sk))
3 {j} E;

4 {i} E;

6 {w} E;

7| {¢ ¢ G E,*
8 {¢s, ¢G5} E.*
120 {2, (R} E;?
15\{C15, (T50 (150 (5} By’
16|{C16, ¢T5: Ciss (o} Sursvie
20|{C20, G0 Co: CBo} Euyy'
241{Coa, (345 (34, G4 By’

Galois extension of K, of degree 2r over Q. Let {¢; }1<i<r be morphisms of Q-algebras
defined from F to C such that:

Homg-a1g(F, C) = Vectq(¢1, P71, - - -, ors @r)-

Suppose also that no two of the restrictions @;| i are conjugated.
Then we can restrict m of these morphisms, defining v¥; = ¢; |k for some dis-
tinct i; with j € [1,m], such that:

HomQ—alg(Ka (C) = VeCtQ(lh,E, R . %)

We obtain a Z-algebra A = Z[(1 (), . .., m(@))] that is a lattice of rank 2m in C™.
The complex torus A := (C™/A)™™ is an abelian variety of CM-type (F, {pi}1<i<y)-

Proof of Lemma 4.8. — Let F = Q[(x], r = ¢(k)/2. Let us define {¢; }1<i<r: Compos-

ing f(Sk) defined in Identity 4.2 with the projections on the r eigenspaces, we obtain

morphisms of Z-algebras f; : Z[(x] — C, which we tensor by Q and normalize to
define morphisms of Q-algebras:

1

TR

By Identities 4.1 and 4.2, the morphisms {¢;, %; }1<i<r are linearly independent

over Q, whereas the morphisms {¢; }1<i< define an embedding of F' into the Q-algebra

of linear endomorphisms of the abelian variety C**)/2/TIm(f(Sy)). In other words,

the abelian variety C?(*)/2/Tm(f(Sy)) has CM-type (F,{p;}1<i<,). This is in fact

(fi®1):Q[¢G] — C.
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the sole abelian variety with this CM-type, by [25], [39, Prop. 17], and remembering
that k € {7, 15, 16,20, 24}.

We get the wished description of the abelian variety C**)/2/ Im(f(Sk)) by applying
Lemma 4.10 for K = Q(uy) and Ko = Q for k € {7,15,20,24}, and for K = Q(u16)
and Ko = Q(2v/2) for k = 16, and noting that:

.« ur = Cr+ GG+ ¢7,

e u1s = G5 + (5 + (s + ¢,

o U6 = (16 + G’e + Cir)es + C176 and vig = C%ﬁ + Cir)ﬁ + C?ﬁ + 41165,

e ug0 = Ca0 + (5o + (o + o5

o Usg = Coa + 5y + Gy + Goi- U

The next result follows almost effortlessly from the ideas of [30, p. 333-334].

Lemma 4.11. — Let B be an abelian variety. Suppose that there is an automorphism g
of B whose set of eigenvalues is one of the Sy in Table 5. Then B is isomorphic to a
power of the abelian variety C**)/2 /Tm(f(Sk)).

Proof. — Let A be a lattice in C™ such that B = C"/A. The action of g on B has a
linear part M(g) € GL,,(C) that satisfies M (g)(A) = A. Note that 1 does not appear
in the set of eigenvalues Sy, of M(g), hence g and M(g) have the same multiplicative
order k. This provides A with the structure of a Z[g]-module, i.e., a Z[(x]-module
structure, since the minimal polynomial of g is ®;. As such, A is finitely-generated
and torsion-free. But by [25], since k € [3,20] U {24}, the ring of cyclotomic integers
Z[(] is a principal ideal domain. So, by the structure theorem for finitely-generated
modules over principal ideal domains, A ~ Z[Ck]Q"/ ¢(k) and the action of g on A
identifies with the multiplication by ¢, on Z[(]?™/ ().

The embedding A < HY(B,Tg) ~ C" can be recovered from the action of g on A.
Indeed, there is an induced action of g & g on

A®C=H°B,Tpr ® C) ~ C*.

This action splits into two blocks: g is acting on H°(B,Tg) and g is acting on its
supplementary conjugate in H(B, T Br @ C). By the requirement on its set of eigen-
values Sk, ¢ has no eigenvalue in common with g, and therefore:

HY(B,Tg) = @ Ege3(9).
£€Eval(g)

Hence, the corresponding embedding Z[{k]2”/¢(k) — C™ must similarly be given by:

C'= @D Eueld),

¢€Eval(g)

where (;®1 is the action by componentwise multiplication on Z[Ck]zn/ ¢(F) @C. In other
words, this embedding is the blockwise embedding f(S%), repeated on 2n/¢(k) blocks

of dimension ¢(k)/2 each. So B ~ (C¢(k)/2/Im(f(Sk)))Qn/¢(k). O

The proof of Proposition 4.6 is now easy.
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Proof'of Proposition 4.6. By Proposition 4.3, let B be a (g)-stable complement
to W in A. For any other complement B to W, since B x W and Bg x W are
isogenous, B and By are isogenous. Let us determine the isogeny (and if possible
isomorphism) type of Bg.

On one hand, if g is of type (1,_4,w,w,w,—1) or (1,_5,w,w,w,w,j), then g|g,,
has eigenvalues of two different orders. By [6, Th. 13.2.8], there are then two (g)-stable
complementary translated abelian subvarieties B; and By in By, such that all eigen-
values of g|p, have order k1 = 6, and all eigenvalues of g|p, have the same order
ko < 6. By definition, Bg; is isogenous to By X Bs, and thus its isogeny type can be
derived from the isomorphism types of By and Bs, given by Lemma 4.11 if k1, ks > 3.
However, if ¢ is of type (1,,_4,w,w,w, —1), then ko = 2 and By can be any elliptic
curve, and that is why the isogeny type of By is not entirely determined in this case.

On the other hand, if g is of any other type, then all eigenvalues of g|p_, are of the
same order k > 3, and Lemma 4.11 determines the isomorphism type of Bgt. O

4.C. GROUP THEORETICAL TREATMENT OF A POINT’S STABILIZER IN DIMENSION 3 OR 4

We can now establish the following proposition.

Provosirion 4.12. — Let A be an abelian variety, G C Aut(A) be a finite group acting
freely in codimension 2. Suppose that the quotient A/G admits a K -trivial resolution.
Let W be a subvariety of codimension m < 4 in A such that PStab(W) # {1}. Then
PStab(W) is a cyclic group generated by one junior element.

By Proposition 4.3, it reduces to proving the following result.

Prorosirion 4.13. Let B be an abelian variety of dimension m < 4, F C Aut(B,0)
be a finite group acting freely in codimension 2 and fixing 0 € B. Suppose that F
is generated by junior elements. Then F is a cyclic group generated by one junior
element.

We refer the reader to [36, 17] for standard facts in finite group theory, and in
particular Sylow theory and representation theory. Let us just recall a few notations
used in the following.

Norarion 4.14. — We denote by Cr(H), respectively Np(H), the centralizer, respec-
tively normalizer, of a subset H of a group F, i.e.,

Cp(H):={fe€F|VheH, fh=hf},
Np(H) :={f € F|fH=Hf}.

By associativity of the group law, we see that Cr(H) and N (H) are subgroups of F.

Noration 4.15. — Let F' be a finite group. A class function £ : F — C is a function
that takes constant values within each conjugacy class in F. We denote by (-,-) the
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inner product on the space of class functions defined by

(£,¢) = ‘—;‘ S D).
fer
Let V be a C-vector space of finite dimension. A representation of F' in V is a
group morphism p : F' — GL(V). The character x of a representation p is the class
function x : f € F — Tr(p(f)) € C.
Let us fix a representation p : F — GL(V). By Schur’s lemma, it decomposes as a
direct sum of irreducible representations:

p:p?nl D @p?"k’
and, accordingly, if x; denotes the character of p;, we have y = nix1+---+ngxk. The
characters of the irreducible representations pq, ..., pr form an orthonormal family in
the space of C-valued class functions of GG, hence
(6 x) = (] + -+ ng)|F.

We refer to u = n? + -+ +n3 as the splitting coefficient of the representation p.

We start proving lemmas towards Proposition 4.13. The first lemma classifies all
possible finite order elements in Aut(B,0) of determinant one acting freely in codi-
mension 2, when B is an abelian fourfold.

Lemma 4.16. — Let B be an abelian fourfold, and g € Aut(B,0) be a finite order
element of determinant one such that (g) acts freely in codimension 2 on B. Then the
order of g and the matriz of a generator of (g) are given by a row of Table 6. That
row of Table 6 also gives some necessary conditions on B.

Proof. — Let ¢ be an eigenvalue of g of order u, such that (¢(u), u) is maximal in N?
for the lexicographic order. By Lemma 3.7, ®,, divides the characteristic polynomial
Xgag in Q[X], so ¢(u) < 2 dim B = 8. Let us discuss cases:

(1) If ¢(u) = 1, then u = 1 or 2. As g acts freely in codimension 2 and has
determinant one, g = +idp.

(2) Suppose that ¢(u) = 8. Then ¢ has four distinct eigenvalues of order u, and
hence has order u. Listing integers of Euler number 8, v € {15, 16, 20, 24, 30}. There

2im/u

is a generator ¢’ of (g) of which e is an eigenvalue. Denote its other eigenvalues

by 621'7ra/u’ eQi‘n’b/u’ €2i7rc/u’ with

e a,b,c € [1,u— 1] coprime to u,
o u divides 1 +a+b+c,
0 and

(I)u(X) _ (X . e2i7r/u)(X _ 621‘7\'(1171)/11)()( . e2i7ra/u)(X _ €2i7r(u7a)/u)
. (X 7 e2i7rb/u)(X 7 eQiTr(ufb)/u)(X o e2i7rc/u)(X o e2i7r(ufc)/u)'

We check by hand the solutions to this system and plug them in Table 6. For example,
this is how we add diag((1s, (3, (s, ¢55)-
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TasrLe 6. Classification of possible elements of ¢ in Aut(B,0), with

colored junior elements.

order of g|a generator of (g) up to similarity|restrictions on B

1 id

9 —id

3 diag(j, 7, j, J%)

4 diag(i, —i,4, —1)

5 diag(Cs, ¢, ¢3, G3) not studied

6 diag(w, w?, w, w?)

8 diag(Gs, 68, &3, ¢4)

10 diag(¢10, (o, o, CTo)

12 diag(Ci2, (P2, Cf2s Ci3)

3 diag(1, j, j, j) B~ Ex B

6 diag(—1, w, w,w)

9 diag(j?, o, 65, ¢9) B~ E;*

18 diag(w®, ¢18, ({3, ¢13)

4 iid

12 diag(Ci2, (T2s €12, (72) B~ B

20 diag(C20, €30, €30+ C20)

7 diag(1, ¢r, ¢72, Co*) B~ ExE,°

14 diag(—1, (14, (14, C14)

] diag(Cs, ¢3, (s, G3) B~ E,'

24 diag(Cas; Cod» G214, €39)

15 diag(Cis, (75, (5, CF5) B~ B,

30 diag(Ca0, ¢34 (36, €30)

16 diag(Ci6, (g (T6, (1) B = Suig i
diag(Cie, ({6, Ci6+ (16

20 diag(20, (55 €305 C20) B = Buy,"

24 diag(Ca4, (345 (345 C34) B~ By,,*
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(3) Suppose that ¢(u) = 6. Then g has three distinct eigenvalues of order u, and
one eigenvalue of order v, with ¢(v) = 1 or 2. Since g* has three trivial eigenvalues
and (g) acts freely in codimension 2, g* = idp, so g has order u and v divides w.
Listing the integers of Euler number 6, v € {7,9,14,18}. Using that xse5 = @, P,
or ®,®,2 g has determinant 1 and (g) acts freely in codimension 2, we work out all
possibilities by hand and add them to the table. One example falling in this case is
diag(1, ¢7,¢7%, G7%).

(4) Suppose that ¢(u) = 4. Then g has two distinct eigenvalues of order u, and two
remaining eigenvalues of respective order v; < ve. As (g) acts freely in codimension 2,
g*, which has two trivial eigenvalues, must be trivial, so g has order v and v; and vs
divide u. Similarly, g'™(¥1:v2) = idg, so u divides lem(vy,v2). Listing integers of Euler
number 4, u € {5,8,10,12}.

(a) If vy divides vy, then vo = u. We investigate all possibilities of determi-
nant 1 satisfying Lemma 3.7 by hand and add them to the table. One of them
is ding (s, G2, C2, C2).

(b) If v; does not divide vy, then by Lemma 3.7 again, ¢(v1) + ¢(ve) < 4.
Listing possibilities by hand, we see that (v1,v2) € {(2,3),(3,4), (4,6)}. From
the divisibility relations between vy, v2 and u, we obtain that v = 12, and in
fact, (v1,v2) = (3,4) or (4,6). In particular, g has order 12, so g% = —idp, and
so g has four eigenvalues of order 4. But since v; = 3 or vy = 6, this cannot be
the case. Contradiction!

(5) The last case is when ¢(u) = 2, i.e., u = 3,4, or 6. In that case, each eigenvalue
of g has order 1,2, 3,4, or 6. As (g) acts freely in codimension 2, g has at most one
eigenvalue of order 1 or 2.

(a) Suppose that g has an eigenvalue of order 4. As it has determinant 1,
it has an even number of eigenvalues of order 4, so at least two of them. Hence,
by freeness in codimension 2, ¢* = idg, and so g> = —idg, i.e., all eigenvalues
of g have order 4. There is a generator of (g) similar to either diag(s,i,i,1), or
diag (i, —i,4, —1).

(b) Suppose that v = 3. Then as (¢(v),v) < (¢(u),u) for any order v of
another eigenvalue of g, the other eigenvalues have order 1,2, or 3. Hence, there
are at least three eigenvalues of order 3, and thus by freeness in codimension 2,

g> = idg. So g has order 3 and there is a generator of (g) similar to either

(¢) Suppose finally that © = 6 and g has no eigenvalue of order 4: Then g has
order 6, so g% has order 2. Since ¢ acts freely in codimension 2 and has deter-
minant one, we obtain ¢g> = —idp. All eigenvalues of g thus have order 2 or 6,
so g has at least three eigenvalues of order 6. As g has determinant one, we only
have two possibilities: There is a generator of (g) similar to diag(—1,w,w,w), or
to diag(w,w®, w,w?).

This discussion constructs the first two columns of the table. The restrictions on B
given in the third column are given by the same arguments as in the proof of Lem-
mas 4.8, 4.11. 0
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Cororrary 4.17. Let B and B’ be isogenous abelian fourfolds, and let g €
Aut(B,0) and h € Aut(B’,0) be junior elements such that (g) and (h) act freely in
codimension 2, and ord(h) < ord(g). Then there are three possibilities:

« g and h are similar, in particular have the same order;

o his similar to diag(1, 4, 4,7), g is similar to diag(—1,w,w,w), and B and B’ are
isogenous to E x Ej?’ for some elliptic curve E;

« h=iidp, g is similar to diag((12, (Py, C12,(y) and B and B’ are both isomorphic
to Ei4-

Proof. If h has order 7, then by Lemma 4.16, B is isogenous to E X Eu73 for some
elliptic curve E. By uniqueness in the Poincaré decomposition of B [6, Th.5.3.7], B is
not isogenous to any of the other special abelian varieties appearing in Lemma 4.16.
So, by Lemma 4.16 again, g being junior must have order 7. By Proposition 3.1, any
junior element & of order 7 acting on a fourfold with (k) acting freely in codimension 2
are similar to diag(1, (7, (7%, (). So g and h are similar.

