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ON THE EXISTENCE OF GR-SEMISTABLE FILTRATIONS

OF ORTHOGONAL/SYMPLECTIC λ-CONNECTIONS

by Mao Sheng, Hao Sun & Jianping Wang

Abstract. — In this paper, we study the existence of gr-semistable filtrations of orthogo-
nal/symplectic λ-connections. It is known that gr-semistable filtrations always exist for flat
bundles in arbitrary characteristic. However, we found a counterexample of orthogonal flat
bundles of rank 5. The central new idea in this example is the notion of quasi gr-semistability
for orthogonal/symplectic λ-connections. We establish the equivalence between gr-semistability
and quasi gr-semistablity for an orthogonal/symplectic λ-connection. This provides a way to
determine whether an orthogonal/symplectic λ-connection is gr-semistable. As an application,
we obtain a characterization of gr-semistable orthogonal λ-connections of rank ⩽ 6.

Résumé (Sur l’existence de filtrations gr-semi-stables d’une λ-connexion orthogonale/symplec-
tique)

Dans cet article, nous étudions l’existence de filtrations gr-semi-stables pour des λ-con-
nexions orthogonales/symplectiques. Il est connu que de telles filtrations existent toujours pour
les fibrés plats en caractéristique arbitraire. Cependant, nous avons trouvé un contre-exemple
pour les fibrés plats orthogonaux de rang 5. La nouvelle idée centrale de cet exemple est la notion
de quasi gr-semi-stabilité pour les λ-connexions orthogonales/symplectiques. Nous établissons
l’équivalence entre la gr-semi-stabilité et la quasi gr-semi-stabilité pour une λ-connexion ortho-
gonale/symplectique. Cela permet de déterminer si une λ-connexion orthogonale/symplectique
est gr-semi-stable. Comme application, nous obtenons une caractérisation des λ-connexions
orthogonales gr-semi-stables de rang ⩽ 6.

Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1182
2. Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1184
3. Quasi gr-semistable filtration: odd rank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1191
4. Quasi gr-semistable filtration: even rank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1200
5. Classification of quasi gr-semistable orthogonal λ-connections in small ranks .1203
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1217

Mathematical subject classification (2020). — 14D07, 14J60.
Keywords. — Orthogonal/symplectic λ-connection, semistability, gr-semistability, quasi gr-semi-
stability.

The first and third named authors are partially supported by the National Key R and D Program of
China 2020YFA0713100, CAS Project for Young Scientists in Basic Research Grant No. YSBR-032.
The second named author is supported by Guangdong Basic and Applied Basic Research Foundation
2024A04J0334 and 2024A1515011583.

e-ISSN: 2270-518X http://jep.centre-mersenne.org/

http://jep.centre-mersenne.org/


1182 M. Sheng, H. Sun & J. Wang

1. Introduction

Let X be a smooth projective variety over an algebraically closed field k. Given
λ ∈ k, a λ-connection on a vector bundle V over X is a k-linear morphism

∇ : V −→ V ⊗ ΩX ,

satisfying the so-called λ-Leibniz rule. It is integrable if it satisfies the integrability
condition ∇2 = 0. When λ = 1, (V,∇) is a flat bundle, while when λ = 0, the pair
is a Higgs bundle. When k = C, Simpson considered the moduli space MHod(X, r) of
(Gieseker) semistable integrable λ-connections on X of rank r, and showed that there
is a natural morphism

MHod(X, r) −→ A1, (V,∇, λ) 7→ λ

such that the preimage of λ = 0 is the Dolbeault moduli space MDol(X, r) and the
preimage of λ = 1 is the de Rham moduli space MdR(X, r) [Sim97, Prop. 4.1]. There
is a natural Gm-action on MHod(X, r), i.e.,

t · (V,∇, λ) := (V, t∇, tλ),

and consider the limit limt→0(V, t∇, tλ). In the case of curves (hence Gieseker semista-
bility coincides with slope semistability), the limit limt→0(V, t∇, tλ) always exists
[Sim10, Lem. 4.1]. Moreover, Simpson gave an effective approach to find such a limit,
which is called iterated destabilizing modifications [Sim10]. We briefly review the back-
ground of this approach. Let (V,∇) be a flat bundle. An effective finite decreasing
filtration of subbundles

Fil : 0 = Film ⊂ Film−1 ⊂ · · · ⊂ Fil0 = V

is called a Hodge filtration of (V,∇) if Fil satisfies the Griffiths transversality condition:

∇(Fili+1) ⊂ Fili ⊗ ΩX , i ⩾ 1.

From a Hodge filtration we shall obtain a well-defined Higgs bundle (E, θ) by taking
grading, where E := GrFil(V ) and θ is induced by ∇. If (E, θ) is semistable as a Higgs
bundle, then we say the Hodge filtration is gr-semistable. In fact, Simpson proved
that gr-semistable filtrations always exist, which gives an alternative way to prove
that the limit limt→0(V, t∇, tλ) exists. The notion of a gr-semistable Hodge filtration
(with respect to a chosen polarization) has been generalized to a high dimensional
base ([LSZ19, Lan14]). Here we shall make the existence of a gr-semistable Hodge
filtration as a defining property of a λ-connection, which is termed as gr-semistability
(see Definition 2.19). It has the following fundamental significance.

Theorem 1.1 (Simpson [Sim10, Th. 2.5], Lan-Sheng-Yang-Zuo [LSZ19, Th. A.4],
Langer [Lan14, Th. 5.5])

Let k be an algebraically closed field and X a smooth projective variety over k,
equipped with an ample line bundle L. Let (V,∇) be an integrable λ-connection
over X. Then (V,∇) is µL-semistable if and only if it is µL-gr-semistable.
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Existence of gr-semistable filtrations 1183

The above theorem provides an alternative way to understand semistability for
flat bundles in positive characteristic and the result plays a crucial role in the theory
of semistable Higgs-de Rham flows [LSZ19] and then its subsequent applications.
Furthermore, when L is clear in the context, we shall omit µL when we are speaking
about slope semistability. In fact, we shall simply speak of semistability as we shall
only deal with slope semistability throughout the paper.

In our attempt to generalize the theory of semistable Higgs-de Rham flows to
the case of principal bundles, we found a different phenomenon, as we shall explain
below. On the other hand, our study has also been driven by the following question of
Simpson, which he proposed after he proved the existence of the limit limt→0(V, t∇, tλ)

in the case of principal bundles ([Sim10, Cor. 8.3]).

Question 1.2 ([Sim10, Quest. 8.4]). — How to give an explicit description of the limit-
ing points in terms of Griffiths-transverse parabolic reductions in the case of principal
bundles?

In this paper, we shall study this question, together with his proposal, in the special
case of orthogonal/symplectic bundles.

During the study of this problem, we find the following example indicating that
the approach of iterated destabilizing modifications does not work any more in the
case of orthogonal bundles, and thus principal bundles.

Example 1.3 (Example 5.7). — We find an example of an orthogonal connection
of rank 5 in characteristic zero, which is not gr-semistable. We refer the reader to
Example 5.7 for more details.

Let X be a complex smooth projective curve with genus g ⩾ 2. We fix a rank 2

stable vector bundle M on X with deg(M) = d > 0, and we suppose g > d+1. With
respect to the above setup, we can choose a nontrivial extension

0 −→ OX −→ M ′ −→ det(M∨) −→ 0.

Then we define E := M ⊗M ′ together with a natural orthogonal structure given as
follows

⟨ , ⟩E : E ⊗ E
∼=−−−→ M ⊗M ⊗M ′ ⊗M ′ −→ ∧2M ⊗ ∧2M ′

∼=−−−→ det(M)⊗ det(M∨) ∼= OX ,

and then we obtain a rank 4 orthogonal bundle (E, ⟨ , ⟩E). We construct an orthogonal
connection ∇0 on E and define a rank 5 orthogonal connection (V, ⟨ , ⟩,∇) as follows:

– V := E ⊕ OX ,
– the orthogonal structure ⟨ , ⟩ on V is induced by ⟨ , ⟩E and the trivial one on OX ,
– ∇ := ∇0 ⊕ dcan, where dcan : OX → ΩX is the exterior differential.

This orthogonal connection (V, ⟨ , ⟩,∇) does not admit any orthogonal Hodge filtra-
tion so that its associated graded orthogonal Higgs bundle is semistable.

J.É.P. — M., 2024, tome 11
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The example shows that the analogue of Theorem 1.1 is false in the case of orthog-
onal integrable connections. That is, the notion of gr-semistability is strictly stronger
than that of semistability for orthogonal integrable connections. Moreover, Alper,
Halpern-Leistner and Heinloth introduces a powerful semistable reduction theorem
for Θ-stability condition [AHLH23, Th. 6.5], which can be used to prove the existence
of such a limit for the corresponding moduli stacks under a certain base change. Based
on Alper–Halpern-Leistner–Heinloth’s result, our example actually shows that if we
do not allow to choose a base change, such a limit may not exist. We will discuss this
property in a future project about Higgs-de Rham flow for principal bundles. To the
positive side of this study, we obtained the following theorem, which is the main result
of the paper.

Theorem 1.4 (Theorem 3.12 and 4.9). — Let k,X,L be as in Theorem 1.1. Let D

be a reduced normal crossing divisor on X. Let (V, ⟨ , ⟩,∇) be a logarithmic orthog-
onal/symplectic λ-connection. Then it is gr-semistable if and only if it is semistable
and quasi gr-semistable.

Remark 1.5. — We also consider ΩX(logD)-valued λ-connections, which is termed
as logarithmic λ-connections. Note that the integrability condition on a λ-connection
is not required in the statement.

The definition of quasi gr-semistability is somewhat technical. See Definitions 3.1
and 4.3 for a precise formulation. Roughly speaking, the quasi gr-semistability is a
necessary and sufficient condition, under which the method of iterated destabilizing
modification works.

The structure of the paper is manifest: after laying down the necessary setup and
terminologies in Section 2, we establish the main result in Section 3 and Section 4.
In Section 5, we explicate the quasi gr-semistability in small ranks, viz. rk(V ) ⩽ 6.

Acknowledgements. — The authors would like to thank the anonymous referee for nu-
merous helpful comments and suggestions, which improved the quality of the present
article.

2. Preliminaries

Let X be a smooth projective variety over an algebraically closed field k with
a fixed reduced normal crossing divisor D =

∑k
i=1 Di. Denote by ΩX the cotan-

gent sheaf of X. In Section 2.1, we review the correspondence between Rees G-
bundles and filtered G-bundles studied in [Lov17a, Lov17b]. The correspondence
gives a way to study filtered G-bundles by taking an appropriate faithful represen-
tation G → GL(W ) and consider the corresponding filtered bundles. Based on this
idea, we give the definition of filtered orthogonal/symplectic sheaves, which is also
considered in [GS03, §5]. Then, in Section 2.2, we introduce the main objects stud-
ied in this paper, the Hodge filtered logarithmic orthogonal/symplectic λ-connections
(V, ⟨ , ⟩,∇,Fil) (Definition 2.11), where (V, ⟨ , ⟩) is an orthogonal/symplectic sheaf,

J.É.P. — M., 2024, tome 11
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∇ is an orthogonal/symplectic λ-connection and Fil is an orthogonal/symplectic fil-
tration obeying Griffiths transversality. In the end of this section, we discuss the
stability condition of (V, ⟨ , ⟩,∇) and its Harder–Narasimhan filtration.

2.1. Rees construction. — In this subsection, we briefly review Rees construction,
which gives a correspondence between filtered G-bundles on X and Gm-equivariant
G-bundles on X×A1. We refer the reader to [Lan14, Lov17a, Lov17b] for more details.

Let V be a vector bundle (locally free sheaf) of finite rank on X together with a
filtration

Fil : 0 = Film ⊆ Film−1 ⊆ · · · ⊆ Fil0 = V

of subbundles on X. Furthermore, we always assume that Fili = 0 for i ⩾ m and
Fili = V for i ⩽ 0. Such a pair (V,Fil) is called a filtered bundle on X.

Now we consider Rees bundles. A Rees bundle on X is a Gm-equivariant bundle V

of finite rank on X × A1 (with respect to the natural Gm-action on A1). Let A1 =

Spec k[t]. As proved in [Lov17b, Lem. 2.1.3], a Rees bundle on X is equivalent to a
triple (V,V, φ) such that

– V is a vector bundle over X × A1,
– V is a vector bundle over X,
– φ : V|t ̸=0

∼=→ π∗
XV is an isomorphism, where πX is the projection to X, such that

there exist generators ṽi for V and vi for V satisfying φ(ṽi) = vi ⊗ tni , where ni ∈ Z.
Applying the argument of [Lov17b, Prop. 2.1.5], we have the following equivalence.

