[Sur l’existence de filtrations gr-semi-stables d’une -connexion orthogonale/symplectique]
Dans cet article, nous étudions l’existence de filtrations gr-semi-stables pour des -connexions orthogonales/symplectiques. Il est connu que de telles filtrations existent toujours pour les fibrés plats en caractéristique arbitraire. Cependant, nous avons trouvé un contre-exemple pour les fibrés plats orthogonaux de rang . La nouvelle idée centrale de cet exemple est la notion de quasi gr-semi-stabilité pour les -connexions orthogonales/symplectiques. Nous établissons l’équivalence entre la gr-semi-stabilité et la quasi gr-semi-stabilité pour une -connexion orthogonale/symplectique. Cela permet de déterminer si une -connexion orthogonale/symplectique est gr-semi-stable. Comme application, nous obtenons une caractérisation des -connexions orthogonales gr-semi-stables de rang .
In this paper, we study the existence of gr-semistable filtrations of orthogonal/symplectic -connections. It is known that gr-semistable filtrations always exist for flat bundles in arbitrary characteristic. However, we found a counterexample of orthogonal flat bundles of rank 5. The central new idea in this example is the notion of quasi gr-semistability for orthogonal/symplectic -connections. We establish the equivalence between gr-semistability and quasi gr-semistablity for an orthogonal/symplectic -connection. This provides a way to determine whether an orthogonal/symplectic -connection is gr-semistable. As an application, we obtain a characterization of gr-semistable orthogonal -connections of rank .
Accepté le :
Publié le :
Keywords: Orthogonal/symplectic $\lambda $-connection, semistability, gr-semistability, quasi gr-semistability
Mot clés : $\lambda $-connexion orthogonale/symplectique, semi-stabilité, gr-semi-stabilité, quasi gr-semi-stabilité
Mao Sheng 1 ; Hao Sun 2 ; Jianping Wang 3
@article{JEP_2024__11__1181_0, author = {Mao Sheng and Hao Sun and Jianping Wang}, title = {On the existence of gr-semistable filtrations of orthogonal/symplectic $\lambda $-connections}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1181--1218}, publisher = {\'Ecole polytechnique}, volume = {11}, year = {2024}, doi = {10.5802/jep.276}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.276/} }
TY - JOUR AU - Mao Sheng AU - Hao Sun AU - Jianping Wang TI - On the existence of gr-semistable filtrations of orthogonal/symplectic $\lambda $-connections JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 1181 EP - 1218 VL - 11 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.276/ DO - 10.5802/jep.276 LA - en ID - JEP_2024__11__1181_0 ER -
%0 Journal Article %A Mao Sheng %A Hao Sun %A Jianping Wang %T On the existence of gr-semistable filtrations of orthogonal/symplectic $\lambda $-connections %J Journal de l’École polytechnique — Mathématiques %D 2024 %P 1181-1218 %V 11 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.276/ %R 10.5802/jep.276 %G en %F JEP_2024__11__1181_0
Mao Sheng; Hao Sun; Jianping Wang. On the existence of gr-semistable filtrations of orthogonal/symplectic $\lambda $-connections. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1181-1218. doi : 10.5802/jep.276. https://jep.centre-mersenne.org/articles/10.5802/jep.276/
[AHLH23] - “Existence of moduli spaces for algebraic stacks”, Invent. Math. 234 (2023) no. 3, p. 949-1038 | DOI | Zbl
[Ati57] - “Vector bundles over an elliptic curve”, Proc. London Math. Soc. (3) 7 (1957), p. 414-452 | DOI | Zbl
[BMW11] - “Orthogonal and symplectic parabolic bundles”, J. Geom. Phys. 61 (2011) no. 8, p. 1462-1475 | DOI | Zbl
[BP03] - “Semistable principal bundles. II. Positive characteristics”, Transform. Groups 8 (2003) no. 1, p. 3-36 | DOI | Zbl
[CH23] - “Low rank orthogonal bundles and quadric fibrations”, J. Korean Math. Soc. 60 (2023) no. 6, p. 1137-1169 | DOI | Zbl
[CS21] - “(G,P)-opers and global Slodowy slices”, Adv. Math. 377 (2021), article ID 107490, 43 pages | DOI | Zbl
[Gie73] - “Stable vector bundles and the Frobenius morphism”, Ann. Sci. École Norm. Sup. (4) 6 (1973), p. 95-101 | DOI | Numdam | Zbl
[GS03] - “Stable tensors and moduli space of orthogonal sheaves”, 2003 | arXiv
[HL10] - The geometry of moduli spaces of sheaves, Cambridge Math. Library, Cambridge University Press, Cambridge, 2010 | DOI
[KSZ21] - “Topological invariants of parabolic -Higgs bundles”, Math. Z. 297 (2021) no. 1-2, p. 585-632 | DOI | Zbl
[KSZ24] - “Logahoric Higgs torsors for a complex reductive group”, Math. Ann. 388 (2024) no. 3, p. 3183-3228 | DOI | Zbl
[Lan14] - “Semistable modules over Lie algebroids in positive characteristic”, Doc. Math. 19 (2014), p. 509-540 | DOI | Zbl
[Lov17a] - “Integral canonical models for automorphic vector bundles of abelian type”, Algebra Number Theory 11 (2017) no. 8, p. 1837-1890 | DOI | Zbl
[Lov17b] - “Filtered -crystals on Shimura varieties of abelian type”, 2017 | arXiv
[LSZ19] - “Semistable Higgs bundles, periodic Higgs bundles and representations of algebraic fundamental groups”, J. Eur. Math. Soc. (JEMS) 21 (2019) no. 10, p. 3053-3112 | DOI | Zbl
[Ram75] - “Stable principal bundles on a compact Riemann surface”, Math. Ann. 213 (1975), p. 129-152 | DOI | Zbl
[Ram96a] - “Moduli for principal bundles over algebraic curves. I”, Proc. Indian Acad. Sci. Math. Sci. 106 (1996) no. 3, p. 301-328 | DOI | Zbl
[Ram96b] - “Moduli for principal bundles over algebraic curves. II”, Proc. Indian Acad. Sci. Math. Sci. 106 (1996) no. 4, p. 421-449 | DOI | Zbl
[Sim92] - “Higgs bundles and local systems”, Publ. Math. Inst. Hautes Études Sci. (1992) no. 75, p. 5-95 | DOI | Numdam | Zbl
[Sim97] - “The Hodge filtration on nonabelian cohomology”, in Algebraic geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math., vol. 62, Part 2, American Mathematical Society, Providence, RI, 1997, p. 217-281 | DOI | Zbl
[Sim10] - “Iterated destabilizing modifications for vector bundles with connection”, in Vector bundles and complex geometry, Contemp. Math., vol. 522, American Mathematical Society, Providence, RI, 2010, p. 183-206 | DOI | Zbl
[Tu93] - “Semistable bundles over an elliptic curve”, Adv. Math. 98 (1993) no. 1, p. 1-26 | DOI | Zbl
[Yan22] - “A comparison of generalized opers and -opers”, Indian J. Pure Appl. Math. 53 (2022) no. 3, p. 760-773 | DOI | Zbl
Cité par Sources :