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COMPLEMENTS OF HYPERSURFACES IN

PROJECTIVE SPACES

by Jérémy Blanc, Pierre-Marie Poloni
& Immanuel Van Santen

Abstract. — We study the complement problem in projective spaces Pn over any algebraically
closed field: If H,H′ ⊆ Pn are irreducible hypersurfaces of degree d such that the complements
Pn ∖H, Pn ∖H′ are isomorphic, are the hypersurfaces H, H′ isomorphic?

For n = 2, the answer is positive if d ⩽ 7 and there are counterexamples when d = 8.
In contrast, we provide counterexamples for all n, d ⩾ 3 with (n, d) ̸= (3, 3). Moreover, we show
that the complement problem has an affirmative answer for d = 2 and give partial results in case
(n, d) = (3, 3). In the course of the exposition, we prove that rational normal projective surfaces
admitting a desingularization by trees of smooth rational curves are piecewise isomorphic if
and only if they coincide in the Grothendieck ring, answering affirmatively a question posed by
Larsen and Lunts for such surfaces.
Résumé (Complémentaires d’hypersurfaces dans les espaces projectifs)

Nous étudions le problème du complémentaire dans les espaces projectifs Pn sur tout corps
algébriquement clos : Si H,H′ ⊆ Pn sont des hypersurfaces irréductibles de degré d telles
que les complémentaires Pn ∖H, Pn ∖H′ sont isomorphes, les hypersurfaces H, H′ sont-elles
isomorphes ?

Pour n = 2, la réponse est positive si d ⩽ 7 et il y a des contre-exemples lorsque d = 8.
En revanche, nous fournissons des contre-exemples pour tous les entiers n, d ⩾ 3 avec (n, d) ̸=
(3, 3). De plus, nous montrons que le problème du complémentaire a une réponse affirmative
pour d = 2 et donnons des résultats partiels dans le cas où (n, d) = (3, 3). Au cours de
l’exposition, nous prouvons que les surfaces projectives normales rationnelles admettant une
désingularisation par des arbres de courbes rationnelles lisses sont isomorphes par morceaux si
et seulement si elles coïncident dans l’anneau de Grothendieck, répondant ainsi positivement à
une question posée par Larsen et Lunts pour de telles surfaces.
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1. Introduction

Let k be a field, let n ⩾ 2 be an integer and let f ∈ k[x0, . . . , xn] be an irreducible
homogeneous polynomial of degree d ⩾ 1. The variety

Pn
f = {[x0 : · · · : xn] ∈ Pn | f(x0, . . . , xn) ̸= 0}

is the complement in Pn of the hypersurface given by f = 0. It is an affine open
subset of Pn with Picard group Z/dZ. Moreover, any open subset of Pn isomorphic to
it is of the form Pn

g for some irreducible homogeneous polynomial g ∈ k[x0, . . . , xn] of
degree d (see Lemma 2.6). One may then ask the following natural questions, for all
irreducible homogeneous polynomials f, g ∈ k[x0, . . . , xn] of the same degree d ⩾ 1.

(1) Does any isomorphism Pn
f

≃−→ Pn
g extend to an element of Aut(Pn)?

(2) If Pn
f and Pn

g are isomorphic, is there an element of Aut(Pn) that sends Pn
f

onto Pn
g ?

(3) If Pn
f and Pn

g are isomorphic, are the zero loci VPn(f) and VPn(g) of f and g

isomorphic?

Of course, any positive answer to one of the questions also gives a positive answer to
the next one(s).

If d = 1, the first question has a negative answer, as there are many automorphisms
of Pn

f ≃ An that do not extend to automorphisms of Pn. However, the two other
questions have a positive answer.

For d = 2, we can obtain similar results, in any dimension, when k is algebraically
closed. Indeed, we will answer the first question in the negative for any irreducible
quadric, see Example 5.6, and provide positive answers to the two other questions,
see Theorem B below.

The situation for d = 3 is already more complicated, at least in dimension n = 3.
The first question has a negative answer for each singular cubic with Du Val sin-
gularities over an algebraically closed field of characteristic zero [CDP18, Th. C &
Th. 4.3], and more generally for each singular cubic over any algebraically closed field
(Proposition 5.22), but is wide open for any smooth cubic surface [GSY05, p. 6]. The
two other questions are open as well.

In dimension n = 2, it was conjectured in [Yos84] that the answer to the second
question should be always positive for algebraically closed fields of characteristic zero.
This conjecture was proved for all algebraically closed fields if the curve C ⊆ P2 given
by f = 0 is such that C ∖ L ≃ A1 for some line (see [Yos84, Th.] for a proof in char-
acteristic zero and [Hem19, Th. 1] for a proof in any characteristic). The conjecture
was however proved to be false in general, with a first example of degree 39 given in
[Bla09]. A second family of counterexamples of degree 9+4m for each m ⩾ 0 was given
later in [Cos12]. Finally, an example of degree 8 and a proof that the conjecture is true
for curves of degree ⩽ 7 appeared in [Hem19, Cor. 1.2, Th. 3] for algebraically closed
fields of any characteristic. Moreover, the examples given in [Hem19] and [Bla09] also
give a negative answer to the third question.
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In dimension n ⩾ 3, there was no negative answer to Questions (2) and (3) until
now. In this article, we show by constructing explicit examples, that the answer of
the third question, and thus of the two others, is negative for large degree and large
dimension. More precisely, in any dimension n ⩾ 3, the smallest degree for counterex-
amples is 3, except maybe for n = 3, where the smallest degree might be 4. This
contrasts the case of dimension n = 2 where counterexamples for algebraically closed
fields always have degree ⩾ 8.

Theorem A. — Let k be a field and let d, n ⩾ 3 be integers such that d is not a
multiple of char(k) and such that (d, n) ̸= (3, 3).

There are two non-isomorphic irreducible hypersurfaces H,H ′ ⊆ Pn
k of degree d,

that have isomorphic complements.

We will prove Theorem A at the end of Section 3.2. If d = 2, then Question (2)
has an affirmative answer, at least when k is algebraically closed:

Theorem B. — Let n ⩾ 2 and let k be an algebraically closed field. If the complements
of two irreducible quadric hypersurfaces H,H ′ in Pn

k are isomorphic, then there exists
an automorphism of Pn

k that sends H onto H ′.

We will prove Theorem B at the end of Section 5.1. In the case where n = 3,
we have the following partial positive result concerning Question (2):

Theorem C. — Let k be an algebraically closed field and let H,H ′ ⊆ P3
k be irreducible

hypersurfaces such that their complements in P3
k are isomorphic. Then we have:

(1) If both H and H ′ are normal, rational and each admits a desingularization
by trees of smooth rational curves, then H,H ′ are piecewise isomorphic, see Defini-
tion 4.6;

(2) If H or H ′ is a cubic, then H,H ′ are piecewise isomorphic. Moreover, H is
smooth if and only if H ′ is smooth;

(3) If H or H ′ is a non-rational cubic, then there exists φ ∈ Aut(P3
k) with

φ(H) = H ′.

