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QUANTUM LIMITS OF PERTURBED SUB-RIEMANNIAN

CONTACT LAPLACIANS IN DIMENSION 3

by Víctor Arnaiz & Gabriel Rivière

Abstract. — On the unit tangent bundle of a compact Riemannian surface, we consider a
natural sub-Riemannian Laplacian associated with the canonical contact structure. In the large
eigenvalue limit, we study the escape of mass at infinity in the cotangent space of eigenfunctions
for hypoelliptic selfadjoint perturbations of this operator. Using semiclassical methods, we show
that, in this subelliptic regime, eigenfunctions concentrate on certain quantized level sets along
the geodesic flow direction and that they verify invariance properties involving both the geodesic
vector field and the perturbation term.

Résumé (Limites quantiques pour les laplaciens sous-riemanniens de contact en dimension 3)
Sur le fibré tangent unitaire d’une surface compacte riemannienne, nous considérons un

sous-laplacien riemannien naturel associé à la structure de contact canonique. Dans la limite
des grandes valeurs propres et pour des perturbations hypoelliptiques auto-adjointes de cet
opérateur, nous étudions la façon dont la masse des fonctions propres s’échappe à l’infini dans
l’espace co-tangent. En utilisant des méthodes semi-classiques, nous montrons que, dans ce
régime sous-elliptique, les fonctions propres se concentrent sur certains ensembles de niveaux
quantifiés le long de la direction du flot géodésique et qu’elles vérifient des propriétés d’inva-
riance impliquant à la fois le champ de vecteurs géodésique et le terme de perturbation.
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910 V. Arnaiz & G. Rivière

1. Introduction

Let (M, g) be a smooth, compact, oriented, and boundaryless Riemannian surface
and denote by K(m) its sectional curvature at a given point m ∈M . The unit tangent
bundle of M is defined by

M := SM =
{
q = (m, v) ∈ TM : ∥v∥g(m) = 1

}
.

There are two natural vector fields on SM : the geodesic vector field X and the vertical
vector field V , i.e., the vector field corresponding to the action by rotation in the fibers
of SM . One can then define X⊥ := [X,V ] and these vector fields verify the following
commutation relations [PSU23, §3.5.1]:

(1) [X,X⊥] = −KV, [X,V ] = X⊥, and [X⊥, V ] = −X,

where K is understood as a function on SM (via pullback). The manifold M is
naturally endowed with a Riemannian metric gS (the Sasaki metric) which makes
(X,X⊥, V ) into an orthonormal basis. The corresponding volume form that we will
denote by dµL makes these three vector fields divergence free and we can define the
sub-Riemannian Laplacian associated with this geodesic frame:

−∆sR := X∗
⊥X⊥ + V ∗V = −X2

⊥ − V 2.

More precisely, we consider the Friedrichs extension of this formally selfadjoint opera-
tor (see Appendix A for a brief reminder) which is hypoelliptic by Hörmander’s The-
orem [Hör67, Th. 1.1]. See Section 8 for a concrete description of these operators and
their spectrum in the case of the flat torus. In the context of contact geometry, −∆sR
is referred as the Rumin Laplacian for the Sasaki metric [Rum94]. See also Section 1.4
for a discussion on the case of general Hörmander (contact) operators in dimension 3.

We now let Q,W ∈ C∞(M,R). Our goal is to study, in the semiclassical limit
h→ 0+, the eigenfunctions of the following (formally selfadjoint) operator:

(2) P̂h := −h2∆sR − ih2QX − ih2X(Q)

2
+W, h ∈ (0, 1].

Recall from [RS76, §1] that such operators appear naturally when studying the bound-
ary analogue of the ∂ operator in complex analysis [FS74] whose local expression
is exactly of this form and which is sometimes referred as the Kohn Laplacian.
In the present work, the relevance of considering subprincipal terms of the form
QX+(QX)∗ = Q[V,X⊥]+X(Q)/2 is also the richer dynamical structure displayed by
the eigenfunctions of P̂h in the semiclassical limit (see Remark 1.2 after Theorem 1.1).

Under the assumption ∥Q∥C0 < 1, one can both consider the Friedrichs extension
of this operator and apply the Rothschild-Stein theorem [RS76, Th. 16]. In some
sense, these operators are also among the simplest example of selfadjoint hypoelliptic
operator that cannot be written as a sum of squares. Combining this last theorem
with classical tools from spectral theory [RS72, RS75], one can find h0 > 0 such that,
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Quantum limits of perturbed sub-Riemannian Laplacians in dimension 3 911

for all 0 < h ⩽ h0, there exists a nondecreasing sequence

min W + OQ(h) ⩽ Λh(0) ⩽ λh(1) ⩽ · · · ⩽ Λh(j) . . . −→ +∞, as j −→ +∞,

and an orthonormal basis (ψj
h)j⩾0 of L2(M) verifying, for all j ⩾ 0,

P̂h ψ
j
h = Λh(j)ψ

j
h.

We refer to Lemma A.4 in Appendix A for details. Moreover, any solution ψj
h to this

eigenvalue problem belongs to the space C∞(M) and, thanks to Lemma A.5, it satisfies
the a priori estimate for h > 0 small enough:

∥hX⊥ψ
j
h∥

2
L2 + ∥hV ψj

h∥
2
L2 + ∥h2Xψj

h∥
2
L2 ⩽ CQ,W (1 + |Λh(j)|)2,

where CQ,W > 0 is a constant depending only on (Q,W ). The fact that the first
two terms on the left hand side of this inequality are bounded follows by standard
energy estimates together with the facts that ∥Q∥C0 < 1 and that X = [V,X⊥]. The
fact that ∥h2Xψj

h∥ is bounded is much more subtle and it follows from the classical
Rothschild–Stein theorem. As we shall discuss it later on, it is a manifestation of
the lack of ellipticity of the operator along the X direction. In the following, we aim
precisely at analyzing the structure of the eigenfunctions in the subelliptic regime
where formally speaking one has h−1 ≪ |X| ≲ h−2.

1.1. Quantum limits and semiclassical measures. — We are interested in describing
the asymptotic properties of the semiclassical eigenmodes satisfying:(1)

(3) P̂h ψh = Λh ψh, ∥ψh∥L2 = 1, Λh −→ Λ0 ∈ R, as h −→ 0+.

When W ≡ 0, a natural choice is to pick Λh = 1 that would correspond to studying
the large eigenvalue limit for the hypoelliptic operator L = ∆sR+iQX+iX(Q)/2. Yet,
as we want to emphasize the semiclassical nature of this spectral problem, we keep
a general W and thus some general value λ0 ⩾ minW . Still from Lemma A.5, one
finds that, for any sequence Λh → Λ0, there exists some h0 > 0 such that, for all
0 < h ⩽ h0 and for any solution to (3),

(4) ∥hX⊥ψh∥2L2 + ∥hV ψh∥2L2 + ∥h2Xψh∥2L2 ⩽ CQ,W (1 + 2|Λ0|)2.

One says that a probability measure ν is a quantum limit for this spectral prob-
lem if, for every a ∈ C0(M),

lim
h→0+

∫
M

a|ψh|2dµL =

∫
M

a dν,

where (ψh)h→0+ is a sequence verifying (3). Up to extraction of a subsequence, one
can always find such an accumulation point. Given Λ0 ⩾ minW , we denote by NΛ0

the set of quantum limits associated with the spectral parameter Λ0. The relevance
of these measures from the point of view of quantum mechanics is that they describe
the probability of finding a particle in the quantum state ψh. From the mathematical

(1)All along the article, we use the standard conventions from semiclassical analysis to write
h → 0+ instead of writing a sequence hn → 0 as n → ∞.
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912 V. Arnaiz & G. Rivière

perspective, they allow to give some information on the regularity of eigenfunctions
in the large eigenvalue limit.

In view of describing the regularity properties of ν, one lifts the problem to the
cotangent bundle T ∗M by introducing

wh : a ∈ C∞
c (T ∗M) 7−→ ⟨Oph(a)ψh, ψh⟩L2 ,

where Oph(a) is a h-pseudodifferential operator with principal symbol a [Zwo12,
Th. 14.1] and (ψh)h→0+ is the sequence used to generate ν. Thanks to the Calderón-
Vaillancourt theorem [Zwo12, Th. 5.1], (wh)h→0+ is a bounded sequence in D′(T ∗M).
Hence, up to extraction, it converges to some limit w which is referred as a semiclassi-
cal measure for the sequence (ψh)h→0+ . The theory of semiclassical pseudodifferential
operators allows to prove that any such w is a finite nonnegative measure on T ∗M

that is supported on

E−1(Λ0) := {(q, p) ∈ T ∗M : E(q, p) := H2(q, p)
2 +H3(q, p)

2 +W (q) = Λ0},

and that satisfies the following invariance property{
H2

2 +H2
3 +W,w

}
= 0,

where
H2(q, p) := p(X⊥), and H3(q, p) := p(V ).

See for instance [Zwo12, §5.2] for proofs of these classical facts in the case of R2d.
We emphasize that, contrary to the case of eigenvalue problems of elliptic nature,
the energy layer E−1(Λ0) is not compact and there may be some escape of mass at
infinity. In particular, w could be equal to 0. See for instance Section 8 for concrete
examples in the case of the flat torus. Due to this escape of mass at infinity, it is
natural to study the measure

ν∞ := ν − π∗w,

where π : (q, p) ∈ T ∗M → q ∈ M, and this is the main purpose of the present work.

1.2. Decomposition of the measure ν∞ and invariance properties

Colin de Verdière, Hillairet and Trélat proved in [CHT18, Th. B] that X(ν∞) ≡ 0

when Q ≡ 0 and W ≡ 0. Our results generalize this theorem in two directions. First,
we will provide a refined description of ν∞, showing that the measure ν∞ decomposes
into a discrete sum of non-negative Radon measures covering different asymptotic
regimes h−1 ≪ |X| ≲ h−2 across the non-compact part of E−1(Λ0). Second, we will
prove that each of these measures satisfies a new invariance property, different from
each-other, as soon as ∇(Q) does not vanish. In view of formulating our results, we
associate to each smooth function f on M a natural vector field lying in the contact
plane D := Span(X⊥, V ) given by

Ωf := V (f)X⊥ −X⊥(f)V.

Our main theorem then reads:
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Theorem 1.1. — Let Q,W ∈ C∞(M,R) such that ∥Q∥C0 < 1, let Λ0 > maxq∈MW (q)

and set

(5) YW := X +Ωln(Λ0−W ).

Then, for every ν ∈ NΛ0
, the measure ν∞ decomposes as

(6) ν∞ = ν∞ +

∞∑
k=0

(
ν+k,∞ + ν−k,∞

)
,

where ν∞ and ν±k,∞ are non-negative Radon measures on M verifying, for all a ∈
C1(M) and for all k ∈ Z+,∫

M

YW (a) dν∞ = 0, and
∫
M

Y ±
W,Q,k(a) dν

±
k,∞ = 0,

with
Y ±
W,Q,k :=

(
± (2k + 1) +Q

)
YW − ΩQ.

Remark 1.2. — We emphasize the importance for Theorem 1.1 of considering sub-
principal terms of the form −ih2QX − ih2X(Q)/2 in the definition of P̂h. Indeed,
the resulting quantum limits ν∞ and ν±k each satisfy a different invariance property
while, for Q ≡ 0, only one invariance property for ν∞ occurs.

Remark 1.3. — Condition Λ0 > maxq∈MW (q) ensures that the classical forbidden
region is empty. In the case minW ⩽ Λ0 ⩽ maxW , the support of ν∞ becomes
confined inside the compact set MΛ0,W := {q ∈ M : Λ0 −W ⩾ 0}, while the support
of ν±k,∞ is contained in the open subset UΛ0,W := {q ∈ M : Λ0 −W > 0}. This more
general situation is covered by the more precise description of semiclassical measures
stated in Theorem 7.1.

Remark 1.4. — In Section 8, by working on the flat torus M = T2, we show examples
of sequences (ψh,Λh) satisfying (3) for which the measures ν∞ or ν±k,∞ we construct
carry the total mass of ν.

Decomposition (6) reflects the stratification of the asymptotic phase-space distri-
bution of a given sequence (ψh,Λh) satisfying (3). Indeed, in Section 7 below, we will
provide a more general description of ν∞ by lifting the analysis to the phase-space via
introducing an adapted semiclassical measure µ∞ on M×R such that, by projection:(2)

ν∞(q) =

∫
R
µ∞(q, dE).

The extra variable E ∈ R parameterizes the phase-space escape of mass along the
degenerate direction of X as h→ 0+. We refer to (28) below for the explicit construc-
tion of the measure µ∞ using semiclassical tools and we just give here some informal

(2)Letting µ be a finite Radon measure on M× R, the measure ν(q) =
∫
R µ(q, dE) is defined by

⟨ν, a⟩ :=
∫
M×R

a(q)dµ(q, E), for all a ∈ C0(M).
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914 V. Arnaiz & G. Rivière

explanation. Letting H1(q, p) = p(X), we will study precisely two different asymptotic
regimes generating a splitting of the measure µ∞ into two parts

µ∞ = 1E ̸=0µ∞ + 1E=0µ∞

of qualitatively different nature:
– The critical subelliptic regime h|H1| ≍ 1, captured by 1E ̸=0µ∞, displays a quan-

tum behavior which manifests as a decomposition of this measure into a discrete sum
of Radon measures (µ±

k,∞)k∈N supported on quantized level sets H−1
± (2k+1) ⊂ M×R∗

±
for the energy functions

(7) H±(q, E) := ±
(Λ0 −W (q)

E
−Q(q)

)
, (q, E) ∈ M× R∗

±.

These measures project on the manifold M and give the measures ν±k,∞:

ν±k,∞(q) =

∫
R
µ±
k,∞(q, dE).

– The subcritical subelliptic regime 1 ≪ |H1| ≪ h−1, captured by the measure
µ∞ = 1E=0µ∞, which is supported on M×{0}. This measure projects on M so that:

ν∞(q) =

∫
R
µ∞(q, dE).

Besides this distinction between the different oscillation regimes, our analysis will
show the influence of the hypoelliptic perturbations of −∆sR given by (2) in the
previous description by obtaining new invariance properties of µ∞ in terms of Q
and W . Among other things, it illustrates that the introduction of the new variable
E = hH1 becomes essential for this description even in the non-semiclassical set-up
where W ≡ 0.

1.3. More related results and questions

The fine analysis of these regimes h ≪ |E| = h|H1| ≲ 1 in the subelliptic region
of T ∗M is reminiscent of the analysis made by Burq and Sun for the semiclassical
measures of Baouendi-Grushin operators in [BS22] (see also [LS23, AS23] for related
works). More precisely, Theorem 7.1 below can be compared with the results obtained
by the first author and Sun in [AS23] where a detailed study of semiclassical mea-
sures in the subelliptic regime for quasimodes of the Baouendi-Grushin operator was
performed. In these references, the model operator is ∆G := ∂2x + a(x)2∂2y , where
(x, y) ∈ T2 and a(x) is a smooth function that may vanish at finitely many isolated
points (with non-vanishing derivative). In particular, this operator can be written as
a sum of squares and one has [∂x, a(x)∂y] = a′(x)∂y. Thanks to Hörmander’s bracket
condition [Hör67], it defines an hypoelliptic operator and similar questions can be
raised on the asymptotic properties of its eigenfunctions. These are exactly the ques-
tions raised in [BS22] and the role of H1 is then played by the cotangent variable η that
is dual to y. As our Theorem 1.1, [AS23, §3] gives a full description of the eigenmodes
in the regime 1 ≪ |η| ≲ h−1 through their semiclassical measures. In particular, the
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Quantum limits of perturbed sub-Riemannian Laplacians in dimension 3 915

invariance of these measures through the vector field ∂y is shown and it replaces the
geodesic vector field X in that context.