The same argument works if i has order 8,15, 16, 20, 24.

If h has order 3 or 6, then by Lemma 4.16, B is isogenous to E X Ej?’ for some
elliptic curve E. By uniqueness in the Poincaré decomposition of B [6, Th.5.3.7], B is
not isogenous to any of the other special abelian varieties appearing in Lemma 4.16.
So, by Lemma 4.16 again, g being junior must have order 3 or 6. As we assumed
ord(h) < ord(g), the only strict inequality is when h has order 3 and g has order 6. In
this case, by Proposition 3.1, h is similar to diag(1,7,7,7) and g to diag(—1, w,w,w).

The same argument works if i has order 4 or 12. |

We can now prove cyclicity of F' when it contains a junior element of order 3.

Prorosition 4.18. Let B be an abelian fourfold, and let F' be a finite subgroup
of Aut(B,0) acting freely in codimension 2, generated by junior elements. Suppose
that F' contains an element similar to diag(1,j,4,7). Then F is cyclic and generated
by one junior element.

Proof. — By Corollary 4.17, B is isogenous to E X Ejs for some elliptic curve F, and
any junior element in Aut(B,0) is similar to diag(1,7,7,4), or diag(—1,w,w, w).
Suppose by contradiction that F is not generated by one junior element. Then there
are two junior elements g, h € F such that (g) ¢ (h) and (h) € (g). Up to possibly
replacing them by their square, we have g and h both similar to diag(1,4,7,7). Their
eigenspaces satisfy 2 < dim Eg(j) N B3 (j) < dim E_, (1). As (g, h) C F acts freely
in codimension 2, § = h. Since (g) c (h), g # g, s0 g = g*. Similarly, h = h2. Since
g2 = h® = —1id, it nonetheless yields g = h, contradiction. O

Let us now present our general strategy to prove that F' is cyclic. By Lemma 4.16,
the prime divisors of |F| are 2,3,5, and 7. Hence, |F| = 2% -3% .57 . 7°. Since 2
(respectively 37, etc.) is the order of a 2 (respectively 3, etc.)-Sylow subgroup of F,
we can rely on Sylow theory to bound |F|, as in the following result.
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Prorosition 4.19. Let B be an abelian fourfold, and let F' be a finite subgroup of
Aut(B,0) acting freely in codimension 2, generated by junior elements, containing no
jungor element of order 3. Then

|F| divides 2* -3 -5 -7 = 1680.
The proof of this proposition relies on the following two lemmas.

Lemma 4.20. — Let B be an abelian fourfold, and let F be a finite subgroup of
Aut(B,0) acting freely in codimension 2 with determinant one, containing no junior
element of order 3. Let p = 3,5, or 7 divide |F|. Then a p-Sylow subgroup S of F is
cyclic of order p.

Proof. — As S is a p-group, its center Z(S) is non-trivial. Hence, it contains an
element g of order p. Let h # id € S. By Lemma, 4.16, F has no element of order p?,
so h has order p. Since g and h commute, they are codiagonalizable. Let v, w be two
non-colinear common eigenvectors of them associated with eigenvalues other than 1.
Let § € (g) and h € (h) satisfy §(v) = h(v) = Cpu.

If p= 3 or 5, Lemma 4.16 shows that E4(1) = E,(1) = {0}, so gh~! can not have 1
as an eigenvalue and be of order p. So it is trivial, i.e., g = E, and h € {(g).

Suppose p = 7. If §(w) # h(w), then by Lemma 4.16, we have an equality
{G(w), h(w)} = {¢2w, &*w}. So Gh? has eigenvalue ¢;° on v, and (7 or (7° on w,
which in either case contradicts Lemma 4.16. So §(w) = h(w), i.e., gh~' has cigen-
value 1 with multiplicity two. By freeness in codimension 2, g = E, hence h € (g). O

Lemva 4.21. — Let B be an abelian fourfold, and let F be a finite subgroup of
Aut(B,0) acting freely in codimension 2 with determinant one. If not trivial, a 2-Sylow
subgroup S of F is cyclic or a generalized quaternion group, and its order divides 16.

Proof. — By Lemma 4.16, the element of order 2 in F' is unique: it is —idg. By [36,
5.3.6], S is hence either cyclic or a generalized quaternion group. Moreover, by Lem-
ma 4.16, S has no element of order 32. Hence, the only case where the order of S
does not divide 16, is when S is isomorphic to @32. Let us however show that this is
impossible.

Indeed, Q32 contains an element A of order 16 and an element s of order 4 such that
shs™t = h™! [36, p. 140-141]. However, if h € S is an element of order 16, it can not
be conjugated in S to h~!, because by Lemma 4.16 they have distinct eigenvalues. [

Proof of Proposition 4.19. — Tt is straightforward from Lemma 4.20 and Lemma 4.21.
O

The following Lemma and Proposition show that if 7 divides |F|, i.e., if F' contains
a junior element of order 7, then F' is cyclic generated by one junior element of order 7.

Lemvia 4.22. — Let B be an abelian fourfold, and let F be a finite subgroup of
Aut(B,0) acting freely in codimension 2 with determinant one, containing no junior
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element of order 3. Suppose that 7 divide |F|. Let S be a 7-Sylow subgroup of F'. Then
there is a normal subgroup N of F such that F = N % S.

Proof. — By Burnside’s normal complement theorem [36, 10.1.8], it is enough to show
that NF(S) = CF(S)

Let g be a generator of S, with S = (g) ~ Z; by Lemma 4.20. By Lemma 4.16,
for an element f € Np(S), we have fgf~! € {g,9° g*}, because they are the only
elements with the same set of eigenvalues as g. Let us assume by contradiction that
Ng(S) # Cr(9), i.e., there exists f € Np(S) such that fgf~! # g. In particular,
either fgf~! = g2, or fgf ' = g*, in which case f2gf~2 = (¢%)* = ¢2. Let f be the
element of {f, f?} such that fgf_l = g%. Looking at the action of fon the eigenspaces
of g in coordinates diagonalizing g, we see that

0

f=

o O O o+
8 O©O O O
O O W

o O O

for some complex numbers z, y, z, t with zyzt = 1, and so X5= (X —t)(X3—t"1). Note

that fhas order 3k for some integer k > 1, and that gfg has order the least common
multiple of k£ and 7, since g and f3 commute. But by Lemma 4.16 for the element gf37
this yields & € {1,2,7,14}. By Lemma 4.16 for £, this vields 3k € {3,6}. Since by
assumption F' contains no junior element of order 3, we obtain by Lemma 4.16 that f
has characteristic polynomial (X2 4+ X +1)? or (X? — X + 1)2, contradiction. O

Prorosition 4.23. — Let B be an abelian fourfold, and let F be a finite subgroup of
Aut(B,0) acting freely in codimension 2, generated by junior elements, containing no
Junior element of order 3. Suppose that 7 divides |F|. Then F is cyclic and generated
by one junior element.

Proof. — Let S be a 7-Sylow subgroup of F. By Lemma 4.22, F = N x S, where N
is a normal subgroup of F', and by Proposition 4.19, |N| divides 240. A simple GAP
program in the appendix checks that a group of order dividing 240 cannot have an
automorphism of order 7. So S acts trivially on N, i.e., ' = N x.S. But F'is generated
by its junior elements, which all have order 7 by Corollary 4.17. So N is trivial, and
F =S is cyclic of order 7. O

Now we can focus on the case when F' contains no junior element of order 3 or 7.
We start by showing that, provided F' is cyclic, it is generated by one junior element.

Lemma 4.24. Let F be a cyclic group. If E is a subset of F' that generates F', and all
elements of E have the same order, then any one element of E actually generates F'.

Proof. — Suppose that F = Z4 and that every element of E has order k dividing d.
Then F is actually a subset of the subgroup Zj; < Z4. Since E generates Zg, it must
be k = d. So any element e € E satisfies (¢) = Z4 = F. O
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CoroLrARry 4.25. Let B be an abelian fourfold, and let F' be a finite subgroup of
Aut(B,0) acting freely in codimension 2, generated by junior elements, containing
no junior element of order 3 or 7. If F' is cyclic, then F is generated by one junior
element.

Proof. — Assume that F is cyclic. If F' contains one junior element of order
8,15,16,20, or 24, then by Corollary 4.17, all junior elements have the same order
and we use Lemma 4.24 to conclude.

Otherwise, the junior elements of F' each have order 4 or 12. If there are no junior
elements of order 12, Lemma 4.24 concludes again. If there is a junior element g of
order 12, then a quick computation from Lemma 4.16 shows that g is the only junior
element of order 4 in F', and thus the set of the junior elements of order 12 actually
generates I’ too, so we conclude by Lemma 4.24 again. O

These versions of Lemma 4.22 for 3- and 5-Sylow subgroups will be useful too.

Lemva 4.26. — Let B be an abelian fourfold, and let F be a finite subgroup of
Aut(B,0) acting freely in codimension 2, generated by junior elements. Suppose that
p € {3,5} divides |F|. Let S be a p-Sylow subgroup of F. Then Np(S)/Cr(S) is

isomorphic to a subgroup of (Z,)*.

Proof. — The quotient Np(S)/Cr(S) acts faithfully by conjugation on S, and there-
fore embeds in Aut(S), which by Lemma 4.20 is isomorphic to (Z,)*. O

Lemva 4.27. — Let B be an abelian fourfold, and let F be a finite subgroup of
Aut(B,0) acting freely in codimension 2, generated by junior elements. Suppose that 5
divides |F|. Let S be a 5-Sylow subgroup of F. Then, if f € Nr(S) is a junior element
of order 8, [f] € Np(S)/Cr(S) cannot have order 4.

Proof. — Let f € Np(S) be a junior element of order 8 such that [f] € Np(S)/Cr(S)
has order 4, and let g be a generator of S. Looking at the action of f on the eigenspaces
of g in coordinates diagonalizing g,

o O 8 O
ow O O
N O O O
o O O o+

with zyzt = —1, and so xy = X* 4 1. By Lemma 4.16, no junior element of order 8
has this characteristic polynomial, contradiction. O

We finally prove the following two key propositions, which imply Proposition 4.13.

Prorosition 4.28. — Let B be an abelian fourfold, and let F be a finite subgroup of
Aut(B,0) acting freely in codimension 2, generated by junior elements, containing
no junior element of order 3 or 7. Then a 2-Sylow subgroup of F is either trivial,
or cyclic.
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Prorosition 4.29. Let B be an abelian fourfold, and let F' be a finite subgroup of
Aut(B,0) acting freely in codimension 2, generated by junior elements, containing no
jungor element of order 3 or 7. Suppose that a 2-Sylow subgroup of F is trivial or
cyclic. Then F is cyclic.

Proof of Proposition 4.29. — Let us write |F| = 2%-35.57 with a € [0,4], 8,v € [0, 1].
By Lemma 4.20 and by assumption, the Sylow subgroups of F are cyclic, so [36,
p. 290-291] applies and F is a semidirect product: F ~ (Zs x Z3p) X Zga. Since 37 is
coprime to ¢(57), the group Zs» has no automorphism of order 3, and thus the first
semidirect product is direct:

F ~ (Z5'y X Z35> Dl ZQ@.

o If 5 =~ =1, the group F contains an element of order 15, so by Lemma 4.16,
B is isomorphic to F,,.* and all junior elements of F have order 15. However, since
F >~ 715 X Zso, and since F' is generated by its junior elements, we must have a = 0,
and so F' ~ Zj5 is cyclic and generated by one junior element.

o If B=~=0, then F ~ Zsa is cyclic.

« Else, write p = 357 and F ~ Zy N Zao. Note that Z, X Zga-1 is a proper
subgroup of F containing all elements whose order divides 2°~!p. As F is generated
by its junior elements, their orders cannot all divide 2%~ 'p: There is a junior element
g € F of order 2% or 2%p. If g has order 2%p, (g) = F and so F' is cyclic. If g has
order 2%, we can write F' ~ (u) X (g), where u is an element of F' of order p. The
discussion now depends on « and p.

(1) By Lemma 4.16, if g has order 4, then g = iid commutes with every
element of I, so the semidirect product is direct and F' is cyclic.

(2) If p= 5 and g has order 8, by Lemma 4.27, g?> and u commute, so g?u has
order 20. Since g is junior of order 8, by Lemma 4.16, B is isomorphic to Eu84.
So by Lemma 4.16 again, B has no automorphism of order 20, contradiction.

(3) If p = 5 and g has order 16, by Lemma 4.26, ¢g* and u commute, so
g*u has order 20. But since g is junior of order 16, by Lemma 4.16, B has no
automorphism of order 20, contradiction.

(4) If p = 3 and g has order 16, by Lemma 4.26, g?u has order 24. But
since ¢ is junior of order 16, by Lemma 4.16, B has no automorphism of order
24, contradiction.

(5) If p =3 and ¢ has order 8, then F' ~ Z3 x Zg. With GAP, we check in the
appendix that:

« The irreducible representations of F’ have rank 1 or 2.

« No irreducible character of F takes value j or j2, so F C
Aut(B,0) has no irreducible subrepresentation of rank 1.

« The only two irreducible representations of F' of rank 2 sending
—id € F to —id indeed are complex conjugates, so all elements of
F C Aut(B,0) have characteristic polynomials in Q[X].
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However, g € F is a junior element of order 8, which by Lemma 4.16 has a
non-rational characteristic polynomial, contradiction. O

We prove Proposition 4.28 by contradiction.

Proof'of Proposition 4.28. Suppose that 2 divides |F'| and that a 2-Sylow subgroup
of F' is not cyclic. We first show that any junior element in F' has order 15, 20 or 24.

By contradiction and by Proposition 3.1, let g € I’ be a junior element of order
4,8,12, or 16. If g has order 12, then ¢ € F is a junior element of order 4, and F
thus contains a junior element g of order 4,8, or 16. Let S be a 2-Sylow subgroup
containing that junior element. By assumption, S is not cyclic, so by Lemma 4.21,
S is isomorphic to Qg or to Q6. Clearly, Qs and (16 have no element of order 16,
and no element of order 4 in their centers, so g has order 8. As Qg has no element of
order 8, S is isomorphic to Q14. But we easily check with GAP that:

« The irreducible representations of ()1 have rank 1 or 2.

« The only irreducible representations of Q)14 of rank r sending the unique element
of order 2 to —id, are two complex conjugates representations with » = 2, so all
elements of S C Aut(B,0) have characteristic polynomials in Q[X].