We will prove Theorem C at the end of Section 5.2. For k = C, it is proved in
[LS12] that if P3

f ≃ P3
g for irreducible polynomials f, g, then VP2(f) and VP2(g) are

piecewise isomorphic, which gives essentially Theorem C over the field of complex
numbers.

To prove Theorem C, we study piecewise isomorphisms between surfaces. We prove
in particular that every normal rational projective surface admitting a desingulariza-
tion by trees of smooth rational curves (e.g. Du Val singularities) is piecewise iso-
morphic to the disjoint union of A2, one point and n copies of A1 for some n ⩾ 1

(Proposition 4.19). A similar result does not hold for all rational normal projective
surfaces (Example 4.20). Using the Grothendieck ring K0(Vark) and the topologi-
cal Euler characteristic (see Section 4 for the definition), one sees that the integer n

J.É.P. — M., 2024, tome 11



736 J. Blanc, P.-M. Poloni & I. Van Santen

determines the piecewise isomorphism class. As a consequence of this, we give an affir-
mative answer to a question posed by Larsen and Lunts (see [LL03, Quest. 1.2]) for
rational projective normal surfaces admitting a desingularization by trees of smooth
rational curves (see Proposition 5.14). This also partially generalizes [LS10, Th. 4].

Proposition D. — Let k be algebraically closed and let X,Y be rational normal pro-
jective surfaces admitting a desingularization by trees of smooth rational curves. If the
classes [X] and [Y ] coincide in the Grothendieck ring K0(Vark), then X and Y are
piecewise isomorphic.

We remark that in general the question of Larsen and Lunts has a negative answer.
The first example was given in [Bor18, Th. 2.14] (in dimension 13) and later in [Mar16,
Th. 1.1] (in dimension 9) and in [KS18, Th. 1.9] (in dimension 3).

Acknowledgements. — The authors would like to thank the referee for the very helpful
remarks, suggestions and questions that improved the exposition.

2. Lift to affine hypersurfaces

Let n ⩾ 1. For each homogeneous polynomial f ∈ k[x0, . . . , xn] of degree d ⩾ 1

and each µ ∈ k∗, we denote by Xf,µ ⊆ An+1 the hypersurface given by

Xf,µ = Spec(k[x0, . . . , xn]/(f − µ)) ⊆ An+1,

and obtain a canonical finite morphism

πf,µ : Xf,µ −→ Pn
f

(x0, . . . , xn) 7−→ [x0 : · · · : xn]

of degree d, which is an étale covering if char(k) does not divide d.
If k is algebraically closed, all the varieties Xf,µ are isomorphic to Xf,1 by homo-

theties.
If k is equal to the field of complex numbers C, then πf,µ is the universal abelian

covering, as the abelianization of the fundamental group of Pn
f with respect to the

Euclidean topology is equal to Z/dZ [Lib05, Prop. 2.3].
We now prove that for each field k, the isomorphisms between complements of

hypersurfaces lift to these coverings. This will be useful in the sequel, in order to
study isomorphisms between varieties Pn

f and Pn
g .

Proposition 2.1. — Let k be a field, let n ⩾ 1 and let f, g ∈ k[x0, . . . , xn] be irre-
ducible homogeneous polynomials of degree d ⩾ 1. Let Φ0, . . . ,Φn ∈ k[x0, . . . , xn] be
homogeneous polynomials of degree ℓ ⩾ 1. Then, the following statements are equiva-
lent:

(1) The rational map

Φ: Pn
f

≃−→ Pn
g ,

[x0 : · · · : xn] 7−→ [Φ0(x0, . . . , xn) : · · · : Φn(x0, . . . , xn)]

is an isomorphism and the gcd of Φ0, . . . ,Φn is a power of f .
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(2) There exists µ ∈ k∗ such that the following map is an isomorphism

φ : Xf,1
≃−→ Xg,µ,

(x0, . . . , xn) 7−→ (Φ0(x0, . . . , xn), . . . ,Φn(x0, . . . , xn)).

Moreover, if these statements hold, then ℓ is invertible modulo d.

Proof. — “(1) ⇒ (2)”: There exists r ⩾ 0 and Φ′
0, . . . ,Φ

′
n ∈ k[x0, . . . , xn] without

common factor such that Φi = frΦ′
i for all i. The domain dom(Φ) of the rational

self-map Φ: Pn Pn is thus equal to Pn ∖ VPn(Φ′
0, . . . ,Φ

′
n) and contains Pn

f . As g
is nowhere zero on Pn

g , the polynomial g(Φ0, . . . ,Φn) = fdrg(Φ′
0, . . . ,Φ

′
n) is nowhere

zero on Pn
f and is thus equal to µf t for some µ ∈ k∗ and some integer t ⩾ 1. We then

obtain a morphism

φ : Xf,1 −→ Xg,µ, (x0, . . . , xn) 7−→ (Φ0(x0, . . . , xn), . . . ,Φn(x0, . . . , xn)).

It remains to see that φ is an isomorphism.
The inverse of Φ is given by

Ψ: Pn
g

≃−→ Pn
f , [x0 : · · · : xn] 7−→ [Ψ0(x0, . . . , xn) : · · · : Ψn(x0, . . . , xn)],

where Ψ0, . . . ,Ψn ∈ k[x0, . . . , xn] are homogeneous polynomials of the same degree
ℓ′ ⩾ 1, without common factor.

As Ψ ◦ Φ = idPn
f

and Φ ◦ Ψ = idPn
g
, there exist homogeneous polynomials A,B ∈

k[x0, . . . , xn] of degree ℓℓ′ − 1 such that

Ψi(Φ0, . . . ,Φn) = Axi and Φi(Ψ0, . . . ,Ψn) = Bxi for all i ∈ {0, . . . , n}.

Hence, the zero locus VPn
f
(A) of A in Pn

f satisfies the following: Ψi vanishes on
Φ(VPn

f
(A)) for all i ∈ {0, . . . , n} and Φ(VPn

f
(A)) lies in the domain of Ψ; i.e., VPn

f
(A) is

empty. Analogously, one can see that VPn
g
(B) is empty. We get A = λfs and B = λ′gs

where λ, λ′ ∈ k∗ and where s ⩾ 1 is such that ds = ℓℓ′−1. In particular, ℓ is invertible
modulo d. We replace Ψi with Ψi/λ for each i ∈ {0, . . . , n} and reduce to the case
where λ = 1.