In [CHT18], the hypoelliptic model is closer to ours but this extra variable hH1

did not appear in the description of ν∞ because of the use of microlocal methods.
The reason for introducing this new variable E = hH1 is that, in the regime E ̸= 0,
the term h2QX is not negligible anymore compared with −h2∆sR and it has to be
taken into account in the description of the quantum limit. It results in new invariance
properties as in Theorem 1.1. The fact that the eigenfunctions are localized on spe-
cific levels is a manifestation of the fact that our hypoelliptic operators are modeled
locally on the 3-dimensional Heisenberg group (and thus related to the 1-dimensional
harmonic oscillator). More specifically, our proof of this support property will only
rely on the fact that the sub-Riemannian Laplacian can be written as

(8) ∆sR = Z∗Z − iX = ZZ∗ + iX, [Z,Z∗] = 2iX, where Z = X⊥ + iV .

This quantization of the level sets can be thought as an analogue in our (non-
algebraic) set-up of the decomposition appearing in the works of Fermanian-
Kammerer and Fischer [FKF21, Th. 1.1, Th. 2.10]. See also [FKL21] for related
results in the compact setting. In these references, the decomposition of the semi-
classical measures along these quantized levels shows up because there is a natural
way to diagonalize the sub-Riemannian Laplacian along the elliptic variables. This is
exactly where the harmonic oscillator appears in these references and the subelliptic
variable H1 corresponds exactly to the center direction of the Lie algebra setting
from [FKF21, FKL21]. Yet, this algebraic decomposition does not distinguish the
various scales of oscillations h≪ h|H1| ≲ 1 as we are doing in the present work or as
it was the case in [BS22, AS23]. In [FKF21, FKL21], the proof of this decomposition
required the introduction of operator-valued semiclassical measures. In the case of
more general contact manifolds, we can also mention the works of Taylor [Tay20]
regarding the question of microlocal Weyl laws for operator-valued symbols. Here, our
proof of these support properties will not rely on the introduction of such analytical
objects. It will simply follow from a careful use of the relation (8) where Z and Z∗ will
play the role of ladder operators, in a similar way to the proof that the eigenvalues
of the harmonic oscillator are given by {2k + 1, k ⩾ 0}.

Remark 1.5. — In the general 3-dimensional contact case treated in [CHT18], the
quantum normal form as formulated in [Col23, §6.2] should in principle allow to
get as in [FKF21] a natural decomposition of the measure ν∞ using the spectral
decomposition of the harmonic oscillator. Yet, due to its microlocal nature, it would
again not distinguish the various subelliptic regimes 1 ≪ |H1| ≲ h−1 involved in our
problem as we are doing here.

Remark 1.6. — The related works of Boil and Vu Ngoc [BVN21] are also relevant
towards this kind of decomposition. Indeed, in this reference the long time dynamics
of the semiclassical magnetic Schrödinger equation is studied in details in dimension 2.
At the time scale 1/h, it is in fact shown that coherent states split according to the
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916 V. Arnaiz & G. Rivière

low Landau levels of the operator with an effective dynamics given by the magnetic
field which is the analogue of our Reeb vector field. In other words, it is the exact
analogue in this context of our splitting of quantum limits through the measures ν±k,∞.
We also refer to [AS23, §5] where a similar coherent state decomposition is described
for the Baouendi-Grushin operator ∆G.

As our semiclassical analysis of eigenfunctions for hypoelliptic operators is inspired
by the fine analysis performed for the Baouendi-Grushin operator in [BS22, AS23],
it is natural to expect that such results would remain true for similar hypoelliptic
perturbations of the Baouendi-Grushin operator. Similarly, the analysis presented
here should in principle allow to deal with the controllability of the Schrödinger
equation as in [BS22] and with the stabilization of the wave equation as in [AS23].
Yet, this would require more work that is beyond the scope of the present article.
Another natural question would be to study more precisely the regularity of quan-
tum limits when the geodesic vector field X enjoys specific dynamical structure,
e.g. on Zoll surfaces, on flat tori or on negatively curved surfaces. Among the nat-
ural questions to explore is whether one can always find sequences of eigenfunctions
concentrating on a given level set H−1

± (2k + 1). Related to this, it would be inter-
esting to describe semiclassical Weyl laws for symbols involving the extra variable
E = hH1. In that direction, we refer one more time to [Tay20] for microlocal Weyl
laws with operator-valued symbols (including the case where Q is not identically
equal to 0) on contact manifolds of dimension ⩾ 3. Finally, these hypoelliptic models
are naturally related to semiclassical magnetic Schrödinger operators. For instance,
in view of the works [RV15, HKRV16, Mor22, Mor24], it would be natural to com-
pare how the fine structure of eigenfunctions of these models could be understood
following the lines of the present work. Recall that rather precise descriptions of the
low-energy eigenfunctions were already given via WKB and normal form methods
in [BR20, GRV21, GNRV21].

1.4. A few words on more general sub-Riemannian contact Laplacians in dimen-
sion 3. — The simple geometric model considered in this article ensures that we
have globally defined vector fields (X⊥, V ) generating the contact structure and that
[X⊥, X] = KV and [V,X] = −X⊥. It makes some aspects of the exposition some-
what lighter (e.g. regarding the normal form procedure) but it is not essential in our
analysis. In fact, one would only need to have two locally defined generating vector
fields (X2, X3) on a 3-dimensional manifold N so that the operator ∆sR writes down
locally as X∗

2X2 +X∗
3X3 (modulo some order 0 operator) where the adjoint is taken

with respect to a smooth (nonvanishing) volume form and where one has (locally)

(9) TqN = Span(X2(q), X3(q), [X2, X3](q)).

This last condition ensures that D = Span(X2, X3) is non-integrable and thus a con-
tact structure. The Hörmander type condition (9) is in fact the only ingredient needed
to perform our normal form procedure in Section 5. For the sake of exposition and
as geodesic vector fields form a natural and rich family of Reeb vector fields, we do
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not deal with the most general case and we focus on the somehow simplest example
of contact structure(3) that is not already in normal form. In fact, we emphasize that,
contrary to the flat Heisenberg case [CHT18, FKF21, FKL21], the brackets [X⊥, X]

and [V,X] do not identically vanish. This implies that we do not have a nice algebraic
structure at hand and that we have to take these nonvanishing brackets into account in
our analysis as it is the case in the general contact set-up treated in [CHT18]. In fact,
as we shall see below, the way we deal with the normal form procedure slightly differs
from the one in [CHT18] by avoiding an “explicit” construction of symplectic coordi-
nates and thus the use of Fourier integral operators. Yet this simplified method does
not rely on the specific form of our operator. It would work as well for more general
sub-Riemannian contact Laplacians in dimension 3 modulo dealing with more cum-
bersome cohomological equations and modifying conveniently the various functions
and vector fields in the subelliptic direction. In particular, if we write −ihX2 and
−ihX3 as Opwh (H2) and Opwh (H3) using locally the semiclassical Weyl quantization
(modulo terms of order 0), then we could set H1 := {H3, H2} to measure the escape
of mass at infinity. When studying the measure ν∞ (i.e., the regime 1 ≪ |H1| ≲ h−1),
the geodesic vector field X would be replaced as in [CHT18] by the Reeb vector field
X1 + αX2 + βX3 with

X1 := [X3, X2], [X2, X1] = βX1 mod D, and [X1, X3] = αX1 mod D.

1.5. Organization of the article. — In Section 2, we fix the geometric and semi-
classical conventions that are used all along the article. In particular, we reduce the
analysis to a local chart which allows us to use the Weyl quantization. Then, in Sec-
tion 3, we microlocalize our eigenfunctions in the region |H1| ≫ 1 and we introduce
microlocal lifts of our measures that capture the escape of mass at infinity. This is
where we introduce the new variable E = hH1 in order to blow up the direction H1

where the eigenmodes concentrate at infinity. Equivalently this amounts to perform
a second microlocalization along this direction. In Section 4, we show that these mi-
crolocal lifts are concentrated on certain quantized layers along the E-variable using
the commutation relations (1) and the a priori estimates (4) together with standard
rules of pseudodifferential calculus. In Section 5, we introduce a simple normal form
procedure that is well adapted to the geometry of our problem and we implement
it in Section 6 to derive the invariance properties of our lifted measure. Section 7
summarizes the main results of the article and show how they can be used to derive
Theorem 1.1 from the introduction. Section 8 treats the simple example of the flat
torus in view of illustrating our analysis in a concrete example. Finally, the article
contains two appendices: one devoted to the spectral properties of our hypoelliptic
operators (Appendix A) and another one collecting a few standard facts from semi-
classical analysis (Appendix B).

(3)Another nice class of examples would be given by the operator X2+X2
⊥ on negatively/positively

curved surfaces.
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2. Semiclassical conventions

In this preliminary section, we introduce the conventions from differential geometry
and semiclassical analysis required for our study and used all along the article. In Sec-
tion 2.1, we recall the existence of local isothermal coordinates to write down the
differential objects appearing in our framework in a simple and concrete manner.
Then, in Section 2.2, we introduce the principal symbols of these operators together
with their commutation expressions inherited from (1). With these expressions at
hand, we rewrite in Section 2.3 our main differential operators and the eigenvalue
equation (3) using the Weyl quantization in the local chart. We conclude this section
by discussing in Section 2.4 the symbolic properties of certain class of polynomials
expressions that will appear in the normal form procedure of Section 5.

2.1. Local isothermal coordinates. — Near any given point m0 ∈M , one can find
a system of local coordinates (x, y) ∈ U0 ⊂ R2 (with (0, 0) being the image of m0)
such that the metric g writes down in a conformal way [PSU23, Th. 3.4.8]:

g(x, y) := e2λ(x,y)(dx2 + dy2).

We denote this neighborhood inside M by U in the sequel.
To write down the geometrical objects involved in the problem in terms of local

isothermal coordinates, we follow the presentation of [PSU23, §3.5] and we refer to
it for more details. If we denote by z the angle between a unit vector p ∈ SqU0 and
∂/∂x, then we have the following expressions for our vector fields [PSU23, Lem. 3.5.6]:

X := e−λ(cos z∂x + sin z∂y) + e−λ (−∂xλ sin z + ∂yλ cos z) ∂z,

X⊥ := e−λ(sin z∂x − cos z∂y) + e−λ (∂xλ cos z + ∂yλ sin z) ∂z,

V := ∂z.and

These expressions are obtained by solving the Hamilton-Jacobi equation for the
Hamiltonian function e2λ(x,y)(ξ2 + η2) on T ∗R2. The Sasaki metric is not conformal
in the system of coordinates (x, y, z). Yet, the volume form has a simple expression

dµL(x, y, z) = e2λ(x,y)dxdydz.

Remark 2.1. — In order to prove Theorem 1.1, it is sufficient to prove the result in
a local chart and to work locally with a standard Euclidean quantization procedure.
We use this isothermal chart for the sake of concreteness and for simplicity of exposi-
tion. Among several advantages, it will allow us to write very concretely our operators
in this chart through the Weyl quantization and to have concrete expressions for the
subprincipal symbols. It will also be convenient to write rather simple expressions in
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the normal form expansion of Section 5. Yet, our dynamical and semiclassical argu-
ments would work as well for more general contact flows for which such a nice chart
does not exist; thus with slightly more cumbersome expressions for our operators.

Remark 2.2. — Without loss of generality, we can extend these operators on U0 :=

SU0 = U0 × S1 to operators on R2 × S1 by extending λ into a smooth compactly
supported function on R2.

2.2. Hamiltonian formulation. — In the following, we will make use of different
tools of semiclassical pseudodifferential calculus. This leads to define the symbols
corresponding to the operators of interest. To this aim, we introduce the Hamiltonian
functions associated with the orthonormal frame (X,X⊥, V ). Namely, we define the
following symbols on T ∗(R2 × S1):

H1(x, y, z, ξ, η, ζ) := e−λ(x,y)
(
ξ cos z + η sin z + ζ(−∂xλ sin z + ∂yλ cos z)

)
,

H2(x, y, z, ξ, η, ζ) := e−λ(x,y)
(
ξ sin z − η cos z + ζ(∂xλ cos z + ∂yλ sin z)

)
,

H3(x, y, z, ξ, η, ζ) := ζ.and

Notice, in particular, that there exists a positive constant C0 (depending only on
our local isothermal coordinates and on our extension of λ to R2) verifying

(10) C−1
0 (ξ2 + η2 + ζ2) ⩽ H2

1 +H2
2 +H2

3 ⩽ C0(ξ
2 + η2 + ζ2).

The commutator relations (1) can then be translated into the following Poisson
bracket commutation formulas:

(11) {H1, H3} = H2, {H1, H2} = −KH3, and {H2, H3} = −H1,

where we recall that K(x, y) is the scalar curvature. We also collect a few useful
relations involving H1, H2, H3, and λ in the next lemma, whose proof is immediate:

Lemma 2.3. — The following identities hold:

∂xH3 = ∂yH3 = ∂zH3 = 0,(12)
∂zH2 = H1, ∂zH1 = −H2,(13) (

∂xH1

∂yH1

)
= −

(
∂xλ e−λ

(
∂2xλ cos z + ∂2xyλ sin z

)
∂yλ e−λ

(
∂2xyλ cos z + ∂2yλ sin z

))(
H1

H3

)
,(14)

(
∂xH2

∂yH2

)
= −

(
∂xλ e−λ

(
∂2xλ sin z − ∂2xyλ cos z

)
∂yλ e−λ

(
∂2xyλ sin z − ∂2yλ cos z

))(
H2

H3

)
.(15)

2.3. Semiclassical Weyl quantization. — With the above conventions, we can next
rewrite the geometrical objects introduced in Section 2.1 in terms of pseudodifferential
operators by making use of the Hamiltonian formulation of Section 2.2. Precisely,
we have:
h

i
X = Opwh (H1 − ihX(λ)),

h

i
X⊥ = Opwh (H2 − ihX⊥(λ)), and h

i
V = Opwh (H3),
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where Opwh stands for the semiclassical Weyl quantization on R2 × S1 (see Appen-
dix B). In particular,

−h2∆sR = Opwh (H
2
2 +H2

3 − 2ihX⊥(λ)H2 − h2rλ),

where rλ(x, y, z) is a smooth compactly supported function that is independent of h
(but depending on the choice of local coordinates). It will be slightly more conve-
nient to work in the local chart with the operator −h2eλ∆sRe

−λ due to the following
conjugation formula:

Lemma 2.4. — The following holds on U0:

−h2eλ∆sRe
−λ = Opwh (H

2
2 +H2

3 + h2rλ),

where rλ(x, y, z) is a smooth compactly supported function that is independent of h
(but depending on the choice of local coordinates).

Proof. — One has

eλ
h

i
X⊥e

−λ =
h

i
X⊥ + ihX⊥(λ) = Opwh (H2),

from which we infer that

−h2eλ∆sRe
−λ = Opwh (H2)

2 +Opwh (H3)
2.

The conclusion of the lemma follows then from the composition rule (64) for pseudo-
differential operators. □

We are now in position to obtain the expression of the full operator P̂h. To do that,
we first use the Weyl pseudodifferential calculus to write

−ih2QX − ih2X(Q)

2
= Opwh (hQH1 + h2W1),

where W1 ∈ C∞
c (R2 × S1,C) is independent of h. Using the composition rules for the

Weyl quantization, we obtain

(16) P̂h = e−λ Opwh (H
2
2 +H2

3 + hQH1 +W + h2W1,λ)e
λ,

where W1,λ ∈ C∞
c (R2 × S1,C) is independent of h. Regarding this expression, it is

natural to set

(17) uh = eλψh,

and thanks to (16), uh solves locally in U0 the eigenvalue equation

(18) P̂h,λ uh = Λh uh,

where
P̂h,λ := Opwh (H

2
2 +H2

3 + hQH1 +W + h2W1,λ).

The a priori estimate (4) from the introduction then reads

(19) ∥Opwh (H2)uh∥L2(K) + ∥Opwh (H3)uh∥L2(K) + ∥Opwh (hH1)uh∥L2(K)

⩽ 2CQ,W,K(1 + |Λ0|),
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where K is any compact subset of U0 and the L2 norm is now taken with respect to
the standard Lebesgue measure dxdydz on K ⊂ R2 × S1.