However, g € S is a junior element of order 8, which by Lemma 4.16 has a non-rational
characteristic polynomial, contradiction.
So any junior element in F has order 15, 20 or 24. We also know that:

o F' has exactly one element of order 2, by Lemma 4.16.

« A 2-Sylow subgroup of F' is isomorphic to Qg or @14, by Lemma 4.21.

« |F| divides 240, by Proposition 4.19.

« F has no element of order 60 or 40, by Lemma 4.16.

« If F has elements of orders 0,0 € {15,20,24}, then o = o/, by Lemma 4.16.

We check with GAP that there are only five groups satisfying all these properties,
namely the groups indexed (40,4),(40,11),(80,18),(48,8), and (48,27) in the
SmallGroup library. The function StructureDescription then shows that they are
respectively of the form Z5 Pl Qg, Z5 X Qg, Z5 D! Q167 Z3 X Qlﬁ, and Zg X Q16-
Note that only Zs x Qs, Zs X Q16 are generated indeed by their elements of orders
(15,24, or) 20. Checking the irreducible character tables of these two candidates with
GAP shows that they have no appropriate four-dimensional representation (see the
appendix for programs supporting this discussion.)

This concludes the proof of Proposition 4.28. |

Proof of Proposition 4.13. — If F contains a junior element of order 3, then Proposi-
tion 4.18 applies and shows that F' is cyclic generated by one junior element. If F
contains no junior element of order 3, but one of order 7, then Proposition 4.23 applies
and shows that F' is cyclic generated by one junior element. Finally, if /' contains no
junior element of order 3 or 7, Proposition 4.28 shows that its 2-Sylow subgroups are
cyclic or trivial, Proposition 4.29 deduces that F' is cyclic and Corollary 4.25 proves
that F' is generated by one junior element. |
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5. RULING OUT JUNIOR ELEMENTS IN CODIMENSION 4

The aim of this section is to rule out eight out of the twelve types of junior elements
presented in Proposition 3.1, namely those which fix pointwise at least one subvariety
of codimension 4 , but no subvariety of codimension 3.

Prorosition 5.1. — Let A be an abelian variety of dimension n, G a group acting
freely in codimension 2 on A such that A/G has a K -trivial resolution. Then, if g € G
is a junior element, the matriz M (g) cannot have eigenvalue 1 with multiplicity exactly
n —4.

Remark 5.2. Whether the local affine quotients corresponding to these eight types
of junior elements admit a crepant resolution is actually settled by toric geometry
in [37]. In fact, by [37, Th.3.1],

C4/<iid>’ (C4/(diag <w>waw7 _1)>7 C4/<diag(ﬁs,€87C§’»Cg)>a
C*/(diag(¢i2,C12, (i, (o)), C*/(diag (s, (s, €5, Ci5))
have a crepant Fujiki-Oka resolution, and by [37, Prop. 3.9],

C*/(diag(Ci6, Cig: CT6, Cls))» C*/(diag(Coos (o, Coo» C20)), C*/(diag(Caa, (B4 (34, C12))

admit no toric crepant resolution. They could nevertheless have a non-toric crepant
resolution.

In light of this remark, the proof of Proposition 5.1 must crucially involve global
arguments.

5.A. RULING OUT JUNIOR ELEMENTS OF ORDER 4, 8, 12, 15, 16, 20, 24. In this subsec-
tion, we rule out the seven types of junior elements or order other than 3, 6, 7.

ProrosiTion 5.3. Let A be an abelian variety, G a group acting freely in codimen-
sion 2 on A such that A/G has a K-trivial resolution X. Then any junior element

of G has order 3, 6, or 7.

Remark 5.4. Let A be an abelian variety, G be a group acting freely in codimen-
sion 2 on A. As translations in G form a normal subgroup Gg, we can write:

(4/Go)/(G/Go) ~ A/G.

Clearly, A/Gy is isogenous to A and G/Gj still acts freely in codimension 2 on it,
except that it contains no translation. Hence, we can assume without loss of generality
that G contains no translation (other than id). In particular, any element of G has
the same finite order as its matrix.

Proof of Proposition 5.3. By contradiction, suppose that g € G is a junior element
of order d € {4, 8,12,15, 16, 20,24}, of maximal order among the junior elements of G
of such orders. Up to conjugating the whole group G by an appropriate translation,
we may assume that g fixes 0 € A. In particular, by Proposition 3.1, g fixes pointwise
an abelian subvariety W of A of codimension 4 ; so Proposition 4.12 shows that the
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pointwise stabilizer PStab(W), which contains (g), is cyclic and generated by a junior
element h € G. By our maximality assumption on the order of g, we have (g) = (h),
i.e., PStab(W) = (g¢). By Proposition 4.3, we can define a (g)-stable complementary
abelian subvariety B to W in A. The key to the proof is that a well-chosen power g
of g has strictly more fixed points in B than g, as many distinct eigenvalues as g, but
is not a junior element. We set the integer o depending on the order d of g as follows,
check with Proposition 3.1 that g® is not junior and has as many distinct eigenvalues
as g. Applying [6, Prop. 13.2.5(c)] shows that (¢®)|p has strictly more fixed points
than ¢g|p in B.

Tasre 7. Definition of a certain « € [0,d — 1] depending on d

d|4]18[12|15]16|20]|24
212141312 |4]|3

Let 7 € B be a fixed point of g* that is not fixed by g. Note that W 47 is pointwise
fixed by ¢g%*. By Proposition 4.12; PStab(W + 7) = (h) for some junior element h.

By Proposition 4.3, there is an (h)-stable translated abelian subvariety B’ of A
containing 7 such that B’ and W + 7 are complementary. By uniqueness in Poincaré’s
complete reducibility theorem [6, Th. 5.3.7], the abelian varieties B and B’ are isoge-
nous. Hence, the relationship between the orders and similarity classes of g and h is
described by Corollary 4.17.

Let us discuss the special case when g and h do not have the same order. By Corol-
lary 4.17, and since g does not have order 3 or 6 by assumption, g and h must
have orders in {4,12}. By the maximality assumption on the order of g, we have g
of order 12, hence g® of order 3, and h of order 4. That contradicts the fact that
g* € PStab(W + 1) = (h).

We can now assume that g and h have the same order d € {4,8,12,15, 16,20, 24},
and similar matrices. Recall that ¢® € (h). Since g and h have the same order,
it implies (g®) = (h%), i.e., g* = h** for some u coprime to d/«. Since g and g%,
and h and A" have the same number of distinct eigenvalues, it follows from g% = h*®
that the eigenspaces of g and h are the same, i.e., g and h commute. Since we assumed
that g does not fix 7, we still have that g & (h). We discuss three cases separately.

(1) If d = 4, then in appropriate coordinates, we have:
M(g) = diag(ln—‘l? ia 7:7 i) Z)a
M(h) = diag(1,—4,1,1,1,1),

SO g contradiction!
(2

= h,
) If d = 8 or 12, then in appropriate coordinates, we have:

M(g) = diag(1,—4,Ca,Ca, ™5 Ca™)s
M(h) = diag(1n74a Cdm7 Cdma Cda Cd)a
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for some integer m € [2,d — 1] such that 2 + 2m = d. In particular, m? = 1 mod d,
so g = h™ € (h), contradiction!

(3) Else, d = 15, 16, 20, or 24. There is an integer «’ coprime to d such that, in
appropriate coordinates,

M(g) = diag(1,—4,Ca, Ca®, Ca¥s Ca°),
M(h*") = diag(1,_4, Ca, €7@, ¢a7®), €47,

for some distinct integers a, b, ¢ € [2,d—1] coprime to d, and permutation o of {a, b, c}.
If o = id, then g = k¥ € (h), contradiction! Nevertheless, let us prove that o = id.
Note that

(=) = (0 g1y ()"
= diag(lnfi’n Cd(o(a)ia)oz Cd(g(b)ib)oz Cd(U(C)ic)a%

and thus (h* ~%)“ fixes a translated abelian variety W’ D W + 7 of codimension at
most 3. By Proposition 4.12, PStab(W') is trivial, or cyclic and generated by one
junior element & of order 3 or 7. In the second case, as k € PStab(W + 1), k restricts
to an automorphism of the fourfold B’, which also has h junior of order d # 3,6,7
acting on it. This contradicts Corollary 4.17. Hence, (h* ~*)® € PStab(W’) = {id},
so for any ¢ € {a,b,c}, (c(£) — f)a is a multiple of d. However, o was chosen so
that ¢g¢ and g have the same number of distinct eigenvalues, i.e., aa, ba, ca are distinct
modulo d. In particular, o({)a = ¢ov modulo d if and only if o(¢) = £. So o = id,
contradiction! O

5.B. RULING OUT JUNIOR ELEMENTS OF ORDER 0 WITH FOUR NON-TRIVIAL EIGENVALUES

In this subsection, we conclude the proof of Proposition 5.1 by ruling out the one
remaining type of junior element fixing at least one subvariety of codimension 4 , but
no subvariety of codimension 3. It is the type of junior element of order 6, and matrix
similar to diag(1,—4,w,w,w, —1).

Prorosition 5.5. — Let A be an abelian variety, G a group acting freely in codimen-
sion 2 on A such that A/G has a K-trivial resolution. Then there is no junior element
of G with matriz similar to diag(1l,_4,w,w,w, —1).

The proof involves general arguments which we will use later, hence we factor it
into a general lemma.

Lemva 5.6. — Let A be an abelian variety of dimension n, G a group acting freely in
codimension 2 on A, without translations. Assume moreover that G is generated by
Junior elements, and that for any point a € A, the stabilizer subgroup PStab(a) of G
is trivial, or generated by junior elements. Suppose that g € G fizes 0 € A and has
order d. Let W be the abelian subvariety in A containing O that g fizes pointwise, and
denote by Gy the subgroup of G generated by

Ggen = Ggen ' = {h € G| 37 € A such that h € PStab(W +7)}.
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Then

(1) There is an M(Gw)-stable complementary abelian subvariety B to W, which
induces a representation p : Gw — Aut(B,0) by p(h) := M(h)|s.
(2) If we denote by pryy,, prg the projections induced by the splitting of the tangent
space, then, for any h € Gy, its matrixz and translation parts satisfy
« M(h) = pry + p(h)prg;
o pryy(T'(h)) =0, i.e., T(h) € B.
(3) The representation p is faithful and takes values in SL(H°(Tg)).
(4) The abelian subvariety B is in fact Gy -stable.
(5) For any element h € Gw,
« if h fizes a point T € A, then it fizes the point prg(7) € B;
« if h has no fized point in A, then 1 is an eigenvalue of p(h).
Moreover, if we also assume that the codimension k of W in A is at most 7, and that
there is an integer 1 < a < d—1 such that M (g®) is similar to diag(1, g, —1i), then

(6) For any h € Gw, the elements h and g* commute and

« either there is a point T € A such that h € PStab(W +71)Ug* PStab(W +7);
« or there is no such point, and 1 and —1 are eigenvalues of p(h).
(7) For any h € Gw, the translation part T'(h) of h is a 2-torsion point of B.
(8) If h € Gw has even order and fizes a point in A, all fized points of h in B are
of 2-torsion.
(9) If h € Gw is a junior element of order 3, then h fizes a non-zero 2-torsion
point in B.

Proof

« Item (1) follows immediately from [6, Prop. 13.5.1], since M (Gw ) is a finite group
of group automorphisms of the abelian variety A, and W is M (G )-stable.

« Ttem (2) is proved by induction on the number of generators used to write an
element h € Gyw. First, if h € Gw is in Ggen, there is a point 7 € A such that
h € PStab(W + 7). In particular, for w € W and b € B;

M(h)(w+b) =h(w+7) = h(1) + M(h)(b) = w + p(h)(b),
as wished. Moreover, T'(h) = (id —M (h))(7), so pry (T (h)) = 0.
Second, if h1, hy € Gy satisfy (2), then
M(hihg) = M(h1)M(h2) = pry + p(hih2)prg,

since p is a group morphism and pry,prg = prgpry; = 0. Moreover, T'(h1hs) =
T(h1) + M (h1)T (ha), and the fact that pry, (T (hihe)) = 0 easily follows from the
induction assumption, notably using pry, (id =M (hy)) = 0.

. For (3), let h € Gy and note that p(h) = idp if and only if M (h) = pry, +prg =
ida, so p is faithful if and only if M is, which it is since we assumed that G acts
on A without translations. Note that the set M (Ggen) is contained in SL(H®(T4)).
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Hence, the generated group M (Gyw ) is contained in SL(H%(T4)) too. By the matrix
description in Item (2), p(Gw ) is contained in SL(H°(Tg)).

« Regarding (4) we note that, for h € Gy, h(B) = M(h)B+T(h) = B4+T(h) =B
by the translation description in Item (2).

« For (5), the fact that the identity h(7) = 7 implies h(prg(7)) = prg(7) is clear
from the description of the matrix part in (2). That concludes if h has a fixed point.
Assume now that h has no fixed point in A. In other words, the element T'(h) does
not belong to Im(id —M (h)). By the description of the translation part in Item (2),
T'(h) belongs to B. Hence, the image Im(idg —M (h)|p) is strictly contained in B.
So 1 appears among the eigenvalues of p(h) = M (h)|p, as wished.

« We now prove (6). Note that p(¢*) = —idp commutes with any element of
p(Gw ), and thus, as p is faithful by Item (3), g is in the center of Gy . Let h € Gy
such that neither h, nor g*h has any fixed point in A. By Item (5), this implies that 1
appears among the eigenvalues of both p(h) and p(¢g*h). So 1 and —1 appear among
the eigenvalues of p(h), as wished. Now if h or g®h has a fixed point 7 in A, then it
must fix W + 7 pointwise, by the matrix description in Item (2), as wished.

« For (7), we use that h commutes with g% by Item (6), that g(0) = 0, that
h(0) = T'(h) € B by the translation description in Item (2), and that ¢*|p = —idp.
It yields

0= g%(h(0)) = h(g*(0)) = g*(T(h)) = T(h) = =2T(h),

so T'(h) is of 2-torsion.

« To prove (8), we have an element h € Gy of even order, that fixes a point 7
in A. For some positive integer 3, the power h? has order 2. Since the whole group G
acts freely in codimension 2 on A, each of the matrices p(h?) and p(g*h?) is either
trivial, or has —1 as an eigenvalue of multiplicity at least 3, and in fact at least 4 since
p(Gyw ) is contained in SL(H°(T)) by Item (3). Since p(g®) = —idp, this means that
either p(g®h®) = idp, or that k > 8, a contradiction with our assumption. Since p is
faithful by Item (3), we obtain h® = ¢g®. Hence, every point of B fixed by h is also
fixed by g%, hence is a 2-torsion point of B.

« To prove (9), we have a junior element h € Gy of order 3. By Item (5), it has
a fixed point 7 € B. Since M (h) is similar to diag(1l,—3,J,j,j), we note that h
pointwise fixes a translated abelian subvariety of codimension 3 of the form V + 7
in A. Let C be a (M(h))-stable complementary to the abelian subvariety V N B
in the abelian subvariety B. We write 7 = v 4+ ¢, with v € VN B and ¢ € C. Tt
gives h(c) = h(tr —v) = 7 — v = ¢, i.e., h fixes the point ¢ € C. Moreover, since
M(h|¢) = jide, where j is the third root of unity, it holds

0="h(c)—c=(j—1)c+T(h).