Lemma 2.1. — The category FilX of filtered bundles on X is equivalent to the category
ReesX of Rees bundles on X. Moreover, the equivalence holds as tensor categories.

Proof. — We only give the correspondence briefly. Given a filtered bundle (V,Fil),
we define a bundle

V :=
∑

t−iFili ⊗OX
OX×A1

on X×A1 together with a natural Gm-equivariant structure induced from that on A1.
Clearly, V is a Rees bundle on X.

On the other direction, given a Rees bundle V on X, denote by V := V|t=1 the
restriction to t = 1. We will give a filtration on V by working locally on an affine open
subset U ⊆ X, over which V (U) is a free OX -module. Let {vi} be a set of generators
of V (U) and let {ṽi} be a set of generators of V|t̸=0(U × Gm) such that φ(ṽi) =

vi ⊗ tni under the isomorphism φ : V|t ̸=0
∼= π∗

XV . Since V (U) is free, we can assume
that {vi} is a basis of V (U). Then, given an integer i, we define a free submodule
Fili(U) ⊆ V (U), which is spanned by vj such that nj ⩽ −i. In other words, Fili(U)

includes all sections v ∈ V (U) such that the vanishing order of ṽ at t = 0 is at least i.
Clearly, Fili+1(U) ⊆ Fili(U) and we obtain a filtration of V (U). By patching together
Fili(U), we obtain a subbundle Fili ⊆ V , and thus a filtration of subbundles of V as
desired. □

J.É.P. — M., 2024, tome 11
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Remark 2.2. — Given a filtered bundle (V,Fil), we can define a graded bundle
GrFil(V ) :=

⊕m−1
i=0 Fili/Fili+1, which is also the restriction of the corresponding Rees

bundle V to t = 0.

Now we consider the case of principal bundles. Let G be a connected reductive
group over k. Similar to the case of vector bundles, a Rees G-bundle is defined as
a Gm-equivariant G-bundle on X × A1. Now we will give an equivalent definition
of Rees G-bundle in the viewpoint of Tannakian categories. Denote by Rep(G) the
category of G-representations with values in free k-modules of finite rank, which is
a (rigid) tensor category. Recall that a G-bundle is equivalent to a faithful exact
tensor functor Rep(G) → VectX (see [Sim92, §6] for instance). Now we choose a
representation ρ : G → GL(W ) and a Rees G-bundle E, and define the associated
bundle E ×G W , which is a Rees bundle on X. This construction induces a fiber
functor Rep(G) → ReesX . Lovering proved the following equivalence of categories.

Lemma 2.3 ([Lov17b, Prop. 2.2.7]). — The category ReesGX of Rees G-bundles is equiv-
alent to the category Fib(Rep(G),ReesX) of fiber functors Rep(G) → ReesX .

For a filtered G-bundle, it is defined as a pair (E, σ), where E is a G-bundle and
σ : X → E/P is reduction of structure group for some parabolic subgroup P ⊆ G.
Similar to Lemma 2.3, we have the following equivalent description:

Lemma 2.4 ([Lov17a, §3]). — The category FilGX of filtered G-bundles is equivalent to
the category Fib(Rep(G),FilX) of fiber functors Rep(G) → FilX .

Combining Lemma 2.1, 2.3 and 2.4 altogether

ReesGX Fib(Rep(G),ReesX)

FilGX Fib(Rep(G),FilX),

Lemma 2.3

Lemma 2.1

Lemma 2.4

we see that the category ReesGX of Rees G-bundles is equivalent to the category FilGX of
filtered G-bundles. The approach of Tannakian categories not only gives an equivalent
description of G-bundles, Rees G-bundles and filtered G-bundles theoretically, but also
provides an effective way to work on specific groups.

Now we take G to be orthogonal/symplectic groups, and denote by G ↪→ GL(W )

the standard representation. Therefore, an orthogonal/symplectic bundle E is equiv-
alent to a pair (V, ⟨ , ⟩), where V := E ×G W is the associated bundle and ⟨ , ⟩ is a
nondegenerate symmetric/skew-symmetric bilinear form. Since the base variety X is
of arbitrary dimension, it is more flexible to work with orthogonal/symplectic sheaf
(see also [GS03, §5]).

Definition 2.5. — An orthogonal/symplectic sheaf is a pair (V, ⟨ , ⟩) such that
(1) V is a torsion free coherent sheaf over X,

J.É.P. — M., 2024, tome 11



Existence of gr-semistable filtrations 1187

(2) ⟨ , ⟩ : V ⊗ V → OX is a symmetric/skew-symmetric OX -bilinear form and
nondegenerate on U ⊆ X, where U is an open subset contained in the locally free
locus of V with codim(X\U) ⩾ 2,

(3) det(V )2 ∼= OX .

The pairing induces an OX -linear morphism ⟨ , ⟩ : V → V ∨, which is an isomor-
phism over U .

Definition 2.6. — Let (V, ⟨ , ⟩) be an orthogonal/symplectic sheaf and let F ⊂ V be
a saturated subsheaf.

(1) We call F⊥ := ker(V
⟨ , ⟩→ V ∨ → F∨) the orthogonal complement of F .

(2) F is isotropic if ⟨ , ⟩|F⊗F = 0. It is easy to check that F is isotropic if and only
if F ⊂ F⊥.

A filtered orthogonal/symplectic bundle is a pair (E, σ), where σ : X → E/P

is a reduction of structure group. By Lemma 2.4, it is equivalent to a fiber functor
Rep(G) → FilX . Choosing the standard representation G ↪→ GL(W ), reductions of
structure group of E correspond to filtrations of isotropic subbundles of V := E×GW

and we refer the reader to [CS21, §6] and [Yan22, §5] for more details. Then a sheaf
version is given as follows.

Definition 2.7. — Let (V, ⟨ , ⟩) be an orthogonal/symplectic sheaf. An orthogo-
nal/symplectic filtration of (V, ⟨ , ⟩) is a filtration of saturated subsheaves

Fil : 0 = Film ⊂ Film−1 ⊂ · · · ⊂ Fil0 = V

such that Fili = Fil⊥m−i. Furthermore, a filtration of saturated subsheaves will be
called a saturated filtration for simplicity.

Remark 2.8. — Let (V, ⟨ , ⟩) be an orthogonal/symplectic sheaf together with an
orthogonal/symplectic filtration Fil. There is a natural orthogonal/symplectic struc-
ture on the graded bundle GrFil(V ) :=

⊕m−1
i=0 Fili/Fili+1 induced by that on

Fili
Fili+1

⊕ Film−i−1

Film−i

∼=
Fili

Fili+1
⊕

Fil⊥i+1

Fil⊥i
,

which is denoted by ⟨ , ⟩. Then, we obtain a graded orthogonal/symplectic sheaf
(GrFil(V ), ⟨ , ⟩). Moreover, in the case of orthogonal/symplectic bundles, the graded
orthogonal/symplectic bundle (GrFil(V ), ⟨ , ⟩) we obtain is exactly the restriction of
the corresponding orthogonal/symplectic Rees bundle to t = 0 as given in Remark 2.2.

2.2. Logarithmic Orthogonal/Symplectic λ-connections

Definition 2.9. — Let (V, ⟨ , ⟩) be an orthogonal/symplectic sheaf on X. Let λ ∈ k.
A logarithmic orthogonal/symplectic λ-connection is a k-linear map

∇ : V −→ V ⊗ ΩX(logD)

such that on each open subset U ⊆ X, it satisfies

J.É.P. — M., 2024, tome 11
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(1) Leibniz rule:
∇(fa) = λa⊗ df + f∇(a),

where f ∈ OX(U), a ∈ V (U) and d : OX → OX is the exterior differential;
(2) Compatibility:

⟨∇(a), b⟩+ ⟨a,∇(b)⟩ = λd⟨a, b⟩,

where a, b ∈ V (U).
In this paper, a logarithmic orthogonal/symplectic λ-connection will be called an
orthogonal/symplectic λ-connection for simplicity.

Remark 2.10. — Let (V, ⟨ , ⟩,∇) be an orthogonal/symplectic sheaf together with an
orthogonal/symplectic λ-connection.

(1) When λ = 1, we say that ∇ is an orthogonal/symplectic connection.
(2) When λ = 0, ∇ is called an orthogonal/symplectic Higgs field. In this case,

we prefer to use the notation θ := ∇, and the pair (V, θ) is called an orthogo-
nal/symplectic Higgs bundle. Here we abuse the terminology by ignoring the inte-
grability condition on θ.

Now we introduce Hodge filtrations for orthogonal/symplectic λ-connections.

Definition 2.11. — Given a triple (V, ⟨ , ⟩,∇) as above, let Fil

Fil : 0 = Film ⊂ Film−1 ⊂ · · · ⊂ Fil0 = V

be an orthogonal/symplectic filtration of V . We say that Fil is an orthogonal/sym-
plectic Hodge filtration if Fil satisfies the Griffiths transversality condition:

∇(Fili+1) ⊂ Fili ⊗ ΩX(logD), i ⩾ 1.

Such a tuple (V, ⟨ , ⟩,∇,Fil) is called a Hodge filtered orthogonal/symplectic λ-connec-
tion.

Let (V, ⟨ , ⟩,∇,Fil) be a Hodge filtered orthogonal/symplectic λ-connection. The
Rees construction gives a sheaf

V =
∑

t−iFili ⊗ OX×A1

on X × A1, and t∇ is well-defined on V. Taking the limit limt→0(V, t∇), we ob-
tain a well-defined Higgs field θ on GrFil(V ). In conclusion, we obtain an orthogo-
nal/symplectic Higgs sheaf (GrFil(V ), ⟨ , ⟩, θ) such that

θ(Fili/Fili+1) ⊆ (Fili−1/Fili)⊗ ΩX(logD), i ⩾ 1.

Note that GrFil(V ) is torsion-free because the filtration we choose is saturated. This
observation gives the following definition.

Definition 2.12. — A graded orthogonal/symplectic Higgs sheaf is an orthogo-
nal/symplectic Higgs sheaf (E, ⟨ , ⟩, θ) together with a decomposition E =

⊕m
i=1 Ei

such that
(1) θ(Ei) ⊂ Ei+1 ⊗ ΩX(logD) for 1 ⩽ i ⩽ m− 1, and θ(Em) = 0,

J.É.P. — M., 2024, tome 11



Existence of gr-semistable filtrations 1189

(2) ⟨ , ⟩|Ei⊗Ej
is nondegenerate for i+ j = m+ 1 over a nonempty open subset in

the locally free locus whose complement is of codimension ⩾ 2,
(3) ⟨ , ⟩|Ei⊗Ej = 0 for i+ j ̸= m+ 1.

Summing up, as in the case of vector bundles [Sim10], one gets a graded orthogo-
nal/symplectic Higgs sheaf from a Hodge filtered orthogonal/symplectic λ-connection:

Lemma 2.13. — Let (V, ⟨ , ⟩,∇,Fil) be a Hodge filtered orthogonal/symplectic λ-con-
nection. It induces a graded orthogonal/symplectic Higgs sheaf (E, ⟨ , ⟩, θ), where E :=

GrFil(V ).

We would like to remind the reader that in the above lemma, the λ-connection ∇
could be a connection or a Higgs field.

2.3. Stability condition and Harder–Narasimhan filtration. — We fix an ample
line bundle L over X. Let V be a torsion free sheaf on X. Define

µL(V ) := degL(V )/rk(V )

to be the slope of V with respect to L. In this paper, if there is no ambiguity, we omit
the subscript L and use the notation µ and deg for slope and degree respectively.
In this subsection, a triple (V, ⟨ , ⟩,∇) is an orthogonal/symplectic sheaf (V, ⟨ , ⟩)
together with an orthogonal/symplectic λ-connection ∇ unless stated otherwise.

Definition 2.14. — A triple (V, ⟨ , ⟩,∇) is semistable (resp. stable) if for any nontriv-
ial ∇-invariant isotropic subsheaf W ⊂ V , we have µ(W ) ⩽ 0 (resp. <).

Remark 2.15. — In this remark, we only focus on the case of curves. In character-
istic zero, the slope stability condition of orthogonal/symplectic bundles (V, ⟨ , ⟩) is
equivalent to the Ramanathan’s stability condition on the corresponding principal
bundles V [Ram75, Ram96a, Ram96b]. We briefly review the correspondence as fol-
lows, and the Ramanathan stability condition will be called R-stability condition for
simplicity, where “R” stands for Ramanathan.