Consider now the morphism

ψ : Xg,µ −→ An+1, (x0, . . . , xn) 7−→ (Ψ0(x0, . . . , xn), . . . ,Ψn(x0, . . . , xn)).

Using that Ψi(Φ0, . . . ,Φn) = fsxi for each i ∈ {0, . . . , n}, we obtain that ψ◦φ : Xf,1 →
An+1 is the natural closed embedding. Hence, (ψ ◦φ)∗ = φ∗ ◦ψ∗ : k[An+1]→ k[Xf,1]

is surjective and φ is dominant, i.e., φ∗ : k[Xg,µ] → k[Xf,1] is injective. This implies
that φ∗ and thus φ is an isomorphism.

“(2) ⇒ (1)”: As Φ0, . . . ,Φn are homogeneous of degree ℓ, we may define a rational
self-map Φ: [x0 : · · · : xn] 7→ [Φ0(x0, . . . , xn) : · · · : Φn(x0, . . . , xn)] of Pn. We now
prove that Φ restricts to an isomorphism Pn

f
≃−→ Pn

g and that the gcd of Φ0, . . . ,Φn

is a power of f .
By assumption g(Φ0, . . . ,Φn) = (f −1)p+µ for some polynomial p ∈ k[x0, . . . , xn]

of degree r = d(ℓ − 1) ⩾ 0. Write p =
∑r

i=0 pi where pi is homogeneous of degree i.

J.É.P. — M., 2024, tome 11



738 J. Blanc, P.-M. Poloni & I. Van Santen

Since g(Φ0, . . . ,Φn) is homogeneous, it follows that p0 = µ and pdi = fpd(i−1) for all
1 ⩽ i ⩽ ℓ− 1. This implies that

g(Φ0, . . . ,Φn) = µf ℓ.

Since g is homogeneous and f is irreducible the gcd of Φ0, . . . ,Φn is a power of f .
Moreover, Φ restricts to a morphism Φ: Pn

f → Pn
g .

Using that πg,µ ◦ φ = Φ ◦ πf,1, we get the following commutative diagram

k(Xg,µ)
φ∗
// k(Xf,1)

k(Pn
g )

π∗
g,µ

OO

Φ∗
// k(Pn

f )

π∗
f,1

OO

and that Φ: Pn
f → Pn

g is a quasi-finite surjection. Note that π∗
f,1 and π∗

g,µ are field
extensions of degree d. Since φ∗ is an isomorphism, Φ∗ is an isomorphism as well,
i.e., Φ: Pn

f → Pn
g is birational. Zariski’s Main Theorem [Gro61, Cor. 4.4.9] gives that

Φ: Pn
f → Pn

g is an isomorphism. □

Remark 2.2. — If there exists an isomorphism Φ: Pn
f → Pn

g , there are homogeneous
polynomials Φ0, . . . ,Φn ∈ k[x0, . . . , xn] of degree ℓ ⩾ 1 without common factor such
that Φ([x0 : · · · : xn]) = [Φ0(x0, . . . , xn) : · · · : Φn(x0, . . . , xn)]. Proposition 2.1 then
gives the existence of µ ∈ k∗ such that

φ : Xf,1
≃−→ Xg,µ,

(x0, . . . , xn) 7−→ (Φ0(x0, . . . , xn), . . . ,Φn(x0, . . . , xn))

is an isomorphism. If k is moreover algebraically closed, then we may multiply each Φi

with a root of µ−1 and assume that µ = 1. Hence, Xf,1 and Xg,1 are isomorphic.

Remark 2.3. — Let k be a field, n ⩾ 1 be an integer and let f, g ∈ k[x0, . . . , xn] be
irreducible homogeneous polynomials of degree d ⩾ 1. Let e ⩾ 1 be an integer and
let Φ0, . . . ,Φn ∈ k[x0, . . . , xn] be polynomials such that the degree of each of their
monomials is congruent to e modulo d. If

Xf,1
≃−→ Xg,1, (x0, . . . , xn) 7−→ (Φ0(x0, . . . , xn), . . . ,Φn(x0, . . . , xn))

is an isomorphism, then we may multiply the monomials of Φi with some powers of f
and assume that Φ0, . . . ,Φn are homogeneous of the same degree ℓ ⩾ 1, and then
apply Proposition 2.1 to obtain an isomorphism Pn

f
≃−→ Pn

g .

Lemma 2.4. — Let k be a field, n ⩾ 1 be an integer, f, g ∈ k[x0, . . . , xn] be irreducible
homogeneous polynomials of degree d ⩾ 1, and let Φ: Pn

f
≃−→ Pn

g be an isomorphism
given by homogeneous polynomials of degree ℓ such that their gcd is a power of f . If ℓ
is congruent to 1 modulo d, then Pm

f and Pm
g are isomorphic for each m ⩾ n.

J.É.P. — M., 2024, tome 11
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Proof. — We write Φ as [x0 : · · · : xn] 7→ [Φ0(x0, . . . , xn) : · · · : Φn(x0, . . . , xn)], where
Φ0, . . . ,Φn ∈ k[x0, . . . , xn] are homogeneous of degree ℓ and the gcd of Φ0, . . . ,Φn is
a power of f . By Proposition 2.1, the morphism

φ : Xf,1
≃−→ Xg,µ, (x0, . . . , xn) 7−→ (Φ0(x0, . . . , xn), . . . ,Φn(x0, . . . , xn))

is an isomorphism, where Xf,1, Xg,µ ⊆ An+1 are defined as before. If ℓ is congruent
to 1 modulo d, we can write ℓ = 1 + dr for some integer r ⩾ 0. For each m ⩾ n,
we thus get an isomorphism Xf,1 × Am−n ≃−→ Xg,µ × Am−n given by

(x0, . . . , xm) 7−→ (φ(x0, . . . , xm), xn+1f(x0, . . . , xn)
r, . . . , xmf(x0, . . . , xn)

r)).

Applying again Proposition 2.1, now in the converse direction, we get that the homo-
geneous polynomials Φ0, . . . ,Φn, xn+1f

r, . . . , xmf
r of degree ℓ also define an isomor-

phism Pm
f

≃−→ Pm
g . □

The next examples shows that ℓ ̸= 1 in Proposition 2.1 is possible.

Example 2.5. — Let k be a field and let f = g = xyz + x3 + y3 ∈ k[x, y, z], which
is the equation of a nodal cubic curve Γ ⊂ P2. By blowing-up the singular point,
then blowing-up successively points on the exceptional divisor created lying on the
curve, we obtain a birational morphism X → P2 with a strict transform Γ̃ ⊆ X of Γ
being a (−1)-curve. We then contract this curve and contract the exceptional divisors
created, except the last one, to get an automorphism of P2 ∖ Γ that does not extend
to P2 and has degree 8. Explicitly, we define Φ0,Φ1,Φ2 ∈ k[x, y, z], homogeneous of
degree 8, by

Φ0 = (−x4z + 2x3y2 − 2x2yz2 + 2xy3z + y5 − y2z3) · f,

Φ1 = (x2 + yz) · f2,

Φ2 = x7y − x6z2 + 6x5y2z − x4y4 − 3x4yz3 + 9x3y3z2

+ x2y5z − 3x2y2z4 − xy7 + 4xy4z3 + 2y6z2 − y3z5,

and calculate that these define an involution

P2
f

≃−→ P2
f , [x : y : z] 7−→ [Φ0(x, y, z) : Φ1(x, y, z) : Φ2(x, y, z)].