2.4. Class of symbols in the region |H1| ≫
√
H2

2 +H2
3 . — In Section 5 below,

we will describe a normal form procedure that will naturally involve functions in the
spaces:

PN (R2×S1) :=
{∑

α=(α2,α3)∈Z2
+

|α|⩽N

aα (H2/H1)
α2 (H3/H1)

α3 : ∀α, aα ∈ C∞(R2×S1)
}
.

Notice that as a consequence of (12), (13), (14) and (15), one can verify the following:

Lemma 2.5. — Let P be an element in P(R2 × S1) :=
⋃

N PN (R2 × S1). Then, ∂xP,
∂yP and ∂zP belong to P(R2 × S1). Similarly, letting p = (ξ, η, ζ), one has that, for
every γ ∈ Z3

+, H |γ|
1 ∂γpP belongs to P(R2 × S1).

Proof. — The first part of the lemma is direct consequence of (12), (13), (14) and (15).
For the second part, we proceed by induction on |γ| and use the fact that H1, H2

and H3 are linear functions in (ξ, η, ζ). □

To make the necessary estimates in the sub-elliptic regime arising from our problem,
we will be naturally led to work in the “conic” region

Cε(K) :=
{
(q, p) ∈ T ∗(K) : ε|H1(q, p)| ⩾

√
1 +H2

2 (q, p) +H2
3 (q, p)

}
,

where K is a compact subset of R2 × S1 and where ε ∈ (0, 1] is some small param-
eter that is intended to tend to 0 in the end. We record the following corollary of
Lemma 2.5:

Corollary 2.6. — Let P in P(R2 × S1) and let K be a compact subset of R2 × S1.
For every 0 < ε ⩽ 1 and for every (α, β) ∈ Z6

+, one can find a constant Cε,P,K,α,β

such that, for every (q, p) = (x, y, z, ξ, η, ζ) in Cε(K), one has∣∣∂αq ∂βpP ∣∣ ⩽ Cε,P,K,α,β⟨p⟩−|β|,

where ⟨p⟩ := (1 + ξ2 + η2 + ζ2)1/2.

In particular, elements in P(R2 × S2) satisfy the properties of the class of (Kohn-
Nirenberg) symbols S0

cl(T
∗(R2 × S1)) defined in Appendix B inside Cε(K) for any

compact subset K of R2 × S1.

3. Reduction to the subelliptic regime

Since our results on quantum limits and semiclassical measures in the subelliptic
regime are essentially local, we will restrict ourselves to study the following measures
on U0:

νh : a ∈ C∞
c (U0) 7−→

∫
U0

a(x, y, z)|ψh(x, y, z)|2e2λ(x,y)dxdydz,

where U0 is a bounded open subset of R2 × S1 given by local isothermal coordinates
and where (ψh,Λh) is a sequence satisfying (3). As the sequence (ψh) is normalized,
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this defines a sequence of measures on U0 that are of finite mass ⩽ 1. In fact, up
to an extraction, one can suppose that νh ⇀ ν as h → 0+ and the limit measure is
supported in U0 with total mass ⩽ 1. We fix this converging subsequence for the rest
of the article.

Using the convention from (18), this can be rewritten as

νh : a ∈ C∞
c (U0) 7−→

∫
U0

a(x, y, z)|uh(x, y, z)|2dxdydz,

which allows us to work with the standard Lebesgue measure. Before trying to prove
our main theorem, we will first show in this Section how to reduce these integrals
to the region of the phase space where 1 ≪ |H1| ≲ h−1 and thus how to define
the measure µ∞ from the introduction. We remark that the measures νh can be
rewritten as

(20) ⟨νh, a⟩ = ⟨Opwh (a)uh, uh⟩L2 .

More generally, as anticipated in the introduction, we consider the associated Wigner
distribution

∀a ∈ C∞
c (T ∗U0), ⟨wh, a⟩ :=

〈
Opwh (a)uh, uh

〉
L2 ,

and, up to another extraction, we can suppose that it converges to some (finite) limit
measure w on T ∗U0.

Remark 3.1. — As usual when working with coordinate charts, we make a small abuse
of notations and write ψh for the image of ψh in the coordinate system. As we always
suppose a to be compactly supported in the chart, this causes no difficulties (up to
O(h∞) remainders) and we may view ψh as a smooth compactly supported function
on R2 × S1.

In the rest of the article, we fix a smooth function χ : R → [0, 1] which is equal to 1

on [−1, 1] and to 0 outside [−2, 2]. Moreover, we make the assumption that χ′ ⩾ 0

on R− and χ′ ⩽ 0 on R+. For such a function, we also set

χ̃ = 1− χ.

For the description of the limit measure ν∞ = ν−π∗w and for the definition of µ∞,
we reduce the analysis of the sequence νh to the subelliptic regime 1 ≪ |H1| ≲ h−1.
To do so, we proceed in three steps:

– In Section 3.1, we microlocalize our measures on the sphere at infinity in T ∗M

through the use of appropriate cut-off functions.
– In Section 3.2, we show that eigenmodes are in fact microlocalized on two points

of this sphere at infinity (namely the two points corresponding to the direction H1)
using one more time appropriate cutoff functions.

– In Section 3.3 and Section 3.4, we perform a kind of blow-up of these two points
at infinity by introducing a new variable E := hH1 and we show that eigenfunctions
are microlocalized in the region |E| <∞.
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3.1. Reduction to the region at infinity. — First, we split the measure νh into two
parts corresponding to the compact and non-compact distribution of the sequence
(uh)h→0+ in phase space. It leads respectively to the definition of the weak limits π∗w
and ν∞. Let R > 1, we introduce the cut-off functions

(21) χB
R := χ

(H2
1 +H2

2 +H2
3

R

)
, χ̃B

R = 1− χB
R .

These cut-offs allow us to split νh = νh,R + νRh where

∀a ∈ C∞
c (U0), ⟨νh,R, a⟩ = ⟨wh, aχ

B
R⟩, and ⟨νRh , a⟩ = ⟨wh, aχ̃

B
R⟩.

Notice moreover that the cut-offs χB
R and χ̃B

R belong to the admissible class of symbols
S0
cl(T

∗(R2×S1) defined in Appendix B. Letting h→ 0+ and R→ +∞ (in this order),
one finds

lim
R→+∞

lim
h→0+

⟨νh,R, a⟩ = ⟨π∗w, a⟩,

where π : T ∗U0 ∋ (q, p) 7→ q ∈ U0, and

⟨ν∞, a⟩ = lim
R→+∞

lim
h→0+

⟨νRh , a⟩.

Remark 3.2. — Again we implicitly consider sequences Rn → +∞ (say 2n) but we
just write R→ +∞ for simplicity.

3.2. Reduction to the cones Cε(U0). — We next introduce a further cut-off restrict-
ing the measure νh to a conic region containing the semiclassical wave-front set of the
sequence (uh)h→0+ in the subelliptic regime 1 ≪ |H1| ≲ h−1. We set, for 0 < ε < 1,

χC
ε := χ

( εH1√
H2

2 +H2
3 + 1

)
, χ̃C

ε = 1− χC
ε .

Before including these cut-offs in our analysis of the sequence νRh , we show the fol-
lowing result:

Lemma 3.3. — For every 0 < ε < 1, the symbols χC
ε and χ̃C

ε belong to the admissible
class of symbols S0

cl(T
∗(R2 × S1) defined in Appendix B.Moreover, for every a ∈

C∞
c (U0), the function

aχC
ε χ̃

B
R

1 +H2
2 +H2

3

belongs to the class of symbols S−2
cl (T ∗(R2 × S1)).

Remark 3.4. — The corresponding seminorms of χC
ε and χ̃C

ε in S0
cl(T

∗(R2 × S1)
depend on ε.

Proof. — From the definition of χC
ε and χ̃C

ε , it is sufficient to verify that all the
derivatives of

g :=
H1√

H2
2 +H2

3 + 1
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are bounded (with some further decay for the derivatives with respect to (ξ, η, ζ)) in
the region where εg ∈ supp(χ′), i.e.,

(22) 1

ε

√
1 +H2

2 +H2
3 ⩽ |H1| ⩽

2

ε

√
1 +H2

2 +H2
3 .

Thanks to (12), (13), (14) and (15), we can verify by induction that, for every α ∈ Z3
+,

∂αxyzg =

|α|∑
j=0

Pj,α(H1, H2, H3)

(1 +H2
2 +H2

3 )
j+1/2

,

where, for every 0 ⩽ j ⩽ |α|, (u, v) 7→ Pj,α(u, v) is a polynomial of degree ⩽ 2j + 1.
In particular, using (22), all these derivatives are bounded (with a constant depending
on ε). It now remains to deal with the derivatives with respect to (ξ, η, ζ). To this
aim, we recall that H1, H2 and H3 are linear functions in these variables. Arguing by
induction as for the derivatives with respect to (x, y, z), we can then conclude that, for
every (α, β) ∈ Z6

+, ∂αxyz∂
β
ξηζg is uniformly bounded by Cε(1+H

2
2+H

2
3 )

−|β|/2 under the
assumption (22). Using the upper bound in (22), we deduce that this is bounded by
Cε(1+H

2
1 +H

2
2 +H

2
3 )

−|α|/2, for some slightly larger constant Cε > 0. This concludes
the first part of the proof of the lemma thanks to (10). For the second part, we can
remark that aχC

ε χ̃
B
R belongs to S0

cl and that ε2H2
1 ⩽ 4(H2

2 +H2
3 + 1) on the support

of χC
ε . Hence, we can argue as for g above to deduce that (1 +H2

2 +H2
3 )

−1 belongs
to S−2 on the support of aχC

ε χ̃
B
R which concludes the second part of the lemma. □

The next step of our analysis consists of inserting these two cutoffs in the construc-
tion of νRh . This produces the splitting:

⟨νRh , a⟩ =
〈
Opwh (aχ̃

B
Rχ

C
ε )uh, uh

〉
L2 +

〈
Opwh (aχ̃

B
Rχ̃

C
ε )uh, uh

〉
L2 ,

and we can introduce the object of interest for our analysis:

(23) ⟨νR,ε
h , a⟩ :=

〈
Opwh (aχ̃

B
Rχ̃

C
ε )uh, uh

〉
L2 .

We are in position to prove the following lemma:

Lemma 3.5. — With the above conventions, one has, for every 0 < ε < 1,

⟨ν∞, a⟩ = lim
R→+∞

lim
h→0+

⟨νR,ε
h , a⟩.

Proof. — From Lemma 3.3, the composition rules for pseudodifferential operators
and the Calderón-Vaillancourt theorem, one has

Opwh (aχ
C
ε χ̃

B
R) = Opwh

( aχC
ε χ̃

B
R

1 +H2
2 +H2

3

)
Opwh

(
1 +H2

2 +H2
3

)
+ OL2→L2(h).

Combining this composition rule with (18) and (19), one obtains the estimate∣∣〈Opwh (aχ̃
B
Rχ

C
ε )uh, uh

〉
L2

∣∣ ⩽ ∥∥∥Opwh

( aχC
ε χ̃

B
R

1 +H2
2 +H2

3

)∥∥∥
L2→L2

+ Oε,R(h).
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Moreover, by construction of our cutoff functions and by using Calderón-Vaillancourt
theorem one more time, one gets∣∣〈Opwh (aχ̃

B
Rχ

C
ε )uh, uh

〉
L2

∣∣ ⩽ CM,g,a

Rε2
+ Oε,R(h

1/2).

Indeed, the Calderón-Vaillancourt theorem states the existence of a constant C > 0

such that ∥Opwh (b)∥L2→L2 ⩽ C∥b∥L∞ + Ob(h
1/2) and this can be applied to

|b| =
∣∣∣∣ aχC

ε χ̃
B
R

1 +H2
2 +H2

3

∣∣∣∣ ⩽ 2∥a∥L∞

(ε2H2
1/4) +H2

2 +H2
3

⩽
8∥a∥L∞

Rε2
.

Hence, one ends up with

⟨νRh , a⟩ =
〈
Opwh (aχ̃

B
Rχ̃

C
ε )uh, uh

〉
L2 + O((Rε2)−1) + Oε,R(h

1/2),

which concludes the proof. □

Remark 3.6. — Note that, so far, the parameter ε > 0 does not play any particular
role. However, it will become important when analyzing the invariance and support
properties of ν∞ where we will need to take the limit ε→ 0.

Finally, we record the following useful lemma that follows from the proof of
Lemma 3.3:

Lemma 3.7. — Let K be a compact subset of R2 × S1. For every 0 < ε ⩽ 1, for every
N0 ⩾ 2, and for every (α, β) ∈ Z6

+, one can find a positive constant Cε,N0,K,α,β such
that, for every (q, p) = (x, y, z, ξ, η, ζ) in C2N0ε(K)∖ C2−N0ε(K), one has∣∣∣∂αq ∂βp ( H1√

1 +H2
2 +H2

3

)∣∣∣ ⩽ Cε,N0,K,α,β⟨p⟩−|β|,

where ⟨p⟩ := (1 + ξ2 + η2 + ζ2)1/2.

In other words, the function H1/
√
1 +H2

2 +H2
3 belongs to an amenable class of

symbols inside the “cone” C2N0ε(K)∖ C2−N0ε(K).

3.3. Reduction to the region 1 ≪ |H1| ≲ h−1. — We will now localize the phase-
space distribution of the sequence (uh) in the sub-elliptic region 1 ≪ |H1| ≲ h−1.
To do that, we introduce the cutoff functions, for R1 > 1,

ρR1
:= χ̃(hH1/R1), and ρ̃R1

:= 1− ρR1
.

The cut-off ρ̃R1
localizes the sequence (uh) in the region of interest to us. Let us first

show that this last localization keeps the analysis in the admissible symbol class.

Lemma 3.8. — Let a ∈ C∞
c (U0). The functions aχ̃B

Rχ̃
C
ε ρR1

and aχ̃B
Rχ̃

C
ε ρ̃R1

belong
to the admissible symbol class S0

cl(T
∗(R2 × S1)) with seminorms that are uniformly

bounded for 0 < h ⩽ 1.
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Proof. — We already know from Lemma 3.3 that aχ̃C
ε belongs to S0

cl(T
∗(R2 × S1))

and we have observed that χ̃B
R belongs to S0

cl(T
∗(R2×S1)). Thus, we need to show that

ρR1(hH1) belongs to this class when restricted to the region of phase space given by
the support of aχ̃C

ε χ̃
B
R . Among other constraints, in this region we have that (x, y, z)

in U0 and

(24) ε|H1|√
1 +H2

2 +H2
3

⩾ 1.

In other words, we need to show that the derivatives of hH1 verify the properties of
the class S0

cl(R2 × S1) under these support properties and the additional assumption
that ρ′R1

(hH1) ̸= 0, which leads to the additional constraint

(25) R1 ⩽ h|H1| ⩽ 2R1.

In view of (12), (13), (14) and (15), one can verify that all the derivatives of ρR1
of

order ℓ with respect (x, y, z) are linear combinations of functions of the form

P (hH1, hH2, hH3)χ
(k)(hH1/R1),

where P is a polynomial of degree k with coefficients in C∞(R2 × S1) and with k ⩽ ℓ.
In particular, thanks to the support properties (24) and (25), these quantities are
bounded as expected. It now remains to differentiate these quantities with respect
to (ξ, η, ζ). As H1, H2, H3 are polynomials of degree 1 in (ξ, η, ζ), it has the effect
to lower the degree of the polynomial and to get a bound of order hℓ′ where ℓ′ is
the number of derivatives with respect to these variables. Using (24) and (25) one
more time together with (10), this yields the expected decaying properties of the
class S0

cl(T
∗(R2 × S1)) with constants that are independent of 0 < h ⩽ 1. □

We next include these cutoff functions in (23). The goal is to verify that the con-
tribution of the term 〈

Opwh
(
aχ̃C

ε χ̃
B
Rχ̃ (hH1/R1)

)
uh, uh

〉
L2

is small as R1 → +∞. Notice, to this aim, that on the support of aχ̃C
ε χ̃

B
R , the function

1/H1 belongs to the class of symbols S0
cl(T

∗(R2 × S1)). Hence, by the composition
rules for pseudodifferential operators, one has〈
Opwh

(
aχ̃C

ε χ̃
B
Rχ̃ (hH1/R1)

)
uh, uh

〉
L2

=
〈
Opwh

(aχ̃C
ε χ̃

B
Rχ̃(hH1/R1)

hH1

)
Opwh (hH1)uh, uh

〉
L2

+ OR,R1,ε(h).