A G-bundle V is R-semistable (resp. R-stable) if for any proper parabolic subgroup
P ⊆ G, any reduction of structure group σ : X → V/P and any dominant character
χ : P → Gm, we have degχ∗Vσ ⩽ 0 (resp. <), where Vσ := V ×σ X is a P -bundle
on X and χ∗(Vσ) is a line bundle on X. When we consider the case of orthogo-
nal/symplectic groups, reductions of structure group correspond exactly to filtrations
of isotropic subbundles. Following this idea, the equivalence of the stability conditions
for symplectic groups is proved in [KSZ21, App.], and the same argument holds for
orthogonal groups.

In positive characteristic, the R-stability condition of V is equivalent to the stability
condition of the associated bundle under a low weight representation G ↪→ SL(W )

[BP03, §2]. In our case, the representation we take is the standard one, which is
obvious of low weight. Therefore, the stability condition of orthogonal/symplectic
bundles considered in this paper is equivalent to the Ramanathan’s stability condition
for principal bundles in positive characteristic.
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Furthermore, the above result also holds for λ-connections. More precisely, let
(V, ⟨ , ⟩,∇) be an orthogonal/symplectic λ-connection and denote by (V,∇′) the cor-
responding G-connection, where G is the orthogonal/symplectic group. Then the
slope stability condition of (V, ⟨ , ⟩,∇) given in Definition 2.14 is equivalent to the
R-stability condition of (V,∇′). The case of G = GLn and λ = 0 is proved in [KSZ24,
Prop. 5.5] and the orthogonal/symplectic case with arbitrary λ can be proved in the
same way.

In the following, we prove that the Harder–Narasimhan filtration (for slope stability
condition) of an orthogonal/symplectic connection is exactly the Harder–Narasimhan
filtration for the corresponding connection by forgetting the orthogonal/symplectic
structure (Proposition 2.16). As a direct result, we obtain the maximal destabilizer
of (V, ⟨ , ⟩,∇) is isotropic (Corollary 2.17), which will be used frequently later on.

Proposition 2.16. — Given a triple (V, ⟨ , ⟩,∇), let

HN : 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vt = V

be the Harder–Narasimhan filtration of (V,∇), that is, we forget the orthogo-
nal/symplectic structure of V . Then HN is an orthogonal/symplectic filtration.

Proof. — In fact,
HN⊥ : 0 = V ⊥

t ⊂ V ⊥
t−1 ⊂ · · · ⊂ V ⊥

0 = V

is again a Harder–Narasimhan filtration of (V,∇). By the uniqueness of the Harder–
Narasimhan filtration, we have Vt−i = V ⊥

i . □

As a direct consequence, we have the following corollary.

Corollary 2.17. — Suppose that (V, ⟨ , ⟩,∇) is unstable. Then the maximal destabi-
lizer of (V,∇) is isotropic. Furthermore, (V, ⟨ , ⟩,∇) is semistable if and only if (V,∇)

is semistable.

Notation 2.18. — Let

HN : 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vt = V

be the Harder–Narasimhan filtration of (V, ⟨ , ⟩,∇). Define µmax(V ) (resp. µmin(V ))
to be the slope of V1/V0 (resp. Vt/Vt−1). We also refer the reader to [HL10, Def. 1.3.2]
for a related notation. Moreover, the orthogonal/symplectic λ-connection (V, ⟨ , ⟩,∇)

can be replaced by torsion free sheaves, orthogonal/symplectic sheaves, λ-connections
and etc.

Definition 2.19
Let Fil be an orthogonal/symplectic Hodge filtration on (V, ⟨ , ⟩,∇). We say

that Fil is gr-semistable if the associated graded orthogonal/symplectic Higgs sheaf
(GrFil(V ), ⟨ , ⟩, θ) is semistable. Moreover, (V, ⟨ , ⟩,∇) is gr-semistable if there exists
a gr-semistable filtration Fil of (V, ⟨ , ⟩,∇).
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One may ask that whether there always exists a gr-semistable filtration on a semi-
stable triple (V, ⟨ , ⟩,∇), where ∇ is a connection? We will give an answer to this
problem in the next sections.

3. Quasi gr-semistable filtration: odd rank

Let (V, ⟨ , ⟩,∇) be an orthogonal sheaf (V, ⟨ , ⟩) together with an orthogonal λ-con-
nection ∇, where V is a torsion free sheaf of odd rank. In this section, we introduce
a special type of orthogonal Hodge filtrations, which is called quasi gr-semistable
filtrations (Definition 3.1), and prove that the existence of gr-semistable filtrations
is equivalent to the existence of quasi gr-semistable filtrations of (V, ⟨ , ⟩,∇) (Theo-
rem 3.12).

3.1. Definition and Basic Properties

Definition 3.1 (Quasi gr-semistable filtration in odd rank case). — Let

Fil : 0 = L0 ⊊ L1 ⊊ · · · ⊊ Lm ⊊ L⊥
m ⊊ · · · ⊊ L⊥

1 ⊊ L⊥
0 = V

be an orthogonal Hodge filtration of (V, ⟨ , ⟩,∇). We say that Fil is quasi gr-semistable
if it satisfies the following two conditions:

(I) For any saturated Griffiths transverse filtration

0 = W0 ⊂ W1 ⊂ · · · ⊂ Wm

such that Li−1 ⊂ Wi ⊂ Li, we have∑
0⩽i⩽m

deg(Wi) ⩽
∑

0⩽i⩽m

deg(Li).

(II) For any saturated Griffiths transverse filtration

0 ⊂ S1 ⊂ · · · ⊂ Sm ⊂ Sm+1 ⊂ T⊥
m ⊂ · · · ⊂ T⊥

1 ⊂ V

such that

deg(Sm+1) >
∑

0⩽i⩽m

(
deg(Li)− deg(Si)

)
+

∑
0⩽i⩽m

(
deg(Li)− deg(Ti)

)
,

we have
∇(Sm+1) ⊆ S⊥

m+1 ⊗ ΩX(logD),

where Li−1 ⊂ Si ⊂ Ti ⊂ Li, Lm ⊂ Sm+1 ⊂ L⊥
m and Sm+1 is isotropic.

Moreover, we say that (V, ⟨ , ⟩,∇) is quasi gr-semistable (or ∇ is a quasi gr-semistable
connection) if there exists a quasi gr-semistable filtration on V .

Example 3.2. — In this example, we briefly explain the quasi gr-semistability condi-
tion for small m.

– m = 0. The trivial filtration

Fil : 0 ⊂ V

is quasi gr-semistable if and only if ∇(W ) ⊂ W⊥ ⊗ΩX(logD) holds for any isotropic
saturated subsheaf W of deg(W ) > 0.
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– m = 1. An orthogonal Hodge filtration 0 ⊂ N ⊂ N⊥ ⊂ V is quasi gr-semistable
if and only if it satisfies the following two conditions:

(1) µmin(N) ⩾ 0;
(2) for any saturated Griffiths transverse filtration 0⊂S1⊂S2⊂T⊥

1 such that
• S1 ⊂ T1 ⊂ N, N ⊂ S2 ⊂ N⊥,
• S2 is isotropic,
• deg(S2) > deg(N)− deg(S1) + deg(N)− deg(T1),

we have ∇(S2) ⊂ S⊥
2 ⊗ ΩX(logD).

When m = 0, quasi gr-semistability is easy to check. However, when m ⩾ 1, the
stability condition becomes much more complicated. The above discussion will be
used in Section 5.

Remark 3.3. — In this remark, we briefly explain Condition (I) and (II) in terms of
graded Higgs sheaves. Given (V, ⟨ , ⟩,∇,Fil), let (GrFil, ⟨ , ⟩, θ) be the corresponding
graded orthogonal Higgs sheaf, where

GrFil(V ) =
m⊕
i=1

Li

Li−1
⊕ L⊥

m

Lm
⊕

m⊕
i=1

L⊥
m−i

L⊥
m−i+1

.

(1) The filtration
0 = W0 ⊂ W1 ⊂ · · · ⊂ Wm

in Condition (I) gives a Higgs subsheaf of GrFil(V )

α(W•) :=
m⊕
i=1

Wi

Li−1
⊕ L⊥

m

Lm
⊕

m⊕
i=1

L⊥
m−i

L⊥
m−i+1

.

Then the inequality ∑
0⩽i⩽m

deg(Wi) ⩽
∑

0⩽i⩽m

deg(Li).

is equivalent to deg
(
α(W•)

)
⩽ 0.

(2) The filtration

0 ⊂ S1 ⊂ · · · ⊂ Sm ⊂ Sm+1 ⊂ T⊥
m ⊂ · · · ⊂ T⊥

1 ⊂ V

in Condition (II) defines an isotropic Higgs subsheaf of GrFil(V )

β(S•, T•) :=
m⊕
i=1

Si

Li−1
⊕ Sm+1

Lm
⊕

m⊕
i=1

T⊥
m−i+1

L⊥
m−i+1

.

Then the inequality

deg(Sm+1) >
∑

0⩽i⩽m

(
deg(Li)− deg(Si)

)
+

∑
0⩽i⩽m

(
deg(Li)− deg(Ti)

)
is equivalent to deg

(
β(S•, T•)

)
> 0.

Summing up, Fil is quasi gr-semistable if and only if the following two conditions
hold:

(1) deg
(
α(W•)

)
⩽ 0;

(2) if deg
(
β(S•, T•)

)
> 0, then we have ∇(Sm+1) ⊆ S⊥

m+1 ⊗ ΩX(logD).
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Proposition 3.4. — If an orthogonal Hodge filtration Fil of (V, ⟨ , ⟩,∇) is gr-semi-
stable, then Fil is quasi gr-semistable.

Proof. — The semistability of
(
GrFil(V ), ⟨ , ⟩, θ

)
implies that deg(W ) ⩽ 0 holds for

any isotropic Higgs subsheaf of
(
GrFil(V ), θ

)
. By Prop 2.16, deg(W ) ⩽ 0 holds for any

Higgs subsheaf of
(
GrFil(V ), θ

)
. Hence for any saturated Griffiths transverse filtration

given in Condition (I) and (II), we have deg
(
α(W•)

)
⩽ 0 and deg

(
β(S•, T•)

)
⩽ 0.

Then the first condition in Remark 3.3 is satisfied automatically, and the second
condition also holds because there is no β(S•, T•) such that deg(β(S•, T•)) > 0. □

Remark 3.3 and Proposition 3.4 is actually the starting point how we introduce
the definition of quasi gr-semistability. The idea is simple and we briefly state as
follows. Given an orthogonal/symplectic Hodge filtration Fil on a semistable triple
(V, ⟨ , ⟩,∇), we hope that the resulting graded orthogonal/symplectic Higgs sheaf(
GrFil(V ), ⟨ , ⟩, θ

)
is semistable. More precisely, the slope of any θ-invariant isotropic

subsheaf of GrFil(V ) should be smaller than or equal to zero. Then we interpret
the above inequalities in terms of specific filtrations on V and find a necessary con-
dition, which implies the gr-semistability condition. This condition is called quasi
gr-semistability condition and is given in Definition 3.1 and explained in Remark 3.3.
Therefore, the proof of Proposition 3.4 follows automatically. On the other hand, the
most surprising fact is that the condition we introduce (Definition 3.1) is not only
a necessary condition, but also a sufficient one, which will be proved in the next
subsection.

Proposition 3.5. — Let

Fil : 0 = L0 ⊊ L1 ⊊ · · · ⊊ Lm ⊊ L⊥
m ⊊ · · · ⊊ L⊥

1 ⊊ L⊥
0 = V

be a nontrivial quasi gr-semistable filtration of (V, ⟨ , ⟩,∇). Then we have deg(Li) ⩾ 0.
Moreover, deg(F ) ⩽ deg(L1) holds for any subsheaf F ⊂ L1.

Proof. — For a fixed 1 ⩽ i0 ⩽ m, consider the following Griffiths transverse filtration

0 = W0 ⊂ W1 ⊂ · · · ⊂ Wm,

where Wi = Li−1 for 1 ⩽ i ⩽ i0 and Wi = Li for i0 + 1 ⩽ i ⩽ m. Then the inequality∑
0⩽i⩽m

deg(Wi) ⩽
∑

0⩽i⩽m

deg(Li)

implies that deg(Li0) ⩾ 0. Similarly, let W1 = F and Wi = Li for 2 ⩽ i ⩽ m, and we
get deg(F ) ⩽ deg(L1). □

3.2. The existence of gr-semistable filtration. — In this subsection, we will show
that given a semistable triple (V, ⟨ , ⟩,∇), the quasi gr-semistability of (V, ⟨ , ⟩,∇) im-
plies the existence of gr-semistable filtrations (Theorem 3.8). Combining with Propo-
sition 3.4, we obtain the main result (Theorem 3.12) in this section. First, let us begin
with a lemma about the maximal destabilizer of a graded orthogonal Higgs sheaf.
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Lemma 3.6 ([LSZ19, Lem. A.6]). — Let (E =
⊕m

i=1 Ei, ⟨ , ⟩, θ) be an unstable graded
orthogonal Higgs sheaf. Let M ⊂ E be the maximal destabilizer of (E, θ). Then M is
an isotropic saturated graded Higgs subsheaf, that is, M =

⊕m
i=1 Mi with Mi = M∩Ei

and the Higgs field is induced by θ.