It shows that T'(h) € C ~ Ej?’. Multiplying this equality by j2 — 1, and using that
T'(h) is of 2-torsion by Item (7), we see that 3¢ is of 2-torsion too. Since h(c) = ¢ and
3T (h) = T(h), this point 3¢ in C' C B is fixed by h. If 3¢ is non-zero, this concludes
the proof of (9). Assume now that 3c = 0, i.e., T(h) = j2T'(h) in C. Since T'(h) is also
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2-torsion in C, this implies T'(h) = 0, and so h fixes 0 in A, and pointwise fixes the
abelian subvariety V' N B of dimension 3. It clearly contains many non-zero 2-torsion
points, and any of them is fixed by h, as wished. O

We can now come back to our proposition.

Proofof Proposition 5.5. — By Remark 5.4, we can assume that G contains no trans-
lation other than id 4. By contradiction, suppose that there is an element g € G such
that ¢g(0) = 0 and, in some coordinates,

M(g) = diag(1p—4, w,w,w, —1).

We import the notations of Lemma 5.6, whose hypotheses are satisfied by g for k = 4,
d = 6, a = 3. The proof of the proposition now goes in three steps. First, we show
that every element of p(Gw ) is similar to an element of (p(g)) ~ (diag(w, w,w, —1)).
Second, we deduce that Gy = (g). Third, we use global considerations on fixed loci
to derive a contradiction from this description of Gyy.

Step 1: We show that every element of p(Gw) is similar to an element of (p(g))

By Lemma 5.6 (1) and (4), there is a Gy -stable complementary B to W. As p(g)
acts on it, B is isogenous to F x Ej?’ for some elliptic curve E. Fix an element 7 € A
such that PStab(W + 7) is non-trivial. By Proposition 4.12, the group PStab(W + 7)
is cyclic generated by one junior element u, and by Corollary 4.17, p(u) is similar to
p(g) (if of order 6) or to p(g?) (if of order 3) in GL(H°(Tg)). Hence, any element of
p(PStab(W + 7)) is similar to a power of p(g). Varying 7 € A, this shows that every
element in p(Ggen) is similar to a power of p(g).

Now, assume that we have an element h € Gy such that p(h) is not similar to
a power of p(g). Then Lemma 5.6 (6) shows that 1 and —1 are eigenvalues of p(h).
Applying Lemma 5.6 (6) again to h?, either p(h)? is similar to a power of p(g),
or 1 and —1 are eigenvalues of p(h)2. If 1 and —1 are eigenvalues of p(h) and of
p(h)?, which both have determinant 1, then p(h) has to be similar to diag(1, —1,4,1),
or to diag(1, —1,—i, —%). Since p(h) defines an automorphism of B, by [6, Th.13.2.8,
Th. 13.3.2], B must thus be isogenous to S x E;? for some abelian surface S. We already
know that B is isogenous to E X Ej3, and this contradicts the uniqueness of the
Poincaré decomposition of B up to isogeny [6, Th.5.3.7]. Hence, p(h)? is similar
to a power of p(g), and 1 is an eigenvalue of multiplicity at least 2 for it. Hence,
p(h)? = idp, and thus p(h), which has determinant one, is similar to diag(1, 1, —1, —1).

We just proved that for any element h € Gy such that p(h) is not similar to a
power of p(g), it holds that p(h) is similar to diag(1l,1,—1,—1). Now, take such an
element h € Gy, and note that for hg € Gy, the matrix p(hg) is still not similar to
a power of g by definition of h. Since p(h) is similar to diag(1,1,—1,—1) and w has
multiplicity three as an eigenvalue of p(g), both w and —w appear as eigenvalues of
p(hg), thus not similar to diag(1,1,—1,—1), a contradiction. This concludes Step 1.
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Step 2: We show that Gw = (g)

By Step 1 and since p is faithful, every element of Gy has order 1,2, 3, or 6. By Step
1 and since p is faithful again, any element of Gy of order 2 coincides with ¢. So G
has exactly one element of order 2, and thus |Gy | = 2 - 3” for some 3 > 1. We now
show that 8 = 1. Let S be a 3-Sylow subgroup of Gy, and s € Z(S) of order 3.
Arguing by contradiction, let ¢ € S\ (s). By Step 1, every non-trivial element of p(S)
is similar to diag(1,7,7,7) or diag(1,32,32,52). Such are p(t) and p(s), which also
commute since s is central. Looking at their images by p, either ts or ¢2s is trivial,
a contradiction. So 5 = 1, and Gw has order 6. Hence, Gy = (g). This concludes
Step 2.

Step 3: We conclude this proof’

By [6, Cor. 13.2.4, Prop. 13.2.5(c)], the number of fixed points of g and g® on the
abelian fourfold B are respectively 4 and 256. Let T be a point of B fixed by ¢* but
not by g. By Proposition 4.12, there is a junior element h generating the cyclic group
PStab(W + 7). By Step 2 and by definition of 7, we have (¢%) C (h) C Gw = (g).
Hence, the junior element h has order 6, and (h) = (g). As both g and h are the only
junior elements of order 6 in their generated cyclic groups, g = h. But h fixes 7 and ¢
does not, a contradiction. O

Proofof Proposition 5.1. — Tt is straightforward from Propositions 5.3 and 5.5. O

6. THE 1SOGENY TYPE OF A

This section proves the first part of Theorem 1.7, namely the following proposition,
inspired by [29, Proof of Lem. 3.4].

Prorosition 6.1. — Let A be an abelian variety of dimension n, G be a finite group
acting freely in codimension 2 on A. Suppose that A/G has a resolution X which is a
Calabi- Yau manifold. Then either A is isogenous to E;" and G is generated by junior
elements of order 3 and 6, or A is isogenous to E,." and G is generated by junior
elements of order 7.

Proof. — By the M(G)-equivariant Poincaré’s complete reducibility theorem
[6, Th.13.5.2, Prop. 13.5.4, and the paragraph before], there are M (G)-stable abelian
subvarieties Y7,...,Y; of A such that:

(1) For any i € [1,s], Y; is isogenous to a power of a M(G)-stable M (G)-simple
abelian subvariety of A. In particular, by [6, Prop. 13.5.5], there is a simple abelian
subvariety Z; of Y; such that Y; is isogenous to a power of Z;.

(2) For each i # j, the set of M(G)-equivariant homomorphisms satisfies

Homyr () (Yi, Y;) = {0}

(3) The addition map Y7 x --- X Yy — A is an M (G)-equivariant isogeny.
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We define

Yy =[], where I={i€[Ls]|Z ~ E;}

el

Yy =[]V, whereJ={jel,s]|Z;~Eu}
JjeJ

Yi = H Yi, where K = [1,s] ~ (JUJ).
keK

The action of M(G) on Y; x Y; x Y is diagonal by (2), and there is a proper
surjective finite morphism A/M(G) — Y;/M(G) x Y;/M(G) x Yk /M(G) induced
by the G-equivariant addition by (3). Composing with projections, we get proper
surjective morphisms fr, f7, fx from A/M(G) to Y;/M(G), to Y;/M(G), and to
Y /M(G).

Let g € G be a junior element. By Propositions 5.3 and 5.5, g has order 3, or 7,
or 6 and then five or six non-trivial eigenvalues. By Proposition 4.6, A thus contains
an abelian subvariety isogenous to Ej?’, or to Eu73. Hence, dim Y; + dim Y; > 3,
so one of the two quotients Y7 /M (G), Y;/M(G) has positive dimension. Moreover,
by Proposition 4.6 again, if ¢ has order 3 or 6, M (g) acts trivially on Y; and Yk, and
if g has order 7, it acts trivially on Y7 and Y. Hence, M (g) acts with determinant 1
on each of the three factors.

But by Lemma 2.10 and Corollary 2.9, the group G is generated by its junior
elements. Thus, by [20, 42], the quotients Y;/M(G), Y;/M(G) and Yi/M(G) are
thus normal Gorenstein varieties.

We now pullback a certain holomorphic form, namely either the volume form of
Y:/M(G) if dimY7 > 0, or the volume form of Y;/M(G) if dimY; = 0 (in which
case dimY; > 0). This yields an M (G)-invariant non-zero global holomorphic form
of positive degree y on A. Note that the sections of (0, are invariant by translations
of A, so that we in fact have a G-invariant non-zero global holomorphic y-form on A.
It pulls back to X, which is a Calabi-Yau variety. Hence y = n, and either A ~ E;"
or A ~ E,.". The order of junior elements generating G is given accordingly by
Propositions 4.6, 5.3. O

7. JUNIOR ELEMENTS AND POINTWISE STABILIZERS IN CODIMENSION 5

In this section, we extend the results of Sections 4 and 5 to codimension k = 5.
In the first subsection, we exclude the one type of junior element with exactly five
non-trivial eigenvalues. In the second subsection, we prove the following result.

Prorosition 7.1. — Let A be an abelian variety on which a finite group G acts freely
in codimension 2. Suppose that A/G has a K -trivial resolution. Let W be a translated
abelian subvariety of codimension k < 5 in A such that PStab(W) # {1}. Then
PStab(W) is a cyclic group, generated by one junior element g of order 3 or 7.
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7.f\. RuLinG our JUNIOR ELEMENTS OF ORDER 6 WITH FIVE NON-TRIVIAL EIGENVALUES

Prorosition 7.2. — Let A be an abelian variety, G a group acting freely in codimen-
sion 2 on A such that A/G has K -trivial resolution. Then there is no junior element
of G whose matriz is similar to diag(1,_5,w,w,w,w, j).

Proof. — Suppose by contradiction that there is an element g € G such that ¢(0) =0
and, in some coordinates,

M(g) = diag(ln—57 w,w,w,w, .])

Then there is an abelian subvariety W of codimension 4 in A which is pointwise fixed
by g3. By Proposition 4.12, PStab(W) is cyclic, generated by one junior element h.
As g € (h), h has even order. However, by Propositions 5.3 and 5.5, it must have
order 3 or 7, contradiction! O

7.B. THE POINTWISE STABILIZER FOR LOCI OF CODIMENSION . — For proving Proposi-
tion 7.1, it is enough to establish the following result.

Proprosition 7.3. Let B be an abelian fivefold isogenous to either Ej5 or Eu75, and
let p = 3 in the first case, p = 7 in the second case. Let F' be a finite subgroup of
Aut(B,0) generated by junior elements of order p, satisfying the following condition:
For any non-trivial subgroup Fy < F such that dim Fix(Fy) > 1, Fy is generated by
one junior element of order p. Then F is cyclic.

Proof'of Proposition 7.1 assuming Proposition 7.3. Let W be a translated abelian
subvariety of codimension k£ < 5 in A such that {1} # PStab(W) < G. Proposi-
tions 4.12 and 5.1 show that if k£ < 4, then k = 3 and PStab(W) is cyclic, generated
by one junior element. By Proposition 3.1, the junior generator has order 3 or 7.

From now on, we assume k = 5. By Remark 5.4, we can assume that G contains
no non-trivial translation, and up to conjugating the whole group G by a translation,
we can assume that 0 € W. By Proposition 4.3, we have a PStab(W)-stable comple-
mentary abelian fivefold B to W. Consider the group F = PStab(W) C Aut(B,0).
It is generated by junior elements by Proposition 4.3 (3), and each of them has order 3
or 7, by Propositions 5.3, 5.5, and 7.2. By uniqueness of the Poincaré decomposition
of B [6, Th.5.3.7], the group Aut(B,0) cannot contain both a junior element of or-
der 3 and a junior element of order 7. Let p denote the order of all junior elements in
Aut(B,0).

We claim that the following condition is satisfied: For any non-trivial subgroup
Fy < F such that dim Fix(Fp) > 1, Fp is generated by one junior element of order p.

Indeed, let Fy be such a subgroup, and let By be an abelian subvariety of B of
maximal dimension in Fix(Fy). By definition, we have Fjy < PStab(By), and By has
dimension at least 1, hence codimension at most 4 in B. By Propositions 4.12, 5.3,
5.5, the group PStab(By) is cyclic, generated by one junior element of order 3 or 7.
Since Fy is non-trivial and 3 and 7 are prime numbers, we obtain that Fy = PStab(By)
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is cyclic, generated by one junior element of order 3 or 7. In fact, that element has
order p as defined at the end of the previous paragraph. This shows our claim.

Let us prove that F' is cyclic. By contradiction, we assume that there are two
junior elements g,h € F such that (g) # (h). From our claim on subgroups of F,
we have that dim Fix({(g, h)) < 0. Recall that the origin 0 € B is fixed by any ele-
ment of F', including g and h. Hence, M(g) and M (h) have no common eigenvector
of eigenvalue 1. By the (g, h)-equivariant Poincaré’s complete reducibility theorem
[6, Th.13.5.2, Prop. 13.5.4, & the § before], the abelian fivefold B is thus isogenous
to E;° (if p = 3) or E,,° (if p = 7). By Proposition 7.3, we obtain that F is cyclic,
a contradiction. |

To establish Proposition 7.3, we start by stating and proving a lemma.

Lemva 7.4. — Let B be an abelian fivefold isogenous to either Ej5 or Eu75, and let
p = 3 in the first case, p = T in the second case. Let F' be a finite subgroup of Aut(B, 0)
generated by junior elements of order p, satisfying the following condition: For any
non-trivial subgroup Fy < F' such that dim Fix(Fy) > 1, Fy is generated by one junior
element of order p. Then F is a p-group.

Proof. — By Cauchy’s theorem, it suffices to prove that any element g of F' of prime
order is in fact of order p. Let g be an element of F' of prime order q.

If 1 is an eigenvalue of g, then dim Fix({(g)) > 1, so by our subgroup condition
on F| the group (g) is generated by one junior element of order p, thus ¢ = p, as
wished.

From now on, we assume that 1 is not an eigenvalue of g. As g has prime order,
by Lemma, 3.7, the characteristic polynomial x4q7 is a power of the cyclotomic poly-
nomial ®,. Hence, deg(®,) = ¢ — 1 divides 10, so ¢ € {2,3,11}. Let us analyze these
cases.

o If ¢ = 2, then the only possible eigenvalue for g is —1. But g € F has determi-
nant 1 and dim B = 5, a contradiction.

« If ¢ = 11, we have x4Xgy = P11, which by [41, Prop. 2.4] is irreducible both over
Q[j] and over Q[(7]. This contradicts the fact that x4 is a polynomial in Q[j][X] if
p=3,and in Q][ X]ifp=T.

« If ¢ = 3, then xoxgy = ®3°, yet by [41, Prop.2.4], ®3 is irreducible over Q|[(7].
Hence, we have p #£ 7. So p = 3, and thus ¢ = p in this case.