Using then the a priori estimate (19) together with the Calderón-Vaillancourt theo-
rem, we find〈

Opwh
(
aχ̃C

ε χ̃
B
Rχ̃ (hH1/R1)

)
uh, uh

〉
L2 = O(R−1

1 ) + OR,R1,ε(h).

Therefore, by another application of pseudodifferential calculus rules, we get finally
that

(26) ⟨νR,ε
h , a⟩ =

〈
Opwh (aρ̃R1

(hH1)χ̃
C
ε χ̃

B
R)uh, uh

〉
L2(U0)

+ O(R−1
1 ) + OR,R1,ε(h).
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3.4. Adding a new variable E = hH1. — To complete the preliminaries concerning
the phase-space localization of the measure νR,ε

h , we lift slightly our analysis by intro-
ducing more general distributions in terms of a new variable hH1 for the symbols a
considered above. Namely, we set

(27) µR,ε
h : b ∈ C∞

c (U0 × R) 7−→
〈
Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )uh, uh

〉
L2(U0)

.

Lemma 3.9. — The sequence (µR,ε
h )h→0+ is bounded in D′(U0 × R). Moreover, any

accumulation point as h→ 0+ is a finite nonnegative measure and there exists a con-
stant C > 0 (independent of R, ε) such that any accumulation point µR,ε satisfies

∀b ∈ C∞
c (U0 × R),

∣∣⟨µR,ε, b⟩
∣∣ ⩽ C∥b∥C0 .

There exists ε0 > 0 such that, for every 0 < ε < ε0, any accumulation point µε of the
sequence (µR,ε)R→+∞ verifies

∀a ∈ C∞
c (U0), ⟨ν∞, a⟩ = ⟨µε, a⟩.

From this lemma, we can infer that our analysis reduces to the description of the
measure µε. Finally, up to another extraction as ε → 0+, we can suppose that µε

converges to some (finite) Radon measure on U0 × R, i.e.,

(28) ∀b ∈ C∞
c (U0 × R), ⟨µ∞, b⟩ = lim

ε→0+
lim

R→+∞
lim

h→0+
⟨νR,ε

h , b⟩.

From (29), one has

∀a ∈ C0
c(U0),

∫
U0

a(q)dν∞(q) =

∫
U0×R

a(q)dµ∞(q, E),

and our analysis thus boils down to the properties of the extended measure µ∞.

Remark 3.10. — As explained in Remark 3.6, the fact that we take ε → 0+ is not
important so far but will turn to be later on.

Proof of Lemma 3.9. — The same argument as in the proof of Lemma 3.8 shows that
the symbol b(x, y, z, hH1)χ̃

C
ε χ̃

B
R belongs to S0

cl(T
∗(R2 × S1)). In particular, from the

Calderón-Vaillancourt theorem, we find that

∀b ∈ C∞
c (U0 × R),

∣∣⟨µR,ε
h , b⟩

∣∣ ⩽ C∥b∥C0 + OR,ε(h
1/2).

Hence, this defines a bounded sequence in D′(U0 × R). Thus, up to another extrac-
tion, we may suppose that µR,ε

h converges (for the weak-⋆ topology) to some distribu-
tion µR,ε. Thanks to the Gårding inequality (65), this is a positive distribution, thus
a finite measure. Moreover, since the sequence (ψh) is normalized (and hence (uh)

is bounded), this defines a finite measure. Up to another extraction, we can suppose
that µR,ε weakly converges to some limit measure µε as R → +∞. Coming back
to (26), we find that

(29) ⟨ν∞, a⟩ = lim
R→+∞

lim
h→0+

⟨νR,ε
h , a⟩ = ⟨µε, aρ̃R1(E)⟩+ O(R−1

1 ).
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Applying the dominated convergence theorem, one finds that, for all ε > 0 (small
enough),

∀a ∈ C∞
c (U0), ⟨ν∞, a⟩ = ⟨µε, a⟩. □

3.5. Relation with 2-microlocal defect measures. — Another way to understand
the reductions in this paragraph would have been to start with the larger class of test
functions a ∈ S0

cl(T
∗(R2 × S1)) and to define the generalized Wigner distribution

Wh : a ∈ S0
cl(T

∗(R2 × S1)) 7−→ ⟨Opwh (a)uh, uh⟩L2 .

Compared with wh which only consider test functions in C∞
c (T ∗(R2×S1)), this point

of view would permit to deal with the escape of mass at infinity and to define a limit
measure W supported on the compactified space

T
∗
(R2 × S1) = (T ∗(R2 × S1)) ∪ (R2 × S1 × S3) ≃ (T ∗(R2 × S1)) ∪ (S∗(R2 × S1)),

where the 3-sphere corresponds to the sphere at infinity in the cotangent variable.
This would result into a semiclassical defect measure carried on{

H2
2 +H2

3 = 1
}
∪ (R2 × S1 × {±(1, 0, 0)}),

where the points ±(1, 0, 0) would correspond to the direction ±H1 on the sphere
at infinity. The measure at infinity can thus be identified with a measure on the
configuration space R2 × S1 (up to the two connected components) and this is the
reason why we only worked with test functions in C∞

c (U0). The role of Lemma 3.5
and of the various cutoff functions therein is exactly to isolate this part of the limit
measure W without introducing test functions a ∈ S0

cl(T
∗(R2 × S1)) while in the end

only functions in C∞
c (U0) will be needed.

Once this reduction to this part of phase space is done, Section 3.4 is intended
to analyze in more depth this part of the measure formally carried by these two
“points” at infinity by making some kind of blow-up procedure of these points through
the introduction of the rescaled variable E = hH1. This last part of our analy-
sis is reminiscent of what is done when defining two-microlocal defect measures as
in [FK95, Mil96, Nie96, FK00, AM14]. Yet, we emphasize that, compared with these
references, one major simplification occurs as we did not introduce the full cotangent
variables. This results into the fact that the corresponding test functions, namely
b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε , lies in a nice class of symbols amenable to the standard argu-

ments on scalar semiclassical defect measures. Introducing the full cotangent variables
would in principle require to deal with more exotic class of symbols and with oper-
ator valued symbols as in the above works. Such a point of view was for instance
taken in the Euclidean setting of Grushin operators [AS23]. In this reference, the
authors introduced operator-valued measures lifting the analogue of the measure ν∞
and described completely these lifted objects involving the full cotangent variables.
Here, we only focus on the behaviour along the variables (q, hH1(q, p)). Introducing
the full cotangent variables in our Riemannian setting would require some extra and
delicate work (especially when dealing with coordinate charts in the critical regime
h|H1| ≍ 1) that is not necessary to prove the results we are aiming at.
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4. Support of the limit measure

Before describing the propagation and invariance properties of ν∞, we discuss first
the support properties of µ∞ along the new variable E ∈ R. More precisely, the goal
of this section is to prove the following:

Proposition 4.1. — The measure µ∞ defined in (28) decomposes as

µ∞(q, E) = µ∞(q, E) +

∞∑
k=0

(
µ+
k,∞(q, E) + µ−

k,∞(q, E)
)
,

where µ∞ and (µ±
k,∞)k⩾0 are finite non-negative Radon measures on M×R satisfying

the following concentration properties:
(S.1) suppµ∞ ⊂ MΛ0,W × {0};
(S.2) for every k ∈ Z+, suppµ±

k,∞ ⊂ H−1
± (2k + 1) ⊂ UΛ0,W × R∗

±.

Recall that MΛ0,W := {Λ0 − W ⩾ 0} is the classical allowed region, UΛ0,W =

{Λ0 −W > 0}, and that H± was defined in (7). As we shall see in the proof, our
arguments are reminiscent of what one does when computing the spectrum of the
1-dimensional harmonic oscillator [Zwo12, Ch. 6], i.e., by using creation and annihi-
lation type operators and by playing with their commutation properties. Recall that,
given an hypoelliptic operator that can be written as a sum of squares, there is always a
local underlying Lie algebra model [RS76]. Here, due to the commutation relations (1),
this underlying structure is the one of the 3-dimensional Heisenberg group for which
the harmonic oscillator naturally appears when performing Fourier analysis on this
group [FKF21]. We do not explicitly use this local algebraic structure but this is in
some sense the mechanism at work in the upcoming proof of Proposition 4.1.

4.1. Preliminary lemmas. — We first define the following creation and annihilation
type operators (ladder operators):

Ah := Opwh (H2 + iH3) and A∗
h := Opwh (H2 − iH3),

so that

(30) Opwh (H
2
2 +H2

3 ) = A∗
hAh + hOpwh (H1) + h2c0 = AhA

∗
h − hOpwh (H1) + h2c0,

where c0 is a smooth compactly supported and real-valued function on R2×S1 (recall
that λ ≡ 0 outside a compact set containing the isothermal neighborhood U0) which
is independent of h. Notice that, by (11) and by the composition rule for the Weyl
quantization,

(31) [Ah, A
∗
h] = 2hOpwh (H1).

We begin with the following lemma:

Lemma 4.2. — Let k ⩾ 1. Then

Ak
h = Opwh

(
(H2 + iH3)

k +
∑k

j=1 Pj,k,h(hH1, hH2, hH3)(H2 + iH3)
k−j

)
,
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where Pj,k,h(u, v, w) is a polynomial with coefficients depending polynomially on h and
smoothly on (x, y, z) ∈ R2 × S1 (with uniformly bounded derivatives).

In fact, modulo some extra work, we could be slightly more precise on the nature
of the polynomials as we know that the full symbol is a polynomial of degree k in the
cotangent variables (ξ, η, ζ). Yet, as it is not necessary for our analysis, we do not try
to be more precise and we just keep track of the information that is relevant for our
proofs.

Proof. — Recall that

Ah = Opwh (H2 + iH3) =
h

i
X⊥ + hV + ihX⊥(λ).

In particular, Ak
h is a differential operator of order k for every k ⩾ 1, and its symbol

is polynomial of degree ⩽ k in the cotangent variables (ξ, η, ζ). We now proceed by
induction and suppose that the lemma is true for a given k ⩾ 1. Using the composition
rule from Theorem B.1, we can write

Ak+1
h = Opwh

(
(H2 + iH3)

k +
∑k

j=1 Pj,k,h(hH1, hH2, hH3)(H2 + iH3)
k−j

)
Ah

= Opwh

(
(H2 + iH3)

k+1 +
∑k

j=1 Pj,k,h(hH1, hH2, hH3)(H2 + iH3)
k+1−j

)
+Opwh (Rk(h)),

where

Rk(h) =

k+1∑
ℓ=1

k∑
j=1

hℓ

ℓ!
A(D)ℓ

(
(Pj,k,h(hH1, hH2, hH3)(H2 + iH3)

k−j)(H2 + iH3)
)
.

Here the sum stops at ℓ = k+1 as each symbol is a polynomial of respective degree k
and 1 in the (ξ, η, ζ) variables. Recall that A(D) = 1

2i (∂p1
· ∂q2 − ∂q1 · ∂p2

) so that
the symbols of interest for the remainder take the form

Aℓ(D)
(
(Pj,k,h(hH1, hH2, hH3)(H2 + iH3)

k−j)(H2 + iH3)
)
,

with Aℓ(D) = (∂p1
· ∂q2)ℓ − ℓ(∂q1 · ∂p2

)(∂p1
· ∂q2)ℓ−1. To see this, we observe that

H2+ iH3 is of degree 1 in (ξ, η, ζ) so that ∂p2
can occur at most once in the expansion

of A(D)ℓ. By induction, we get the expected expression for the terms of order hℓ in
the asymptotic expansion. □

As a corollary of this lemma and of the composition rule for pseudodifferential
operators, we also find:

Corollary 4.3. — Let k ⩾ 1. Then

Opwh ((H2 + iH3)
k) = Ak

h +

k∑
j=1

Opwh
(
P̃j,k,h(hH1, hH2, hH3)

)
Ak−j

h ,

where P̃j,k,h(u, v, w) is a polynomial with coefficients depending polynomially on h and
smoothly on (x, y, z) ∈ R2 × S1 (with uniformly bounded derivatives).
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We now turn to the commutation properties of Ak
h with the operators of interest

for our analysis:

Lemma 4.4. — Let Q and W be two smooth functions on R2 × S1 whose derivatives
are uniformly bounded. Then, for every k ⩾ 1,

[Ak
h,Opwh (hQH1)] = h

k−1∑
j=0

Opwh (P j,k,h(hH1, hH2, hH3))A
k−1−j
h ,

[Ak
h,Opwh (W )] = h

k−1∑
j=0

Opwh (P̃ j,k,h(hH1, hH2, hH3))A
k−1−j
h ,and

where P j,k,h(u, v, w) and P̃ j,k,h(u, v, w) are polynomials whose coefficients depend
polynomially on h and smoothly on (x, y, z) ∈ R2 × S1 (with derivatives that are
uniformly bounded).

Proof. — First, we observe that, thanks to Lemma 4.2, one has

Ak
h = Opwh

(
(H2 + iH3)

k +
∑k

j=1 Pj,k,h(hH1, hH2, hH3)(H2 + iH3)
k−j

)
,

where Pj,k,h are polynomials verifying the properties of the present lemma. The second
bracket formula is then a direct consequence of the composition rule for pseudodif-
ferential operators (see Theorem B.1) together with Corollary 4.3. In fact, since W
depends only on (x, y, z), the terms in the asymptotic expansion will only involves
derivatives of the symbol of Ak

h with respect to the variables (ξ, η, ζ).
We now turn to the first bracket which can be rewritten as

[Ak
h,Opwh (hQH1)] =

k∑
j=0

[
Opwh

(
Pj,k,h(hH1, hH2, hH3)(H2 + iH3)

k−j
)
,Opwh (QhH1)

]
,

with P0,k,h = 1. Given 0 ⩽ j ⩽ k, one can apply the composition rule from Theo-
rem B.1 to each term, i.e.,[
Opwh

(
Pj,k,h(hH1, hH2, hH3)(H2 + iH3)

k−j
)
,Opwh (QhH1)

]
= 2

∑
0⩽2ℓ⩽k

h2ℓ+1

(2ℓ+ 1)!
Opwh

(
A(D)2ℓ+1(∗)

)
,

with (∗) being given by (Pj,k,h(hH1, hH2, hH3)(H2+ iH3)
k−j)(QhH1). Here, the sum

over ℓ is bounded as we are only considering polynomials symbols in the variables
(ξ, η, ζ) (with the total degree being bounded by k+1). Recalling the exact expression
of A(D) from Theorem B.1 and Corollary 4.3 (together with several applications of
the composition formula), we find the expected result. □

Remark 4.5. — Similar statements as those of Lemmas 4.2, 4.4 and Corollary 4.3
hold for A∗

h replacing Ah.
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4.2. Inductive argument: proof of Proposition 4.1. — In order to prove the local-
ization properties (S.1) and (S.2) for the measure µ∞, we start from the following
semiclassical estimates. For every k ⩾ 0,〈

Opwh (b(x, y, z, hH1)χ̃
B
Rχ̃

C
ε )

2Ak
h(P̂h,λ − Λh)uh, A

k
huh

〉
= O(h∞),(32) 〈

Opwh (b(x, y, z, hH1)χ̃
B
Rχ̃

C
ε )

2(A∗
h)

k(P̂h,λ − Λh)uh, (A
∗
h)

kuh

〉
= O(h∞).(33)

We note that the remainder is O(h∞) (and not 0) because the eigenvalue equation (18)
is only local. Using estimates (32) and (33) together with (30) and the symbolic cal-
culus developed in Section 4.1, we aim at deriving inductively suitable concentration
properties for the distributions ϱ±k,ε,R,h defined by

ϱ+k,ε,R,h : b 7−→
〈
Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )A

k
huh, A

k
huh

〉
,

ϱ−k,ε,R,h : b 7−→
〈
Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )(A

∗
h)

kuh, (A
∗
h)

kuh
〉
.