Now let Fil

Fil : 0 = L0 ⊊ L1 ⊊ · · · ⊊ Lm ⊊ L⊥
m ⊊ · · · ⊊ L⊥

1 ⊊ L⊥
0 = V

be a quasi gr-semistable filtration of (V, ⟨ , ⟩,∇), and we consider the associated ortho-
gonal graded Higgs sheaf (GrFil(V ), ⟨ , ⟩, θ), where

GrFil(V ) =
m⊕
i=1

Li

Li−1
⊕ L⊥

m

Lm
⊕

m⊕
i=1

L⊥
m−i

L⊥
m−i+1

.

If (GrFil(V ), θ) is not semistable, then we have a maximal destabilizer and denote it
by MFil. By Lemma 3.6 and Corollary 2.17, we have an isotropic subsheaf

MFil =
m⊕
i=1

Mi

Li−1
⊕ Mm+1

Lm
⊕

m⊕
i=1

N⊥
m−i+1

L⊥
m−i+1

.

Moreover, note that the induced bilinear form on Mi⊗N⊥
i is trivial, and thus Li−1 ⊆

Mi ⊆ Ni ⊆ Li. Moreover, it is easy to see that Mm+1 is an isotropic subsheaf.
We construct a new filtration ξ(Fil) from Fil as follows:

ξ(Fil) : 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm+1 ⊂ M⊥
m+1 ⊂ · · · ⊂ M⊥

1 ⊂ M⊥
0 = V.

Moreover, ξ can be regarded as an operator on the set of Griffiths transverse filtrations.

Lemma 3.7. — Let Fil be a quasi gr-semistable filtration of (V, ⟨ , ⟩,∇). Then ξ(Fil)

is a (orthogonal) Hodge filtration. Moreover, ξ(Fil) is also quasi gr-semistable.

Proof. — First, we will show that ξ(Fil) is a Hodge filtration, that is, ξ(Fil) satisfies
the Griffiths transversality condition. It is enough to show that

∇(Mm+1) ⊂ M⊥
m+1 ⊗ ΩX(logD).

This is true by Remark 3.3 since Fil is quasi gr-semistable and deg(MFil) > 0.
Next, we will check the quasi gr-semistability of ξ(Fil).
(I) Let

0 = W0 ⊂ W1 ⊂ · · · ⊂ Wm+1

be a given saturated Griffiths transverse filtration such that Mi−1 ⊂ Wi ⊂ Mi.
We need to show that ∑

0⩽i⩽m+1

deg(Wi) ⩽
∑

0⩽i⩽m+1

deg(Mi).

Consider the following Higgs subsheaf σ(W•) of GrFil(V ):

σ(W•) :=
m⊕
i=1

Wi + Li−1

Li−1
⊕ Wm+1 + Lm

Lm
⊕

m⊕
i=1

N⊥
m−i+1

L⊥
m−i+1

.
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Clearly, σ(W•) is a Higgs subsheaf of MFil. Since MFil is the maximal destabilizer,
we have

(3.1) deg(MFil)− deg(σ(W•)) ⩾ 0

On the other hand,

deg(MFil)− deg(σ(W•)) =
∑

0⩽i⩽m+1

deg(Mi)−
∑

0⩽i⩽m+1

deg(Wi + Li−1)

=
∑

0⩽i⩽m+1

deg(Mi)−
∑

0⩽i⩽m+1

(
deg(Wi) + deg(Li−1)− deg(Wi ∩ Li−1)

)
=

∑
0⩽i⩽m+1

(
deg(Mi)− deg(Wi)

)
−

∑
0⩽i⩽m+1

(
deg(Li−1)− deg(Wi ∩ Li−1)

)
.

Therefore,

(3.2)
∑

0⩽i⩽m+1

(
deg(Mi)− deg(Wi)

)
⩾

∑
0⩽i⩽m+1

(
deg(Li−1)− deg(Wi ∩ Li−1)

)
⩾ 0.

The last inequality holds because Fil is quasi gr-semistable. Condition (I) in Defini-
tion 3.1 is satisfied.

(II) Let

FilST : 0 ⊂ S1 ⊂ · · · ⊂ Sm+1 ⊂ Sm+2 ⊂ T⊥
m+1 ⊂ · · · ⊂ T⊥

1 ⊂ V

be a given saturated Griffiths transverse filtration such that

– Mi−1 ⊂ Si ⊂ Ti ⊂ Mi, Mm+1 ⊂ Sm+2 ⊂ M⊥
m+1,

– Sm+2 is isotropic,
– the inequality

(3.3) deg(Sm+2) >
∑

0⩽i⩽m+1

(
deg(Mi)− deg(Si)

)
+

∑
0⩽i⩽m+1

(
deg(Mi)− deg(Ti)

)
is satisfied.

We need to show that ∇(Sm+2) ⊂ S⊥
m+2⊗ΩX(logD). Consider the following filtration:

FilS̃T̃ := 0 ⊂ S̃1 ⊂ · · · ⊂ S̃m ⊂ S̃m+1 ⊂ T̃⊥
m ⊂ · · · ⊂ T̃⊥

1 ⊂ V,

where

S̃i = Si+1 ∩ Li, T̃i = Ti+1 ∩ Li, for 1 ⩽ i ⩽ m, and S̃m+1 = Sm+2.

Then Li−1 ⊂ S̃i ⊂ T̃i ⊂ Li for 1 ⩽ i ⩽ m, Lm ⊂ S̃m+1 ⊂ L⊥
m and S̃m+1 is isotropic.

Moreover, we have

deg(S̃m+1) >
∑

0⩽i⩽m

(
deg(Li)− deg(S̃i)

)
+

∑
0⩽i⩽m

(
deg(Li)− deg(T̃i)

)
.
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In fact, by the inequality 3.2 and 3.3, we have

deg(S̃m+1) = deg(Sm+2)

>
∑

0⩽i⩽m+1

(
deg(Mi)− deg(Si)

)
+

∑
0⩽i⩽m+1

(
deg(Mi)− deg(Ti)

)
⩾

∑
0⩽i⩽m+1

(
deg(Li−1)− deg(Si ∩ Li−1)

)
+

∑
0⩽i⩽m+1

(
deg(Li−1)− deg(Ti ∩ Li−1)

)
=

∑
0⩽i⩽m

(
deg(Li)− deg(S̃i)

)
+

∑
0⩽i⩽m

(
deg(Li)− deg(T̃i)

)
.

(3.4)

Then, by the quasi gr-semistability of Fil, we have

∇(S̃m+1) ⊂ S̃⊥
m+1 ⊗ ΩX(logD),

which implies
∇(Sm+2) ⊂ S⊥

m+2 ⊗ ΩX(logD). □

Now we will state and prove the main result in this section.

Theorem 3.8. — Let (V, ⟨ , ⟩,∇) be semistable and quasi gr-semistable with odd rank.
There exists a gr-semistable filtration on (V, ⟨ , ⟩,∇).

We need the following two lemmas to prove this theorem.

Lemma 3.9. — Let Fil be a quasi gr-semistable filtration of (V, ⟨ , ⟩,∇). Assume
that the graded orthogonal sheaves (GrFil(V ), θ1) and (Grξ(Fil)(V ), θ2) are not semi-
stable. Let MFil (resp. Mξ(Fil)) be the maximal destabilizer of (GrFil(V ), θ1) (resp.
Grξ(Fil)(V ), θ2)). Then we have a natural morphism of graded Higgs sheaves

Φ : Mξ(Fil) −→ MFil

such that
(1) µ(Mξ(Fil)) ⩽ µ(MFil);
(2) if µ(Mξ(Fil)) = µ(MFil), the morphism Φ is injective, then rk(Mξ(Fil)) ⩽

rk(MFil);
(3) if

(
µ(Mξ(Fil), rk(Mξ(Fil))

)
=

(
µ(MFil), rk(MFil)

)
, then Φ is an isomorphism

on an open subset U ⊂ X with codim(X/U) ⩾ 2.

Proof. — We write Fil as

Fil : 0 = L0 ⊊ L1 ⊊ · · · ⊊ Lm ⊊ L⊥
m ⊊ · · · ⊊ L⊥

1 ⊊ L⊥
0 = V.

Then,

GrFil(V ) =
m⊕
i=1

Li

Li−1
⊕ L⊥

m

Lm
⊕

m⊕
i=1

L⊥
m−i

L⊥
m−i+1

.
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Then, let MFil be as follows

MFil =
m⊕
i=1

Mi

Li−1
⊕ Mm+1

Lm
⊕

m⊕
i=1

N⊥
m−i+1

L⊥
m−i+1

.

Recall that

– Li−1 ⊂ Mi ⊂ Ni ⊂ Li for 1 ⩽ i ⩽ m,
– Mm+1 is isotropic.

Then, ξ(Fil) is given by

ξ(Fil) : 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm+1 ⊂ M⊥
m+1 ⊂ · · · ⊂ M⊥

1 ⊂ M⊥
0 = V,

and similarly,

Grξ(Fil)(V ) =
m+1⊕
i=1

Mi

Mi−1
⊕

M⊥
m+1

Mm+1
⊕

m+1⊕
i=1

M⊥
m+1−i

M⊥
m+2−i

.

Therefore, Mξ(Fil) is given as follows:

Mξ(Fil) =
m+1⊕
i=1

Xi

Mi−1
⊕ Xm+2

Mm+1
⊕

m+1⊕
i=1

Y ⊥
m+2−i

M⊥
m+2−i

,

where

– Mi−1 ⊂ Xi ⊂ Yi ⊂ Mi for 1 ⩽ i ⩽ m+ 1,
– Xm+2 is isotropic.

Now we define the following natural morphisms of sheaves:

Φi :
Xi

Mi−1
−→ Mi

Li−1
, 1 ⩽ i ⩽ m+ 1,

Φm+2 :
Xm+2

Mm+1
−→ 0,

Φ̃j :
Y ⊥
m+2−j

M⊥
m+2−j

−→ 0, 1 ⩽ j ⩽ m+ 1,

(3.5)

and we obtain a morphism of graded Higgs sheaves

Φ : Mξ(Fil) −→ MFil.

(1) If Φ ̸= 0, we have

µ(Mξ(Fil)) ⩽ µ(MFil).

(2) If Φ = 0, then Xi ⊂ Li−1, 1 ⩽ i ⩽ m + 1. Also, we have Xm+2 ⊂ L⊥
m and

Y ⊥
m+2−j ⊂ L⊥

m−j for 1 ⩽ j ⩽ m+1. In this case, we consider the quotient Higgs sheaf

GrFil(V )

MFil
=

m⊕
i=1

Li

Mi
⊕ L⊥

m

Mm+1
⊕

m⊕
i=1

L⊥
m−i

N⊥
m−i+1

,
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and define the following natural morphisms:

Ψi :
Xi

Mi−1
−→ Li−1

Mi−1
, 2 ⩽ i ⩽ m+ 1,

Ψm+2 :
Xm+2

Mm+1
−→ L⊥

m

Mm+1
,

Ψ̃j :
Y ⊥
m+2−j

M⊥
m+2−j

−→
L⊥
m−j

N⊥
m−j+1

, 1 ⩽ j ⩽ m,

Ψ̃m+1 :
Y ⊥
1

M⊥
1

−→ 0.

(3.6)

This construction gives a morphism of graded Higgs sheaves

Ψ : Mξ(Fil) −→
GrFil(V )

MFil
.

We claim that Ψ ̸= 0. Then we have

µ(Mξ(Fil)) ⩽ µ(Im(Ψ)) < µ(MFil).

Note that in this case we get a strict inequality

µ(Mξ(Fil)) < µ(MFil).

The first statement that µ(Mξ(Fil)) ⩽ µ(MFil) is proved.
For the claim, we suppose that Ψ = 0. Then Xi/Mi−1 = 0 and thus Xi = Mi−1

for 1 ⩽ i ⩽ m+ 2. We have

Mξ(Fil) =
m+1⊕
i=1

Y ⊥
m+2−i

M⊥
m+2−i

.

Since (Grξ(Fil)(V ), θ2) is not semistable and Mξ(Fil) is the maximal destabilizer,
we have

deg(Mξ(Fil)) > 0.

However, Lemma 3.7 tells us that ξ(Fil) is quasi gr-semistable, and then

deg(Mξ(Fil)) =
∑

0⩽i⩽m+1

(
deg(Yi)− deg(Mi)

)
⩽ 0

by Condition (I) in Definition 3.1. This is a contradiction.
The above discussion shows that µ(Mξ(Fil)) = µ(MFil) only if when Φ is injective.

Then the second statement also holds. Moreover, if the equality(
µ(Mξ(Fil), rk(Mξ(Fil))

)
=

(
µ(MFil), rk(MFil)

)
holds, clearly Φ is an isomorphism on an open subset U ⊂ X with codim(X/U) ⩾ 2,
which gives the third statement. □

Lemma 3.10. — Let (V, ⟨ , ⟩,∇) be semistable and quasi gr-semistable. If the sequence
of pairs {

(
µ(Mξk(Fil)), rk(Mξk(Fil))

)
}k⩾0 is constant, then the graded orthogonal Higgs

sheaf (GrFil(V ), ⟨ , ⟩, θ) is semistable.
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Proof. — By Proposition 2.16, it is equivalent to work on (GrFil(V ), θ) and we assume
that (GrFil(V ), θ) is not semistable. We use the same notations as in the proof of
Lemma 3.9:

Fil : 0 = L0 ⊊ L1 ⊊ · · · ⊊ Lm ⊊ L⊥
m ⊊ · · · ⊊ L⊥

1 ⊊ L⊥
0 = V,

GrFil(V ) =
m⊕
i=1

Li

Li−1
⊕ L⊥

m

Lm
⊕

m⊕
i=1

L⊥
m−i

L⊥
m−i+1

,

MFil =
m⊕
i=1

Mi

Li−1
⊕ Mm+1

Lm
⊕

m⊕
i=1

N⊥
m−i+1

L⊥
m−i+1

,

ξ(Fil) : 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm+1 ⊂ M⊥
m+1 ⊂ · · · ⊂ M⊥

1 ⊂ M⊥
0 = V,

Grξ(Fil)(V ) =
m+1⊕
i=1

Mi

Mi−1
⊕

M⊥
m+1

Mm+1
⊕

m+1⊕
i=1

M⊥
m+1−i

M⊥
m+2−i

,

Mξ(Fil) =
m+1⊕
i=1

Xi

Mi−1
⊕ Xm+2

Mm+1
⊕

m+1⊕
i=1

Y ⊥
m+2−i

M⊥
m+2−i

.

By Lemma 3.9, the morphism Φ : Mξ(Fil) → MFil is an isomorphism over an open
subset U , where codim(X/U) ⩾ 2. Now we always restrict to U , and say Φ is an
isomorphism for convenience. Now we suppose that ξm+2(Fil) is of the form

ξm+2(Fil) : 0 = Z0 ⊂ Z1 ⊂ · · · ⊂ Z2m+2 ⊂ Z⊥
2m+2 ⊂ · · · ⊂ Z⊥

1 ⊂ Z⊥
0 = V.

The isomorphisms

Mξm+2(Fil) −→ Mξm+1(Fil) −→ · · · −→ MFil

imply

Mξm+2(Fil) = Z1 ⊕
Z2

Z1
⊕ · · · ⊕ Z2m+1

Z2m
,

and thus Z2m+1 is a ∇-invariant subsheaf of V . We also want to remind the reader
that ∇(Z2m+2) = 0. Since Mξm+2(Fil) is the maximal destabilizer, we have

µ(Z2m+1) = µ(Mξm+2(Fil)) > 0.

This contradicts with the condition that (V, ⟨ , ⟩,∇) is semistable. □

Proof of Theorem 3.8. — First, we take an arbitrary quasi gr-semistable filtration Fil

of (V, ⟨ , ⟩,∇). The sequence {
(
µ(Mξk(Fil)), rk(Mξk(Fil))

)
}k⩾0 decreases in the lexico-

graphic ordering as k grows by Lemma 3.9. Thus, there exists a positive integer k0
such that the sequence

{
(
µ(Mξk(Fil)), rk(Mξk(Fil))

)
}k⩾k0

becomes constant. By Lemma 3.10, we finish the proof of this theorem. □

Remark 3.11. — The statement of Lemma 3.9 also works for arbitrary orthogonal
bundle (V, ⟨ , ⟩,∇), which could be unstable, while Lemma 3.10 only holds for semi-
stable triples (V, ⟨ , ⟩,∇).

Combining Proposition 3.4 with Theorem 3.8, we have:
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Theorem 3.12. — Let (V, ⟨ , ⟩,∇) be a semistable orthogonal sheaf together with an
orthogonal connection ∇ such that the rank of V is odd. Then, (V, ⟨ , ⟩,∇) is gr-semi-
stable if and only if (V, ⟨ , ⟩,∇) is quasi gr-semistable.

4. Quasi gr-semistable filtration: even rank

In this section, we discuss the quasi gr-semistable (orthogonal/symplectic) filtra-
tions of (V, ⟨ , ⟩,∇), where rk(V ) is even. In the even rank case, there are two types of
orthogonal/symplectic Hodge filtrations, which depend on the parity of lengths of the
filtrations. Despite this fact, the proof of the main result (Theorem 4.9) in the even
rank case is almost the same as that of Theorem 3.8 in the odd rank case. Therefore,
we only give constructions and state results rather than giving a detailed proof.

Definition 4.1. — An orthogonal/symplectic Hodge filtration

Fil : 0 = Fil0 ⊊ Fil1 ⊊ Fil2 ⊊ · · · ⊊ Filt = V

of (V, ⟨ , ⟩,∇) is an odd (resp. even) type filtration if its length t is odd (resp. even).

Remark 4.2
(1) An odd type orthogonal Hodge filtration Fil can be written as

Fil : 0 = L0 ⊊ L1 ⊊ · · · ⊊ Lm ⊊ L⊥
m ⊊ · · · ⊊ L⊥

1 ⊊ L⊥
0 = V,

where Lm is not Lagrangian (i.e., Lm ̸= L⊥
m) and satisfies ∇(Lm) ⊆ L⊥

m⊗ΩX(logD).
(2) An even type orthogonal Hodge filtration Fil can be regarded as

Fil : 0 = L0 ⊊ L1 ⊊ · · · ⊊ Lm−1 ⊊ Lm ⊊ L⊥
m−1 ⊊ · · · ⊊ L⊥

1 ⊊ L⊥
0 = V,

where Lm is Lagrangian (i.e., Lm = L⊥
m) subsheaf and satisfies

∇(Lm) ⊆ L⊥
m−1 ⊗ ΩX(logD).

In summary, the odd type orthogonal Hodge filtrations with even rank are similar to
orthogonal Hodge filtrations with odd rank.

Definition 4.3 (Quasi gr-semistable filtration in even rank case)
Given (V, ⟨ , ⟩,∇), let Fil be an orthogonal/symplectic Hodge filtration.

(1) If
Fil : 0 = L0 ⊊ L1 ⊊ · · · ⊊ Lm ⊊ L⊥

m ⊊ · · · ⊊ L⊥
1 ⊊ L⊥

0 = V

is an odd type filtration, Fil is quasi gr-semistable if the following two conditions hold:
(I) For any saturated Griffiths transverse filtration

0 = W0 ⊂ W1 ⊂ · · · ⊂ Wm

such that Li−1 ⊂ Wi ⊂ Li, we have∑
0⩽i⩽m

deg(Wi) ⩽
∑

0⩽i⩽m

deg(Li).
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(II) For any saturated Griffiths transverse flitration

0 ⊂ S1 ⊂ · · · ⊂ Sm ⊂ Sm+1 ⊂ T⊥
m ⊂ · · · ⊂ T⊥

1 ⊂ V

such that

deg(Sm+1) >
∑

0⩽i⩽m

(
deg(Li)− deg(Si)

)
+

∑
0⩽i⩽m

(
deg(Li)− deg(Ti)

)
,

we have
∇(Sm+1) ⊆ S⊥

m+1 ⊗ ΩX(logD),

where Li−1 ⊂ Si ⊂ Ti ⊂ Li, Lm ⊂ Sm+1 ⊂ L⊥
m and Sm+1 is isotropic.

(2) If

Fil : 0 = L0 ⊊ L1 ⊊ · · · ⊊ Lm−1 ⊊ Lm ⊊ L⊥
m−1 ⊊ · · · ⊊ L⊥

1 ⊊ L⊥
0 = V

is an even type filtration, Fil is quasi gr-semistable if the following two conditions
hold:

(a) For any saturated Griffiths transverse filtration

0 = W0 ⊂ W1 ⊂ · · · ⊂ Wm

such that Li−1 ⊂ Wi ⊂ Li, we have∑
0⩽i⩽m

deg(Wi) ⩽
∑

0⩽i⩽m

deg(Li).

(b) For any saturated Griffiths transverse flitration

0 ⊂ S1 ⊂ · · · ⊂ Sm ⊂ T⊥
m ⊂ · · · ⊂ T⊥

1 ⊂ V

such that

deg(Sm) >
∑

0⩽i⩽m−1

(
deg(Li)− deg(Si)

)
+

∑
0⩽i⩽m

(
deg(Li)− deg(Ti)

)
,

we have
∇(Sm) ⊆ Lm ⊗ ΩX(logD),

where Li−1 ⊂ Si ⊂ Ti ⊂ Li for 1 ⩽ i ⩽ m.
Furthermore, we say that (V, ⟨ , ⟩,∇) is quasi gr-semistable (or ∇ is a quasi gr-semi-
stable λ-connection) if there exists a quasi gr-semistable filtration on V .

The following two propositions can be proved in the same manner as Proposi-
tions 3.4 and 3.5 in the odd rank case.

Proposition 4.4. — If an orthogonal/symplectic filtration Fil of (V, ⟨ , ⟩,∇) is
gr-semistable, then it is also quasi gr-semistable.

Proposition 4.5. — Let

Fil : 0 = L0 ⊊ L1 ⊊ · · · ⊊ Lt = V

be a nontrivial quasi gr-semistable filtration (either of odd or even type) of (V, ⟨ , ⟩,∇).
Then we have deg(Li) ⩾ 0. Moreover, deg(F ) ⩽ deg(L1) holds for all subbundles
F ⊂ L1.
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As we did in Section 3, we have an operator ξ on the set of quasi gr-semistable
filtrations.

(1) If
Fil : 0 = L0 ⊊ L1 ⊊ · · · ⊊ Lm ⊊ L⊥

m ⊊ · · · ⊊ L⊥
1 ⊊ L⊥

0 = V

is of odd type, we define the orthogonal Higgs sheaf (GrFil(V ), ⟨ , ⟩, θ), where

GrFil(V ) =
m⊕
i=1

Li

Li−1
⊕ L⊥

m

Lm
⊕

m⊕
i=1

L⊥
m−i

L⊥
m−i+1

.

If (GrFil(V ), θ) is not semistable, we have a maximal destabilizer MFil and by Lem-
ma 3.6, we have

MFil =
m⊕
i=1

Mi

Li−1
⊕ Mm+1

Lm
⊕

m⊕
i=1

N⊥
m−i+1

L⊥
m−i+1

,

where Li−1 ⊂ Mi ⊂ Ni ⊂ Li for 1 ⩽ i ⩽ m and Mm+1 is isotropic. Based on the
maximal destablizer, we construct a new filtration ξ(Fil) as follows:

ξ(Fil) : 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm+1 ⊂ M⊥
m+1 ⊂ · · · ⊂ M⊥

1 ⊂ M⊥
0 = V.

(2) If

Fil : 0 = L0 ⊊ L1 ⊊ · · · ⊊ Lm−1 ⊊ Lm ⊊ L⊥
m−1 ⊊ · · · ⊊ L⊥

1 ⊊ L⊥
0 = V

is of even type, we define (GrFil(V ), ⟨ ⟩, θ) in a similar way, where

GrFil(V ) =
m⊕
i=1

Li

Li−1
⊕

m⊕
i=1

L⊥
m−i

L⊥
m−i+1

.

If (GrFil(V ), θ) is not semistable, we have the maximal destabilizer

MFil =
m⊕
i=1

Mi

Li−1
⊕

m⊕
i=1

N⊥
m−i+1

L⊥
m−i+1

,

where Li−1 ⊂ Mi ⊂ Ni ⊂ Li for 1 ⩽ i ⩽ m. Then, the new filtration ξ(Fil) is
defined as

ξ(Fil) : 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm ⊂ Mm+1 ⊂ M⊥
m ⊂ · · · ⊂ M⊥

1 ⊂ M⊥
0 = V,

where Mm+1 := Lm.

Lemma 4.6. — Let Fil be a quasi gr-semistable filtration of odd type (resp. even type),
then ξ(Fil) is a Hodge filtration of odd type (resp. even type). Moreover, ξ(Fil) is also
quasi gr-semistable of odd type (resp. even type).

Proof. — The proof of this lemma is similar to Lemma 3.7. □

Lemma 4.7. — Let Fil be a quasi gr-semistable filtration of (V, ⟨ , ⟩,∇) in the even rank
case. Assume that both (GrFil(V ), θ1) and (Grξ(Fil)(V ), θ2) are not semistable. Let MFil

(resp. Mξ(Fil)) be the maximal destabilizer of (GrFil(V ), θ1) (resp. (Grξ(Fil)(V ), θ2)).
Then we have a natural morphism

Φ : Mξ(Fil) −→ MFil

such that
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(1) µ(Mξ(Fil)) ⩽ µ(MFil),
(2) if µ(Mξ(Fil)) = µ(MFil), the morphism Φ is injective, and then we have

rk(Mξ(Fil)) ⩽ rk(MFil),
(3) if

(
µ(Mξ(Fil), rk(Mξ(Fil))

)
=

(
µ(MFil), rk(MFil)

)
, then Φ is an isomorphism

on an open subset U ⊂ X with codim(X/U) ⩾ 2.

Proof. — This lemma is an analogue of Lemma 3.9. □

Theorem 4.8. — Let (V, ⟨ , ⟩,∇) be semistable and quasi gr-semistable with even rank.
There exists a gr-semistable filtration on (V, ⟨ , ⟩,∇).

Proof. — This theorem is an analogue of Theorem 3.8. □

Combining Proposition 4.4 with Theorem 4.8, we have the main result in the even
rank case.

Theorem 4.9. — Let (V, ⟨ , ⟩,∇) be a semistable orthogonal/symplectic sheaf of even
rank together with a λ-connection. Then (V, ⟨ , ⟩,∇) is gr-semistable if and only if
(V, ⟨ , ⟩,∇) is quasi gr-semistable.

5. Classification of quasi gr-semistable orthogonal λ-connections in
small ranks

In this section, (V, ⟨ , ⟩,∇) is an orthogonal sheaf together with an orthogonal
λ-connection ∇. We make a careful discussion on the existence of quasi gr-semistable
filtrations when rk(V ) ⩽ 6. We prove that (V, ⟨ , ⟩,∇) is always quasi gr-semistable
when rk(V ) ⩽ 4 (Proposition 5.4), and we classify quasi gr-semistable λ-connections
when rk(V ) = 5 and 6 (Proposition 5.6, 5.10 and 5.13). Moreover, Proposition 5.6
gives a construction of (V, ⟨ , ⟩,∇) which is not quasi gr-semistable when rk(V ) ⩾ 5.

5.1. Case I: rk(V ) ⩽ 4. — We start with a discussion of rank one isotropic saturated
subsheaves N ⊂ V . Note that if a global section of N vanishes on an open subset U ,
then it is trivial. For this reason, it is enough to work on an open subset U ⊂ X,
on which N |U is locally free. Let e ∈ N(U) be a local section. We have

⟨∇(e), e⟩+ ⟨e,∇(e)⟩ = λd⟨e, e⟩ = 0,

which implies ⟨∇(e), e⟩ = 0. Therefore,

∇(N) ⊂ N⊥ ⊗ ΩX(logD)

for any isotropic saturated subsheaf N of rank one. Moreover, this property does not
hold in the symplectic case, i.e., ⟨ , ⟩ is skew-symmetric. Based on this fact, we have
the following lemma about a special orthogonal filtration

0 ⊂ N ⊂ N⊥ ⊂ V.
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Lemma 5.1. — Given (V, ⟨ , ⟩,∇), let N be a rank one isotropic saturated subsheaf.
The filtration

0 ⊂ N ⊂ N⊥ ⊂ V

is quasi gr-semistable if and only if the following two conditions hold:
(1) deg(N) ⩾ 0,
(2) if an isotropic saturated subsheaf W containing N satisfies one of the following

conditions:
(a) deg(W ) > 2 deg(N);

(b) deg(N) < deg(W ) ⩽ 2 deg(N), and ∇(N) ⊂ W⊥ ⊗ ΩX(logD);

(c) 0 < deg(W ) ⩽ deg(N), and ∇(N) ⊂ W ⊗ ΩX(logD),
then we must have ∇(W ) ⊂ W⊥ ⊗ ΩX(logD).

Proof. — This is a direct consequence of Example 3.2. □

Lemma 5.2. — Given (V, ⟨ , ⟩,∇), let N ⊂ W ⊂ V be isotropic saturated subsheaves
of V such that rk(N) = rk(W ) − 1. Then, ∇(W ) ⊂ W⊥ ⊗ ΩX(logD) if and only if
∇(N) ⊂ W⊥ ⊗ ΩX(logD).

Proof. — One direction is clear, and we only have to prove that if

∇(N) ⊂ W⊥ ⊗ ΩX(logD),

we have ∇(W ) ⊂ W⊥⊗ΩX(logD). Since this is a local property, we work on an open
subset U ⊂ X, on which N is locally free. For convenience, we directly suppose that

N = OX{e1, e2, . . . en}, W = OX{e1, e2, . . . en, en+1}.

Furthermore, ∇(W ) ⊂ W⊥ ⊗ ΩX(logD) if and only if

⟨∇(W ),W ⟩ = 0

holds. Therefore, it is equivalent to prove that ⟨∇(ei), ej⟩ = 0 holds for all i, j such
that 1 ⩽ i, j ⩽ n + 1. Since ∇(N) ⊂ W⊥ ⊗ ΩX(logD), then ⟨∇(ei), ej⟩ = 0 holds
for all i such that 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ n + 1. Thus, we only have to check
⟨∇(en+1), ei⟩ = 0 for 1 ⩽ i ⩽ n+ 1. The equality

⟨∇(en+1), en+1⟩+ ⟨en+1,∇(en+1)⟩ = λd⟨en+1, en+1⟩ = 0

implies that ⟨∇(en+1), ei⟩ = 0 holds for i = n+ 1, and the equality

⟨∇(en+1), ei⟩+ ⟨en+1,∇(ei)⟩ = λd⟨en+1, ei⟩ = 0

and the condition ⟨en+1,∇(ei)⟩ = 0 implies that ⟨∇(en+1), ei⟩ = 0 holds for all i such
that 1 ⩽ i ⩽ n. This finishes the proof of this lemma. □

Lemma 5.1 and Lemma 5.2 give the following result:

Lemma 5.3. — Suppose that rk(V ) ⩽ 5. Let N be a rank one isotropic saturated
subsheaf. Then the filtration

0 ⊂ N ⊂ N⊥ ⊂ V
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is a quasi gr-semistable filtration of (V, ⟨ , ⟩,∇) if and only if the following two con-
ditions hold:

(1) deg(N) ⩾ 0,
(2) if W is a rank two isotropic saturated subsheaf such that N ⊂ W and deg(W ) >

2 deg(N), then we have ∇(W ) ⊂ W⊥ ⊗ ΩX(logD).

Proposition 5.4. — Any (V, ⟨ , ⟩,∇) with rk(V ) ⩽ 4 is quasi gr-semistable.

Proof. — It is trivial when rk(V ) ⩽ 3, and then we only discuss the case rk(V ) = 4.
If (V, ⟨ , ⟩) is a semistable orthogonal sheaf, then the trivial filtration

0 ⊂ V

is quasi gr-semistable.
Now we assume that (V, ⟨ , ⟩) is unstable and let M be the maximal destabilizer.

If M is of rank one, the filtration
0 ⊂ M ⊂ M⊥ ⊂ V

is quasi gr-semistable by Lemma 5.3 because there is no rank two isotropic subsheaf W
such that deg(W ) > 2 deg(M). Then, we suppose that M is of rank two, i.e., it is
Lagrangian. If there exists a rank one subsheaf N such that

– deg(N) ⩾ 0 and N ⊂ M ,
– ∇(N) ⊂ M ⊗ ΩX(logD),

then the filtration
0 ⊂ N ⊂ M ⊂ N⊥ ⊂ V

is an even type quasi gr-semistable filtration, otherwise the filtration
0 ⊂ M ⊂ V

is an even type quasi gr-semistable filtration. In conclusion, we find a quasi gr-semi-
stable filtration for all cases. This finishes the proof. □

5.2. Case II: rk(V ) = 5. — Before we consider the case rk(V ) = 5, we first construct
a special orthogonal sheaf (V, ⟨ , ⟩) together with an orthogonal λ-connection ∇, which
is not quasi gr-semistable. We start with a well-known lemma (see [HL10, Lem. 1.3.3]
for instance).

Lemma 5.5. — Let M,N be torsion free sheaves. If µmin(M) > µmax(N), then
Hom(M,N) = 0.

Proposition 5.6. — Let (V, ⟨ , ⟩) be an unstable orthogonal sheaf of rk(V ) ⩾ 5. Sup-
pose that

(1) the maximal destabilizer M is of rank two and stable,
(2) M⊥

M is a stable orthogonal sheaf,
(3) there exists a λ-connection ∇ satisfying

∇(M) ̸⊂ M⊥ ⊗ ΩX(logD).

Then (V, ⟨ , ⟩,∇) is not quasi gr-semistable. Moreover, (V, ⟨ , ⟩,∇) is semistable.
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Proof. — We prove the first statement by contradiction, and assume that the ortho-
gonal connection (V, ⟨ , ⟩,∇) is quasi gr-semistable. Let

Fil : 0 = L0 ⊊ L1 ⊊ L2 · · · ⊊ L⊥
1 ⊊ L⊥

0 = V

be a quasi gr-semistable filtration.
Since V/M⊥ ∼= M∨ is a stable bundle of deg(V/M⊥) < 0 and µmin(L1) ⩾ 0 by

Proposition 3.5, the composition

L1 ↪−→ V −→−→ V

M⊥

is zero by Lemma 5.5. That is L1 ⊂ M⊥.
Now we consider the composition

L1 ↪−→ M⊥ −→−→ M⊥

M
.

Note that this composition is not surjective since L1 is isotropic while M⊥/M is
not isotropic. Then this map is zero because µmin(L1) ⩾ 0 and M⊥/M is a stable
orthogonal sheaf of degree 0 by assumption. This implies that L1 ⊂ M .

If L1 = M , then we have

∇(M) ⊂ L2 ⊗ ΩX(logD) ⊂ M⊥ ⊗ ΩX(logD),

which contradicts the assumption that ∇(M) ̸⊂ M⊥ ⊗ΩX(logD). Therefore, L1 is a
proper subsheaf of M .

Now consider the natural morphism

h : L2 −→ L⊥
1

M⊥

based on the above argument that L1 is a proper subsheaf of M . If h = 0, then
L2 ⊂ M⊥, and we have

∇(L1) ⊂ L2 ⊗ ΩX(logD) ⊂ M⊥ ⊗ ΩX(logD).

This actually implies
∇(M) ⊂ M⊥ ⊗ ΩX(logD)

by Lemma 5.2, and we get a contradiction again. On the other hand, if h ̸= 0, then

deg(ker(h)) ⩾ deg(L2) + deg(M)− deg(L1) > deg(L2) + deg(L1).

This inequality contradicts Condition (I) in Definition 3.1. In conclusion, (V, ⟨ , ⟩,∇)

is not quasi gr-semistable.
For the second statement, we still prove it by contradiction. Suppose that

(V, ⟨ , ⟩,∇) is unstable. Denote by W the maximal destabilizer of (V, ⟨ , ⟩,∇). Clearly,
W is isotropic of deg(W ) > 0 and ∇(W ) ⊂ W ⊗ ΩX(logD).

If W is a rank one saturated subsheaf, we apply the same argument above for
compositions

W ↪−→ V −→−→ V

M⊥ , W ↪−→ M⊥ −→−→ M⊥

M
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and obtain W ⊂ M . Therefore,

∇(M) ⊂ M⊥ ⊗ ΩX(logD)

by Lemma 5.2, which contradicts the assumption in the statement of the proposition.
If rk(W ) ⩾ 2, we have W = M . Since W is ∇-invariant, M is also ∇-invariant. This
also gives a contradiction.

Finally, suppose that W is unstable as an orthogonal sheaf. Denote by N ⊂ W be
the maximal destabilizer. With the same argument as above, we have N ⊂ M and
W ⊂ M⊥. Therefore,

∇(N) ⊂ W ⊗ ΩX(logD) ⊂ M⊥ ⊗ ΩX(logD),

and this implies that ∇(M) ⊂ M⊥ ⊗ΩX(logD) by Lemma 5.2, which is a contradic-
tion.

