Complements of hypersurfaces in projective spaces
Journal de l’École polytechnique — Mathématiques, Volume 11 (2024), pp. 733-768.

We study the complement problem in projective spaces n over any algebraically closed field: If H,H n are irreducible hypersurfaces of degree d such that the complements n H, n H are isomorphic, are the hypersurfaces H, H isomorphic?

For n=2, the answer is positive if d7 and there are counterexamples when d=8. In contrast, we provide counterexamples for all n,d3 with (n,d)(3,3). Moreover, we show that the complement problem has an affirmative answer for d=2 and give partial results in case (n,d)=(3,3). In the course of the exposition, we prove that rational normal projective surfaces admitting a desingularization by trees of smooth rational curves are piecewise isomorphic if and only if they coincide in the Grothendieck ring, answering affirmatively a question posed by Larsen and Lunts for such surfaces.

Nous étudions le problème du complémentaire dans les espaces projectifs n sur tout corps algébriquement clos : Si H,H n sont des hypersurfaces irréductibles de degré d telles que les complémentaires n H, n H sont isomorphes, les hypersurfaces H, H sont-elles isomorphes ?

Pour n=2, la réponse est positive si d7 et il y a des contre-exemples lorsque d=8. En revanche, nous fournissons des contre-exemples pour tous les entiers n,d3 avec (n,d)(3,3). De plus, nous montrons que le problème du complémentaire a une réponse affirmative pour d=2 et donnons des résultats partiels dans le cas où (n,d)=(3,3). Au cours de l’exposition, nous prouvons que les surfaces projectives normales rationnelles admettant une désingularisation par des arbres de courbes rationnelles lisses sont isomorphes par morceaux si et seulement si elles coïncident dans l’anneau de Grothendieck, répondant ainsi positivement à une question posée par Larsen et Lunts pour de telles surfaces.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.264
Classification: 14J70, 14R05, 14E07, 19A99
Keywords: Complement problem, cylinder over Danielewski surfaces, piecewise isomorphisms
Mot clés : Problème du complémentaire, cylindre sur les surfaces de Danielewski, isomorphismes par morceaux

Jérémy Blanc 1; Pierre-Marie Poloni 1; Immanuel Van Santen 1

1 Universität Basel, Departement Mathematik und Informatik, Spiegelgasse 1, CH-4051 Basel, Switzerland
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2024__11__733_0,
     author = {J\'er\'emy Blanc and Pierre-Marie Poloni and Immanuel Van Santen},
     title = {Complements of hypersurfaces in projective~spaces},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {733--768},
     publisher = {\'Ecole polytechnique},
     volume = {11},
     year = {2024},
     doi = {10.5802/jep.264},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.264/}
}
TY  - JOUR
AU  - Jérémy Blanc
AU  - Pierre-Marie Poloni
AU  - Immanuel Van Santen
TI  - Complements of hypersurfaces in projective spaces
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 733
EP  - 768
VL  - 11
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.264/
DO  - 10.5802/jep.264
LA  - en
ID  - JEP_2024__11__733_0
ER  - 
%0 Journal Article
%A Jérémy Blanc
%A Pierre-Marie Poloni
%A Immanuel Van Santen
%T Complements of hypersurfaces in projective spaces
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 733-768
%V 11
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.264/
%R 10.5802/jep.264
%G en
%F JEP_2024__11__733_0
Jérémy Blanc; Pierre-Marie Poloni; Immanuel Van Santen. Complements of hypersurfaces in projective spaces. Journal de l’École polytechnique — Mathématiques, Volume 11 (2024), pp. 733-768. doi : 10.5802/jep.264. https://jep.centre-mersenne.org/articles/10.5802/jep.264/

[AGV73] M. Artin, A. Grothendieck & J.-L. Verdier - Théorie des topos et cohomologie étale des schémas. Tome 3, Lect. Notes in Math., vol. 305, Springer-Verlag, Berlin-New York, 1972–1973, Séminaire de Géométrie Algébrique du Bois–Marie 1963–64 (SGA 4)

[AM69] M. F. Atiyah & I. G. Macdonald - Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969

[Art62] M. Artin - “Some numerical criteria for contractability of curves on algebraic surfaces”, Amer. J. Math. 84 (1962), p. 485-496 | DOI | Zbl

[BFT23] J. Blanc, A. Fanelli & R. Terpereau - “Connected algebraic groups acting on three-dimensional Mori fibrations”, Internat. Math. Res. Notices (2023) no. 2, p. 1572-1689 | DOI | Zbl

[Bla09] J. Blanc - “The correspondence between a plane curve and its complement”, J. reine angew. Math. 633 (2009), p. 1-10 | DOI | Zbl

[Bor18] L. A. Borisov - “The class of the affine line is a zero divisor in the Grothendieck ring”, J. Algebraic Geom. 27 (2018) no. 2, p. 203-209 | DOI | Zbl