Remark 4.6. — Note that, in order to make sense of the limit measures for k ⩾ 1,
one needs to have an a priori upper bound on∥∥Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )A

k
huh

∥∥ ,
which will be part of the argument below. For k = 1, such an upper bound follows
for instance from the a priori estimate (19) but, for k ⩾ 2, this does not longer work
immediately.

We will show in Lemma 4.9 that, up to additional extractions, the weak limits of
these distributions are well defined as non-negative Radon measures:

⟨ϱ±k , b⟩ := lim
ε→0+

lim
R→+∞

lim
h→0

⟨ϱ±k,ε,R,h, b⟩,

and we will deduce from these measures the desired support properties of µ∞. For
the sake of exposition, we start with the first step k = 0 which is slightly easier to
handle:

Lemma 4.7. — The measure µ∞ = ϱ±0 satisfies:

supp(µ∞) ⊂
{
(q, E) ∈ M× R : −Λ0 −W

1−Q
⩽ E ⩽

Λ0 −W

1 +Q

}
.

In particular, the support of the measure µ∞ is compact in the E variable and disjoint
with the classical forbidden region {W > Λ0}. Moreover,

supp(µ∞)∖H−1
− (1) = supp ϱ−1 and supp(µ∞)∖H−1

+ (1) = supp ϱ+1

where we recall that H±(q, E) = ±E−1(Λ0 −W − EQ).

Remark 4.8. — Recall also from Appendix A that condition ∥Q∥C0 < 1 was initially
imposed to ensure the hypoellipticity (and the semiboundedness) of the operator P̂h.
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Proof. — Given b ∈ C∞
c (U0 × R), one has

(34)
〈
Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )(P̂h,λ − Λh)uh, uh

〉
= O(h∞).

Recalling that

(35) Opwh (H
2
2 +H2

3 ) = A∗
hAh + hOpwh (H1) + h2c0,

one can use the composition rule for pseudodifferential operators together with the
a priori estimate (19). This yields〈
Opwh (b(x, y, z, hH1)(hH1 + hQH1 +W − Λh)χ̃

B
Rχ̃

C
ε )uh, uh

〉
= −⟨ϱ+1,ε,R,h, b⟩+ O(h).

Thanks to (19) and to the Calderón-Vaillancourt theorem, the right-hand side defines
a bounded sequence in D′(U0 × R). Moreover, the Gårding inequality (65) ensures
that the limit distribution is a nonnegative Radon measure. Hence, letting h → 0+

and R → +∞ (in this order), one finds that, for every b compactly supported in
U0 × R,

µε (b(x, y, z, E)(E(1 +Q) +W − Λ0)) = −ϱ+1,ε(b).
From this, one infers that, on the support of µε, (1+Q)E+W−Λ0 ⩽ 0, and moreover
that

(36) supp(µε)∖H−1
+ (1) = supp ϱ+1,ε.

Similarly, using now the identity

Opwh (H
2
2 +H2

3 ) = AhA
∗
h − hOpwh (H1) + h2c0

instead of (35), and using again (34), one finds〈
Opwh (b(x, y, z, hH1)(−hH1 + hQH1 +W − Λh)χ̃

B
Rχ̃

C
ε )uh, uh

〉
= −⟨ϱ−1,ε,h, b⟩+ O(h),

and thus
µε (b(x, y, z, E)(−E(1−Q) +W − Λ0)) = −ϱ−1,ε(b).

This implies that −E(1−Q) +W − Λ0 ⩽ 0 on the support of µε and moreover that

(37) supp(µε)∖H−1
− (1) = supp ϱ−1,ε.

Putting together (36) and (37) and, letting ε→ 0+ this concludes the proof. □

We now turn to the general case for which we cannot make use of the a priori
estimate (19) directly:

Lemma 4.9. — For every k ⩾ 0 and for every R > 1 and ε > 0, the family

(ϱ±k,R,ε,h)0<h⩽h0

is bounded in D′(U0 × R) and any accumulation point (as h → 0+) ϱ±k,R,ε is a finite
nonnegative Radon measure. Moreover, (ϱ±k,R,ε)R,ε is bounded and any accumulation
point as R → +∞ and ε → 0+ (in this order) is a finite nonnegative Radon mea-
sure ϱ±k verifying for every k ⩾ 0

(±E(2k + 1±Q) +W − Λ0)ϱ
±
k = −ϱ±k+1.
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In particular, one can deduce from this lemma that

supp ϱ±k ⊂ {(q, E) ∈ M× R : ±E(2k + 1±Q) +W − Λ0 ⩽ 0},

that, for every k ⩾ 0, supp ϱ±k+1 ⊂ supp ϱ±k and that

supp ϱ±k ∖ supp ϱ±k+1 ⊂ H−1
± (2k + 1).

Proof. — Recall first that the limits R → ∞ and ε → 0+ are understood along
subsequences (Rn)n⩾1 and (εm)m⩾1. For simplicity of exposition, we now fix them to
be of the form(4) Rn = 2n and εm = 2−m. The case k = 0 follows by Lemma 4.7.
Assume that the claim holds for every 0 ⩽ j ⩽ k and moreover that the following
a priori estimates hold, for any b ∈ C∞

c (U0 × R) and for any h > 0 small enough,

(38)
∥∥∥Opwh (b(x, y, z, hH1)χ̃

B
2j−k2n χ̃

C
2k−j2−m)Aj

huh

∥∥∥
L2

⩽ C
(
∥b∥∞ + On,m,b(h

1/2)
)
,

for 0 ⩽ j ⩽ k, for n,m ⩾ k + 1− j, and for some constant C > 0 that is independent
of n and m and that depends on the support of b (and also on W and Q). Moreover,
the constant in the remainder depends on a finite number of derivatives of b. Let us
prove the claim together with (38) for k+1. One more time, we will keep the notations
R→ +∞ and ε→ 0+ to alleviate notations.

We begin by proving the same a priori estimate on

∥Opwh (b(x, y, z, hH1)χ̃
B
Rχ̃

C
ε )A

k+1
h uh∥L2 ,

which is the main technical point of the analysis. To do that, we begin with equal-
ity (32) which can be expanded as follows〈
Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )

2Ak
h Opwh (rh)uh, A

k
huh

〉
= −

〈
Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )

2Ak
hA

∗
hAhuh, A

k
huh

〉
+ O(h∞),

with rh := hH1 + hQH1 +W + h2(W1,λ + c0) − Λh. Applying Lemma 4.4 together
with (31), we find that the right-hand side can be rewritten as〈
Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )

2Ak
hA

∗
hAhuh, A

k
huh

〉
=

〈
Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )

2Ak−1
h A∗

hA
2
huh, A

k
huh

〉
+
〈
Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )

2 Opwh (2hH1)A
k
huh, A

k
huh

〉
+ h

k−2∑
j=0

〈
Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )

2 Opwh (∗)A
k−1−j
h uh, A

k
huh

〉
,

with (∗) given by P j,k−1,h(hH1, hH2, hH3). Applying the composition formula for
pseudodifferential operators together with the Calderón-Vaillancourt theorem, one
finds that each term in the sum over 0 ⩽ j ⩽ k − 2 is of the form〈

Opwh (bh,R,εχ̃
B
R/2χ̃

C
2ε)A

k−1−j
h uh, A

k
huh

〉
+ O(h),

(4)Other sequences can be dealt along similar lines.
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where bh,R,ε depends on j and belongs to S0
cl(T

∗(R2 × S1)) with all its seminorms
uniformly bounded in terms of 0 < h ⩽ 1 (but not R, ε a priori) and with compact
support in U0. This follows from the fact that b is initially compactly supported in
the variable E = hH1 and that H2

2 +H
2
3 ≪ H2

1 thanks to our cutoff functions. Hence,
combining this observation with (38) and with elliptic estimates for pseudodifferential
operators as in [DZ19, Th. E.33], we can deduce that each term in the sum over
0 ⩽ j ⩽ k − 2 is uniformly bounded in terms of 0 < h ⩽ 1 so that we get〈
Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )

2Ak
h Opwh (r̃h)uh, A

k
huh

〉
= −

〈
Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )

2Ak−1
h A∗

hA
2
huh, A

k
huh

〉
+ OR,ε(h),

with r̃h := 3hH1 + hQH1 + W + h2(W1,λ + c0) − Λh. Iterating this commutation
argument k times, we find that〈
Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )

2 Opwh ((2k + 1)hH1 + hQH1 +W − Λh)A
k
huh, A

k
huh

〉
= −

〈
Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )

2A∗
hA

k+1
h uh, A

k
huh

〉
+ OR,ε(h).

Applying the composition rule for pseudodifferential operators together with the in-
duction hypothesis, we find that〈
Opwh ((b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )

2((2k + 1)hH1 + hQH1 +W − Λh)A
k
huh, A

k
huh

〉
= −

∥∥Opwh (b(x, y, z, hH1)χ̃
B
Rχ̃

C
ε )A

k+1
h uh

∥∥2 + OR,ε(h).

By induction, the left-hand side is bounded from which we deduce the expected upper
bound at step k + 1.

We note that the upper bound (38) allows to verify by induction that any accu-
mulation point ϱ±k,ε,R (as h→ 0+) is a finite nonnegative Radon measure whose total
mass is independent of ε and R. We can thus take the limit R → +∞ and ε → 0+

in this order. We obtain the expected limit measure ϱ±k+1 and we can now derive
its support properties. Repeating the same argument with Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )

instead of Opwh (b(x, y, z, hH1)χ̃
B
Rχ̃

C
ε )

2 (and with (A∗
h)

k instead of Ak
h) and taking the

limits h→ 0+ and R→ +∞ (in this order), we can prove that

(39) ϱ±k (b(x, y, z, E)(±E(2k + 1±Q) +W − Λ0)) = −ϱ±k+1(b).

Finally, from (39), we get the first statement of the lemma and moreover:

supp ϱ±k ∖H−1
± (2k + 1) = supp ϱ±k+1.

This concludes the proof. □

Finally, Lemma 4.9 implies that:

suppµ∞ ⊂ (MΛ0,W × {0}) ∪
∞⋃
k=0

(
H−1

+ (2k + 1) ∪H−1
− (2k + 1)

)
.

Defining, for k ∈ Z+,

µ±
k,∞ := 1H−1

± (2k+1)µ∞, and µ∞ := 1MΛ0,W×{0}µ∞,

we obtain the proof of Proposition 4.1.
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5. Normal form reduction

In order to study the invariance properties of the measure µ∞, we will require a
normal form procedure in the subelliptic regime 1 ≪ |H1| ≲ h−1. This will allow us
to work with functions that are adapted to the geometry of the problem. Roughly
speaking, it amounts to work in a system of asymptotically symplectic coordinates
as |H1| → ∞. This normal form approach was pioneered in Melrose’s works [Mel85]
and recently revisited in the context of sub-Riemannian Laplacians associated with
3-dimensional contact flows [CHT18, CHT21] as we are dealing here. See also [RV15]
for earlier related normal forms procedure in the context of 2-dimensional magnetic
semiclassical Schrödinger operators and [HKRV16, Mor22, Mor24] regarding higher
dimensional normal forms for magnetic operators. More precisely, our normal form
expansion reads

Theorem 5.1. — One can find P ∈ P3(R2 × S1)/P1(R2 × S1) and (Rj)1⩽j⩽3 in
P(R2 × S1)/P1(R2 × S1) such that, in the local chart U0, one has, for H1 ̸= 0,{

H2
2 +H2

3 , H1(1 + P )
}
= H2

2R1 +H2
3R2 +H2H3R3.

Moreover, for every a ∈ C∞
c (U0), one can find Pa ∈ P2(R2 × S1)/P0(R2 × S1) and

Ra ∈ P(R2 × S1)/P1(R2 × S1) such that, in the local chart U0, one has, for H1 ̸= 0,{
H2

2 +H2
3 , a+ Pa

}
=
H2

2 +H2
3

H1
X(a) +

Ra

H1
.

Recall that PN (R2 × S1) and P(R2 × S1) were defined in Lemma 2.5 and consist
of functions of the form

∑
|α|⩽N bα(H2/H1)

α2(H3/H1)
α3 with bα depending only in

the (x, y, z) variables. The first part of this result states that H1 = H1(1 + P ) is a
small deformation H1 (in the sense that P = O(ε2) in the region |H2|H3| ≲ ε|H1|
where eigenmodes are microlocalized) whose Poisson bracket with H2

2 +H
2
3 is of order

O(ε2) in the region of interest. This error is modulo quadratic terms in H2 and H3

but these should be understood as bounded terms in the region where our eigenmodes
are microlocalized thanks to (19). Similarly a = a + Pa is a small deformation of a
whose Poisson bracket with H2

2 +H2
3 has a nice asymptotic expansion.

As already alluded, such a theorem is obtained through a normal form procedure.
Compared with [CHT18], we will simplify some aspects of this normal form procedure.
Rather than making a symplectic change of variables at each step of the iterative
scheme and using the machinery of Fourier integral operators, we will just encode
a slightly simpler change of variables (close to but not necessarily symplectic) into
a small deformation of the test function

b = b+ O
( |H2|+ |H3|

|H1|

)
.

As already explained, this deformation makes the remainder term in {H2
2 +H

2
3 , b}

as small as possible in the regime H2
2 + H2

3 ≪ H2
1 . This simplified version of the

normal form method is in fact sufficient to obtain the desired invariance properties
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of the semiclassical measure µ∞ = limε→0 µ
ε. We emphasize that Wigner type dis-

tributions enjoy somehow more flexibility regarding change of variables than Fourier
integral operators (since many negligible terms disappear in the limit h → 0), and
we will crucially exploit this fact to avoid the use of cumbersome symplectic changes
of coordinates that in the end match with ours in the semiclassical limit (see [AS23,
§3.1] for a related construction involving two-microlocal semiclassical measures).

Remark 5.2. — In this section, the fact that we have simple bracket formulas as (11)
will make the proof slightly simpler and more explicit regarding the terms appearing
in the normal form. Yet, the strategy would remain the same if {H1, H2} and {H1, H3}
were more general linear combinations of H1, H2 and H3 (as in the general contact
case). In any case, the fact that these brackets do not identically vanish is exactly
where the situation is more involved than in the flat Heisenberg case [FKF21, FKL21]
like when considering varying magnetic fields rather than constant ones.

5.1. Approximate solutions of cohomological equations. — We first recall the alge-
braic relations given by (11) and producing the subelliptic structure of our problem:

(40) {H1, H2} = −KH3, {H1, H3} = H2, {H2, H3} = −H1.

It is convenient to introduce complex notations:

Z := H2 + iH3 and Z := H2 − iH3,

so that
H2

2 +H2
3 = |Z|2.

The relations (40) now become

{H1, Z} = iK+Z + iK−Z, {H1, Z} = −iK−Z − iK+Z, {Z,Z} = 2iH1,

where
K+ :=

1 +K

2
and K− =

1−K

2
.

In particular, one has

(41) {|Z|2, H1} = iK−(Z
2 − Z

2
).

In view of proving Theorem 5.1, we will have to modify the function of interest
(either a or H1) through an inductive scheme that is achieved by solving cohomological
equations of the form

(42)
{
|Z|2, f

}
=
bα(x, y, z)

Hα1
1

Zα2Z
α3
,

where (α1, α2, α3) ∈ Z3
+ and the unknown of the equation is f . The key observation

to solve (approximately) this kind of equation is that, for every k ̸= ℓ in Z+, one has

(43)
{
|Z|2, ZkZ

ℓ
/2i(ℓ− k)

}
= H1Z

kZ
ℓ
.

In particular, by a direct computation, one has the following approximate solution to
the cohomological equation (42):
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Lemma 5.3. — For α2 ̸= α3, set

f :=
bα

2i(α3 − α2)H
α1+1
1

Zα2Z
α3
.

Then, one has{
|Z|2, f

}
=
bα(x, y, z)

Hα1
1

Zα2Z
α3 − iK−

bα(x, y, z)

Hα1+2
1

Zα2Z
α3
(Z2 − Z

2
)

+
{Z, bα}
Hα1+1

1

Zα2+1Z
α3

+
{Z, bα}
Hα1+1

1

Zα2Z
α3+1

.

