On the existence of gr-semistable filtrations of orthogonal/symplectic λ-connections
[Sur l’existence de filtrations gr-semi-stables d’une λ-connexion orthogonale/symplectique]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1181-1218.

Dans cet article, nous étudions l’existence de filtrations gr-semi-stables pour des λ-connexions orthogonales/symplectiques. Il est connu que de telles filtrations existent toujours pour les fibrés plats en caractéristique arbitraire. Cependant, nous avons trouvé un contre-exemple pour les fibrés plats orthogonaux de rang 5. La nouvelle idée centrale de cet exemple est la notion de quasi gr-semi-stabilité pour les λ-connexions orthogonales/symplectiques. Nous établissons l’équivalence entre la gr-semi-stabilité et la quasi gr-semi-stabilité pour une λ-connexion orthogonale/symplectique. Cela permet de déterminer si une λ-connexion orthogonale/symplectique est gr-semi-stable. Comme application, nous obtenons une caractérisation des λ-connexions orthogonales gr-semi-stables de rang 6.

In this paper, we study the existence of gr-semistable filtrations of orthogonal/symplectic λ-connections. It is known that gr-semistable filtrations always exist for flat bundles in arbitrary characteristic. However, we found a counterexample of orthogonal flat bundles of rank 5. The central new idea in this example is the notion of quasi gr-semistability for orthogonal/symplectic λ-connections. We establish the equivalence between gr-semistability and quasi gr-semistablity for an orthogonal/symplectic λ-connection. This provides a way to determine whether an orthogonal/symplectic λ-connection is gr-semistable. As an application, we obtain a characterization of gr-semistable orthogonal λ-connections of rank 6.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.276
Classification : 14D07, 14J60
Keywords: Orthogonal/symplectic $\lambda $-connection, semistability, gr-semistability, quasi gr-semistability
Mot clés : $\lambda $-connexion orthogonale/symplectique, semi-stabilité, gr-semi-stabilité, quasi gr-semi-stabilité

Mao Sheng 1 ; Hao Sun 2 ; Jianping Wang 3

1 Yau Mathematical Science Center, Tsinghua University, Beijing, 100084, China & Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Beijing, 101408, China
2 Department of Mathematics, South China University of Technology, Guangzhou, 510641, China
3 Yau Mathematical Science Center, Tsinghua University, Beijing, 100084, China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__1181_0,
     author = {Mao Sheng and Hao Sun and Jianping Wang},
     title = {On the existence of gr-semistable filtrations of orthogonal/symplectic $\lambda $-connections},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1181--1218},
     publisher = {\'Ecole polytechnique},
     volume = {11},
     year = {2024},
     doi = {10.5802/jep.276},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.276/}
}
TY  - JOUR
AU  - Mao Sheng
AU  - Hao Sun
AU  - Jianping Wang
TI  - On the existence of gr-semistable filtrations of orthogonal/symplectic $\lambda $-connections
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 1181
EP  - 1218
VL  - 11
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.276/
DO  - 10.5802/jep.276
LA  - en
ID  - JEP_2024__11__1181_0
ER  - 
%0 Journal Article
%A Mao Sheng
%A Hao Sun
%A Jianping Wang
%T On the existence of gr-semistable filtrations of orthogonal/symplectic $\lambda $-connections
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 1181-1218
%V 11
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.276/
%R 10.5802/jep.276
%G en
%F JEP_2024__11__1181_0
Mao Sheng; Hao Sun; Jianping Wang. On the existence of gr-semistable filtrations of orthogonal/symplectic $\lambda $-connections. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1181-1218. doi : 10.5802/jep.276. https://jep.centre-mersenne.org/articles/10.5802/jep.276/

[AHLH23] J. Alper, D. Halpern-Leistner & J. Heinloth - “Existence of moduli spaces for algebraic stacks”, Invent. Math. 234 (2023) no. 3, p. 949-1038 | DOI | Zbl

[Ati57] M. F. Atiyah - “Vector bundles over an elliptic curve”, Proc. London Math. Soc. (3) 7 (1957), p. 414-452 | DOI | Zbl

[BMW11] I. Biswas, S. Majumder & M. L. Wong - “Orthogonal and symplectic parabolic bundles”, J. Geom. Phys. 61 (2011) no. 8, p. 1462-1475 | DOI | Zbl

[BP03] V. Balaji & A. J. Parameswaran - “Semistable principal bundles. II. Positive characteristics”, Transform. Groups 8 (2003) no. 1, p. 3-36 | DOI | Zbl

[CH23] I. Choe & G. H. Hitching - “Low rank orthogonal bundles and quadric fibrations”, J. Korean Math. Soc. 60 (2023) no. 6, p. 1137-1169 | DOI | Zbl

[CS21] B. Collier & A. Sanders - “(G,P)-opers and global Slodowy slices”, Adv. Math. 377 (2021), article ID 107490, 43 pages | DOI | Zbl

[Gie73] D. Gieseker - “Stable vector bundles and the Frobenius morphism”, Ann. Sci. École Norm. Sup. (4) 6 (1973), p. 95-101 | DOI | Numdam | Zbl

[GS03] T. L. Gómez & I. Sols - “Stable tensors and moduli space of orthogonal sheaves”, 2003 | arXiv

[HL10] D. Huybrechts & M. Lehn - The geometry of moduli spaces of sheaves, Cambridge Math. Library, Cambridge University Press, Cambridge, 2010 | DOI

[KSZ21] G. Kydonakis, H. Sun & L. Zhao - “Topological invariants of parabolic G-Higgs bundles”, Math. Z. 297 (2021) no. 1-2, p. 585-632 | DOI | Zbl

[KSZ24] G. Kydonakis, H. Sun & L. Zhao - “Logahoric Higgs torsors for a complex reductive group”, Math. Ann. 388 (2024) no. 3, p. 3183-3228 | DOI | Zbl

[Lan14] A. Langer - “Semistable modules over Lie algebroids in positive characteristic”, Doc. Math. 19 (2014), p. 509-540 | DOI | Zbl

[Lov17a] T. Lovering - “Integral canonical models for automorphic vector bundles of abelian type”, Algebra Number Theory 11 (2017) no. 8, p. 1837-1890 | DOI | Zbl

[Lov17b] T. Lovering - “Filtered F-crystals on Shimura varieties of abelian type”, 2017 | arXiv

[LSZ19] G. Lan, M. Sheng & K. Zuo - “Semistable Higgs bundles, periodic Higgs bundles and representations of algebraic fundamental groups”, J. Eur. Math. Soc. (JEMS) 21 (2019) no. 10, p. 3053-3112 | DOI | Zbl

[Ram75] A. Ramanathan - “Stable principal bundles on a compact Riemann surface”, Math. Ann. 213 (1975), p. 129-152 | DOI | Zbl

[Ram96a] A. Ramanathan - “Moduli for principal bundles over algebraic curves. I”, Proc. Indian Acad. Sci. Math. Sci. 106 (1996) no. 3, p. 301-328 | DOI | Zbl

[Ram96b] A. Ramanathan - “Moduli for principal bundles over algebraic curves. II”, Proc. Indian Acad. Sci. Math. Sci. 106 (1996) no. 4, p. 421-449 | DOI | Zbl

[Sim92] C. T. Simpson - “Higgs bundles and local systems”, Publ. Math. Inst. Hautes Études Sci. (1992) no. 75, p. 5-95 | DOI | Numdam | Zbl

[Sim97] C. T. Simpson - “The Hodge filtration on nonabelian cohomology”, in Algebraic geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math., vol. 62, Part 2, American Mathematical Society, Providence, RI, 1997, p. 217-281 | DOI | Zbl

[Sim10] C. T. Simpson - “Iterated destabilizing modifications for vector bundles with connection”, in Vector bundles and complex geometry, Contemp. Math., vol. 522, American Mathematical Society, Providence, RI, 2010, p. 183-206 | DOI | Zbl

[Tu93] L. W. Tu - “Semistable bundles over an elliptic curve”, Adv. Math. 98 (1993) no. 1, p. 1-26 | DOI | Zbl

[Yan22] M. Yang - “A comparison of generalized opers and (G,P)-opers”, Indian J. Pure Appl. Math. 53 (2022) no. 3, p. 760-773 | DOI | Zbl

Cité par Sources :