Here, the common degree is 8, that is not congruent to 1 modulo 3, but invertible in
Z/3Z, as Proposition 2.1 says.

Lemma 2.6. — Let k be a field, n ⩾ 1, f ∈ k[x0, . . . , xn] an irreducible homogeneous
polynomial of degree d ⩾ 1 and let U ⊆ Pn be an open subvariety. If there exists
an isomorphism Pn

f
≃−→ U , then there exists an irreducible homogeneous polynomial

g ∈ k[x0, . . . , xn] of degree d with U = Pn
g .

Before we start the proof we recall the following fact: If X is an affine irreducible
normal variety over a field k and if U ⊆ X is a big open subset, i.e., the codimension
of X ∖ U in X is at least 2, then k[U ] = k[X] (see [Mat86, Th. 11.5]). In particular,
if U is affine as well, then U = X.

J.É.P. — M., 2024, tome 11
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Proof of Lemma 2.6. — If U is big open in Pn, then for any open affine subvariety
V ⊆ Pn, the affine subvariety U ∩ V is big open in V and hence U ∩ V = V . This
would imply that U = Pn is affine, a contradiction since n ⩾ 1. Hence the union Z of
the (n − 1)-dimensional irreducible components of Pn ∖ U is non-empty. As Pn ∖ Z

is an affine big open subset of U we get Pn ∖ Z = U . Moreover, k[Pn
f ]

∗ = k∗ yields
k[U ]∗ = k∗, which implies that Z is irreducible. Hence, there exists an irreducible
homogeneous polynomial g ∈ k[x0, . . . , xn] such that Z is the zero locus of g, i.e.,
U = Pn

g . Finally, Z/ deg(g)Z ≃ Pic(Pn
g ) ≃ Pic(Pn

f ) ≃ Z/dZ implies that deg(g) = d.
□

3. Non-isomorphic hypersurfaces having isomorphic complements

3.1. Explicit isomorphisms between complements of projective cones. — The next
formulas are inspired by isomorphisms between cylinders over Danielewski surfaces
given in [MJP21].

Lemma 3.1. — Let k be a field, let s,m, n ⩾ 0 be integers and let S = k[x0, x1, . . . , xs]

be a polynomial ring in s + 1 variables over k. Let P,Q ∈ S[z] and denote by HP

and HQ the hypersurfaces of As+3
k = Spec(S[y, z]) defined by the equations

xn0y = P (z) and xn0y = Q(z),

respectively. Suppose that there exist A,B ∈ S[z] such that

(1) z −A(B(z)) and z −B(A(z)) both belong to the ideal xm0 S[z],
(2) We have

Q (A(z) + xm0 w) ∈ xn0S[z, w] + P (z)S[z, w]

P (B(z) + xm0 w) ∈ xn0S[z, w] +Q(z)S[z, w],and

where w is transcendental over S[y, z].

Then, the following are inverse isomorphisms.

Φ: HP × A1
k

≃−→ HQ × A1
k

(x0, . . . , xs, y, z, w) 7−→
(
x0, . . . , xs,

Q (A(z) + xm0 w)

xn0
, A(z) + xm0 w,

z −B (A(z) + xm0 w)

xm0

)
,

Ψ: HQ × A1
k

≃−→ HP × A1
k

(x0, . . . , xs, y, z, w) 7−→
(
x0, . . . , xs,

P (B(z) + xm0 w)

xn0
, B(z) + xm0 w,

z −A (B(z) + xm0 w)

xm0

)
.
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Proof. — The hypotheses on A and B imply that Φ and Ψ are morphisms. Moreover,
the compositions are given by

(Ψ ◦ Φ)(x0, . . . , xs, y, z, w) = (x0, . . . , xs, P (z)/x
n
0 , z, w),

(Φ ◦Ψ)(x0, . . . , xs, y, z, w) = (x0, . . . , xs, Q(z)/xn0 , z, w). □

Proposition 3.2. — Let k be a field, d ⩾ 4 be integers and let f, g ∈ k[x, y, z] be the
homogeneous polynomials of degree d defined by

f = xd−1y + zd and g = xd−1y + zd + dxd−2z2.

Then, for each r ⩾ 1, the open subvarieties Pr+2
f ,Pr+2

g ⊆ Pr+2 are isomorphic.

Remark 3.3. — The open subvarieties P2
f ,P2

g ⊆ P2 are not isomorphic when k = C
is the field of complex numbers. This follows from Proposition 2.1 and from the fact
that, for every µ ∈ C∗, the (Danielewski) hypersurfaces Xf,1, Xg,µ ⊆ A3

C defined by
the equations f = 1 and g = µ, respectively, are not isomorphic (see [Pol11, Th. 9]).

Proof. — We define s = 0, x0 = x, S = k[x], m = d, n = d− 1,

P (z) = 1− zd, Q(z) = 1− zd − dxd−2z2,

A(z) = z − xd−2z3, B(z) = z + xd−2z3,

and prove that the hypotheses of Lemma 3.1 are satisfied for the above polynomials
in S[z].

Firstly, we have A(z) ≡ z ≡ B(z) (mod xd−2). Thus, since d ⩽ 2(d− 2), as d ⩾ 4,
we get xd−2A(z)3 ≡ xd−2z3 ≡ xd−2B(z)3 (mod xd) and we obtain

z −A(B(z)) = z −B(z) + xd−2B(z)3 ≡ 0 (mod xd),

z −B(A(z)) = z −A(z)− xd−2A(z)3 ≡ 0 (mod xd).

We then check that P
(
B(z) + xdw

)
∈ xd−1S[z, w] +Q(z)S[z, w]:

P (B(z) + xdw) ≡ P (B(z))

≡ 1− (z + xd−2z3)d

≡ 1− zd − dxd−2zd+2

≡ (1− zd − dxd−2z2) · (1 + dxd−2z2)

≡ Q(z) · (1 + dxd−2z2) (mod xd−1).

Similarly, we have Q(A(z) + xdw) ∈ xd−1S[z, w] + P (z)S[z, w]:

Q(A(z) + xdw) ≡ Q (A(z))

≡ 1− (z − xd−2z3)d − dxd−2(z − xd−2z3)2

≡ 1− zd + dxd−2zd+2 − dxd−2z2

≡ (1− zd) · (1− dxd−2z2)

≡ P (z) · (1− dxd−2z2) (mod xd−1).
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Noting that f − 1 = xd−1y − P (z) and g − 1 = xd−1y − Q(z), we may now apply
Lemma 3.1 to obtain an isomorphism

φ : Spec(k[x, y, z, w]/(f − 1))
≃−→ Spec(k[x, y, z, w]/(g − 1))

(x, y, z, w) 7−→
(
x,
Q(A(z) + xdw)

xd−1
, A(z) + xdw,

z −B(A(z) + xdw)

xd

)
.

Arguing as in Remark 2.3, we may then use this isomorphism to construct an
isomorphism P3

f
≃−→ P3

g. Indeed, the second component of φ can be replaced by a
polynomial, since

Q
(
A(z) + xdw

)
≡ P · (1− dxd−2z2) (mod xd−1)

and P ≡ xd−1y (mod f − 1). Moreover, the fourth component of φ is a polynomial,
since z − A(B(z)) ≡ 0 (mod xd). Doing this, we obtain an expression for φ given by
four polynomials. It remains to check that each monomial appearing in that polyno-
mial expression of φ has degree congruent to 1 modulo d. Working modulo d with
the degrees, we observe that A,B, P,Q are homogeneous of degree 1, 1, 0, 0, respec-
tively, hence that the polynomials z−B(A(z)+xdw), Q(A(z)+xdw) and P −xd−1y

are homogeneous of degree 1, 0 and 0, respectively. Therefore, we can conclude that
P3
f

≃−→ P3
g as in Remark 2.3 and furthermore that Pr+2

f
≃−→ Pr+2

g for all r ⩾ 1

by Lemma 2.4. □

Proposition 3.4. — Let k be a field, d ⩾ 3 be an integer and let f, g ∈ k[x0, x1, y, z]

be the homogeneous polynomials of degree d defined by

f = xd−1
0 y + zd and g = xd−1

0 y + zd + dxd−2
0 x21.

Then, for each r ⩾ 1, the open subvarieties Pr+3
f ,Pr+3

g ⊆ Pr+3 are isomorphic.

Remark 3.5. — We don’t know, whether the open subvarieties P3
f ,P3

g ⊆ P3 are iso-
morphic, or even if the hypersurfaces Xf,1, Xg,1 ⊆ A3 given by f = 1 and g = 1,
respectively, are isomorphic or not.

Proof of Proposition 3.4. — We define s = 1, S = k[x0, x1], m = d, n = d − 1, ∆ =

xd−2
0 x21,

P (z) = 1− zd, Q(z) = 1− zd − d∆,

A(z) = z(1−∆+∆2), B(z) = z(1 + ∆),

and prove that the hypotheses of Lemma 3.1 are satisfied for the above polynomials
in S[z].

Firstly, we calculate A(B(z)) = B(A(z)) = z(1 − ∆ + ∆2)(1 + ∆) = z(1 + ∆3).
As d ⩾ 3 we have 3d− 6 ⩾ d, so ∆3 is divisible by xd0. Hence, A(B(z)) = B(A(z)) is
congruent to z modulo xd0.

J.É.P. — M., 2024, tome 11



Complements of hypersurfaces in projective spaces 743

We then check that P (B(z) + xd0w) ∈ xd−1
0 S[z, w] + Q(z)S[z, w]. As d ⩾ 3, ∆2 is

divisible by xd−1
0 . Hence:

P (B(z) + xd0w) ≡ P (B(z))

≡ 1− zd(1 + ∆)d

≡ 1− zd(1 + d∆)

≡ (1− zd − d∆) · (1 + d∆)

≡ Q · (1 + d∆) (mod xd−1
0 ).

Similarly, we have Q(A(z) + xd0w) ∈ xd−1
0 S[z, w] + P (z)S[z, w]:

Q(A(z) + xd0w) ≡ Q(A(z))

≡ 1− zd(1−∆)d − d∆

≡ 1− zd(1− d∆)− d∆

≡ (1− zd) · (1− d∆)

≡ P · (1− d∆) (mod xd−1
0 ).

Since f−1 = xd−1
0 y−P (z) and g−1 = xd−1

0 y−Q(z), we may now apply Lemma 3.1
to obtain an isomorphism

φ : Spec(k[x0, x1, y, z, w]/(f − 1))
≃−→ Spec(k[x0, x1, y, z, w]/(g − 1))

(x0, x1, y, z, w) 7−→
(
x0, x1,

Q(A(z) + xd0w)

xd−1
0

, A(z) + xd0w,

z −B(A(z) + xd0w)

xd0

)
.

We again proceed as in Remark 2.3. The third component of φ can be expressed
by a polynomial, since

Q(A(z) + xd0w) ≡ P · (1− dxd−2
0 x21) (mod xd−1

0 )

and P ≡ xd−1
0 y (mod f − 1). The last component of φ is already a polynomial,

as its numerator is a multiple of its denominator. It remains to check that each
monomial appearing in the expression of φ has degree congruent to 1 modulo d. For
this, we simply work with the degrees modulo d and observe that ∆ is homogeneous of
degree 0, so that A,B, P,Q are homogeneous of degree 1, 1, 0, 0, respectively. Hence,
Q(A(z) + xd0w), A(z) + xd0w and z −B(A(z) + xd0w) are homogeneous of degree 0, 1
and 1, respectively. Therefore, we can conclude by Remark 2.3 and Lemma 2.4. □

3.2. Non-isomorphic hypersurfaces. — We now want to prove that the hypersur-
faces of Propositions 3.2 and 3.4 are not isomorphic (except when the characteristic
divides d, in which case both are in fact equal).

Recall that the multiplicity multp(X) of a variety X at a point p is the multiplicity
of the maximal ideal mX,p in the local ring OX,p. If X ⊆ An is a hypersurface given
by a reduced polynomial f ∈ k[x1, . . . , xn] of degree d, then X has multiplicity d at
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the origin, if and only if f is homogeneous. In particular, if X ⊆ Pn is a hypersurface
given by a reduced homogeneous polynomial F ∈ k[x0, . . . , xn] of degree d, then X

has multiplicity d at p = [0 : · · · : 0 : 1 : 0 : · · · : 0] if and only if F does not depend
on xi, where i ∈ {0, . . . , n} is the index of the unique non-zero coordinate of p.

Lemma 3.6. — Let k be a field, let n ⩾ 1 and let h ∈ k[x0, . . . , xn] be a reduced
homogeneous polynomial of degree d ⩾ 1. Let q ∈ VPn+1(h)(k) be a k-rational point
of multiplicity d. Then, the exceptional divisor Eq of the blow-up of VPn+1(h) at q is
isomorphic to VPn(h).

Proof. — We first write p = [0 : · · · : 0 : 1] and observe that it is a point of multiplicity
d of VPn+1(h). The blow-up of VPn+1(h) at p is then given by{

([x0 : · · · : xn+1], [y0 : · · · : yn]) ∈ VPn+1(h)× VPn(h)
∣∣∣ xiyj = xjyi
∀i, j ∈ {0, . . . , n}

}
,

so the exceptional divisor Ep of p is given by {p} × VPn(h) and is thus isomorphic to
VPn(h). This gives the result in the case where q = p.

Suppose now that q ̸= p. Applying an automorphism of Pn+1 that fixes p, we may
assume that q = [0 : · · · : 0 : 1 : 0]. This implies that h ∈ k[x0, . . . , xn−1]. Hence, the
exchange of xn and xn+1 is an automorphism of Pn+1 that exchanges p and q and
preserves VPn+1(h). The exceptional divisors of p and q are then isomorphic. □

Lemma 3.7. — Let k be a field, let n ⩾ 1 and let f, g ∈ k[x0, . . . , xn] be reduced
homogeneous polynomials of the same degree d ⩾ 1. If VPn+1(f) and VPn+1(g) are
isomorphic, then VPn(f) and VPn(g) are isomorphic.

Proof. — An isomorphism VPn+1(f)
≃−→ VPn+1(g) sends p = [0 : · · · : 0 : 1] onto a

k-rational point of multiplicity d. It then induces an isomorphism between the excep-
tional divisors, and thus induces an isomorphism VPn(f)

≃−→ VPn(g), by Lemma 3.6.
□

Lemma 3.8. — Let k be a field, let d ⩾ 4 be an integer that is not a multiple of char(k)
and let

f = xd−1y + zd and g = xd−1y + zd + µxd−2z2,

where µ ∈ k. Suppose that α : VP2(f)
≃−→ VP2(g) is an isomorphism. Then, µ = 0 and

α is equal to [x : y : z] 7→ [adx : y : ad−1z] for some a ∈ k∗.

Remark 3.9. — If d ∈ {2, 3} is not a multiple of char(k), then there is an automor-
phism of P2 that sends VP2(f) onto VP2(g).

Proof. — Expressing y in terms of x, z, we obtain two birational morphisms
τ : P1 −→ VP2(f)

[u : v] 7−→ [ud : −vd : ud−1v]
and

τ ′ : P1 −→ VP2(g)

[u : v] 7−→ [ud : −vd − µud−2v2 : ud−1v]

whose inverses are given by [x : y : z] 7→ [x : z]. They induce isomorphisms

P1 ∖ {[0 : 1]} ≃−→ VP2(f)∖ {[0 : 1 : 0]} and P1 ∖ {[0 : 1]} ≃−→ VP2(g)∖ {[0 : 1 : 0]}.
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Both τ and τ ′ are bijective and they send [0 : 1] onto [0 : 1 : 0], which is the unique
singular point of VP2(f) and VP2(g), respectively. Since the isomorphism α : VP2(f)

≃−→
VP2(g) must fix the point [0 : 1 : 0], the birational map α̂ = (τ ′)−1ατ is an automor-
phism of P1 that fixes the point [0 : 1]. Thus, α̂ is of the form [u : v] 7→ [u : av + bu]

for some a ∈ k∗, b ∈ k.
Note that sa : [x : y : z] 7→ [adx : y : ad−1z] is an automorphism of VP2(f), that lifts

to ŝa = (τ)−1saτ = [u : v] 7→ [au : v]. Replacing α with αsa, we replace α̂ with α̂ŝa,
and we may assume that a = 1. It remains to see that b = µ = 0. We calculate

α([x : y : z]) = τ ′α̂τ−1([x : y : z])

= τ ′α̂([x : z])

= τ ′([x : z + bx])

= [xd : −(z + bx)d − µxd−2(z + bx)2 : xd−1(z + bx)].

As α fixes [0 : 1 : 0], the pull-back by α of x/y and z/y are rational functions

xd

−(z + bx)d − µxd−2(z + bx)2
and xd−1

−(z + bx)d−1 − µxd−2(z + bx)
,

whose restrictions to VP2(f) are regular at [0 : 1 : 0]. For each j ∈ {d−1, d}, there are
thus two homogeneous polynomials Pj , Qj ∈ k[x, y, z], of the same degree, such that
Qj(0, 1, 0) ̸= 0 and such that

Pj(x, y, z)

Qj(x, y, z)
=

xj

−(z + bx)j − µxd−2(z + bx)j+2−d

on the curve VP2(f). Using the morphism

A1 −→ VP2(f), t 7−→ τ([t : 1]) = [td : −1 : td−1] = [t : −t1−d : 1],

we find
Pj(t

d,−1, td−1)

Qj(td,−1, td−1)
=

tj

Bj
,

where Bj = −(1+ bt)j −µtd−2(1+ bt)j+2−d ∈ k[t]. As Qj(0, 1, 0) ̸= 0, the polynomial
Qj(t

d,−1, td−1) ∈ k[t] is not divisible by t. As Bj(0) ̸= 0 (we use here d ⩾ 4),
tj divides Pj(t

d,−1, td−1). There is thus Aj ∈ k[t] such that

Pj(t
d,−1, td−1) = Aj · tj and Qj(t

d,−1, td−1) = Aj ·Bj .

We consider now the case j = d and prove that b = 0. We shall afterward prove
µ = 0 by considering the case j = d− 1.

As d ⩾ 4, the equality Pd(t
d,−1, td−1) = Ad · td gives the existence of ε ∈ k such

that Ad ≡ ε (mod t2). We moreover have Bd ≡ −1− bdt (mod t2). This gives

Qd(t
d,−1, td−1) = Ad ·Bd ≡ −ε− εbdt (mod t2).

The polynomial Q(td,−1, td−1) is not divisible by t, so ε ̸= 0, and its coefficient of t
is zero, as d ⩾ 4. Since char(k) does not divide d, this gives b = 0.
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We now use j = d−1. As d ⩾ 4, the equality Pd−1(t
d,−1, td−1) = Ad−1 · td−1 gives

the existence of ξ, ξ′ ∈ k such that Ad−1 ≡ ξ + tξ′ (mod td−1). As b = 0, we find
Bd−1 = Bd = −1− µtd−2. This gives

Qd−1(t
d,−1, td−1) = Ad−1 ·Bd−1 ≡ −ξ − tξ′ − µξtd−2 (mod td−1).