Here, we have not exactly solved (42) but only up to smaller order term in the region
where our eigenmodes are microlocalized (roughly speaking |Z| ≲ 1 and |H1| → +∞).
Such an observation will be enough to construct inductively the functions P and Pa

appearing in Theorem 5.1.

Remark 5.4. — In the rest of this Section, we will always suppose that we work
in the region H1 ̸= 0. In the end, the formulas will only be used in the regime
|H2|, |H3| ≪ |H1|.

5.2. A small deformation of H1. — We start with the deformation of the vari-
able H1 and prove the first part of Theorem 5.1.

5.2.1. Normal form procedure. — In view of (41) and of Lemma 5.3, we set

P2 :=
K−

2

(
(H2/H1)

2 − (H3/H1)
2)
.

By construction, one has

{|Z|2, H1(1 + P2)} =
(Z2 + Z

2
)

4

{
|Z|2,K−/H1

}
.

Iterating this procedure by applying Lemma 5.3 one more time, one can find P3 in
P(R2 × S1) of the form

P3 =
∑
|α|=3

P3,α(x, y, z) (H2/H1)
α2 (H3/H1)

α3

and such that, if we set

(44) H1 := H1 (1 + P2 + P3) ,

then one has

(45) {H2
2 +H2

3 ,H1} = H2
2R1 +H2

3R2 +H2H3R3,

with Rj belonging in P(R2 × S1) and being of the form

Rj =
∑
|α|⩾2

Rj,α(x, y, z) (H2/H1)
α2 (H3/H1)

α3 .

Hence, in the regime H2
2 + H2

3 ≪ H2
1 , this Poisson bracket is somehow of smaller

order than the one appearing in (41). This concludes the first part of the proof of
Theorem 5.1.
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We finally state the following analogue of Lemma 3.7:

Lemma 5.5. — Let K be a compact subset of R2 × S1. For every 0 < ε ⩽ 1, for every
N0 ⩾ 2 and for every (α, β) ∈ Z6

+, one can find a constant Cε,N0,K,α,β such that, for
every (q, p) = (x, y, z, ξ, η, ζ) in C2N0ε(K)∖C2−N0ε(K), one has, for every j ∈ {2, 3},∣∣∣∂αq ∂βp ( H1√

1 +H2
2 +H2

3

)∣∣∣ ⩽ Cε,N0,K,α,β⟨p⟩−|β|,

where ⟨p⟩ := (1 + ξ2 + η2 + ζ2)1/2.

Proof. — This is a direct consequence of Corollary 2.6 and Lemma 3.7. □

5.2.2. Rewriting µR,ε
h using H1. — Before proving the last part of Theorem 5.1,

we briefly come back to the distribution µR,ε
h that was introduced in (27) and defined

using H1. We next show that we can replace H1 by H1 modulo small remainders in h
and ε.

Lemma 5.6. — For b in C∞
c (U0 × R), we set

(46) ⟨µR,ε
h , b⟩ :=

〈
Oph(b(x, y, z, hH1)χ̃

C
ε χ̃

C
ε χ̃

B
Rχ̃

B
R )uh, uh

〉
L2 ,

where

χ̃B
R := χ̃

(H2
1 +H2

2 +H2
3

4R

)
, and χ̃C

ε := χ̃
( εH1

4
√
H2

2 +H2
3 + 1

)
.

Then, one has, as h→ 0+, R→ +∞ and ε→ 0 (in this order),

⟨µR,ε
h , b⟩ = ⟨µR,ε

h , b⟩+ Ob,ε,R(h) + Ob,ε(R
−1) + Ob(ε

2).

Remark 5.7. — Note that, on the support of χ̃C
ε , one has H1 = H1(1+O(ε2)), so that

χ̃C
ε = 1 on the support of χ̃C

ε χ̃
C
ε if ε > 0 is chosen small enough. We just keep the

function χ̃C
ε to ensure that H1 is well defined. The same holds for χ̃B

Rχ̃
B
R .

Proof. — Let b(x, y, z, E) be an element in C∞
c (U0 × R∗). One has

⟨µR,ε
h , b⟩ =

〈
Oph(b(x, y, z, hH1)χ̃

C
ε χ̃

B
R)uh, uh

〉
L2 ,

where χ̃C
ε was defined in (21) as

χ̃C
ε := χ̃

( εH1√
H2

2 +H2
3 + 1

)
.

Arguing as in the proof of Lemma 3.3, one knows that

χ̃C
ε χ̃

( εH1

4
√
H2

2 +H2
3 + 1

)
b(x, y, z, hH1)

belongs to S0
cl(T

∗(R2×S1)) with all seminorms uniformly bounded in terms of h such
that 0 < h ⩽ 1 (but not on ε a priori).

Set now χC
ε = 1− χ̃C

ε . On the support of b(x, y, z, hH1)χ̃
C
ε χ

C
ε , one has

1 ⩽
ε|H1|√

1 +H2
2 +H2

3

⩽ 10,

J.É.P. — M., 2024, tome 11



940 V. Arnaiz & G. Rivière

for small enough ε > 0. In particular, we can argue as in (20) and write

b(x, y, z, hH1)χ̃
B
Rχ̃

C
ε χ

C
ε =

b(x, y, z, hH1)χ̃
B
Rχ̃

C
ε χ

C
ε

1 +H2
2 +H2

3

(1 +H2
2 +H2

3 ),

where the first term of the product on the right-hand side belongs to S−2
cl thanks

to the above support properties. Using the Calderón-Vaillancourt theorem together
with (18) and (19), we find that

⟨µR,ε
h , b⟩ =

〈
Oph(b(x, y, z, hH1)χ̃

C
ε χ̃

C
ε χ̃

B
R)uh, uh

〉
L2 + OR,ε(h) + Oε(R

−1).

Similarly, we can insert the cutoff function χ̃B
R if we note that, on the support of

χB
R χ̃

B
R , one has

1

10
R ⩽ H2

1 +H2
2 +H2

3 ⩽ 10R,

hence the involved symbol is compactly supported. We can then apply the exact same
argument and show that

⟨µR,ε
h , b⟩ =

〈
Oph(b(x, y, z, hH1)χ̃

C
ε χ̃

C
ε χ̃

B
R χ̃

B
R)uh, uh

〉
L2 + OR,ε(h) + Oε(R

−1).

We are now left with replacing H1 by H1 in the last component of b. We write

b(x, y, z, hH1) = b(x, y, z, hH1)+h(H1−H1)

∫ 1

0

∂Eb(x, y, z, hH1+ th(H1−H1))dt.

Hence, applying Corollary 2.6 together with (19) and (44), the composition rule for
pseudodifferential operators and the Calderón-Vaillancourt theorem, one finds the
expected conclusion. □

5.3. End of the proof of Theorem 5.1. — We now proceed similarly and introduce
a small deformation of a whose Poisson bracket with H2

2 +H2
3 is small in the regime

H2
2 +H2

3 ≪ H2
1 . Let a be a smooth function compactly supported on U0, we write

{|Z|2, a} = Z{Z, a}+ Z{Z, a}.

In the region H1 ̸= 0 and in view of (43), we can set

a1 :=
Z

2iH1
{Z, a} − Z

2iH1
{Z, a}.

We then find

{|Z|2, a+ a1} =
Z

2i

{
|Z|2, {Z, a}/H1

}
− Z

2i

{
|Z|2, {Z, a}/H1

}
.

Recalling that a is a function on U0, one has

{Z, {Z, a}} − {Z, {Z, a}} = (X⊥ + iV )(X⊥ − iV )(a)− (X⊥ − iV )(X⊥ + iV )(a)

= 2i[V,X⊥](a) = 2iX(a).
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Hence, letting XZ (resp. XZ) be the (complex) vector field generated by Z (resp. Z)
the above expression can be simplified as

{|Z|2, a+ a1} =
|Z|2

H1
X(a) +

(Z2X2
Z
− Z

2
X2

Z)(a)

2iH1

−
Z2XZ(a)

2iH2
1

{Z,H1}+
Z

2
XZ(a)

2iH2
1

{Z,H1}.

We would now like to eliminate the terms of magnitude 1/H1 using Lemma 5.3.
Namely, we set

a2 = −
(Z2X2

Z
+ Z

2
X2

Z)(a)

8H2
1

.

This allows us, after defining a := a+ a1 + a2, to get

(47) {H2
2 +H2

3 ,a} =
H2

2 +H2
3

H1
X(a) +

1

H1
Ra

where Ra is an element of the form

Ra =
∑
|α|⩾2

Ra,α(x, y, z) (H2/H1)
α2 (H3/H1)

α3 ,

with Ra,α that is compactly supported in U0.
For simplicity of exposition, we will use more compact notations for a:

(48) a =
∑
|α|⩽2

aα (H2/H1)
α2 (H3/H1)

α3 ,

where the functions aα are also defined on U0 and explicitly given by

(49) a(0,0) := a, a(1,0) := −V (a), a(0,1) := X⊥(a),

and

(50) a(2,0) := −a(0,2) := − (X2
⊥ − V 2)(a)

4
, a(1,1) := − (X⊥V + V X⊥)(a)

2
.

6. Invariance properties

In view of Lemma 5.6, we are left to study the Wigner type distribution µR,ε
h given

by (46). Our goal is to prove that any accumulation point µ∞ of this sequence as
h→ 0, R→ +∞ and ε→ 0 (in this order) verifies certain invariance properties:

Proposition 6.1. — Let (ψh,Λh) be a sequence satisfying (3) and set

H1(q, E) := Λ0 −W (q)− EQ(q),

and

(51) XW,Q := (Λ0 −W )X +ΩH1 + EX(H1)∂E .

Let µ∞ be any semiclassical measure obtained as a weak limit for the sequence of
distributions µR,ε

h defined from the sequence (ψh,Λh). Then, for every b ∈ C1
c(U0×R),∫

U0×R

(
XW,Q(b) +X(H1)b

)
dµ∞ = 0.
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In order to prove Proposition 6.1, we start by fixing an element b in C∞
c (U0 × R).

Rather than looking at b directly, we will consider test functions based on the normal
form b from (48), that is,

(52) b(x, y, z, E) =
∑
|α|⩽2

bα(x, y, z, E) (H2/H1)
α2 (H3/H1)

α3 ,

where bα is given by (49) and (50) with b instead of a (the variable E plays the role
of a parameter). One then has〈[

P̂h,λ,Opwh
(
H1b(·, hH1)χ̃

C
ε χ̃

C
ε χ̃

B
Rχ̃

B
R

)]
uh, uh

〉
= O(h∞).

On the other hand, we know that H1b(·, ·, ·, hH1)χ̃
C
ε χ̃

C
ε χ̃

B
Rχ̃

B
R belongs to S1

cl while
the symbol of P̂h,λ lies in S2

cl. Then, by the composition rules for the Weyl quantization
(see Appendix B), one finds

(53)
〈
Opwh

({
Ph,H1b(·, hH1)χ̃

C
ε χ̃

C
ε χ̃

B
Rχ̃

B
R

})
uh, uh

〉
= O(h2),

where Ph = H2
2 + H2

3 + hQH1 +W . Recall that, as before, the measure in the L2

scalar product is the standard Lebesgue measure thanks to our conventions for P̂h,λ

and uh (see (16), (17) and (18)).

6.1. Removing the derivatives of the cutoff function. — Before exploiting the nor-
mal form procedure, we start with the following Lemma in view of removing the cutoff
functions χ̃C

ε χ̃
C
ε χ̃

B
Rχ̃

B
R from the Poisson bracket:

Lemma 6.2. — With the above conventions, one has:〈
Opwh

(
{Ph,H1b(·, hH1)}χR,ε

)
uh, uh

〉
L2(Leb)

= O(ε2) + OR,ε(h
1/2),

where χR,ε := χ̃C
ε χ̃

C
ε χ̃

B
Rχ̃

B
R .

Proof. — In light of (53), proving this equality amounts to show that〈
Opwh

(
H1b(·, hH1){H2

2 +H2
3 , χR,ε}

)
uh, uh

〉
L2(Leb) = O(ε2) + OR,ε(h

1/2).

To do that, we first write

H1b(·, hH1){H2
2 +H2

3 , χR,ε} = H1b(·, hH1){H2
2 +H2

3 ,H1}χ̃C
ε χ̃

B
R

×
(H1χ̃

C
ε

2R
χ̃′
(H2

1 +H2
2 +H2

3

4R

)
+

εχ̃B
R

4
√

1 +H2
2 +H2

3

χ̃′
( εH1

4
√
1 +H2

2 +H2
3

))
.

The first observation is that, from Theorem 5.1, the Poisson bracket {H2
2 +H

2
3 , χR,ε}

is of the form R1H
2
2 +R2H

2
3 +R3H2H3 where Rj are elements of P(R2 × S1). Thus

each Rj is of order O(ε2) in the region where the eigenmodes are microlocalized thanks
to the cutoff function χ̃C

ε χ̃
B
R . Now, we can consider the first term in the right hand

side which is compactly supported in (ξ, η, ζ) and which is of the form b1H
2
2 + b2H

2
3 +

b3H2H3 where each bj belongs to S0
cl and has its supremum of order O(ε2) (recall that

H2
1 ⩽ 8R thanks to the support properties of χ̃). Hence, applying (19) together with

the Calderón-Vaillancourt theorem, we get that the contribution of this first term to
our semiclassical quantities is of size O(ε2) + OR,ε(h

1/2).
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It now remains to deal with the contribution of the second term where one differ-
entiates χ̃C

R . In that case, our symbol is supported in the region where

1

10

√
1 +H2

2 +H2
3 ⩽ ε|H1| ⩽ 10

√
1 +H2

2 +H2
3 .

In that case, we can remark that we end up with terms that are of the form

εb(·, hH1)H1√
1 +H2

2 +H2
3

(
R1H

2
2 +R2H

2
3 +R3H2H3

)
.

Using Lemma 3.7, the first term lies in the class of symbol S0
cl inside the support

of our symbol (recall that we have differentiated χ̃C
ε ) and is uniformly bounded in

terms of ε and R (but not small a priori). Using one more time the semiclassical
a priori estimates (19), we find using the composition rule together with the Calderón-
Vaillancourt theorem that, up to remainders of size OR,ε(h

1/2), the contribution of
this second term is given by terms of the form〈

Opwh

(
χ̃C
ε χ̃

B
Rχ̃

B
R χ̃

′
( εH1

4
√

1 +H2
2 +H2

3

) εb(·, hH1)H1√
1 +H2

2 +H2
3

Rj

)
uh, uh

〉
.

Using the Calderón-Vaillancourt theorem one last time, we get the expected result
thanks to the fact that Rj = O(ε2) according to the localization properties of the
function χ̃. □

6.2. Proof of Proposition 6.1. — Let b ∈ C∞
c (U0 × R), we consider as before the

small deformation b(x, y, x, E) of b given by (52). Thanks to Lemma 6.2, one has

(54)
〈
Opwh

(
{Ph,H1b(·, hH1)} χ̃C

ε χ̃
C
ε χ̃

B
Rχ̃

B
R

)
uh, uh

〉
= O(ε2) + OR,ε(h

1/2).

Hence, we need to understand

{Ph,H1b} = {H2
2 +H2

3 ,H1b}+ {W,H1b}+ {hH1Q,H1b}.

Recalling (45) and (47), one has

{H2
2 +H2

3 ,H1} = R1H
2
2 +R2H

2
3 +R3H2H3,

and

{H2
2 +H2

3 , b} =
H2

2 +H2
3

H1
X(b) +

1

H1
Rb

+ h{H2
2 +H2

3 ,H1}
∑
|α|⩽2

∂Ebα (H2/H1)
α2 (H3/H1)

α3 ,

where Rb and (Rj)j⩾3 belongs to the class of symbol S0
cl inside the support of our

cutoff functions with supremum that is of order O(ε2). Hence, using the eigenvalue
equation (18) and the semiclassical a priori estimates (19) together with the compo-
sition rule for pseudodifferential operators and the expressions for b and H1 given
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in (52) and (44), equation (54) becomes

(55)
〈
Opwh

(
X(b) (Λh −W − hQH1) χ̃

C
ε χ̃

C
ε χ̃

B
Rχ̃

B
R

)
uh, uh

〉
+
〈
Opwh

(
{W + hH1Q,H1b(·, hH1)} χ̃C

ε χ̃
C
ε χ̃

B
Rχ̃

B
R

)
uh, uh

〉
= O(ε2) + OR,ε(h

1/2).