We have shown that ¢ = p in every case, and this concludes the proof. (|

Proof of Proposition 7.3. By Lemma 7.4, the group F is a p-group. Hence, there
is a central element g € Z(F) of order p. Assume by contradiction that F' is not
cyclic. Hence, we can find a junior element h € F \ (g) of order p. Since h & (g), the
group (g, h) is not cyclic. By our assumption on subgroups of F', and since g and h
both fix 0 € B, we deduce that E,(1) N E(1) = {0}. As g is central, g and h are
codiagonalizable.
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If p = 7, this yields that gh has at least four eigenvalues (counted with multiplicity)
of order 7. By Lemma 3.7, we have a splitting of the characteristic polynomial

_ B
Xghagh = 217 - 7

Counting eigenvalues of order 7 yields 33 > 4, whereas computing degrees shows that
10 = o + 63, a contradiction.

If p = 3, the condition for subgroups of F' with positive common fixed locus,
together with having determinant one, forces every element of order 3 in F' to be
similar to one of the matrices

Typically, an element similar to diag(1,7,7,42,5%) cannot occur, as it would have
a positive-dimensional fixed locus, yet not be the power of a junior element. Let x
be the character of the representation (g,h) C Aut(B,0) of rank 4. Let a be the
number of junior elements in (g, h), and b the number of elements in (g, h) similar to

0=(x,1) =5+ a(2+3j) + a(2 + 352) + b(4j + j%) + b(45% + j).

Since g and h commute and have order 3, the group (g, h) is isomorphic to Zs X Zs,
thus 1 + 2a + 2b = 9. This yields 0 = —15 + 6a, which has no integral solution,
a contradiction. O

8. JUNIOR ELEMENTS AND POINTWISE STABILIZERS IN CODIMENSION 0

The goal of this section is to extend the results of Sections 4, 5, 7 to codimension
k = 6. For the first time in our study of pointwise stabilizers, and for the second
time in this paper after Section 6, we need to assume the existence of a Calabi-Yau
resolution, and not just a K-trivial resolution of the singular quotient A/G. Indeed,
in dimension 6, products of the two examples of [30] can arise. Locally, they create
non-cyclic pointwise stabilizers. Globally, they yield K-trivial resolutions of singular
quotients A/G that are not Calabi—Yau manifolds.

We start by proving the following partial classification of pointwise stabilizers in
codimension 6 in Section 8.A.

Prorosition 8.1. — Let A be an abelian variety on which a finite group G acts freely
in codimension 2. Suppose that A/G has a resolution X which is a Calabi- Yau man-
ifold. Let W be a translated abelian subvariety of codimension k < 6 in A such that
PStab(W) #£ {1} contains no junior element of type diag(1,,_¢,w, w,w,w,w,w). Then
PStab(W) is one of the following.

« A cyclic group generated by one junior element of order 3 or 7.
o An abelian group generated by two junior elements g and h of order both 3 or
both 7, satisfying E,(1) N Ep(1) = HO (W, Tw ).
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« The group SLa(F3), and the representation M : PStab(W) — Aut(A,0) decom-
poses as 19776 @ o3 where o is the unique irreducible 2-dimensional faithful repre-
sentation of SLy(F3) over the splitting field Qlj].

We then use this result to rule out the existence of junior elements with six non-
trivial eigenvalues in Section 8.B by a mix of local and global arguments, and finally
refine Proposition 8.1 in Section 8.C to the following result.

Prorosition 8.2. — Let A be an abelian variety on which a finite group G acts freely
in codimension 2. Suppose that A/G has a resolution X which is a Calabi- Yau man-
ifold. Let W be a translated abelian subvariety of codimension k < 6 in A such that
PStab(W) # {1}. Then PStab(W) is one of the following.

« A cyclic group generated by one junior element of order 3 or 7.

o An abelian group generated by two junior elements g and h of order both 3 or
both 7, satisfying E,(1) N Ep(1) = HO (W, Tw ).

8.A. THE POINTWISE STABILIZERS FOR LOCI OF CODIMENSION 6. — For proving Proposi-
tion 8.1, it is enough to establish the following result.

Prorosition 8.3. — Let B be an abelian sizfold isogenous to either Ej6 or Eu76, and
let p = 3 in the first case, p = 7 in the second case. Let F' be a finite subgroup of
Aut(B,0) generated by junior elements of order p, satisfying the following condition:
For any non-trivial subgroup Fy < F such that dim Fix(Fy) > 1, Fy is generated by
one junior element of order p.

Suppose also that widg &€ F. Then F is one of the following.

« A cyclic group generated by one junior element of order p.

« An abelian group generated by two junior elements g and h of order p satisfying
Ex(g) 0 Ex (k) = {0}.

« The group SLy(F3), and the representation M : F — Aut(B,0) decomposes as
@3, where o is the unique irreducible 2-dimensional faithful representation of SLa(F3)
over the splitting field Q[j]. In this case, p = 3.

Proof'of Proposition 8.1 assuming Proposition 8.3. — Let W be a translated abelian
subvariety of codimension k£ < 6 in A such that PStab(W) # {1} contains no junior el-
ement of type diag(1,_g,w,w,w,w,w,w). Proposition 7.1 settles the cases when k < 5,
so we can assume k = 6. Up to conjugating the whole group G by a translation, we can
assume that 0 € W, and apply Proposition 4.3 to obtain a PStab(W)-stable comple-
mentary abelian sixfold B to W. By Proposition 6.1 and as an abelian subvariety of
A, B is isogenous to either E,® or E,,°.

Let F = PStab(W) C Aut(B,0). It is generated by junior elements by Proposi-
tion 4.3 (3), which have order 3 or 7 by Propositions 5.1, 5.5, 7.2 and since, by as-
sumption, widg € F. Let p be the order of the junior elements generating F'.

Let Fy be a non-trivial subgroup of F' such that dim Fix(Fy) > 1. Let By be
an abelian subvariety of positive dimension in B contained in Fix(Fp). Note that
Fy < PStab(By), and that By has codimension at most 5 in B. By Proposition 7.1,
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PStab(By) is cyclic, generated by one junior element of order p, so since p is prime,
Fy = PStab(By), and it is again cyclic, generated by one junior element of order p.
So Proposition 8.3 applies, and proves Proposition 8.1. O

To establish Proposition 8.3, we need numerous lemmas.

Lemva 8.4. — Let B be an abelian sizfold isogenous to either Ejﬁ or Eu76, and let
p = 3 in the first case, p = T in the second case. Let F be a finite subgroup of
Aut(B,0) generated by junior elements of order p, satisfying the following condition:
For any non-trivial subgroup Fy < F such that dim Fix(Fy) > 1, Fy is generated
by one junior element of order p. Let g € F be an element of prime order q. Then,
we have q € {2,3,7}.

Proof. If 1 is an eigenvalue of g, then the subgroup condition applies to (g) and
yields ¢ = p, as wished. From now on, we assume that 1 is not an eigenvalue of g.
By Lemma 3.7, the characteristic polynomial x4gg is thus a power of ®,, so ¢ — 1
divides 12, so q € {2,3,5,7,13}.

« If ¢ = 13, then ®15 = x,Xg. But by [41, Prop.2.4], ®,3 is irreducible over Q[j]
and Q[(7], a contradiction.

. If ¢ = 5, then ®3 = x,%,. But by [41, Prop. 2.4], the cyclotomic polynomial ®;
is irreducible over Q[j] and Q[¢7] D QJur], a contradiction. O

Let us now describe the 2-; 3-, and 7-Sylow subgroups of F'.

Lemva 8.5. — Let B be an abelian sizfold isogenous to either Ejﬁ or Eu76, and let
p = 3 in the first case, p = T in the second case. Let F' be a finite subgroup of Aut(B, 0)
generated by junior elements of order p, satisfying the following condition: For any
non-trivial subgroup Fy < F' such that dim Fix(Fy) > 1, Fy is generated by one junior
element of order p. If 2 divides |F|, then a 2-Sylow subgroup S of F' is isomorphic
to Qg.

Proof. Since —idpg is the unique element of order 2 that can belong to F, by [36,
5.3.6], S is cyclic or a generalized quaternion group. Let us show that S has no element
of order 8. By contradiction, let s € S be of order 8. Since s* = —idp, all eigenvalues
of s have order 8, so the characteristic polynomial xsgz is a power of ®g. Comparing
degrees yields ®g® = x,X5. But by [41, Prop.2.4], ®g is irreducible over Q[j] and
Q[¢r], a contradiction! So S is isomorphic to Zg, Zy4, or Qs.

If S is cyclic, then by [36, 10.1.9], there is a normal subgroup N of F such that
F = N x S. But all junior elements of F' have odd order, so they belong to N and
cannot generate F', contradiction! So S is isomorphic to Qg. |

Lemma 8.6. — Let B be an abelian sizfold. Let g € Aut(B,0) be an element of finite
order. Then g cannot have order 27,49, or 63.

Proof. — Tt is an immediate consequence of Lemma 3.7. O
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Lemwva 8.7. Let B be an abelian sizfold isogenous to either EjG or Eu76, and let
p = 3 in the first case, p = 7 in the second case. Let F' be a finite subgroup of Aut(B,0)
generated by junior elements of order p, satisfying the following condition: For any
non-trivial subgroup Fy < F such that dim Fix(Fy) > 1, Fy is generated by one junior
element of order p. Let ¢ =7 if p =3, ¢q =3 if p = 7. If q divides |F|, a q-Sylow
subgroup S of F is cyclic and has order 3,7, or 9.

Proof. — As Sis a g-group, there is an element g € Z(S) of order q. Let h € S~ {g) be
another element of order q. Because ¢ € {2, p}, the elements g, h € F cannot be powers
of junior elements, so by the subgroup condition in F, neither g nor h admits 1 as an
eigenvalue. By Lemma 3.7, since they have determinant one, and since B is isogenous
to EW6 if ¢ = 3 and EjG is ¢ = 7, the matrices g and h are similar to

{diag(j,j,j,ﬂf,j?) if g =3,
diag(¢r, ¢7°, G2, G4, (2, ¢8) ifg=T.

One can then find a non-trivial element of (g, h) with 1 as an eigenvalue. But as g
and h commute, it has order ¢ € {2, p}, contradiction. So (g) is the unique subgroup of
order ¢ in S. By [36, 5.3.6], S is thus cyclic, and its order is restricted by Lemma 8.6.

a

Lemwva 8.8. Let B be an abelian sizfold isogenous to either Ej6 or Eu76, and let
p = 3 in the first case, p = 7 in the second case. Let F be a finite subgroup of Aut(B,0)
generated by junior elements of order p, satisfying the following condition: For any
non-trivial subgroup Fy < F such that dim Fix(Fy) > 1, Fy is generated by one junior
element of order p.

Then a p-Sylow subgroup S of F is either cyclic, or the direct product of two cyclic
groups. In fact, S is isomorphic to one of the following groups

L3, Lo, L3 x L3, or Lz x Ly if p=3,
Z’y, or Z7 X Z7 pr =T.

Proof. — Let g € Z(S) be an element of order p. If (g) is the only subgroup of order p
in S, then by [36, 5.3.6], S is cyclic. Control on its order follows from Lemma 8.6 and
concludes this case.

From now on, we assume that (g) is not the only subgroup of order p in S. Let h
be an element of S whose class [h] has order p and is central in the p-group S/(g).
If we can show that ([h]) is the only subgroup of order p in the quotient group S/{g),
note that it concludes this proof. Indeed, if it is the case, then by [36, 5.3.6], S/(g) is
cyclic, and thus S/Z(S) is cyclic too. So S is abelian, and S ~ (g) x C for a cyclic
group C' containing (h). Control on the order of C' follows from Lemma 8.6, and then
concludes the proof. We now fix an element k € S such that [k] has order p in S/{g),
and are left to show that [h] and [k] span the same subgroup of S/{g).

If p =7, then g has an eigenvalue ¢ of order 7 with corresponding eigenspace Ey(()
of dimension 1. By Lemma 8.6, h and k have order 7 in S. As g commutes with h
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and k, we can thus choose h’' € [h], k" € [k] which both have 1 as an eigenvalue on
E4(C). Hence, the group (h', k") does not act freely in codimension 5 on B, so it is
cyclic generated by one junior element, and (h’) = (k') as wished.

If p = 3, let us show that jidp € S. By contradiction, suppose that elements of
order 3 in S are all similar to one of the following matrices

diag(1,1,1,7,7,7), diag(1,1,1,5%, 5%, j%), diag(j, , 4. 4%, 5%, j°).

Take s € S\ {(g). As g and s commute, a simple computation shows that one of the
products gs, g°s, gs?, g>s® will not fall under these three similarity classes, contra-
diction.

Hence, we can refine the choice of our central element g from here on by setting
g = jidp. A fortunate consequence of that choice, of Lemma 3.7, and of the fact
that matrices in S all have determinant 1 is that g has no cubic root in S, i.e., every
element of order 9 in S has a class of order 9 in S/(g). Hence, h and k above have
order 3. Moreover, recall that hkh=*k=1 € (g) = (jidg). If k is conjugated to jk
or j2k, then 1,7, and j2 each are eigenvalues of k, which contradicts the subgroup
condition on F again. Hence, hkh~! = k, i.e., h and k commute. They commute with g
as well, and thus we can find some non-trivial elements h’ € [h] and k' € [k] with a
common eigenvector of eigenvalue 1. So (h') = (k), which concludes this proof. O

Proof of Proposition 8.3. — We now run (see the appendix) a GAP search through all
groups with such 2,3, and 7-Sylow subgroups, which have at most an element of
order 2, and no element of order 63. Among the ninety-four of them, only Z; and
Z7 x Z7 can be generated by their elements of order 7, whereas Zs, Zs x Zs, SLa(F3),
Qs X (Z7 x Zs3), and Zz x (Qs X (Z7 x Z3)) can be generated by their elements of
order 3. However, it is easy to check that Qg x (Z7 x Z3), and Zs3 x (Qg % (Z7 x Zs))
have elements of order 28, which by Lemma 3.7 and [41, Prop. 2.4] cannot occur in
Ath(Ej6, 0)

The representation theoretic description is easily obtained from GAP for SLo(F3),
and follows from the condition about freeness in codimension 5 for Zs X Zs and
Z7 X Z7. U

8B RULING OUT JUNIOR ELEMENTS OF ORDER 6 WITH SIX NON-TRIVIAL EIGENVALUES

Prorosition 8.9. — Let A be an abelian variety, G a group acting freely in codimen-
sion 2 on A such that A/G has a K-trivial resolution. Then there is no junior element
of G with matriz similar to diag(1,_¢,w,w,w,w,w,w).

In order to prove this, we first reduce to a 6-dimensional situation, where a lot of
local information is given by Proposition 8.3.

Lemva 8.10. — Let A be an abelian variety, G a group acting freely in codimen-
sion 2 on A without translations such that A/G has a K-trivial resolution. Sup-
pose that there is an element g € G such that g(0) = 0, and with matriz similar to
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diag(1,—¢,w,w,w,w,w,w). Then there are complementary (g)-stable abelian subvari-
eties B and W in A such that g|p = widp and g|lw = idw . Moreover, for any T € B,
it holds PStab(W + 1) C PStab(W), and if 7 is a non-zero 2-torsion point of B,
we have PStab(W + 7) ~ SLa(F3).