In conclusion, (V, ⟨ , ⟩,∇) is semistable. □

In the following examples, we use the criterion in Proposition 5.6 and construct
examples of semistable orthogonal connections, which are not gr-semistable, in both
characteristic zero and characteristic p.

Example 5.7. — In this example, we will construct an orthogonal connection of rank 5

in characteristic zero, which is not gr-semistable. This gives a counterexample for
Simpson’s question (Question 1.2) in orthogonal group case.

Let X be a complex smooth projective curve with genus g ⩾ 2. We fix a rank 2

stable vector bundle M on X with deg(M) = d > 0, and we suppose g > d+1. Then
we choose a nontrivial extension

0 −→ OX −→ M ′ −→ det(M∨) −→ 0.

Note that such a nontrivial extension always exists because

dimExt1(det(M∨),OX) ⩾ g − d− 1 > 0

by Riemann-Roch theorem. Now we define E := M ⊗ M ′ and there is a natural
orthogonal structure given as follows

⟨ , ⟩E : E ⊗ E
∼=−−−→ M ⊗M ⊗M ′ ⊗M ′ −→ ∧2M ⊗ ∧2M ′

∼=−−−→ det(M)⊗ det(M∨) ∼= OX .

Moreover, Choe and Hitching showed that any rank 4 orthogonal bundle, which con-
tains rank 2 isotropic subbundle, is of the above form [CH23, Th. 4.2]. Then we ob-
tain a rank 4 orthogonal bundle (E, ⟨ , ⟩E). We claim that there exists an orthogonal
connection ∇0 on E. Now we are ready to define a rank 5 orthogonal connection
(V, ⟨ , ⟩,∇), where

– V := E ⊕ OX ,
– the orthogonal structure ⟨ , ⟩ on V is induced by ⟨ , ⟩E and the trivial one on OX ,
– ∇ := ∇0 ⊕ dcan, where dcan : OX → ΩX is the exterior differential.
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For this orthogonal connection (V, ⟨ , ⟩,∇), it has the following properties that the
maximal destabilizer of V is M , which is stable of rank 2 with deg(M) = d > 0,
and ∇(M) ⊈ M⊥ ⊗ΩX . Therefore, (V, ⟨ , ⟩,∇) is not quasi gr-semistable by Proposi-
tion 5.6. The claim ∇(M) ⊈ M⊥ ⊗ ΩX can be seen as follows. Assume the contrary.
As ∇(M) = ∇0(M) ⊂ (M ⊗M ′)⊗ ΩX , it follows that

∇(M) ⊂
(
(M ⊗M ′) ∩M⊥)⊗ ΩX = M ⊗ ΩX .

The last equality holds because M⊥ = M ⊗ OX ⊕ OX = M ⊕ OX . Then we have
deg(M) = 0 since M admits a connection ∇|M , contradicting deg(M) > 0.

Now we will prove the claim that there exists an orthogonal connection ∇0 on
E = M ⊗M ′. By [BMW11, Th. 4.2], if there is no orthogonal connection on E, there
exists a decomposition

E = (W ⊕W∨)⊕ T, ⟨ , ⟩E = ⟨ , ⟩W ⊕ ⟨ , ⟩T

such that degW > 0. Then there are two possibilities for the isotropic subbundle W :
rk(W ) = 1 or 2.

– Suppose rk(W ) = 1. The short exact sequence

0 −→ OX −→ M ′ −→ det(M∨) −→ 0

gives the following one

0 −→ M −→ M ⊗M ′ −→ M∨ −→ 0

by tensoring with M . Then the composition

W ↪−→ M ⊗M ′ = E −→ M∨

is zero because deg(W ) > deg(M∨). Thus W ⊆ M . With a similar argument, we have
W∨ ⊆ M . Therefore, W ⊕W∨ ⊆ M . As

M

W ⊕W∨ ⊂ E

W ⊕W∨
∼= T,

it follows that M/(W ⊕W∨) is torsion free. For reason of rank, it must be zero.
In other words, W ⊕W∨ = M . However, this contradicts the assumption that M is
stable.

– Suppose rk(W ) = 2. In this case,

E = M ⊗M ′ = W ⊕W∨.

(a) If W is not semistable, let L be the maximal destabilizer of W . Then

µmin(W ) = deg(W )− deg(L) > −degL ⩾ −deg(M)

2
= µ(M∨).

Since µmin(W ) > µ(M∨), the composition

W ↪−→ E −→ M∨

is zero by Lemma 5.5. With the same argument as in the case of rk(W ) = 1,
we have W = M . However, this contradicts the assumption that M is stable.
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(b) If W is semistable, the argument in Case (a) implies that W = M .
Therefore, we have

M ⊗M ′ = M ⊕M∨.

Then the short exact sequence

0 −→ M −→ M ⊗M ′ −→ M∨ −→ 0

splits. The following argument will show that the short exact sequence

0 −→ OX −→ M ′ −→ det(M∨) −→ 0

splits, and thus we obtain a contradiction about the choice of M ′ at the beginning
of this example.

By Proposition [CH23, Prop. 4.5], any rank 2 isotropic subbundle of M ⊗M ′

is of the form M ⊗ L′ or L ⊗M ′, where L ⊆ M and L′ ⊆ M ′ are subbundles.
Since E = W ⊕W∨, we have W ∩W∨ = 0, which implies that W∨ = M ⊗ L′

for some line bundle L′ ⊆ M ′. We have

deg(L′) = −d = deg(det(M∨)).

Then the composition

L′ ↪−→ M ′ −→ det(M∨)

is either zero or an isomorphism. If the composition is zero, then L′ is a subbun-
dle of OX , which is a contradiction. Thus, the composition is an isomorphism,
and we obtain a splitting det(M∨) → M ′.

In conclusion, neither of the above cases can happen. By [BMW11, Th. 4.2], there
exists an orthogonal connection ∇0 on E = M ⊗M ′.

Example 5.8. — In this example, we will construct an orthogonal connection of rank 5

in positive characteristic, which is not quasi gr-semistable.
Let X be a smooth projective curve over k with genus g such that

3 ⩽ p < g − 1,

where p is the characteristic of k. There exists a stable bundle M ′ on X such that
rk(M ′) = 2 and deg(M ′) = 1. Consider the Frobenius pullback M := F ∗

X(M ′), of
which rk(M) = 2 and deg(M) = p. Although M may not be semistable [Gie73],
we can choose a specific M ′ such that M is semistable. Since the degree p and the
rank 2 are coprime, the semistable bundle M is stable. Let ∇0 : M → M ⊗ΩX be the
canonical connection. Next, we consider the sheaf (∧2M∨)⊗ΩX . By Riemann–Roch
formula, we have

h0((∧2M∨)⊗ ΩX) ⩾ deg((∧2M∨)⊗ ΩX) + (1− g)

= (−p+ 2g − 2) + (1− g)

= −p+ (g − 1) > 0.

Therefore, there exists a nontrivial section of (∧2M∨)⊗ ΩX . Let

V := M ⊕M∨ ⊕ OX
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be the rank 5 orthogonal bundle with natural orthogonal structure ⟨ , ⟩. Then, the
nontrivial section of (∧2M∨)⊗ ΩX induces a nontrivial OX -linear morphism

θ1 : M −→ M∨ ⊗ ΩX

such that for local sections a, b of M ,

⟨θ1(a), b⟩M + ⟨a, θ1(b)⟩M = 0.

By Proposition 5.6., the orthogonal connection

∇ :=

∇0

θ1 −∇∨
0

dcan

 : V −→ V ⊗ ΩX ,

is not quasi gr-semistable, where dcan : OX → ΩX is the exterior differential. Under
the equivalence of gr-semistability and quasi gr-semistability (Theorem 3.12), we con-
clude that we find an example in rank 5 which is not gr-semistable.

Example 5.9. — In the above two examples, we constructed semistable orthogonal
connections which is not gr-semistable in the case of D = ∅. In this example, we give
a brief idea about constructing examples satisfying conditions given in Proposition 5.6
when D ̸= ∅.

Let X be a smooth projective curve with genus g(X) ⩾ 2. Let M be a rank
two stable bundle of positive degree, and there is a natural orthogonal structure on
M ⊕ M∨ and denote it by ⟨ , ⟩M . Let N be an arbitrary stable orthogonal bundle
on X and the orthogonal structure of N is denoted by ⟨ , ⟩N . Define

V = M ⊕M∨ ⊕N.

We have a natural orthogonal structure ⟨ , ⟩ on V induced by ⟨ , ⟩M and ⟨ , ⟩N .
Let ∇0 : M → M ⊗ ΩX(logD) be a logarithmic λ-connection on M , and ∇∨

0 :

M∨ → M∨ ⊗ ΩX(logD) its dual logarithmic connection of ∇0. Then,(
∇0

−∇∨
0

)
: M ⊕M∨ −→ (M ⊕M∨)⊗ ΩX(logD)

is an orthogonal λ-connection on M⊕M∨. We also choose θ1 : M → M∨⊗ΩX(logD)

a nontrivial OX -linear morphism such that

⟨θ1(a), b⟩M + ⟨a, θ1(b)⟩M = 0

for all local sections a, b of M . We may always find such a section by enlarging the
support of D. Clearly,(

∇0

θ1 −∇∨
0

)
: M ⊕M∨ −→ (M ⊕M∨)⊗ ΩX(logD)
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is an orthogonal λ-connection. Choosing a λ-connection ∇N on N , we get an ortho-
gonal λ-connection

∇ :=

∇0

θ1 −∇∨
0

∇N

 : V −→ V ⊗ ΩX(logD)

on (V, ⟨ , ⟩). From the above construction, we have

∇(M) ̸⊂ M⊥ ⊗ ΩX(logD).

Thus, we obtain an orthogonal bundle (V, ⟨ , ⟩) of rank larger than 5 with an orthog-
onal λ-connection ∇ satisfying all conditions in Proposition 5.6.

Proposition 5.6 gives the construction of a special class of (V, ⟨ , ⟩,∇), which is not
quasi gr-semistable. Furthermore, we can show that if (V, ⟨ , ⟩,∇) is not quasi gr-semi-
stable and if rk(V ) = 5 and 6, then it must satisfy the conditions in Proposition 5.6.
In the next proposition, we shall discuss the case rk(V ) = 5 first.

Proposition 5.10. — Suppose that rk(V ) = 5. A triple (V, ⟨ , ⟩,∇) is not quasi
gr-semistable if and only if (V, ⟨ , ⟩) is an unstable orthogonal sheaf such that the
maximal destabilizer M is stable of rank two and satisfies

∇(M) ̸⊂ M⊥ ⊗ ΩX(logD).

Proof. — One direction is given by Proposition 5.6. We consider the other direction
and assume that (V, ⟨ , ⟩,∇) is not quasi gr-semistable. Clearly, (V, ⟨ , ⟩) is unstable,
otherwise the trivial filtration

0 ⊂ V

is quasi gr-semistable. Now denote by M the maximal destabilizer of V . If M is not
a stable rank two bundle, there exists saturated subsheaf N ⊂ M of rank one such
that deg(N) = µ(M). Then, the filtration

0 ⊂ N ⊂ N⊥ ⊂ V

is quasi gr-semistable by Lemma 5.3. Therefore, M is stable of rank two. Furthermore,
we have

∇(M) ̸⊂ M⊥ ⊗ ΩX(logD),

otherwise the filtration
0 ⊂ M ⊂ M⊥ ⊂ V

is quasi gr-semistable. □

5.3. Case III: rk(V ) = 6. — For the rank 6 case, we first prove two lemmas.

Lemma 5.11. — Suppose that (V, ⟨ , ⟩,∇) is not quasi gr-semistable of rank 6. Let

FilLW : 0 ⊂ L ⊂ W ⊂ L⊥ ⊂ V

be an orthogonal Hodge filtration such that
– rk(L) = 1, rk(W ) = 3 and deg(L) > 0, deg(W ) > 0,
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– deg(L) + deg(W ) > µmax(V ),
– 2 deg(L) + deg(W ) > 2µmax(V ).

Then there exists a rank three isotropic subsheaf W ′ containing L and satisfying one
of the following conditions:

(1) deg(W ′) > max{2 deg(L),deg(W )};
(2) deg(W ′) > deg(W ), and the filtration

FilLW : 0 ⊂ L ⊂ W ′ ⊂ L⊥ ⊂ V

is an orthogonal Hodge filtration;
(3) deg(W ′) > 2 deg(L), and there exists a rank two subbundle P2 of W such that

2 deg(P2) > deg(W ) + 2 deg(L),

∇(P2) ⊂ P⊥
2 ⊗ ΩX(logD),

∇(P2) ̸⊂ W ⊗ ΩX(logD).