Hence, it remains to analyze the terms{
W + hH1Q,H1b(·, hH1)

}
.

To do that, we recall that, from the exact expressions for H1 and b given in (44), (49)
and (52), one has

H1 = H1

(
1 +

∑
|α|∈{2,3}

Pα(x, y, z) (H2/H1)
α2 (H3/H1)

α3

)
,

b(·, hH1)H1 = b(·, hH1)H1 +X⊥(b)(·, hH1)H3 − V (b)(·, hH1)H2and

+
∑
|α|⩾2

Qα(x, y, z, hH1)H
α2
2 Hα3

3 /H
|α|−1
1 ,

where Qα are smooth compactly supported functions. We also observe that, in the
support of our cutoff functions, one has

{W + hH1Q, hH1} = {W + hH1Q, hH1}+ O(ε).

For similar reasons, the terms of order |α| ⩾ 2 in the expression of b(., hH1)H1 yields
a contribution of order O(ε) and (55) can be rewritten as

(56)
〈
Opwh

(
X(b) (Λh −W − hQH1) χ̃

C
ε χ̃

C
ε χ̃

B
Rχ̃

B
R

)
uh, uh

〉
+ O(ε) + OR,ε(h

1/2)

= −
〈
Opwh

(
{W + hH1Q,H1b+X⊥(b)H3 − V (b)H2} χ̃C

ε χ̃
C
ε χ̃

B
Rχ̃

B
R

)
uh, uh

〉
.

As one has, on the support of our functions,

{W,H1b+X⊥(b)H3 − V (b)H2}
= −X(W )b− hH1X(W )∂Eb−X⊥(b)V (W ) + V (b)X⊥(W ) + O(ε)

and

{hH1Q,H1b+X⊥(b)H3 − V (b)H2} = −hH1X(Q)b− (hH1)
2X(Q)∂Eb+ hH1QX(b)

− hH1X⊥(b)V (Q) + hH1V (b)X⊥(Q) + O(ε),

we finally obtain the expected result by letting h→ 0+, R→ +∞ and ε→ 0+ (in this
order) in (56).

7. Summary of the properties of µ∞

In this short section, we summarize our description of the semiclassical mea-
sures µ∞ obtained as weak limits of the Wigner distributions µR,ε

h given by (46)
(or equivalently (28)). More precisely, as a consequence of Propositions 4.1 and 6.1,
one has the following theorem:
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Theorem 7.1. — Let Q,W ∈ C∞(M,R) such that ∥Q∥C0 < 1 and let Λ0 ⩾ minW .
Given a sequence (ψh,Λh) satisfying (3) then any measure µ∞ obtained from the
sequence (28) decomposes as:

µ∞(q, E) = µ∞(q, E) +

∞∑
k=0

(
µ+
k,∞(q, E) + µ−

k,∞(q, E)
)
,

where µ∞ and (µ±
k,∞)k⩾0 are finite non-negative Radon measures satisfying the fol-

lowing concentration properties:
(S.1) suppµ∞ ⊂ MΛ0,W × {0}, with MΛ0,W := {q ∈ M : Λ0 −W (q) ⩾ 0},
(S.2) for every k ∈ Z+,

suppµ±
k,∞ ⊂ H−1

± (2k + 1) ⊂ UΛ0,W × R∗
±.

Moreover, they verify the following invariance properties:
(P.1) for every a ∈ C1

c(UΛ0,W ),∫
M×{0}

YW
(
a
)
dµ∞ = 0,

with YW being defined in (5),
(P.2) for every k ∈ N and every a ∈ C1

c(M× R∗),∫
M×R∗

±

XW,Q(a)

E
dµ±

k,∞ = 0,

with XW,Q being defined in (51),
(P.3) for every a ∈ C1(M),∫

(MΛ0,W∖UΛ0,W )×{0}

(
ΩW (a) +X(W )a

)
dµ∞ = 0.

Notice that, in the last item, the vector field ΩW is “tangential” to the set MΛ0,W ∖
UΛ0,W .

Proof. — The only remaining point compared with Proposition 6.1 is to verify that
the invariance properties restrict to each layer H−1

± (2k+1) and M×{0}. To see this,
we first work inside UΛ0,W × R and prove properties (P.1) and (P.2). We let k ∈ Z+

and a ∈ C∞
c (UΛ0,W×R) whose support does not intersect supp(µ∞)∖H−1

± (2k+1). For
such a function, we deduce the expected property (P.2). If we now consider a to be an
element in C1

c(M×R∗), then it can be split as a sum of a function of the previous form
and a function that is supported away from H−1

± (2k + 1). Thus, we obtain property
(P.2) for the expected class of functions. Combining this with Proposition 6.1, we also
find that, for every a ∈ C1

c(UΛ0,W × R),∫
M×{0}

YW
(
(Λ0 −W )a

)
dµ∞ = 0,

from which we infer (P.1). It now remains to discuss what happens on the critical set

MΛ0,W ∖ UΛ0,W := {q ∈ M :W (q) = Λ0}.
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To do this, we rewrite the conclusion of Proposition 6.1 slightly more explicitly: for
every a ∈ C∞

c (M× R),∫
M×R

(
(Λ0 −W )X(a) + ΩΛ0−W (a)− EΩQ(a) + EX(H1)∂Ea+X(H1)a

)
dµ∞ = 0.

This expression can be rewritten as∫
M×{0}

(
(Λ0 −W )X(a) + ΩΛ0−W (a)−X(W )a

)
dµ∞

= −
∫
M×{E ̸=0}

(
(Λ0 −W )X(a)+ΩΛ0−W (a)−EΩQ(a)+EX(H1)∂Ea+X(H1)a

)
dµ∞.

If we take a to be of the form χ(E/δ)b(q) where b ∈ C∞(M) and where χ is the
same cutoff function as in the previous sections (recall that χ(x) = xχ′(x) = 0 for
|x| ⩾ 2), we find using the dominated convergence theorem that the right-hand-side
converges to 0. Hence, for every b ∈ C∞(M),∫

M×{0}

(
(Λ0 −W )X(b)− ΩW (b)−X(W )b

)
dµ∞ = 0.

We now take the test function b to be of the form χ((W (q) − Λ0)/δ)̃b(q) with χ

a smooth cutoff function (near 0) as above. Letting δ → 0 in the previous equality,
we find thanks to the dominated convergence theorem∫

(MΛ0,W∖UΛ0,W )×{0}

(
ΩW (̃b) +X(W )̃b

)
dµ∞ = 0. □

Note that, compared with Theorem 1.1 from the introduction, this result holds
without any assumption on Λ0. It also involves the more general measure µ∞ which
describes precisely how H1 escape at infinity.

Let us now explain that it directly implies Theorem 1.1. We also remark that,
if Λ0 > maxW , then (P.1) reads equivalently as

∫
M×{0} YW (a)dµ∞ = 0 for every

a ∈ C1(M). This implies the property of ν∞ in Theorem 1.1 by letting

ν∞(q) =

∫
R
µ∞(q, dE).

Notice, since ΩH1
(H1) = 0, that XW,Q(H±) = 0. This implies in particular that

the vector field E−1XW,Q is tangent to the level sets H−1
± (2k+1) and thus induces a

well-defined flow on these layers. Finally, we can derive from (S.2) and (P.2) that∫
M×R∗

±

(
(±(2k + 1) +Q)YW (a)− ΩQ(a) +X(H1)∂Ea

)
dµ±

k,∞ = 0,

which implies the last part of Theorem 1.1 by letting

ν±k,∞(q) :=

∫
R
µ±
k,∞(q, dE).
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8. The case of the flat torus

In this section, we briefly discuss the case where M = T2 = R2/2πZ2, Q =W = 0

and g = dx2 + dy2 is the canonical Euclidean metric. Our aim is to show examples of
different sequences of eigenfunctions for the operator −h2∆sR which select any given
choice among the semiclassical measures µ∞ and µ±

k,∞ by putting their total mass on
them as h→ 0+.

In this particular example, the operators X, X⊥ and V can be written by global
formulas in the canonical coordinates (x, y, z) ∈ T3 ≃ ST2. Precisely:

X = cos z∂x + sin z∂y, X⊥ = sin z∂x − cos z∂y, and V = ∂z,

so that
∆sR = (sin z∂x − cos z∂y)

2
+ ∂2z .

We restrict ourselves to search for solutions to (3) of the particular form

ψh(x, y, z) = uh(z)e
in·(x,y), n = (n1, n2) ∈ Z2.

As we impose that ψh solves our eigenvalue problem, then uh must satisfy

h2(n1 sin z − n2 cos z)
2uh(z)− h2u′′h(z) = uh(z),

or equivalently

− 1

∥n∥2
u′′h(z) + sin2(z − zn)uh(z) =

1

h2∥n∥2
uh(z),

with (cos zn, sin zn) = n/∥n∥. We recognize in this expression the semiclassical Math-
ieu operator

M̂n := − 1

∥n∥2
∂2z + sin2(z − zn),

on the circle S1 whose spectral analysis is a classical topic. Indeed, it is a one-
dimensional Schrödinger operator with a double well potential. Hence, we are led
to the equation

(57) M̂nun = λ(n)un, λ(n) =
1

(hn∥n∥)2
.

Since M̂n has compact resolvent on L2(S1), for every n ∈ Z2 there is an increasing
sequence of eigenvalues (Λk(n))k⩾0 with corresponding (normalized) eigenfunctions
(un,k(z))k⩾0 of M̂n.

Remark 8.1. — Note that

Sp(∆sR) =
⋃

n∈Z2

Sp(∥n∥2M̂n).

Note that, up to translation by zn, we can restrict ourselves to the case where
zn = 0 which amounts to take a lattice point of the form n = (n, 0) with say n > 0.
Under this assumption, we first show the following standard fact:
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Lemma 8.2. — For every k ∈ N, there exists Λk(n, 0) := Λk(n) ∈ SpL2(S1)(M̂(n,0))

such that:

(58) Λk(n) =
(2k + 1)

n

(
1 + Ok

(
1/
√
n
))
, as n −→ +∞.

Remark 8.3. — In principle, there could be other sequences of eigenvalues verifying
different asymptotic formulas, say Λα(n) = α/n+o(n−1).Yet, one could show that this
is not the case by comparing eigenfunctions of M̂n with quasimodes of the harmonic
oscillator

Ĥn := − 1

n2
∂2z + z2,

on L2(R), whose spectrum is given explicitly by

SpL2(R)(Ĥn) =
{2k + 1

n
: k ∈ N

}
.

However, since we are only interested in showing the existence of sequences of eigen-
functions of −h2n∆sR which put positive mass on the semiclassical measures µ∞
and µ±

k,∞, for which we already know the concentration properties (S.1) and (S.2)
of Theorem 7.1, we omit this discussion.

Proof. — The proof of this lemma is classical and we just briefly recall it for the
sake of completeness. Recall that is sufficient to construct a sequence of (almost)
normalized quasimodes (vk,n, Ek(n))n→∞ satisfying

M̂nvk,n = Ek(n)vk,n + Ok(1/n
3/2); Ek(n) =

2k + 1

n
.

To this aim, let δ > 0 small, and set vk,n(z) := χ(z/δ)φk,n where χ is a cutoff function
supported in a neighborhood of 0 and where

φk,n(z) = n1/4φk

(√
nz

)
,

and φk is the normalized Hermite function of degree k [Zwo12, Th. 6.2]. Observe that,
for any N ⩾ 1 and for any ℓ ⩾ 0,

(59)
∫
|z|⩾δ

∣∣φ(ℓ)
k,n(z)

∣∣2dz = Oδ,ℓ,k,N (1/nN/2), as ∥n∥ −→ ∞.

In particular, we get that ∥vk,n∥L2(T) = 1+Ok(n
−1) as n→ ∞ as expected. Moreover,

using the Taylor expansion

sin2 z = z2 + O(|z|3), as z −→ 0,

and the fact that(∫
R
|z3φk,n(z)|2dz

)1/2

= Ok(1/n
3/2), as n −→ ∞,

the claim holds by using the eigenvalue equation combined with (59) and

Ĥnφk,n = Ek(n)φk,n, z ∈ R. □

J.É.P. — M., 2024, tome 11



Quantum limits of perturbed sub-Riemannian Laplacians in dimension 3 949

Let us now fix, for every n > 0,

(60) hn :=
1√

(2k + 1 + ok(1))n
, as n −→ ∞,

so that (57) and (58) hold. For this sequence, take a sequence of solutions to (3) that
are of the form

(61) ψn(x, y, z) = un(z)e
inx.

Proposition 8.4. — Let (ψn)n⩾1 be a normalized sequence of the form (61). Let us
assume that (ψn)n⩾1 satisfy (3) with (hn)n⩾1 given by (60). Then the total mass of
µ+
k,∞ + µ−

k,∞ is equal to one.

Again, we will just make a rough analysis and a more careful work would show
that the sequences of eigenmodes put equal mass on µ±

k,∞ due to symmetry of our
double well potential. If we were looking for quasimodes, then we could ensure that
the full mass is put either on µ+

k,∞ or µ−
k,∞.

Proof. — Let us consider δ > 0 to be chosen sufficiently small along the proof. Let
χδ = χ(·/δ) where χ is still a small cutoff function near 0. We have, by the functional
analysis of pseudodifferential operators [Zwo12, Th. 14.9], the localization property:

OpS
1,w

1/∥n∥
(
χδ(sin

2(z) + ζ2)
)
un = χδ(M̂n)un +Oδ(1/n)

= χδ

(2k + 1

n
(1 + ok(1))

)
un +Oδ(1/n)

= un +Oδ,k(1/n).

On the other hand, we have:〈
Opwhn

(χ(hnH1)χ̃
C
ε χ̃

B
R)ψn, ψn

〉
L2(T3)

=
〈
OpS

1,w
hn

(κε,Rn )un, un
〉
L2(S1),

where

κε,Rn (z, ζ) := χ(h2nn cos(z))χ̃

(
εhnn cos(z)√

1 + (hnn)2 sin
2(z) + ζ2

)
χ̃
( (hnn)2 + ζ2

R

)
.

Arguing as in Section 3, one finds that this symbol belongs to the class of symbols
S0

cl(T
∗S1) amenable to pseudodifferential calculus on the circle. Observe also that,

for n large enough, the last function in this product is identically equal to 1 Notice
also that

OpS
1,w

1/∥n∥
(
χδ((sin

2(z) + ζ2))
)
= OpS

1,w
hn

(
χδ

(
sin2(z) + (ζ/hnn)

2
))

=: OpS
1,w

hn
(σδ

n).

Thus, by using the previous localization property for un and the semiclassical pseu-
dodifferential calculus, we have the composition formula:〈

OpS
1,w

hn
(κε,Rn )un, un

〉
L2(S1) =

〈
OpS

1,w
hn

(κε,Rn )OpS
1,w

hn

(
σδ
n

)
un, un

〉
L2(S1) + Oδ,k(1/n)

=
〈
OpS

1,w
hn

(κε,Rn σδ
n

)
un, un

〉
L2(S1) + Oδ,ε,R (hn) .
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In this expression, if we take δ sufficiently small (i.e., so that δ ≪ ε2), we have

κε,Rn (z, ζ)σδ
n(z, ζ) = χ(h2nn cos(z))σ

δ
n(z, ζ),

since χ̃(x) = 1 for |x| ⩾ 2. Moreover, for δ > 0 sufficiently small, we can also decom-
pose σδ

n as the sum of two functions σ1,δ
n and σ2,δ

n compactly supported respectively
near z = 0 and z = π, that is:

σδ
n(z, ζ) = σ1,δ

n (z, ζ) + σ2,δ
n (z, ζ),

with suppσ1,δ
n ∩ suppσ1,δ

n = ∅. Using next that

h2nn cos(z) =
(−1)j−1

2k + 1
+ O(δ), as δ −→ 0, j = 1, 2,

respectively on the support of σj,δ
n (z, ζ), we get thanks to the Calderón-Vaillancourt

theorem:〈
OpS

1,w
hn

(κε,Rn )un, un
〉
L2(S1)

=
∑

j∈{1,2}

χ
( (−1)j−1

2k + 1

)〈
OpS

1,w
hn

(σj,δ
n )un, un

〉
L2(S1) + O(δ) + Oδ,ε,R(hn).