As t does not divide this polynomial, ξ ̸= 0. Moreover, we obtain ξ′ = 0 and µ = 0,
as d ⩾ 4. □

Proposition 3.10. — Let k be a field, let d ⩾ 4 be an integer that is not a multiple of
char(k) and let f, g ∈ k[x, y, z] be defined by

f = xd−1y + zd and g = xd−1y + zd + µxd−2z2,

where µ ∈ k∗. Then, for each r ⩾ 0, the two hypersurfaces VPr+2(f), VPr+2(g) in Pr+2

are not isomorphic.

Proof. — By Lemma 3.8, the result is true when r = 0. Using Lemma 3.7, we can
then argue by induction and obtain the result for every integer r. □

Proposition 3.11. — Let k be a field, d ⩾ 3 be an integer and let f, g ∈ k[x0, x1, y, z]

be defined by
f = xd−1

0 y + zd, g = xd−1
0 y + zd + µxd−2

0 x21,

where µ ∈ k∗. Then, for each r ⩾ 0, the two hypersurfaces VPr+3(f), VPr+3(g) in Pr+3

are not isomorphic.

Proof. — By Lemma 3.7, it suffices to consider the case r = 0 and to prove that
VP3(f) and VP3(g) are not isomorphic. Looking at the derivative with respect to y,
the singular locus of both hypersurfaces is contained in the line ℓ ⊆ P3 given by
x0 = z = 0. The surface VP3(f) has multiplicity d at the point where x0 = y = z = 0.

It remains to see that VP3(g) has multiplicity < d at every point and we have to
check this only for points in ℓ. For this, write g = zd + xd−2

0 (x0y + µx21) and observe
that VP3(x0y + µx21) is smooth outside x0 = x1 = y = 0 and thus on ℓ. Hence,
xd−2
0 (x0y+µx

2
1) has multiplicity d− 2 or d− 1 at any point of ℓ, which implies that g

has multiplicity d− 2 or d− 1 at any point of ℓ. □

We may now prove Theorem A, which is a direct consequence of Propositions 3.2,
3.4, 3.10 and 3.11.

Proof of Theorem A. — As in the statement, we take a field k, and integers d, n ⩾ 3

such that d is not a multiple of char(k) and such that (d, n) ̸= (3, 3). We are looking
for hypersurfaces H = VPn(f), H ′ = VPn(g) ⊆ Pn

k that are not isomorphic but have
isomorphic complements.

If d ⩾ 4, we may choose f = xd−1y + zd and g = xd−1y + zd + dxd−2z2, that we
consider in k[x, y, z, w1, . . . , wr] with r = n − 2 ⩾ 1. By Propositions 3.2, the com-
plements of H and H ′ are isomorphic, and by Proposition 3.10, the hypersurfaces H
and H ′ are not isomorphic.
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If n ⩾ 4, we may choose f = xd−1
0 y + zd and g = xd−1

0 y + zd + dxd−2
0 x21, that we

consider in k[x0, x1, y, z, w1, . . . , wr] with r = n−3 ⩾ 1. By Propositions 3.4, the com-
plements of H and H ′ are isomorphic, and by Proposition 3.11, the hypersurfaces H
and H ′ are not isomorphic. □

4. Topological Euler characteristic and piecewise isomorphisms

Throughout this section we assume that k is algebraically closed. In the sequel
we recall the definition and some basic facts of the topological Euler characteristic.
In order to do this, we also recall some facts from étale ℓ-adic cohomology with
compact support. As a reference we take [Mil13] and [Mil80].

Let ℓ be a prime number that is different from the characteristic of the ground
field k. For a variety X, the group Hi

c(Xét,Qℓ) denotes the i-th étale ℓ-adic cohomol-
ogy with compact support, i.e.,

Hi
c(Xét,Qℓ) :=

(
lim←−H

i
c(Xét,Z/ℓnZ)

)
⊗Zℓ

Qℓ,

where Zℓ := lim←−Z/ℓnZ and Qℓ is the quotient field of Zℓ, see e.g. [Mil13, §18, §19].
We have:

Lemma 4.1. — Let X be a variety. Then the Qℓ-vector space Hi
c(Xét,Qℓ) has finite

dimension and vanishes for i > 2 dimX.

Proof. — Let k : X → X be a completion. By definition (see e.g. [Mil13, Def. 18.1])
we have

Hi
c(Xét,Z/ℓnZ) = Hi(Xét, k!(Z/ℓnZ)).

By [Mil13, Th. 19.2] the limit lim←−H
i(Xét, k!(Z/ℓnZ)) is a finitely generated Zℓ-mod-

ule; this implies the first statement. By [Mil13, Th. 15.1], we have that the Zℓ-module
Hi(Xét, k!(Z/ℓnZ)) vanishes for all i > 2 dimX and hence the second statement
follows. □

The topological Euler-characteristic of a variety X is defined by

χ(X) :=

2 dimX∑
i=0

(−1)i dimQℓ
Hi

c(Xét,Qℓ).

The following properties are very useful in order to compute the topological Euler
characteristic. For lack of a reference with proof, we give an argument here:

Lemma 4.2
(1) Let X be a variety and let Z ⊆ X be a closed subvariety. Then χ(X) =

χ(X ∖ Z) + χ(Z).
(2) Let X,Y be varieties. Then χ(X × Y ) = χ(X) · χ(Y ).
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Proof
(1) Let U := X∖Z. By [AGV73, Ch. XVII, §5.1.16] we have a long exact sequence

· · · −→ Hi
c(Uét,Z/ℓnZ) −→ Hi

c(Xét,Z/ℓnZ) −→ Hi
c(Zét,Z/ℓnZ)

−→ Hi+1
c (Uét,Z/ℓnZ) −→ · · · .

Taking the limit over n and tensoring with Qℓ over Zℓ gives a long exact sequence

· · · −→ Hi
c(Uét,Qℓ) −→ Hi

c(Xét,Qℓ) −→ Hi
c(Zét,Qℓ) −→ Hi+1

c (Uét,Qℓ) −→ · · · .

The statement follows now by using Lemma 4.1.
(2) By the Künneth-formula (see [Mil80, Ch. VI, Cor. 8.23]) we get for 0 ⩽ k ⩽

2(dimX + dimY )

dimQℓ
Hk

c ((X × Y )ét,Qℓ) =

k∑
i=0

dimQℓ
Hi

c(Xét,Qℓ)⊗Qℓ
Hk−i

c (Yét,Qℓ),

which gives χ(X × Y ) = χ(X) · χ(Y ). □

If X is a complete variety, then Hk
c (Xét,Qℓ) = Hk(Xét,Qℓ) (see e.g. [Mil13,

Def. 18.1]). This will be used in the following examples.

Example 4.3. — Let C be a smooth irreducible projective curve of genus g. Then

H0(Cét,Qℓ) = H2(Cét,Qℓ) = Qℓ and H1(Cét,Qℓ) = Q2g
ℓ ,

see [Mil13, Prop. 14.2]. Using that Hi(Cét,Qℓ) = 0 for all i > 2 (see Lemma 4.1),
it follows that χ(C) = 2− 2g.