Proof. — As in Lemma 5.6, we introduce Gy, the subgroup of G generated by
Ggen = Ggen ' = {h € G| 37 € A such that h € PStab(W + 1) }.

By Lemma 5.6 (1) (4), there is a Gy -stable complementary B to W. The fact that
widp € Aut(B,0) implies that B is isogenous to E;°, by Proposition 4.6.

We prove that Gy = PStab(1V). From that, it clearly follows that PStab(W +7) C
PStab(W) for any 7 € A. Let h € Gy . By Lemma 5.6 (6) for k =6, d =6, a = 3,
we have that g® and h commute, i.e., they are codiagonalizable. As the matrices M (g%)
and M (g) have exactly the same eigenspaces, the matrices M (g) and M (h) commute
too. Since G contains no translation, M is faithful, and thus ¢ and h commute.
By Lemma 5.6 (2), we have h(0) = T'(h) € B, hence g(h(0)) = wh(0). But since g
and h commute, we also have g(h(0)) = h(0). As by [6, Cor. 13.2.4], widp has exactly
one fixed point on B, namely 0, we obtain h(0) = 0, whence h € PStab(WV).

Consider now a non-zero 2-torsion point 7 € B. Then g2 fixes 7, but g does not, the
group PStab(W +7) contains g but not g. If PStab(W +7) contains a junior element h
of type diag(1,,—¢,w,w,w,w,w,w), then g and h coincide, a contradiction. Hence,
Proposition 8.3 can be applied to PStab(W + 7). Since its element g® has order 2,
it can only be isomorphic to SLo(F3), within the list given by Proposition 8.3. ]

Remark 8.11. — Note that we showed the following intermediate result: If G' contains
a junior element g of type diag(1,—¢,w,w,w,w,w,w) such that g(0) = 0, and W is the
maximal abelian subvariety of A fixed by g, then the group Gy defined in Lemma 5.6
equals PStab(W).

This description of the pointwise stabilizers of the translations of W by 2-torsion
points yields the following description of the much larger group PStab(W).

Lemma 8.12. — Let A be an abelian variety, G a group acting freely in codimen-
sion 2 on A without translations such that A/G has a K-trivial resolution. Sup-
pose that there is an element g € G such that g(0) = 0, and with matriz similar
to diag(1,_¢,w,w,w,w,w,w). Let B,W be as in Lemma 8.10. Then, every element
of prime order in PStab(W) has order 2 or 3. Moreover, a 2-Sylow subgroup Sa of
PStab(W) is isomorphic to Qs, and a 3-Sylow subgroup Ss contains an even num-
ber of junior elements. The group PStab(W) contains exactly 260 junior elements of
order 3.

Proof. — The group PStab(W) contains a unique element g of order 2, so by [36,
5.3.6], its 2-Sylow subgroup S5 is cyclic or a generalized quaternion group. Moreover,
PStab(W) acts on a complementary abelian variety to W, which is isomorphic to Ejﬁ
by Proposition 4.6, and the elements of PStab(1W) with 1 as an eigenvalue pointwise fix
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an abelian subvariety of A of codimension at least 5, and therefore by Proposition 7.1,
they are powers of junior elements. Hence, PStab(IW) C SLg(Q[j]) has no element
of order 8, so Sy is isomorphic to Zs,Z,4, or Qg. But by Lemma 8.10, a copy of
Qs C SLy(F3) embeds in PStab(W), and therefore Sy ~ Qs.

We now count the number of junior elements of order 3 in PStab(W) easily: Each
of them fixes exactly 2° — 1 non-zero 2-torsion points of B, and every non-zero
2-torsion point of B is fixed by exactly 4 junior elements by Lemma 8.4. Since B
has 2!2 — 1 non-zero 2-torsion points, the number of junior elements in PStab(W) is
(212 —1)-4/(25 — 1) = 260.

Now, consider an element h € PStab(W) of prime order gq. Suppose by contra-
diction that g # 2,3. By Lemma 8.4, we have ¢ = 7. Since SLg(Q[j]) has no junior
element of order 7 and by Proposition 7.1, h does not admit 1 as an eigenvalue.
Hence, all six eigenvalues of h have order 7. Note that h acts by conjugation on the
set of junior elements of PStab(WW), whose cardinal, which we just computed, is 260,
which is not divisible by 7. Hence, h commutes with a junior element k € PStab(WW),
so hk € PStab(W) has order 21, and admits three eigenvalues of order 7, and three
eigenvalues of order 21. By Lemma 3.7, ®7®2; thus divides the characteristic poly-
nomial of hk @ hk, but they have respective degrees ¢(7) + ¢(21) = 18 and 12,
a contradiction.

The group PStab(W) contains the element g2, which has order 3, yet is not junior.
Note that g? commutes with every element of PStab W, and thus belongs to any
3-Sylow subgroup of it. Let S3 be a 3-Sylow subgroup of PStab(W). Now, the group
homomorphism h € Ss — ¢?h? € S3 sends any junior element of order 3 to a junior
element of order 3, and it is a fixed-point-free involution. Hence, S3 contains an even
number of junior elements of order 3 (and any junior element contained in a S3 has
order a power of 3, hence exactly 3 anyways). ]

This result has the following consequence.

Cororrary 8.13. Let A be an abelian variety, G a group acting freely in codi-
mension 2 on A without translations such that A/G has a crepant resolution X.
Suppose that there is an element g € G such that g(0) = 0, and with matriz similar to
diag(1,—6,w,w,w,w,w,w). Let B,W be as in Lemma 8.10. Then the group PStab(W)
has ezactly four 3-Sylow subgroups S, T, U and V. Each 3-Sylow subgroup contains
exactly 65 junior elements.

Proof. By Lemma 8.12, there is a positive integer 8 such that
| PStab(W)| = 8 - 3°.
The number n3 of 3-Sylow subgroups in PStab(W) is thus either 1, or 4.
Let us fix 79 as a non-zero 2-torsion point in B. By Lemma 8.10, there are exactly
four junior elements s,t,u,v of order 3 in SLy(F3) ~ PStab(W + 79) C PStab(W).

We can check in the multiplication table of SLs(F3) that the product of any two
distinct elements of {s, ¢, u, v} has order 6. Hence, each 3-Sylow subgroup of PStab(W)
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contains at most one element of {s,t,u,v}. So ng > 4, hence ng = 4. Denote by
S, T, U, and V the four 3-Sylow subgroups of PStab(W).

We claim that the junior elements contained in S, T, U, and V form a partition of
the set of junior elements of PStab(W). If this claim is true, then by the second Sylow
theorem, these four partitioning pieces are in bijection, so each 3-Sylow subgroup has
260/4 = 65 junior elements.

Let us prove our claim. Consider a junior element h € PStab(W). Necessarily, it is
of order 3. By Lemma 5.6 (9), h fixes a non-zero 2-torsion point 7 € B, hence h belongs
to PStab(W + ), and in particular to one of the 3-Sylow subgroups of PStab(W + ).
Since the four 3-Sylow subgroups of SLa(FF3) ~ PStab(WW +7) are disjoint and coincide
with SNPStab(W +7), TNPStab(W +7), UNPStab(W 4 7), VNPStab(W +7), the
junior element A is contained in exactly one of them, and thus contained in exactly
one of S, T, U, V. This proves our claim, and concludes. O

Proofof Proposition 8.9. — By contradiction, suppose that G contains a junior ele-
ment g of type diag(1,_g,w,w,w,w,w,w). By Remark 5.4, we can assume that G
contains no translation other than ida, and up to conjugating the whole group by
a translation, we can assume that g(0) = 0. Now, Lemma 8.12 and Corollary 8.13
apply, but since 65 is odd, they contradict one another. O

8.C. Ruring our tHE poINTWISE STABILIZER SLo(F3). In this subsection, we prove
Proposition 8.2. Since Proposition 8.1 has been established in the previous section,
it is now enough to show the following:

Lemva 8.14. — Let A be an abelian variety on which a finite group G acts freely
in codimension 2 without translations. Suppose that A/G has a resolution X that is
a Calabi-Yau manifold. Then, there is no translated abelian subvariety W of codi-
mension 6 in A such that PStab(W) ~ SLo(F3) < G, with representation M =
1976 @ 693 4s in Proposition 8.1.

This result resembles [2, §6.1], although working under a different set of assump-
tions and in dimension 6.

Proof. — We prove it by contradiction, using global arguments. Consider such an
translated abelian subvariety W. Up to conjugating the whole group G by a transla-
tion, we can assume that 0 € W. Following Lemma 5.6, we define the group Gy and
a Gy-stable complementary B to W. The particular features of the representation
o3 : SLy(F3) — Aut(B,0) yield that B is isogenous to E;°. Let g € PStab(W) =~
SLo(F3) be the unique element of order 2. Recall that the matrix of g is given by the
representation o, so that g|p = —idp.

Step 1: If an element h € Gy fixes no point, then h has even order

Indeed, by Lemma 5.6 (6), either hg fixes a point 7, or 1 and —1 appear as eigenval-
ues of h. Clearly, h has even order in the second case. In the first case, hg actually is
in PStab(W + 1), and Propositions 8.1, 8.9 yield that PStab(W + 1) is isomorphic to
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Zs3, Z3 x Zs, or SLy(F3). So either hg has order 3, in which case h has even order 6, or
hg € PStab(W + 7) ~ SLo(F3) has order 2,4, or 6. But then, g € PStab(W + 1) since
Gw contains no translation. So h € PStab(W + 7) fixes some points, a contradiction!

Step 2: If an element h € Gw has prime order p, then p € {2,3}. Moreover, if p =3, his
a junior element or has junior square

If h fixes no point, by Step 1, we have p = 2. If h fixes a point, then by Proposi-
tion 8.1, and using the fact that B ~ Ejﬁ, we have p € {2,3}.

When p = 3, we thus also have h € PStab(W + 7) for some 7 € A. Apply Propo-
sition 8.1 to PStab(W + 7). Note that by Proposition 8.9, widp does not appear in
p(Gw), and as g|p = —idp does, jidp does not. In particular, PStab(WW 4 7) can not
the group Zs x Zs with the representation given by Proposition 8.1. In the remaining
two possible cases given by that proposition, every order 3 element of PStab(W + 1)
is junior or has junior square, and so is h.

Step 3: Any 3-Sylow subgroup S of Gw is isomorphic to Ls, generated by one junior ele-
ment

Let h € S be a non-trivial element. It has odd order, hence it fixes a point by
Step 1, and thus it has order 3 by Proposition 8.1. By Step 2, it is thus junior or a
square of a junior element.

Let s € Z(S) be non-trivial, hence again (the square of) a junior element. Let
us show that h € (s). As h and s commute, either they have the same eigenspace
for the eigenvalue 1, in which case h € (s) as wished, or E,(1) and Ej,(1) are in
direct sum, in which case jidp € (s|p, h|p), and so widp € p(Gw ), which contradicts
Proposition 8.9. Hence, h € (s) and thus S = (s) ~ Zs.

Step 4: 1f'Sa, Ss are 2 and 3-Sylow subgroups of Gw, then Gy = Sz % Ss

By Step 3, no two elements of S3 are conjugated in Gy, so Ng,, (S3) = Ca,, (53),
and by Burnside’s normal complement theorem [36, 10.1.8], there is a normal subgroup
N<Gw such that Gy = N x S3. By Step 2, N is a 2-group, and it is clearly maximal.
As it is normal, it is the unique 2-Sylow subgroup of G, so N = Ss.

Step 5: Sy has order 2°

We first count the number of junior elements in Gy . By Lemma 5.6 (9), every
junior element in Gy fixes at least one 2-torsion point in B. Since it acts trivially on
a 3-dimensional translated abelian subvariety of B, it fixes precisely 26 of the 2-torsion
points in B. Each 2-torsion point 7 in B is besides fixed by the four junior elements
of PStab(W + 7) ~ SLs(F3) (by Proposition 8.1 and since g of order 2 belongs to
PStab(W + 7)). Hence, there are 2!? x 4/26 = 28 junior elements in Gy .

Now, note that by Step 3, the number ng of 3-Sylow subgroups of Gy equals the
number of junior elements in Gy,. Hence, denoting by S3 a 3-Sylow subgroup of Gyy,

3|92| = |Gw| = n3|Na,, (S3)| = n3|Ca,, (S3)| =27 - 3,

since it is easily checked that Cg,, (S3) = (g, 53) ~ Zg < SLa(F3).
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Step 6: Denote by ma, my the number of elements of order 2 and 4 in Sa. Then mqy =
6-61+1and my =144

We first describe the order and trace of elements h € S5 different from id4 and g.
By Lemma 3.7, since B ~ Ejﬁ, and by [41, Prop. 2.4], the characteristic polynomial
of p(h) = M(h|p) satisfies

Xp(ny) = (X = 1)*(X +1)704(X) ®5(X)°,

with «, 8,7,6 > 0, B being even because of the determinant and o+ 8+ 27+ 49 =6
because of the dimension. Hence, « is even too. If af = 0, then by Lemma 5.6, there
is 7 € A such that h € PStab(W + 7) U g PStab(W + 7), so by Proposition 8.1, the
only possibility for h other than id and g satisfies x, ) = P43, hence o = 8 = 0.
Else, @ and 3 are positive. So, (a, f8,7,9) can be (0,0,3,0),(2,2,1,0),(2,4,0,0), or
(4,2,0,0). In particular, h has order 2 or 4, with order 4 if and only if Tr(h|g) = 0,
and order 2 if and only if Tr(h|p) € {-2,2}.

Decomposing the representation p|g, into irreducible subrepresentations yields a
splitting coefficient v € N such that u|S2| = 72 + 4(mg — 1), where my is the number
of elements of order 2 in S;. Denoting by my4 the number of elements of order 4 in Sy
and using Step 5, we rewrite (u —4) - 2% + 4my = 64. So u < 4.

Note that h € Gy junior of order 3 acts by conjugation on the set of elements
of order 2 of the normal subgroup S3, and the only fixed point is the element g €
Cayw ((hY). Hence, mg — 1 is divisible by 3. So w is divisible by 3, and thus v = 3, and
mo =6-614+ 1, and my = 144.

Step 7: But my > 6 - 26 contradiction!

Let us show that the number of elements of Gy of order 4 fixing a point is exactly
6-2%. By Lemma 5.6 (8), if h € Gy has order 4 and fixes a point, then all its 25 fixed
points in B are 2-torsion points of B. Moreover, by Proposition 8.1, for any 7 € B of
2-torsion, PStab(W + 7) ~ SLy(F3) contains exactly six elements of order 4. Hence
the count of 212 - 6/2° = 6 - 26 elements of order 4 fixing a point in Gyy.

And with this contradiction ends the proof of Lemma 8.14. |

Remark 8.15. — Local information would not have been enough to rule out SLy(F3).
Indeed, considering a simply-connected neighborhood U C C® of 0, which is stable by
the action of p®3 : SLy(F3) — SLg(Q[j]), the quotient U/SLo(F3) admits a crepant
resolution. Let us construct it.