[CDP18] I. Cheltsov, A. Dubouloz & J. Park - “Super-rigid affine Fano varieties”, Compositio Math. 154 (2018) no. 11, p. 2462-2484 | DOI | Zbl

[Cos12] P. Costa - “New distinct curves having the same complement in the projective plane”, Math. Z. 271 (2012) no. 3-4, p. 1185-1191 | DOI | Zbl

[Cra04] A. J. Crachiola - On the AK invariant of certain domains, Ph. D. Thesis, Wayne State University, Ann Arbor, MI, 2004, 84 pages, ProQuest LLC

[CS01] - Correspondance Grothendieck-Serre (P. Colmez & J.-P. Serre, eds.), Documents Mathématiques, vol. 2, Société Mathématique de France, Paris, 2001

[DK15] A. Dubouloz & T. Kishimoto - “Log-uniruled affine varieties without cylinder-like open subsets”, Bull. Soc. math. France 143 (2015) no. 2, p. 383-401 | DOI | Zbl

[Gro61] A. Grothendieck - “Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I”, Publ. Math. Inst. Hautes Études Sci. (1961) no. 11, p. 167

[GSY05] - Affine algebraic geometry (J. Gutierrez, V. Shpilrain & J.-T. Yu, eds.), Contemp. Math., vol. 369, American Mathematical Society, Providence, RI, 2005, Papers from the Special Session at the 1st Joint AMS-RSME Meeting held in Seville, June 18–21, 2003 | DOI | Zbl

[Har77] R. Hartshorne - Algebraic geometry, Graduate Texts in Math, vol. 52, Springer-Verlag, New York-Heidelberg, 1977 | DOI

[Hem19] M. Hemmig - “Isomorphisms between complements of projective plane curves”, Épijournal de Géom. Alg. 3 (2019), article ID 16, 44 pages | DOI | Zbl

[KS18] A. Kuznetsov & E. Shinder - “Grothendieck ring of varieties, D- and L-equivalence, and families of quadrics”, Selecta Math. (N.S.) 24 (2018) no. 4, p. 3475-3500 | DOI | Zbl

[KSC04] J. Kollár, K. E. Smith & A. Corti - Rational and nearly rational varieties, Cambridge Studies in Advanced Math., vol. 92, Cambridge University Press, Cambridge, 2004 | DOI

[Lib05] A. Libgober - “Lectures on topology of complements and fundamental groups”, 2005 | arXiv | DOI

[LL03] M. Larsen & V. A. Lunts - “Motivic measures and stable birational geometry”, Moscow Math. J. 3 (2003) no. 1, p. 85-95 | DOI | Zbl

[LPS11] W. Lee, E. Park & P. Schenzel - “On the classification of non-normal cubic hypersurfaces”, J. Pure Appl. Algebra 215 (2011) no. 8, p. 2034-2042 | DOI | Zbl

[LS10] Q. Liu & J. Sebag - “The Grothendieck ring of varieties and piecewise isomorphisms”, Math. Z. 265 (2010) no. 2, p. 321-342 | DOI | Zbl

[LS12] S. Lamy & J. Sebag - “Birational self-maps and piecewise algebraic geometry”, J. Math. Sci. Univ. Tokyo 19 (2012) no. 3, p. 325-357 | Zbl

[Mar16] N. Martin - “The class of the affine line is a zero divisor in the Grothendieck ring: an improvement”, Comptes Rendus Mathématique 354 (2016) no. 9, p. 936-939 | DOI | Numdam | Zbl

[Mat86] H. Matsumura - Commutative ring theory, Cambridge Studies in Advanced Math., vol. 8, Cambridge University Press, Cambridge, 1986

[Mil80] J. S. Milne - Étale cohomology, Princeton Math. Series, vol. 33, Princeton University Press, Princeton, NJ, 1980

[Mil13] J. S. Milne - “Lectures on Etale Cohomology (v2.21)”, 2013, p. 202, Available at www.jmilne.org/math/

[MJP21] L. Moser-Jauslin & P.-M. Poloni - “Isomorphisms between cylinders over Danielewski surfaces”, Beitr. Algebra Geom. 62 (2021) no. 4, p. 755-771 | DOI | Zbl

[Pfi95] A. Pfister - Quadratic forms with applications to algebraic geometry and topology, London Math. Soc. Lect. Note Series, vol. 217, Cambridge University Press, Cambridge, 1995 | DOI

[Pol11] P.-M. Poloni - “Classification(s) of Danielewski hypersurfaces”, Transform. Groups 16 (2011) no. 2, p. 579-597 | DOI | Zbl

[Sak10] Y. Sakamaki - “Automorphism groups on normal singular cubic surfaces with no parameters”, Trans. Amer. Math. Soc. 362 (2010) no. 5, p. 2641-2666 | DOI | Zbl

[Yos84] H. Yoshihara - “On open algebraic surfaces P 2 -C, Math. Ann. 268 (1984) no. 1, p. 43-57 | DOI | Zbl

Cited by Sources: