Quantum limits of perturbed sub-Riemannian contact Laplacians in dimension 3
[Limites quantiques pour les laplaciens sous-riemanniens de contact en dimension 3]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 909-956.

Sur le fibré tangent unitaire d’une surface compacte riemannienne, nous considérons un sous-laplacien riemannien naturel associé à la structure de contact canonique. Dans la limite des grandes valeurs propres et pour des perturbations hypoelliptiques auto-adjointes de cet opérateur, nous étudions la façon dont la masse des fonctions propres s’échappe à l’infini dans l’espace co-tangent. En utilisant des méthodes semi-classiques, nous montrons que, dans ce régime sous-elliptique, les fonctions propres se concentrent sur certains ensembles de niveaux quantifiés le long de la direction du flot géodésique et qu’elles vérifient des propriétés d’invariance impliquant à la fois le champ de vecteurs géodésique et le terme de perturbation.

On the unit tangent bundle of a compact Riemannian surface, we consider a natural sub-Riemannian Laplacian associated with the canonical contact structure. In the large eigenvalue limit, we study the escape of mass at infinity in the cotangent space of eigenfunctions for hypoelliptic selfadjoint perturbations of this operator. Using semiclassical methods, we show that, in this subelliptic regime, eigenfunctions concentrate on certain quantized level sets along the geodesic flow direction and that they verify invariance properties involving both the geodesic vector field and the perturbation term.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.269
Classification : 58J50, 35H10, 53C17
Keywords: Hypoelliptic operators, semiclassical analysis, contact flows
Mot clés : Opérateurs hypoelliptiques, analyse semi-classique, flots de contact

Víctor Arnaiz 1 ; Gabriel Rivière 2

1 Laboratoire de Mathématiques Jean Leray, Nantes Université, UMR CNRS 6629, 2 rue de la Houssinière, 44322 Nantes Cedex 03, France
2 Laboratoire de Mathématiques Jean Leray, Nantes Université, UMR CNRS 6629, 2 rue de la Houssinière, 44322 Nantes Cedex 03, France & Institut Universitaire de France, Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__909_0,
     author = {V{\'\i}ctor Arnaiz and Gabriel Rivi\`ere},
     title = {Quantum limits of perturbed {sub-Riemannian} contact {Laplacians} in dimension~3},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {909--956},
     publisher = {\'Ecole polytechnique},
     volume = {11},
     year = {2024},
     doi = {10.5802/jep.269},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.269/}
}
TY  - JOUR
AU  - Víctor Arnaiz
AU  - Gabriel Rivière
TI  - Quantum limits of perturbed sub-Riemannian contact Laplacians in dimension 3
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 909
EP  - 956
VL  - 11
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.269/
DO  - 10.5802/jep.269
LA  - en
ID  - JEP_2024__11__909_0
ER  - 
%0 Journal Article
%A Víctor Arnaiz
%A Gabriel Rivière
%T Quantum limits of perturbed sub-Riemannian contact Laplacians in dimension 3
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 909-956
%V 11
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.269/
%R 10.5802/jep.269
%G en
%F JEP_2024__11__909_0
Víctor Arnaiz; Gabriel Rivière. Quantum limits of perturbed sub-Riemannian contact Laplacians in dimension 3. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 909-956. doi : 10.5802/jep.269. https://jep.centre-mersenne.org/articles/10.5802/jep.269/

[AM14] N. Anantharaman & F. Macià - “Semiclassical measures for the Schrödinger equation on the torus”, J. Eur. Math. Soc. (JEMS) 16 (2014) no. 6, p. 1253-1288 | DOI | Zbl

[AS23] V. Arnaiz & C. Sun - “Sharp resolvent estimate for the Baouendi-Grushin operator and applications”, Comm. Math. Phys. 400 (2023) no. 1, p. 541-637 | DOI | Zbl

[BR20] Y. Bonthonneau & N. Raymond - “WKB constructions in bidimensional magnetic wells”, Math. Res. Lett. 27 (2020) no. 3, p. 647-663 | DOI | Zbl

[BS22] N. Burq & C. Sun - “Time optimal observability for Grushin Schrödinger equation”, Anal. PDE 15 (2022) no. 6, p. 1487-1530 | DOI | Zbl

[BVN21] G. Boil & S. Vu Ngoc - “Long-time dynamics of coherent states in strong magnetic fields”, Amer. J. Math. 143 (2021) no. 6, p. 1747-1789 | DOI | Zbl

[CHT18] Y. Colin de Verdière, L. Hillairet & E. Trélat - “Spectral asymptotics for sub-Riemannian Laplacians, I: Quantum ergodicity and quantum limits in the 3-dimensional contact case”, Duke Math. J. 167 (2018) no. 1, p. 109-174 | DOI | Zbl

[CHT21] Y. Colin de Verdière, L. Hillairet & E. Trélat - “Spiraling of sub-Riemannian geodesics around the Reeb flow in the 3D contact case”, 2021 | arXiv