Therefore, taking limits in n→ +∞ through a subsequence, we obtain, for δ ≪ ε2,

lim
hn→0

〈
Opwhn

(χ(hnH1)χ̃
C
ε χ̃

B
R)ψn, ψn

〉
L2(M)

= αδ
1χ

( 1

2k + 1

)
+ αδ

2χ
( −1

2k + 1

)
+ O(δ),

where αδ
j = limhn→0+

〈
OpT

1,w
hn

(σj,δ
n )un, un

〉
L2(T1)

, and αδ
1 + αδ

2 = 1 (using one more
time the localization property of the sequence (un)n⩾1). Finally, in view of the fact
that

lim
ε→0

lim
R→∞

lim
hn→0

〈
Opwhn

(χ(hnH1)χ̃
C
ε χ̃

B
R)ψn, ψn

〉
L2(T3)

=

∫
T3×R

χ(E) dµ∞(q, E),

we can take δ → 0 and use Theorem 7.1 (property (S.2)) to conclude the proof. □

We finally show the existence of sequences of eigenfunctions (ψn) satisfying (3)
which put positive mass on the semiclassical measure µ∞. To this aim, we note that,
thanks to Lemma 8.2 and for every k ⩾ 1, we can find some nk ⩾ 1 such that, for
every n ⩾ nk, there is an eigenvalue Ek(n) of M̂(n,0) verifying

1

2
√
(2k + 1)n

⩽ Ek(n) =
1

(hnn)2
⩽

√
2√

(2k + 1)n
⩽

1√
k
.

Hence, we can take n = nk and pick a sequence (Knk
)k⩾1 such that Knk

→ +∞ and
thus the sequence (hnk

)k⩾1 satisfying now

(62) 1

nk
≪ hnk

=
1√

Knk
nk

≪ 1
√
nk
, as k −→ ∞.

Adapting the proof of Proposition 8.4 and using property (S.1) of Theorem 7.1, we ob-
tain:
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Corollary 8.5. — Let (ψnk
)k⩾1 be a normalized sequence of the form (61). Let us

assume that ψnk
satisfy (3) with hnk

given by (62). Then the total mass of µ∞ is equal
to one.

Appendix A. Spectral properties of P̂h

In this appendix, we briefly review the spectral properties of P̂h. A key ingredient
of the analysis is the following standard result [RS76, Cor. 17.14]:

Theorem A.1 (Rothschild-Stein). — Let Q ∈ C∞(M,R) such that ∥Q∥C0 < 1. Set

L = −∆sR − iQX = −X2
⊥ − V 2 − iQ[V,X⊥].

Then, for every N ⩾ 1, one can find continuous maps PN : Hs → H1+s and
SN : Hs → Hs+N/2 (for all s ⩾ 0) such that

PNL = Id+SN .

In particular, there exists a constant CM,g > 0 such that

(63) ∀ψ ∈ C∞(M), ∥ψ∥H1 ⩽ CM,g(∥Lψ∥L2 + ∥ψ∥L2),

and, for every s ⩾ 0,

L(ψ) ∈ Hs, ψ ∈ L2 =⇒ ψ ∈ Hs+1.

Let us now discuss the spectral properties of P̂h. For an introduction on the spec-
tral properties of unbounded operators, the reader is referred to [RS72, Ch. VIII]
and [RS75, Ch. X] that we closely follow for the terminology. For any ψ ∈ H2(M),
we define

P̃h(ψ) :=
(
−h2∆sR +

h2

2i
(QX − (QX)∗) +W

)
ψ,

which induces an unbounded operator

P̃h : D(P̃h) := H2(M) ⊂ L2(M) −→ L2(M).

One can define its adjoint P̃ ∗
h by defining the domain

D(P̃ ∗
h ) :=

{
ψ ∈ L2(M) : ∃u ∈ L2(M) such that ∀φ ∈ H2(M), ⟨ψ, P̃hφ⟩ = ⟨u, φ⟩

}
,

or equivalently
D(P̃ ∗

h ) :=
{
ψ ∈ L2(M) : P̃hψ ∈ L2(M)

}
The operator P̃ ∗

h : ψ ∈ D(P̃ ∗
h ) → P̃hψ ∈ L2(M) is closed and it is densely defined.

Hence, according to [RS72, Th. VIII.1], P̃h is closable and we denote its closure by P̃h

whose domain is denoted by D(P̃h) and equal to the set of ψ ∈ L2(M) such that

∃ψj ∈ H2(M), ∃v ∈ L2(M) such that ∥ψj − ψ∥L2 + ∥P̃hψj − v∥L2 −→ 0.

In general, one only has D(P̃ ∗
h) = D(P̃ ∗

h ) ⊂ D(P̃h) so that P̃h is not necessarily
selfadjoint. In order to fix this problem, we can make some assumptions on the size
of Q and use positivity arguments.
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More precisely, P̃h is associated with the real quadratic form

B̃(ψ) :=

∫
M

(P̃hψ)ψ dµL, ψ ∈ H2(M),

which, thanks to (1), is bounded from below by

B̃(ψ) ⩾ ∥hX⊥ψ∥2L2 + ∥hV ψ∥2L2 − 2∥Q∥C0∥hX⊥ψ∥L2∥hV ψ∥L2

+ (minW − h2∥Q∥C1)∥ψ∥2L2

− h∥Q∥C1∥ψ∥L2

(
∥hX⊥ψ∥L2 + ∥hV ψ∥L2

)
⩾

(
1− ∥Q∥C0 − h∥Q∥C1

2

) (
∥hX⊥ψ∥2L2 + ∥hV ψ∥2L2

)
+

(
minW − (h2 + h)∥Q∥C1

)
∥ψ∥2L2 .

Hence, if ∥Q∥C0 < 1 (and h > 0 is small enough in a way that depends on Q), it follows
from [RS75, Th. X.23] that B̃ is a closable form whose closure B corresponds to a
unique selfadjoint operator P̂h referred as the Friedrichs extension of P̃h. Moreover,
the spectrum of this selfadjoint extension is bounded from below by minW + OQ(h)

and its domain verifies

D(P̂h) ⊂ H1
sR(M) :=

{
ψ ∈ D′(M) : ∥ψ∥2L2 + ∥X⊥ψ∥2L2 + ∥V ψ∥2L2 <∞

}
.

In particular, P̂h : D(P̂h) ⊂ L2(M) → L2(M) is a closed selfadjoint operator and thus
(P̂h + C) has a bounded inverse for C > 0 large enough:(

P̂h + C
)−1

: L2(M) −→ (D(P̂h), ∥.∥L2) ⊂ L2(M).

We would like to show that this defines a compact operator. To see this, recall
from (63) that

∀ψ ∈ C∞(M), ∥(P̂h + C)−1ψ∥H1(M) ⩽ ch
(
∥ψ∥L2 + ∥(P̂h + C)−1ψ∥L2

)
,

so that, if (ψj)j⩾0 is a bounded sequence in L2(M), then ((P̂h + C)−1ψj)j⩾0 is also
bounded in H1(M).

Remark A.2. — Along the way, this discussion shows that H2(M) ⊂ D(P̂h) ⊂ H1(M)

(with continuous inclusions).

As the inclusion H1(M) ⊂ L2(M) is compact, (P̂h + C)−1 : L2(M) → L2(M) is
indeed a compact operator. As P̂h is selfadjoint, there exists an orthonormal basis
of L2(M) made of eigenmodes of P̂h. Moreover, if one has P̂hψh = Λhψh with ψh ∈
D(P̂h), then Lψh ∈ H1(M) and, according to Theorem A.1, one finds that ψh ∈
H2(M). By induction, we get that these eigenmodes are smooth.

Remark A.3. — If we let C > 0 be a large enough constant, then P̃h + C is a
positive symmetric operator and its adjoint is given by P̃ ∗

h + C with domain D(P̃ ∗
h ).

In particular, if ψ belongs to the kernel of P̃ ∗
h + C, then, by the Rothschild-Stein

theorem, ψ belongs to H1(M) (and by induction to C∞(M). Hence, it lies in the
domain of P̂h and we can deduce that ψ = 0. According to [RS75, Th. X.26], it implies
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that the Friedrichs extension is the only (semibounded) selfadjoint extension of P̃h+C

(hence of P̃h).

The spectral properties of P̂h that we have proved so far are summarized by the
next statement:

Lemma A.4. — Suppose that ∥Q∥C0 < 1. Then, there exists h0 > 0 such that, for
every 0 < h < h0,

P̂h : D(P̂h) −→ L2(M)

is a selfadjoint operator whose spectrum consists in a discrete sequence of eigenvalues

minW + OQ(h) ⩽ Λh(0) ⩽ Λh(1) ⩽ · · · ⩽ Λh(j) . . . −→ +∞.

Moreover,
P̂hψh = Λhψh, with ψh ∈ D(−P̂h) =⇒ ψh ∈ C∞(M).

We conclude this appendix with the following a priori estimates that are used all
along the article:

Lemma A.5. — Suppose that ∥Q∥C0<1. Then, one can find CQ,W >0 and 0<hQ⩽1,
such that, for all 0 < h ⩽ hQ,

P̂hψh = Λhψh, with ψh ∈ D(P̂h)

=⇒ ∥hX⊥ψh∥2L2 + ∥hV ψh∥2L2 + ∥h2Xψh∥2L2 ⩽ CY,W (1 + |Λh|)2∥ψh∥2L2 .

Proof. — Let ψh ∈ D(P̂h) such that P̂h = Λhψh. One has then

∥hX⊥ψh∥2L2 + ∥hV ψh∥2L2 = Λh∥ψh∥2L2 − ⟨Wψh, ψh⟩ −
h2

i

〈
(QX + 1/2X(Q))ψh, ψh

〉
.

Hence, one has

∥hX⊥ψh∥2L2 + ∥hV ψh∥2L2 ⩽ (∥W∥C0 + |Λh|)∥ψh∥2L2 + h2
∣∣〈(QX + 1

2X(Q))ψh, ψh

〉∣∣.
Recall that X = [V,X⊥] from which we infer∣∣〈(QX + 1

2X(Q))ψh, ψh

〉∣∣ ⩽ 2∥Q∥C0∥hX⊥ψh∥L2∥hV ψh∥L2

+ h∥Q∥C1 (∥hX⊥ψh∥L2 + ∥hV ψh∥L2) ∥ψh∥L2 +
h2

2
∥Q∥C1∥ψh∥2L2 .

Then, we get

∥hX⊥ψh∥2L2+∥hV ψh∥2L2 ⩽
1

1− ∥Q∥C0 − h∥Q∥C1/2
(∥W∥C0+|Λh|+2h∥Q∥C1)∥ψh∥2L2 .

Hence, under the assumption that ∥Q∥C0 < 1, there exists a constant CQ,W > 0

(depending only Q and W ) and 0 < hQ ⩽ 1 (depending only on Q) such that, for
every 0 < h ⩽ hQ,

∥hX⊥ψh∥2L2 + ∥hV ψh∥2L2 ⩽ CQ,W (1 + |Λh|)∥ψh∥2L2 .
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Finally, using the Rothschild-Stein theorem one more time, one finds that there exists
a constant CM,g > 0 such that

∥Xψh∥L2 ⩽ ∥ψh∥H1 ⩽ CM,g (∥Lψh∥L2 + ∥ψh∥L2) .

Multiplying this inequality by h2 and using the fact that P̂hψh = Λhψh to control the
upper bound in terms of ∥ψh∥L2 , we obtain the expected upper bound. □

Appendix B. Reminder on semiclassical analysis on R2 × S1

In this appendix, we review a few facts about semiclassical analysis on T ∗(R2×S1)
that are used all along our analysis of the measure at infinity. A standard textbook
is [Zwo12] which treats the case of T ∗R3 in great details in Chapter 4. The case
of T ∗(R2 × S1) can be handled similarly by proper use of Fourier series along the
z-variable rather than Fourier transform. See for instance [Zwo12, §5.3] for a detailed
discussion in the case of T ∗T3.

For a nice enough smooth function a on T ∗(R2 × S1) (say compactly supported)
and for every h > 0, the Weyl (semiclassical) quantization of a is defined, for all u
in C∞

c (R3), by

Opw
h (a) (u) (q) :=

1

(2πh)3

∫
R6

e(i/h)(q−q′)·pa
(q + q′

2
, p
)
u(q′)dq′dp.

Using the periodicity along the S1-variable, one can verify that this definition extends
to smooth test functions u ∈ C∞

c (R2 × S1) [Zwo12, §5.3.1].
Regarding the regularity needed for a, this definition still makes sense when working

with smooth functions a belonging to the class of (Kohn-Nirenberg) symbols [Zwo12,
§9.3]:

Sm
cl (T

∗(R2 × S1)) =
{
a ∈ C∞(T ∗(R2 × S1)) : ∀(α, β) ∈ Z6

+, Pm,α,β(a) < +∞
}
,

where m ∈ R, and

Pm,α,β(a) := sup
(q,p)

{⟨p⟩−m+|β||∂αq ∂βp a(x, ξ)|}.

In other words, we gain some decay in p when differentiating in the p-variable. Even if
such a decay is not necessary to work in an Euclidean set-up, it is of crucial importance
in our analysis to have this extra decay in view of dealing with the escape at infinity
in the fibers.

A nice property of the Weyl quantization is that, for a real-valued a, Opwh (a) is
a (formally) selfadjoint operator [Zwo12, Th. 4.1]. Another property that we exten-
sively use all along this article is the composition rule for pseudodifferential opera-
tors(5) [Zwo12, Th. 9.5, Th. 4.12].

(5)Technically speaking, this reference deals with the Weyl quantization on T ∗R3 but the proof
works as well in our set-up.
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Theorem B.1. — Let a ∈ Sm1

cl (T ∗(R2 × S1)) and b ∈ Sm2

cl (T ∗(R2 × S1)). Then, there
exists c ∈ Sm1+m2

cl (T ∗(R2 × S1)) (depending on h) such that
(64) Opwh (a) ◦Opwh (b) = Opwh (c).

Moreover,

c(q, p) =

N∑
k=0

hk

k!
(A(D))

k
(a(q1, p1)b(q2, p2))|q1=q2=q,p1=p2=p + OSm1+m2−N−1(hN+1),

where the constant in the remainder depends on a finite number of seminorms of a
and b (depending on N and on the semi-norm in Sm1+m2−N−1), and where

A(D) :=
1

2i
(∂p1

· ∂q2 − ∂p2
· ∂q1).

In particular, we can see from this result that c = OSm1+m2−N−1(hN+1) if a and b

have disjoint supports. We can also verify that, all the even powers in h in the asymp-
totic expansion of [Opwh (a),Opwh (b)] cancels out and that the first term is given by
(h/i){a, b}.

Another key property for us is the Calderón-Vaillancourt theorem [Zwo12, Ch. 5]
that states the existence of constants C0, N0 such that, for every a ∈ S0

cl(T
∗(R2×S1)),

∥Opwh (a)∥L2→L2 ⩽ C0

∑
|α|⩽N0

h|α|/2∥∂αa∥∞.

Recall also the Gårding property that is valid for elements in S0
cl(T

∗(R2×S1)). Given
any a in that class satisfying a ⩾ 0, it ensures the existence of a constant Ca > 0

[Zwo12, Th. 4.32] such that
(65) ∀u ∈ L2(R2 × S1), ⟨Opwh (a)u, u⟩ ⩾ −Cah∥u∥2L2 .
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