Under the action of SLy(F3) on C, exactly four 3-dimensional linear subspaces
Z1,Z2, Z3, Z4 have non-trivial point-wise stabilizers (g1), (g2), (g3), (g4) ~ Z3, where
91, 92, g3, g4 are the four junior elements of SLy(F3). Using Macaulay?2, a quick com-
putation shows that the blow-up:

€:B:=Bly, n1,,n1,,nIz, (C%) —C°

is a smooth quasi-projective variety with a four-dimensional central fiber £~1(0).
In particular, B contains exactly four prime exceptional divisors E; (1 < i < 4),
one above each Z;.
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By the universal property of the blow-up, the action of SLy(F3) on C° lifts to an
action on B. The lifted automorphism g; fixes the exceptional divisor E; pointwise:
hence, locally, for any = € B, PStab(x) is generated by pseudo-reflections. Hence by
Chevalley-Shepherd-Todd theorem, the quotient X := B/SLy(F3) is smooth.

We are going to prove that the resolution X — C8/SLo(IF3) is crepant. As SLy(F3) C
GLg(C) has one conjugacy class of junior elements, by Theorem 2.4, there is exactly
one crepant divisor above C%/SLy(F3): A smooth resolution must contain this crepant
divisor, and is thus crepant if and only if it contains exactly one exceptional divisor.
This is clearly the case for X, since the action of Qg C SLs(F3) on B is transitive on
the set of the four prime exceptional divisors E1, Fs, E3,, Fy.

9. Proor or THEOREM 1.4
This is now straightforward.

Proofof Theorem 1.4. — Let X be a variety with ¢;(X) = 0, that is a resolution of
a quotient A/G where A is an abelian variety, and G is a finite group acting freely
in codimension 3 on A. By Lemma 2.12, there is a finite étale Galois cover X of X
which writes as a product
T
X =Bx JJR2
i=1

where each Y; is a Calabi-Yau manifold that resolves a quotient B;/H;, where B; is an
abelian variety and H; is a finite group acting freely in codimension 2 on B;. The fact
that G acts freely in codimension 3 on A yields that, for each index i, the group H;
acts freely in codimension 3 on B;.

Suppose that r > 1. Then, since each Y; satisfies ¢1(Y;) = 0 and m(Y;) = {1},
by Lemma 2.10, there is a point bi € B; such that PStab(b;) is a non-trivial sub-
group of H;. By Proposition 4.3, this subgroup PStab(b;) contains a junior element.
By Propositions 5.3, 5.5, 7.2, and 8.9, this junior element has eigenvalue 1 with mul-
tiplicity dim(B;) — 3, i.e., it stabilizes a translated abelian subvariety of B; of codi-
mension 3, a contradiction to our freeness-in-codimension-3 assumption.

So X = B is an abelian variety, so X itself is a quotient of the form B/Gal by a
finite group Gal acting freely on the abelian variety B. As quotient singularities are
rational, the resolution map ¢ : X — A/G is in fact an isomorphism, and thus G acts
freely on A, as wished. O

10. CoNcLupING THE PROOF OF THEOREM 1.7
Let us assemble the parts of the previous sections to prove Theorem 1.7.

Proof'of Theorem 1.7. — Let A be an abelian variety of dimension n, and let G be a
finite group acting freely in codimension 2 on A, such that A/G has a resolution X
that is a Calabi-Yau manifold. By Proposition 6.1, either A is isogenous to E;" and G
is generated by junior elements of order 3 and 6, or A is isogenous to E,," and G is
generated by junior elements of order 7. In particular, G is generated by its elements
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admitting fixed points. Also note that G contains no junior element of order 6 by
Propositions 5.5, 7.2, and 8.9.

Let us show that for any translated abelian subvariety W C A, the pointwise stabi-
lizer PStab(W) is abelian. First, it is generated by junior elements by Proposition 4.3.
Let g, h be two junior elements in PStab(W). As g and h both fix abelian varieties
(containing the origin 0) of codimension 3, their intersection W’ has codimension
3,4,5, or 6 in A. Now, by Proposition 8.2, PStab(WW’) is thus abelian, and therefore g
and h commute.

Moreover, any two junior elements g and h in PStab(I¥) have the same order
3if A~ E;", 7Tif A~ E,."). Hence, using the structure theorem for finite abelian
groups, PStab(W) is isomorphic to Zs* for some k if A ~ E;", to Z:* for some k
if A~ E,.". Finally, if g,h € PStab(W) are junior elements, then their eigenspaces
with eigenvalues other than 1 are in direct sum by Proposition 8.2. An induction using
that all junior elements of PStab(W) are codiagonalizable then concludes the proof
of Theorem 1.7. |

11. Proor oF THeEOREM 1.5

In this section, we proceed to the proof of Theorem 1.5, which in fact splits into
two pieces. The first piece describes a slight generalization of the situation in dimen-
sion 3 [30]. It notably gives an alternative proof of [30, Key Claim 2], replacing the
discussion on invariant cohomology and topological Euler characteristics inherent to
[30, §3] with group theory and a geometric fixed loci argument ruling out the special
linear group SL3(F5).

Tueorem 11.1. Let A be an abelian variety on which a finite group G acts freely in
codimension 2 without translations. Suppose that A/G has a resolution X which is a
Calabi-Yau manifold. Then, for any two junior elements g,h € G such that (g) # (h),
the intersection of eigenspaces Eyy(g)(1) N Epppy(1) does not have codimension 3 in
HO(A,Ty).

Turorem 11.2. — Let A be an abelian variety on which a finite group G acts freely in
codimension 2 without translations. Suppose that A/G has a resolution X which is a
Calabi- Yau manifold. Then, for any two junior elements g, h € G such that (g) # (h),
the intersection of eigenspaces Eny(g)(1) N Epppy (1) does not have codimension 4 in
HO(A,Ty).

Let us first show how these two results imply Theorem 1.5.

Proof'of Theorem 1.5 when assuming Theorems 11.1, 11.2. — We argue by contradic-
tion. Suppose that A is an abelian fourfold, that G is a finite group acting freely
in codimension 2, yet not freely, on A, and that A/G admits a resolution X with
¢1(X) = 0. By Lemma 2.12, X has a finite étale cover X that is one of the following:

« An abelian fourfold B: Then X itself is a quotient of the form B/Gal by a finite
group Gal acting freely on B. As quotient singularities are rational, the resolution map
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e: X — A/G is in fact an isomorphism, and thus G acts freely on A, a contradiction
to our assumptions;

« A product of the form E x X3 or E x X7, as wished;

« A Calabi-Yau fourfold resolving a quotient B/H with B an abelian fourfold,
and H a finite group acting freely in codimension 2 on B.

From here on, we argue by contradiction, assuming that X is a Calabi-Yau four-
fold. Up to replacing B by an isogenous variety, we can assume that H contains no
translation.

If H entails two junior elements g, h such that (g) # (h), then the intersection
of their eigenspaces Eps(g)(1) N Epry(1) is an intersection of two lines in a four-
dimensional vector space: It has dimension 0 or 1, hence codimension 3 or 4. This
contradicts the conclusions of Theorems 11.1 and 11.2.

So H has all of its junior elements contained in (g), and thus by the first point
of Theorem 1.7, H = (g) and ¢ has order 3 or 7, and admits 1 as an eigenvalue of
multiplicity one. Up to conjugating the whole group H by a translation, we can assume
g(0) = 0. Let E' C A be the elliptic curve containing 0 and fixed pointwise by g, and T
be its (g)-stable supplementary. The group H acts diagonally on the product E x T
by {idg} x (g|7), and the addition map F x T'— B is an H-equivariant isogeny by
[6, Th.13.2.8]. The volume form on E thus pulls back to a G-invariant 1-form on B,
and thus to a non-zero global holomorphic 1-form on the Calabi-Yau resolution X of
B/H, a contradiction. O

11.A. Proor or Turorem 11.1. — By Theorem 1.7, the proof reduces to the following
two cases. The first one is simple.

Prorosirion 11.3. — Let A be an abelian variety isogenous to E;". Let g, h € Aut(A)
be two junior elements of order 3 such that (g, h) contains no translation and no non-
junior element fixing points, and Enyg)(1) = Eppny(1). Then g = h.

Proof. — Recall that M : Aut(A) — Aut(A,0) which, to any automorphism
of A, associates its matrix, induces a representation of (g, h). As (g, h) contains no
translation, M is faithful. Applying Maschke’s theorem to the invariant subspace
Erg)(1) = Exny(1) in HY(Ty) yields an (M(g), M (h))-stable supplementary S
to it. Let p be the faithful representation of (g, h) obtained by restricting M to S.
By the classification of junior elements in Proposition 3.1, p(g) = p(h) = jids. But p
is faithful, and thus g = h. O

The second case is the following result.

Prorosirion 11.4. — Let A be an abelian variety isogenous to E,,.". Let g, h € Aut(A)
be two junior elements of order 7 such that (g, h) contains no translation and no non-
junior element fizing points, and Epq) (1) = Enn)(1). Then (g) = (h).

Its proof relies on two lemmas.
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Lemva 11.5. Let A be an abelian variety isogenous to E,.". Let g,h € Aut(A) be
two junior elements of order 7 such that (g,h) contains no translation and no non-
junior element fixing points, and Epypg) (1) = Enny(1). Then (g, h) is isomorphic
to Z7 or SL3(FF3).

Proof. — Up to conjugating both g and h by the same translation, we can assume
g(0) = 0. Let W be the abelian variety fixed by g, and let G := (g, h). Let Gy be the
subgroup of G defined by Lemma 5.6. Note that the condition Epzg) (1) = Epren)(1)
translates to the fact that Gy = (g, h).

Let p be the induced faithful representation of (g, h) defined in Lemma 5.6 (3). Let
k € (g, h). If k has a fixed point in A, then by assumption, k is junior of order 7. Else,
k has no fixed point in A, and thus by Lemma 5.6 (5), 1 is an eigenvalue of p(k).
In that case, since p(k) also has determinant 1, and by Lemma 3.7 and [41, Prop. 2.4],
the characteristic polynomial (defined over Q[ur]) of the three-by-three matrix p(k)
is one of the following;:

D13 01Dy%, BBy, BBy, By D

So, possible prime divisors of |{g, h)| belong to {2,3,7}.

Let us denote by x the character of the representation p.

Let S5 be a 2-Sylow subgroup of (g, h). It inherits the restricted representation p|s,,
with character x|g,, and splitting coeflicient vy. Since a non-trivial element g of Sy
has characteristic polynomial ®;®,? or ®;®y, it holds |x(g)|?> = 1, and thus

9+ 1S — 1 = (x|s,, X|s,) = v2]Sa],

with vy € N. In other words, (vy —1)|S2| = 8, and thus |S2| divides 8. Let Sz, S7 be 3-
and 7-Sylow subgroups of (g, h): Similarly, we obtain |S3| = 3 and |S7| = 7. Hence,
the order |{g, h)| is a divisor of 8-3-7 = 168. A GAP search (see the appendix) through
all groups of such order which have no element of order 12, 14, or 21, and which have
an either trivial or non-cyclic 2-Sylow subgroup [36, 10.1.9] yields three candidates:
Z7, Z7 x Zs, and SL3(F2). We exclude the second candidate as it is not generated by
its elements of order 7. |

We exclude SL3(FF3) by a geometric argument.

Levva 11.6. — Let A be an abelian variety isogenous to E,,". Let g,h € Aut(A)
be two junior elements of order 7 such that (g,h) contains no translation and no
non-junior element fizing points, and Enyg)(1) = Eppay(1). Then (g,h) cannot be
isomorphic to SL3(F2).

Proof. — We argue by contradiction. The multiplication table of (g, h) ~ SL3(F3)
shows that any element g of order 7 satisfies

Cgny((9)) = (9) and Ny pny((9))/Clg.n) ((9)) =~ Zs.
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Take an element k € N, 5y ({g)) of order 3. Denote by W1, ..., W7 the seven disjoint
translated abelian subvarieties of codimension 3 in A that g fixes pointwise. Then

7 7
k:<|_| Wi) = |wi.
=1 i=1

and since 3 and 7 are coprime, there is some 1 < ¢ < 7 such that k(W;) = W,.
Up to conjugating the whole group (g,h), we can assume that 0 € W;. We apply
Lemma 5.6 (2) to g, noting that W = W, and k € (g, h) < Gw . It shows that for any
w € W;, one has k(w) = w + T'(k), and pry,, (T'(k)) = 0. As k(W;) = W;, we obtain
T(k) = 0, so k has fixed points and order 3. In particular, it is not a power of a junior
element, contradiction. O

Proofof Proposition 11.4. — By Lemmas 11.5 and 11.6, we have (g, h) ~ Z7. But Z
has no proper subgroup, so (g) = (h). O

11.B. Proor or Turorem 11.2. — By Theorem 1.7, the proof reduces to the following
two cases.

Prorosition 11.7. — Let A be an abelian variety isogenous to E,,". Let g, h € Aut(A)
be two junior elements of order 7 such that (g, h) contains no translation and no non-
junior element fixing points. Then Eprg)(1) N Enny(1) cannot have codimension 4
in HO (Ta).

Prorosirion 11.8. — Let A be an abelian variety isogenous to E;"™. Let g, h € Aut(A)
be two junior elements of order 3 such that (g, h) contains no translation and no non-
junior element fixing points. Then Eprg)(1) N Enpy(1) cannot have codimension 4
mn HO (TA) .

Both propositions are proved by classifying matrices of elements in (g, h), and
using representation theory to infer contradictory properties of (g, h). We start with
one lemma used in the proof of Proposition 11.7.

Levmva 11.9. — Let A be an abelian variety isogenous to E,,". Let g,h € Aut(A) be
two junior elements of order 7 such that (g,h) contains no translation and no non-
Junior element fizing points, and Enyg)(1) N Eppy (1) has codimension 4 in HO(T4).
Then for every k € (g, h), the trace of M(k) ® M(k) is at least 2n — 8, and equals
2n — 7 if k is junior of order 7.

Proof. — Up to conjugating both g and h by the same translation, we can assume
9(0) = 0. Note that the linear automorphism M (h) also fixes 0, and let W be the
abelian variety fixed by (g, M(h)). It is a subvariety of codimension 4 of A. Let
G := (g, h). Let Gy be the subgroup of G defined by Lemma 5.6. Note that the fact
that Ens(g)(1)Nareny (1) = H°(Tw) C H°(T) translates to the fact that Gy = (g, h).
Consider the faithful representation p of (g, h) given by Lemma 5.6. It has rank 4.
Let k € (g,h). If k has a fixed point in A, then k is junior of order 7, and it is

clear from Proposition 3.1 that the trace of M (k) ® M (k) equals 2n — 7. Else, by
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Lemma 5.6 (5), 1 is an eigenvalue of the four-by-four matrix p(k). Since p(k) also has
determinant 1, and by Lemma 3.7 and [41, Prop. 2.4], its characteristic polynomial
(defined over Q[ur]) is one of the following:

01f, @7P2%, 01703, @17Py, 17,
(where the matrix p(k) has trace 4,0, 1,2, 3 respectively), or one of the following
O (X)(X? - X%+ ur X — 1), &1(X)(X? —ur X2+ 1w X — 1),

(where the matrix p(k) @ p(k) has trace 2 + ur + w7 = 1). The consequence is that
p(k) @ p(k) always has non-negative trace, which concludes. (|

From this lemma follows a reduction to codimension 3 that concludes the proof of
Proposition 11.7.