[Col23] Y. Colin de Verdière - “A proof of a trace formula by Richard Melrose”, Adv. Nonlinear Stud. 23 (2023) no. 1, article ID 20220054, 13 pages | DOI | Zbl

[DZ19] S. Dyatlov & M. Zworski - Mathematical theory of scattering resonances, Graduate Studies in Math., vol. 200, American Mathematical Society, Providence, RI, 2019 | DOI

[FK95] C. Fermanian-Kammerer - Mesures semi-classiques et équation de la chaleur, Ph. D. Thesis, Université Paris-Sud Orsay, 1995

[FK00] C. Fermanian-Kammerer - “Mesures semi-classiques 2-microlocales”, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) no. 7, p. 515-518 | DOI | Zbl

[FKF21] C. Fermanian-Kammerer & V. Fischer - “Quantum evolution and sub-Laplacian operators on groups of Heisenberg type”, J. Spectral Theory 11 (2021) no. 3, p. 1313-1367 | DOI | Zbl

[FKL21] C. Fermanian-Kammerer & C. Letrouit - “Observability and controllability for the Schrödinger equation on quotients of groups of Heisenberg type”, J. Éc. polytech. Math. 8 (2021), p. 1459-1513 | DOI | Numdam | Zbl

[FS74] G. B. Folland & E. M. Stein - “Estimates for the ¯ b complex and analysis on the Heisenberg group”, Comm. Pure Appl. Math. 27 (1974), p. 429-522 | Zbl

[GNRV21] Y. Guedes Bonthonneau, D. Nguyen, N. Raymond & S. Vu Ngoc - “Magnetic WKB constructions on surfaces”, Rev. Math. Phys. 33 (2021) no. 7, article ID 2150022, 41 pages | DOI | Zbl

[GRV21] Y. Guedes Bonthonneau, N. Raymond & S. Vu Ngoc - “Exponential localization in 2D pure magnetic wells”, Ark. Mat. 59 (2021) no. 1, p. 53-85 | DOI | Zbl

[HKRV16] B. Helffer, Y. Kordyukov, N. Raymond & S. Vu Ngoc - “Magnetic wells in dimension three”, Anal. PDE 9 (2016) no. 7, p. 1575-1608 | DOI | Zbl

[Hör67] L. Hörmander - “Hypoelliptic second order differential equations”, Acta Math. 119 (1967), p. 147-171 | DOI | Zbl

[LS23] C. Letrouit & C. Sun - “Observability of Baouendi-Grushin-type equations through resolvent estimates”, J. Inst. Math. Jussieu 22 (2023) no. 2, p. 541-579 | DOI | Zbl

[Mel85] R. B. Melrose - “The wave equation for a hypoelliptic operator with symplectic characteristics of codimension two”, J. Analyse Math. 44 (1984/85), p. 134-182 | DOI | Zbl

[Mil96] L. Miller - Propagation d’ondes semi-classiques à travers une interface et mesures 2-microlocales, Ph. D. Thesis, École polytechnique, 1996

[Mor22] L. Morin - “A semiclassical Birkhoff normal form for symplectic magnetic wells”, J. Spectral Theory 12 (2022) no. 2, p. 459-496 | DOI | Zbl

[Mor24] L. Morin - “A semiclassical Birkhoff normal form for constant-rank magnetic fields”, Anal. PDE 17 (2024) no. 5, p. 1593-1632 | DOI | Zbl

[Nie96] F. Nier - “A semi-classical picture of quantum scattering”, Ann. Sci. École Norm. Sup. (4) 29 (1996) no. 2, p. 149-183 | DOI | Numdam | Zbl

[PSU23] G. P. Paternain, M. Salo & G. Uhlmann - Geometric inverse problems—with emphasis on two dimensions, Cambridge Studies in Advanced Math., vol. 204, Cambridge University Press, Cambridge, 2023 | DOI

[RS72] M. Reed & B. Simon - Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972

[RS75] M. Reed & B. Simon - Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press, New York-London, 1975

[RS76] L. P. Rothschild & E. M. Stein - “Hypoelliptic differential operators and nilpotent groups”, Acta Math. 137 (1976) no. 3-4, p. 247-320 | DOI | Zbl

[Rum94] M. Rumin - “Differential forms on contact manifolds”, J. Differential Geom. 39 (1994) no. 2, p. 281-330 | Zbl

[RV15] N. Raymond & S. Vu Ngoc - “Geometry and spectrum in 2D magnetic wells”, Ann. Inst. Fourier (Grenoble) 65 (2015) no. 1, p. 137-169 | DOI | Numdam | Zbl

[Tay20] M. Taylor - “Microlocal Weyl formula on contact manifolds”, Comm. Partial Differential Equations 45 (2020) no. 5, p. 392-413 | DOI | Zbl

[Zwo12] M. Zworski - Semiclassical analysis, Graduate Studies in Math., vol. 138, American Mathematical Society, Providence, RI, 2012 | DOI

Cité par Sources :