Proof. — Since (V, ⟨ , ⟩,∇) is not quasi gr-semistable, the filtration FilLW does not
satisfy Condition (I) or (II) in Definition 4.3. If FilLW does not satisfy Condition (I),
there exists a rank two isotropic sheaf S between L and W such that

deg(S) > deg(L) + deg(W ),

deg(S) > deg(W ) and ∇(L) ⊂ S ⊗ ΩX(logD).or

For the first case deg(S) > deg(L) + deg(W ), we consider

FilS : 0 ⊂ S ⊂ S⊥ ⊂ V,

which is not quasi gr-semistable. Clearly, µmin(S) > 0 because

deg(S) > deg(L) + deg(W ) > µmax(V ).

Then there exist isotropic subsheaves

0 ⊂ T ⊂ U ⊂ S ⊂ W ′

such that rk(U) ⩽ 1, rk(W ′) = 3 and

∇(U) ⊂ W ′ ⊗ ΩX(logD), deg(W ′) > 2 deg(S)− deg(U)− deg(T ).

Then,
deg(W ′) > 2 deg(S)− deg(U)− deg(T )

> deg(W ) + 2 deg(L) + deg(W )− deg(U)− deg(T )

> deg(W ) + 2µmax(V )− µmax(V )− µmax(V ) = deg(W ).

Moreover, U = L or deg(U) ⩽ deg(S)− deg(L). If U = L, it is clear

∇(L) ⊂ W ′ ⊗ ΩX(logD).

If deg(U) ⩽ deg(S)− deg(L), we have

deg(W ′) > 2 deg(S)− 2(deg(S)− deg(L)) = 2 deg(L).
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For the second case that deg(S) > deg(W ) and ∇(L) ⊂ S ⊗ ΩX(logD), consider
the filtration

FilLS : 0 ⊂ L ⊂ S ⊂ S⊥ ⊂ L⊥ ⊂ V,

and there exists a rank three isotropic subsheaf W ′ containing L such that deg(W ′) >

2 deg(S) and
∇(L) ⊂ W ′ ⊗ ΩX(logD).

Therefore,
deg(W ′) > 2 deg(S) > 2 deg(W ) > deg(W ).

If FilLW does not satisfy Condition (II), then there exists a Hodge filtration

P1 ⊂ P2 ⊂ P⊥
2 ⊂ Q⊥

1 ⊂ V

such that

0 ⊂ P1 ⊂ Q1 ⊂ L ⊂ P2 ⊂ W,

rk(P2) = 2, 2 deg(P2) > deg(W ) + 2 deg(L)− deg(P1)− deg(Q1),

∇(P2) ̸⊂ W ⊗ ΩX(logD).and

Note that Q1 = 0 or L. If Q1 = 0, then P1 = 0. Thus,

deg(P2) >
1

2
(deg(W ) + 2 deg(L)) > µmax(V ).

With a similar argument as the proof in the first case, such a subsheaf W ′ exists by
considering the filtration

FilP2
: 0 ⊂ P2 ⊂ P⊥

2 ⊂ V.

If Q1 = L, a similar argument as in the second case will produce such a subsheaf W ′

by considering
FilLP2 : 0 ⊂ L ⊂ P2 ⊂ P⊥

2 ⊂ L⊥ ⊂ V.

This finishes the proof of this lemma. □

Lemma 5.12. — Suppose that (V, ⟨ , ⟩,∇) is not quasi gr-semistable and is of rank 6.
Define

α(V ) := max
M

{deg(M) | M is a rank three isotropic subsheaf of V }.

Then α(V ) < 2µmax(V ).

Proof. — We still prove this lemma by contradiction, and assume that α(V ) ⩾
2µmax(V ). Let M be a rank three isotropic subsheaf of V such that deg(M) = α(V ).
Then we have µmin(M) ⩾ 0 since deg(M) ⩾ 2µmax(V ). This implies that the filtration

FilM : 0 ⊂ M ⊂ V,
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which is not quasi gr-semistable, satisfies Condition (I). There exist saturated sub-
sheaves S ⊂ T ⊂ M such that

deg(T ) + deg(S) > deg(M),

∇(S) ⊂ T⊥ ⊗ ΩX(logD),

∇(S) ̸⊂ M ⊗ ΩX(logD).

Then we have rk(T ) = 2, otherwise

deg(T ) + deg(S) ⩽ µmax(V ) + µmax(V ) = 2µmax(V ) ⩽ deg(M),

which is a contradiction. In summary, there exists a rank two subsheaf T of M such
that

deg(T ) >
deg(M)

2
⩾ µmax(V ), ∇(T ) ⊂ T⊥ ⊗ ΩX(logD),

and
∇(T ) ̸⊂ M ⊗ ΩX(logD).

Moreover, µmin(T ) ⩾ 0.
Now we choose such a subsheaf T with maximal degree and consider the orthogonal

Hodge filtration
FilT : 0 ⊂ T ⊂ T⊥ ⊂ V.

Since it is not quasi gr-semistable, there exist saturated subsheaves S1 ⊂ T1 ⊂ T ⊂ S2

such that S2 is isotropic of rank three and

∇(T1) ⊂ S2 ⊗ ΩX(logD), ∇(S2) ̸⊂ S2 ⊗ ΩX(logD),

and
deg(S2) > 2 deg(T )− deg(T1)− deg(S1).

Since ∇(S2) ̸⊂ S2 ⊗ ΩX(logD), we have rk(T1) ⩽ 1 by Lemma 5.2. If T1 = 0, clearly

deg(S2) > 2 deg(T ) ⩾ deg(M).

This contradicts our choice of M . Therefore, we have rk(T1) = 1. Now if rk(T1) = 1,
we get the following inequality

deg(S2/T )− deg(T⊥/M) = deg(M) + deg(S2)− 2 deg(T )

> deg(M)− deg(T1)− deg(S1)

⩾ 2µmax(V )− µmax(V )− µmax(V ) = 0,

which implies S2 = M by the natural morphism S2/T → T⊥/M . Moreover, we have
deg(T1) > 0.

Then, we consider the orthogonal Hodge filtration

FilT1M : 0 ⊂ T1 ⊂ M ⊂ T⊥
1 ⊂ V.
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By Lemma 5.11, there exists a rank two saturated subsheaf P2 ⊂ M such that

2 deg(P2) > deg(M) + 2 deg(T1),

∇(P2) ⊂ P⊥
2 ⊗ ΩX(logD),

∇(P2) ̸⊂ M ⊗ ΩX(logD).

Then,

2 deg(P2) > deg(M) + 2 deg(T1)

> 2 deg(T )− deg(T1)− deg(S1) + 2 deg(T1)

= 2 deg(T ) + deg(T1)− deg(S1)

⩾ 2 deg(T ).

.

This contradicts our choice of deg(T ), which is of maximal degree. In conclusion,
we have α(V ) < 2µmax(V ). □

Proposition 5.13. — Let (V, ⟨ , ⟩,∇) be an orthogonal sheaf of rank 6 together with
an orthogonal λ-connection. Then (V, ⟨ ⟩,∇) is not quasi gr-semistable if and only
if V is an unstable orthogonal sheaf such that

(1) the maximal destabilizer M is a stable rank two saturated subsheaf,
(2) M⊥/M is stable or M⊥/M is a direct sum of two non isomorphic orthogonal

torsion free sheaves of rank one,
(3) ∇(M) ̸⊂ M⊥ ⊗ ΩX(logD).

Proof. — One direction is exactly proved by Proposition 5.6. Now we assume that
(V, ⟨ ⟩,∇) is not quasi gr-semistable. Clearly, the trivial filtration 0 ⊂ V is not quasi
gr-semistable, and then V is unstable. We prove the other three statements by con-
tradiction.

Let M be the maximal destabilizer of V . Lemma 5.12 shows that rk(M) ⩽ 2. If M
is not stable of rank two, then there exists a saturated subsheaf N ⊂ M of rank one
such that deg(N) = µ(M) = µmax(V ). Now consider the orthogonal Hodge filtration

FilN : 0 ⊂ N ⊂ N⊥ ⊂ V.

Since it is not quasi gr-semistable, there exists a Hodge filtration

R1 ⊂ R2 ⊂ U⊥
1 ⊂ V

such that
0 ⊂ R1 ⊂ U1 ⊂ N ⊂ R2,

with rk(R2) = 2 or 3,

deg(R2) > 2 deg(N)− deg(R1)− deg(U1),

and
∇(R2) ̸⊂ R⊥

2 ⊗ ΩX(logD).
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We first suppose rk(R2) = 2. Then, the condition ∇(R2) ̸⊂ R⊥
2 ⊗ ΩX(logD) and

Lemma 5.2 implies that R1 = U1 = 0. Then,

deg(R2) > 2 deg(N) = 2µmax(V ),

and this is a contradiction. Thus, rk(R2) = 3. In this case, U1 = 0 or U1 = N . With
a similar argument as above, Lemma 5.12 implies U1 = N . In summary, there exists
a rank three isotropic subsheaf R2 such that

deg(R2) > 0, ∇(N) ⊂ R2 ⊗ ΩX(logD), ∇(R2) ̸⊂ R2 ⊗ ΩX(logD).

Now we choose such a subsheaf R2 with maximal degree and consider the orthogonal
Hodge filtration

FilNR2
: 0 ⊂ N ⊂ R2 ⊂ N⊥ ⊂ V.

By Lemma 5.11, there exists an isotropic subsheaf W ′ of rank three such that
deg(W ′) > 2 deg(N) = 2µmax(V ). However, this contradicts Lemma 5.12. Therefore,
the maximal destabilizer M of V is stable of rank two.

For the second statement, suppose that M⊥

M is not stable. Then there exists a rank
three isotropic subsheaf Z contain M such that deg( Z

M ) ⩾ 0. We have deg(Z) ⩾

deg(M) = 2µmax(V ), which contradicts Lemma 5.12. Therefore, M⊥

M is stable.
For the last statement, if ∇(M) ⊂ M⊥ ⊗ΩX(logD), we consider the Hodge filtra-

tion
FilM : 0 ⊂ M ⊂ M⊥ ⊂ V,

which is not quasi gr-semistable. Then there exist saturated subsheaves S1 ⊂ T1 ⊂
M ⊂ S2 such that S2 is isotropic of rank three and

∇(T1) ⊂ S2 ⊗ ΩX(logD), ∇(S2) ̸⊂ S2 ⊗ ΩX(logD),

and
deg(S2) > 2 deg(M)− deg(T1)− deg(S1).

Lemma 5.2 implies rk(T1) ⩽ 1. Then,

deg(S2) > 2 deg(M)− deg(T1)− deg(S1)

⩾ 4µmax(V )− µmax(V )− µmax(V ) = 2µmax(V ),

and this contradicts Lemma 5.12. Therefore, we get that ∇(M) ̸⊂ M⊥ ⊗ ΩX(logD).
□

Now apply the above results to algebraic curves. For elliptic curves, structure of
vector bundles is clear [Ati57, Tu93]. We have the following corollaries.

Corollary 5.14. — Let X be an elliptic curve. Let (V, ⟨ , ⟩,∇) be an orthogonal sheaf
of rank 5 together with an orthogonal λ-connection on X. Then (V, ⟨ , ⟩,∇) is not
quasi gr-semistable if and only if

V = M ⊕M∨ ⊕N,

∇(M) ̸⊂ (M ⊕N)⊗ ΩX(logD),
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where M is a rank two stable bundle of odd degree and N is a line bundle such that
N⊗2 ∼= OX .

Corollary 5.15. — Let X be an elliptic curve. Let (V, ⟨ , ⟩,∇) be an orthogonal sheaf
of rank 6 together with an orthogonal λ-connection on X. Then (V, ⟨ , ⟩,∇) is not
quasi gr-semistable if and only if

V = M ⊕M∨ ⊕N1 ⊕N2,

∇(M) ̸⊂ (M ⊕N1 ⊕N2)⊗ ΩX(logD),

where M is a rank two stable bundle of odd degree, and N1, N2 are non isomorphic
line bundles such that N⊗2

i
∼= OX for i = 1, 2.

For projective line P1
k, we have the following corollary.

Corollary 5.16. — Let (V, ⟨ , ⟩,∇) be an orthogonal bundle on P1
k together with an

orthogonal λ-connection. If rk(V ) ⩽ 6, then it is quasi gr-semistable.

Proof. — Note that there is no stable bundle of rank two on P1
k. This corollary is a

direct consequence of Proposition 5.10 and 5.13. □

Based on Corollary 5.16, we intend to believe the truth of the following question.

Question 5.17. — Is any orthogonal bundle with an orthogonal λ-connection on the
projective line P1

k quasi gr-semistable and hence gr-semistable?
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