On uniform polynomial approximation
[Sur l’approximation polynomiale uniforme]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 769-807.

Soient n un entier strictement positif et ξ un nombre réel transcendant. Nous cherchons à borner supérieurement l’exposant uniforme d’approximation polynomiale ω ^ n (ξ). Établie par Davenport et Schmidt en 1969, l’inégalité ω ^ n (ξ)2n-1, a été améliorée pour la première fois récemment, et la meilleure borne supérieure connue à ce jour est 2n-2 pour tout n10. Dans ce papier, nous développons de nouvelles techniques qui nous permettent d’obtenir la borne supérieure améliorée 2n-1 3n 1/3 +𝒪(1).

Let n be a positive integer and ξ a transcendental real number. We are interested in bounding from above the uniform exponent of polynomial approximation ω ^ n (ξ). Davenport and Schmidt’s original 1969 inequality ω ^ n (ξ)2n-1 was improved recently, and the best upper bound known to date is 2n-2 for each n10. In this paper, we develop new techniques leading us to the improved upper bound 2n-1 3n 1/3 +𝒪(1).

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.265
Classification : 11J13, 11J82
Keywords: Exponent of Diophantine approximation, heights, uniform polynomial approximation
Mot clés : Exposants d’approximation diophantienne, hauteurs, approximation polynomiale uniforme
Anthony Poëls 1

1 Universite Claude Bernard Lyon 1, Institut Camille Jordan UMR 5208, 69622 Villeurbanne, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__769_0,
     author = {Anthony Po\"els},
     title = {On uniform polynomial approximation},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {769--807},
     publisher = {\'Ecole polytechnique},
     volume = {11},
     year = {2024},
     doi = {10.5802/jep.265},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.265/}
}
TY  - JOUR
AU  - Anthony Poëls
TI  - On uniform polynomial approximation
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 769
EP  - 807
VL  - 11
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.265/
DO  - 10.5802/jep.265
LA  - en
ID  - JEP_2024__11__769_0
ER  - 
%0 Journal Article
%A Anthony Poëls
%T On uniform polynomial approximation
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 769-807
%V 11
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.265/
%R 10.5802/jep.265
%G en
%F JEP_2024__11__769_0
Anthony Poëls. On uniform polynomial approximation. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 769-807. doi : 10.5802/jep.265. https://jep.centre-mersenne.org/articles/10.5802/jep.265/

[1] B. Arbour & D. Roy - “A Gel’fond type criterion in degree two”, Acta Arith. 111 (2004) no. 1, p. 97-103 | DOI | Zbl

[2] N. Bourbaki - Algebra I, Springer-Verlag, New York, 1989

[3] W. D. Brownawell - “Sequences of Diophantine approximations”, J. Number Theory 6 (1974) no. 1, p. 11-21 | DOI | Zbl

[4] Y. Bugeaud - Approximation by algebraic numbers, Cambridge Tracts in Math., vol. 160, Cambridge University Press, Cambridge, 2004 | DOI

[5] Y. Bugeaud - “Exponents of Diophantine approximation”, in Dynamics and analytic number theory (D. Badziahin, A. Gorodnik & N. Peyerimhoff, eds.), London Math. Soc. Lect. Note Ser., vol. 437, Cambridge University Press, Cambridge, 2016, p. 96-135 | DOI | Zbl

[6] Y. Bugeaud & M. Laurent - “Exponents of Diophantine approximation and Sturmian continued fractions”, Ann. Inst. Fourier (Grenoble) 55 (2005) no. 3, p. 773-804 | DOI | Numdam | Zbl

[7] Y. Bugeaud & M. Laurent - “On transfer inequalities in Diophantine approximation, II”, Math. Z. 265 (2010) no. 2, p. 249-262 | DOI | Zbl

[8] Y. Bugeaud & J. Schleischitz - “On uniform approximation to real numbers”, Acta Arith. 175 (2016) no. 3, p. 255-268 | Zbl

[9] H. Davenport & W. Schmidt - “Approximation to real numbers by quadratic irrationals”, Acta Arith. 13 (1967) no. 2, p. 169-176 | DOI | Zbl

[10] H. Davenport & W. Schmidt - “Approximation to real numbers by algebraic integers”, Acta Arith. 15 (1969) no. 4, p. 393-416 | DOI | Zbl

[11] W. Hodge & D. Pedoe - Methods of algebraic geometry, Cambridge University Press, Cambridge, 1947

[12] M. Laurent - “Simultaneous rational approximation to the successive powers of a real number”, Indag. Math. (N.S.) 14 (2003) no. 1, p. 45-53 | DOI | Zbl

[13] A. Marnat & N. Moshchevitin - “An optimal bound for the ratio between ordinary and uniform exponents of Diophantine approximation”, Mathematika 66 (2020) no. 3, p. 818-854 | DOI | Zbl

[14] N. G. Moshchevitin - “Best Diophantine approximations: the phenomenon of degenerate dimension”, in Surveys in geometry and number theory: reports on contemporary Russian mathematics, London Math. Soc. Lecture Note Ser., vol. 338, Cambridge University Press, Cambridge, 2007, p. 158-182 | DOI | Zbl

[15] A. Poëls - “Exponents of Diophantine approximation in dimension 2 for numbers of Sturmian type”, Math. Z. 294 (2020) no. 3, p. 951-993 | DOI | Zbl

[16] A. Poëls - “Exponents of Diophantine approximation in dimension two for a general class of numbers”, Mosc. J. Comb. Number Theory 11 (2022) no. 1, p. 37-69 | DOI | Zbl

[17] A. Poëls & D. Roy - “Simultaneous rational approximation to successive powers of a real number”, Trans. Amer. Math. Soc. 375 (2022) no. 09, p. 6385-6415 | Zbl

[18] A. Poëls & D. Roy - “Parametric geometry of numbers over a number field and extension of scalars”, Bull. Soc. math. France 151 (2023), p. 257-303 | Zbl

[19] M. Rivard-Cooke - Parametric geometry of numbers, Ph. D. Thesis, University of Ottawa, 2019, https://ruor.uottawa.ca/handle/10393/38871

[20] D. Roy - “Approximation simultanée d’un nombre et de son carré”, Comptes Rendus Mathématique 336 (2003) no. 1, p. 1-6 | Numdam | Zbl

[21] D. Roy - “Approximation to real numbers by cubic algebraic integers I”, Proc. London Math. Soc. (3) 88 (2004) no. 1, p. 42-62 | Zbl

[22] D. Roy - “On two exponents of approximation related to a real number and its square”, Canad. J. Math. 59 (2007) no. 1, p. 211-224 | Zbl

[23] J. Schleischitz - “Some notes on the regular graph defined by Schmidt and Summerer and uniform approximation”, JP J. Algebra Number Theory Appl. 39 (2017) no. 2, p. 115-150 | DOI | Zbl

[24] J. Schleischitz - “Uniform Diophantine approximation and best approximation polynomials”, Acta Arith. 185 (2018) no. 3, p. 249-274 | DOI | Zbl

[25] J. Schleischitz - “Uniform dual approximation to Veronese curves in small dimension”, 2024 | arXiv

[26] W. M. Schmidt - Diophantine approximation, Lect. Notes in Math., vol. 785, Springer-Verlag, Berlin, 1980

[27] W. M. Schmidt - Diophantine approximations and Diophantine equations, Lect. Notes in Math., vol. 1467, Springer-Verlag, Berlin, 1991 | DOI

Cité par Sources :