Proof of Proposition 11.7. — Assume by contradiction that Epsg)(1) N Epgy (1) has
codimension 4 in H°(T4). Denote by M the usual faithful matrix representation of
(g, h) into GL(H(Ta)), by Xas,(g,n) its character, and by 1 both the trivial represen-
tation of (g, h> and its character. We have

(o )= 3 TeM(E) =5 37 TeM(k)+ T M(E) > (n— 4)l{g, )],
ke(g,h) ke (g,h)
by Lemma 11.9, the inequality being strict since (g, h) contains at least one junior
element of order 7. Hence, 1 has multiplicity at least n — 3 as a subrepresentation
of M, i.e., Enr(g)(1) N Epg(ny(1) has codimension at most 3 in H%(T). O

We now prove an auxiliary lemma for Proposition 11.8.

Levva 11.10. — Let A be an abelian variety isogenous to E;"™. Let g, h € Aut(A) be
two junior elements of order 3 such that (g,h) contains no translation and no non-
junior element fizing points, and Epy(g)(1) N Eny (1) has codimension 4 in H°(Ty).
Then each non-trivial element of (g, h) has order 3.

Proof. — Up to conjugating both g and h by the same translation, we can assume
¢(0) = 0. Note that the linear automorphism M (h) also fixes 0, and let W be the
abelian variety fixed by (g, M(h)). It is a subvariety of codimension 4 of A. Let
G := (g,h). Let Gw be the subgroup of G defined by Lemma 5.6. Again, we have
Gw = {(g,h). Consider the faithful representation p of (g, h) of rank four given by
Lemma 5.6, with character y.

Let k € {(g,h). If k has a fixed point in A, then k is junior of order 3. Otherwise,
by Lemma 5.6 (5), 1 is an eigenvalue of p(k). In that case, since the intersection
E,g)(4) N Eyry(j) has dimension 2, one of the roots of unity 1, j, j2 must appear as
an eigenvalue of multiplicity 2 for p(k). By Lemma 3.7, [41, Prop. 2.4], and since p(k)
has determinant one, the characteristic polynomial of p(k), defined over Q[j], is one
of the following

D1t 317007, B17B;, 012Dy, B12Dg, O1(X)(X —j), &1 (X)(X — 523

So the order of k is 1, 3, or an even number.
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To conclude, it is enough to show that no element of (g,h) has order 2.
We prove it by contradiction: Suppose that k& € (g,h) is such that p(k) is simi-
lar to diag(1,1,—1,—1). As the eigenspace E,4)(j) has codimension 1, the matrix
p(gk) has j and —j as eigenvalues. In particular, it is not junior, and thus it fixes
no point. But its characteristic polynomial is not one of the polynomials listed above
either, a contradiction. O

Proof of Proposition 11.8. — Arguing by contradiction, we assume that the subspace
Eg)(1) N Epg(py(1) has codimension 4 in H°(T,). By Lemma 11.10, the non-trivial
four-by-four matrices in the group p({(g,h)) are each similar to one of the following:

(11.1) diag(1, j,4,7), diag(1,j2, 5% %), or diag(1,1,j,5%).

Note in particular that diag(j, j, j2,j%) is not an option (since it does not have 1 as
an eigenvalue, it would come from an element k € (g, h) which fixes a point, and yet
it is not junior, a contradiction).

As (g, h) is a 3-group, we can set k € Z({g, h)) to be a central element of order 3.
Since Epr(g)(1)NEnp) (1) has codimension 4 in H%(T4), we know that (g)N(h) = {1}.
Thus, up to renaming g and h into each other, we can assume k ¢ (g). If p(k) is similar
to diag(1,7,4,7) or diag(1, 52, j2,42), then p(gk) or p(g2k), respectively, has no 1 as
an eigenvalue, which contradicts (11.1). Hence, p(k) is similar to diag(1, 1, j, j2). Note
that E,4)(j) N Eyny(j) has dimension 2, and that any element of p({(g,h)) must be
a homothety on this 2-dimensional subspace. Given the matrix p(k), this means that
Eo)(G)NEyn)(4) = Epr)(1). Again, either p(gk) or p(g°k) has no 1 as an eigenvalue,
which contradicts (11.1). O

APPENDIX

GROUPS OF ORDER DIVIDING 240 WITH AN AUTOMORPHISM OF ORDER 7/
order_list := [];

nb_groups_of_order_list := [];

for a in [0..4] do
for b in [0..1] do
for ¢ in [0..1] do
n := (27a)*(3"b)*(57¢c);
Add (order_list, n);
Add (nb_groups_of_order_list, NumberSmallGroups(n));
od;
od;
od;

have_aut7 := [];

for i in [1..Length(order_list)] do

n := order_listl[il;
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for v in [1..nb_groups_of_order_list[i]] do

g := SmallGroup(n,v);

s := SylowSubgroup(g,2);

if StructureDescription(s) = "Q16" or StructureDescription(s)
Q8II

or StructureDescription(s) = "C16" or StructureDescription(s)
C8||

or StructureDescription(s) = "C4" or StructureDescription(s)

or StructureDescription(s) = "1" then

h := AutomorphismGroup(g);

if Order(h) mod 7 = O then
Add(1,(n,v));
fi;
fi;
od;
od;

REPRESENTATIONS OF Z3 X Zg

for v in [1..NumberSmallGroups(24)] do
g := SmallGroup (24, v);
if StructureDescription(g) = "C3,:,C8"
then Add(groups_checked, v);
tbl_conjcl := ConjugacyClasses(g);
nb_conjcl := Size(tbl_conjcl);
#locating the unique element of order 2
#among conjugacy classes of g
index_2 := 0;
for j in [1..nb_conjcl] do
o := Order (Representative(tbl_conjcl[jl));
if o = 2 then index_2 := j; fi;
od;
#only keeping trreducible characters sending
#the unique element of order 2 to -4id
T := Irr(g);
Tbis := [];
for k in [1..nb_conjcl] do
if T[k]l[index_21 + T[k1[1] = 0
then Add(Tbis,T[k]);
fi;
od;
Print (Tbis);
Print ("\n\n");
fi;
od;
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Prorosrrion 4.28: FIvE cANDIDATES FOR F'

[1;

nb_groups_of_order_list :=

order_list :=

[1;

for a in [3..4] do
for b in [0..1] do
for ¢ in [0..1] do
(27a)*(3"b)*(57c);
Add (order_list,

n :=
n);
Add (nb_groups_of_order_list, NumberSmallGroups(n));
od;
od;
od;

[1;

right_sylows_and_orders :=

right_sylows :=
[1;

for i in [1..Length(order_list)] do

n := order_listl[il;
for v in [1..nb_groups_of_order_list[i]] do
g := SmallGroup(n,v);
s := SylowSubgroup(g,2);
if StructureDescription(s) = "Q16" or StructureDescription(s) =
Q8" then
Add (right_sylows, [n,v]);
Add(right_sylows_and_orders, [n,v]);

tbl_conjcl := ConjugacyClassesByOrbits(g);
nb_conjcl := Size(tbl_conjcl);
remove_once_only := 0;

is_15 := 0;

is_20 := 0;

is_24 := 0;

for i in [1..nb_conjcl] do

o := Order (Representative(tbl_conjcl[il]));
if o = 15 then
is_15 := 1;
fi;
if o = 20 then
is_20 := 1;
fi;
if o = 24 then
is_24 := 1;
fi;
s := Size(tbl_conjcl[il);

if remove_once_only = 0 and

(o = 2 and s > 1) or (o mod 60 =

JEP.
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or (is_20 = 1 and o mod 15 = 0) or (is_24
0)
or (is_15 = 1 and o mod 20 = 0) or (is_24
0)
or (is_15 = 1 and o mod 24 = 0) or (is_20
0)) then
Remove (right_sylows_and_orders) ;
remove_once_only := 1;
fi;
od;
if remove_once_only = 0 and (1 - is_15)x(1 -
= 1 then
Remove (right_sylows_and_orders) ;
remove_once_only := 1;
fi;

fi;

od;

od;

1 and o

= 1 and o

1 and o

is_20) (1

mod 15

mod 20

mod 24

is_24)

Prorosition 4.28: TWo CANDIDATES GENERATED BY ELEMENTS OF THE RIGHT ORDER

testing :=

[[48,8],[48,27]1];

for i in [1..2] do

g =

SmallGroup(testing[i][1],testing[i]1[2]);

Print (StructureDescription(g));

tbl_conjcl := ConjugacyClasses(g);
nb_conjcl := Size(tbl_conjcl);
nb_elts_order_24 := 0;
for j in [1..nb_conjcl]l do
o := Order (Representative(tbl_conjcl[jl));
s := Size(tbl_conjcl[jl);
if o = 24 then
nb_elts_order_24 := nb_elts_order_24 + s;
fi;

od;
Print ("number_ of_elements of_order ,24:");
Print (nb_elts_order_24);

Print (", ") ;

Print ("\n");

od;

Print ("\n\n");

testing :=

[[40,4],[40,11]1,[80,1811;

for i in [1..3] do

JLEP
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g := SmallGroup(testing[i][1],testingl[i][2]);
Print (StructureDescription(g));
tbl_conjcl := ConjugacyClasses(g);
nb_conjcl := Size(tbl_conjcl);
nb_elts_order_20 := 0;
for j in [1..nb_conjcl] do
o := Order (Representative(tbl_conjcl[jl));
s := Size(tbl_conjcl[jl);
if o = 20 then
nb_elts_order_20 := nb_elts_order_20 + s;
fi;

od;
Print (", number of elements_ of order ,20:.,");
Print (nb_elts_order_20);
Print (" ");
Print ("\n");
od;

Prorosition 4.28: NONE ADMITTING THE RIGHT REPRESENTATION

tables_char_irr := [[1,[]];
indices_20 := [[],[11;
testing := [[40,11],[80,18]];

for i in [1..2] do

g := SmallGroup(testing[i][1], testingl[i][2]);
tbl_conjcl := ConjugacyClasses(g);
nb_conjcl := Size(tbl_conjcl);

#locating the unique element of order 2
#among conjugacy classes of g
index_2 := 0;
for j in [1..nb_conjcl] do
o := Order (Representative(tbl_conjcl[jl));
if o = 2 then
index_2 := j;
fi;
od;
#only keeping irreducible characters sending
#the unique element of order 2 to -1id
T := Irr(g);
Tbis := [];
for k in [1..nb_conjcl] do
if T[k][index_2] + T[k]J[1] = O then
Add (Tbis ,T[k]);
fi;
od;
Add(tables_char_irr[i], Tbis);
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Print (StructureDescription(g));
Print (", possibleirreducible representations have,characters: ");
Print (tables_char_irr[i]);
Print ("\n\n");
od;

POINTWISE STABILIZERS IN CODIMENSION O AS IN SUBSECTION S.A

order_list := [];

nb_groups_of_order_list := [];

for a in [0,3] do
for b in [0..3] do
for ¢ in [0..2] do
if b <= 1 or ¢ <= 1 then
n := (27a)*(3"b)*x(7"c);
Add (order_list, n);
Add (nb_groups_of_order_list, NumberSmallGroups(n));

fi;
od;
od;
od;
right_sylows := [];
right_sylows_and_orders := [];

for i in [1..Length(order_list)] do
n := order_list[i];

for v in [1..nb_groups_of_order_list[i]] do

g := SmallGroup(n,v);
s := SylowSubgroup(g,2);
t := SylowSubgroup(g,3);
u := SylowSubgroup(g,7);
if (StructureDescription(s) = "1" or StructureDescription(s) = "Q8
")
and (StructureDescription(t) = "1" or StructureDescription(t) = "
c3"
or StructureDescription(t) = "C9"
or StructureDescription(t) = "C3,x,C3"
or StructureDescription(t) = "C3_,x,C9")
and (StructureDescription(u) = "1" or StructureDescription(u) = "
cr"

or StructureDescription (u)
then Add(right_sylows, [n,v]);

"C7uxuC7")
Add(right_sylows_and_orders, [n,v]);

#we now remove of the list right_sylows_and_orders candidates with

elements
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#o0of inappropriate order 63, or with several elements of order 2

tbl_conjcl := ConjugacyClassesByOrbits(g);
nb_conjcl := Size(tbl_conjcl);
remove_once_only := 0;

for i in [1..nb_conjcl] do

o := Order (Representative(tbl_conjcl[il]));
s := Size(tbl_conjcll[il);
if remove_once_only = 0 and

((o = 2 and s > 1) or (o mod 63 = 0))
then Remove(right_sylows_and_orders);
remove_once_only := 1;
fi;
od;

od;
od;

describe := [];
for i in [1..Length(right_sylows_and_orders)] do
g := SmallGroup(right_sylows_and_orders([i][1],
right_sylows_and_orders[i][2]);
Add (describe, StructureDescription(g));
Print (StructureDescription(g));
Print ("\n\n");
od;

GROUPS OF ORDER DIVIDING 168 As 1x LEmma 11.5

order_list := [];

nb_groups_of_order_list := [];

for a in [0..3] do
for b in [0..1] do
n := (27a)*(37b)*7;
Add (order_list, n);
Add (nb_groups_of_order_list, NumberSmallGroups(n));

od;
od;
right_sylow := [];
right_sylow_description := [];

for i in [1..Length(order_list)] do
n := order_list[i];
for v in [1..nb_groups_of_order_list[i]] do
g := SmallGroup(n,v);
h

SylowSubgroup(g, 2);
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if StructureDescription(h) = "Q8" or StructureDescription(h) = "D8
n

or StructureDescription(h) = "1"

then Add(right_sylow, [n, vl);
Add(right_sylow_description, StructureDescription(g));

fi;
od;
od;
right_sylow_and_orders := [];
right_sylow_and_orders_description := [];

for element in right_sylow do

n := element[1];

v := element [2];

g := SmallGroup(n,v);

tbl_conjcl := ConjugacyClassesByOrbits(g);
nb_conjcl := Size(tbl_conjcl);
v_to_discard := 0;

for i in [1..nb_conjcl] do

o := Order (Representative(tbl_conjcl[il]));
if (o = 14 or o = 21 or o = 12) and v_to_discard = 0
then v_to_discard := 1;
fi;
od;
if v_to_discard = 0

then Add(right_sylow_and_orders, [n, v]);
Add(right_sylow_and_orders_description, StructureDescription(g))
fi;
od;

Print(right_sylow_and_orders);
Print ("\n");

Print(right_sylow_and_orders_description);
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