Example 4.4. — Let m ⩾ 0. Then

Hi(Pm
ét ,Qℓ) =

{
Qℓ, 0 ⩽ i ⩽ 2m and i is even,
0, otherwise,

see [Mil13, Ex. 16.3]. Hence, χ(Pm) = m + 1. Using Lemma 4.2 and that Am ≃
Pm ∖ Pm−1 for all m ⩾ 0 (where Pm−1 is linearly embedded in Pm and P−1 = ∅),
it follows that χ(Am) = 1 for all m ⩾ 0.

Example 4.5. — Let n ⩾ 0 and let π : X → B be a locally trivial An-bundle with
respect to the Zariski topology, where B is any variety. Then χ(X) = χ(B). Indeed,
we proceed by induction on dimB and note that the case dimB = 0 is clear. By as-
sumption there exists a closed subvariety B′ ⊆ B such that π is trivial over B ∖ B′

and dimB′ < dimB. Hence,

χ(X) = χ(An × (B ∖B′)) + χ(π−1(B′)) = χ(An ×B) = χ(An)χ(B) = χ(B),

where for the second equality we used the induction hypothesis χ(π−1(B′)) = χ(B′) =

χ(An ×B′).
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Let us denote by Vark the set of isomorphism classes of varieties (over k) and
denote by ZVark the free abelian group over Vark. Moreover, let I ⊆ ZVark be the
subgroup that is generated by

[X]− [Z]− [X ∖ Z]

for all varieties X and closed subvarieties Z (here [W ] denotes the isomorphism class
of a variety W ). By bilinear extension of the operation [X] · [Y ] := [X × Y ] we get
a ring structure on ZVark and I is an ideal of it. The Grothendieck ring is then the
quotient of ZVark by I:

K0(Vark) := ZVark /I,

see e.g. [LS10, §2.2.1]. By abuse of notation we denote by [X] the class of a vari-
ety X in K0(Vark). Using Lemma 4.2, the topological Euler characteristic gives a
ring homomorphism

χ : K0(Vark) −→ Z,
n∑

i=0

ai[Xi] 7−→
n∑

i=0

aiχ(Xi).

Definition 4.6. — Let X,Y be varieties. Then X,Y are called piecewise isomorphic
if X and Y can be decomposed as disjoint unions of n ⩾ 1 locally closed subsets
X1, . . . , Xn and Y1, . . . , Yn, respectively, such that Xi ≃ Yi for all 1 ⩽ i ⩽ n. Note
that we take on Xi the reduced scheme structure.

Note that “piecewise isomorphic” defines an equivalence relation among the vari-
eties. It seems that these ideas of “cutting and pasting” appeared the first time in a
letter of Grothendieck to Serre, see [CS01, Letter from 16.8.1964].

Remark 4.7. — In the above definition, if some Xi is not irreducible, we replace Xi

in the decomposition by one of its irreducible components and its complement, and
do the same for their images in Yi. After finitely many such steps we may assume
that all Xi are irreducible, and thus all Yi are irreducible.

Remark 4.8. — If X,Y are piecewise isomorphic, then dimX = dimY .

Example 4.9. — Let Γ ⊆ P2 be an irreducible cuspidal cubic curve. Then Γ is piece-
wise isomorphic to P1. Indeed, we choose X1, X2 ⊆ Γ as X1 to be the singular locus
(one point) and X2 = Γ∖X1. Then, X1 is isomorphic to Y1 = [0 : 1] ∈ P1 and X2 is
isomorphic to Y2 = P2 ∖ Y1 ≃ A1.

Lemma 4.10. — Let X,Y be varieties and consider the following statements:
(1) X and Y are piecewise isomorphic;
(2) There are open subsets U ⊆ X, V ⊆ Y such that

U ≃ V, dimX ∖ U = dimY ∖ V < dimX = dimY

and X∖U , Y ∖V are piecewise isomorphic. Moreover, if X ′ ⊆ X, Y ′ ⊆ Y are locally
closed subsets such that

dimX ∖X ′,dimY ∖ Y ′ < dimX = dimY,
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we may assume that U ⊆ X ′ and V ⊆ Y ′.
(3) [X] = [Y ] inside K0(Vark);
(4) χ(X) = χ(Y ).

Then we have (1)⇔ (2)⇒ (3)⇒ (4).

Proof. — “(1)⇒ (2)”: Let X1, . . . Xn and Y1, . . . Yn be disjoint locally closed subsets
of X and Y , respectively, such that their union is equal to X and Y , respectively,
and such that there are isomorphisms ψi : Xi

≃−→ Yi for 1 ⩽ i ⩽ n. By replacing Xi

with Xi ∩ X ′ and Xi ∖ X ′ and analogously for Yi we may assume that each Xi is
either contained in X ′ or X ∖X ′ and Yi is either contained in Y ′ or Y ∖ Y ′. Using
Remark 4.7, we may moreover assume that all Xi and Yi are irreducible.

Let d := dimX = dimY . After reordering, we may assume that the closures
X1, . . . , Xm in X are the irreducible components of X of dimension d. Then Y1, . . . , Ym
are irreducible closed subsets of Y of dimension d and since Y1, . . . , Ym are disjoint and
locally closed in Y , Y1, . . . , Ym are mutually different. This implies that Y 1, . . . , Y m

are the irreducible components of Y of dimension d. For 1 ⩽ i ⩽ m, note that Xi

and Yi is contained in X ′ and Y ′, respectively, since X ∖X ′ and Y ∖Y ′ have strictly
lower dimension that X and Y .

For each i ∈ {1, . . . ,m}, the locally closed subset Xi ⊆ X is equal to Xi = A∩Xi,
where A ⊆ Xi is open. Choosing U ′

i ⊆ X to be the open subset A∖ I, where I is the
union of all irreducible components of X different from Xi, we find a subset U ′

i ⊆ Xi

that is open in X with U ′
i = Xi. By construction, U ′

1, . . . , U
′
m are disjoint. Similarly,

there exist open disjoint subsets V ′
1 , . . . , V

′
m in Y such that for all 1 ⩽ i ⩽ m we get

V ′
i ⊆ Y ′

i and V ′
i = Yi. For 1 ⩽ i ⩽ m, let

Ui := U ′
i ∩ ψ−1

i (V ′
i ) ⊆ X and Vi := ψi(U

′
i) ∩ V ′

i ⊆ Y.

Then the restriction ψi|Ui : Ui
≃−→ Vi is an isomorphism. Let U :=

⋃m
i=1 Ui and

V :=
⋃m

i=1 Vi. By construction, U ⊆ X ′ and V ⊆ Y ′. Since U1, . . . , Um are disjoint
open subsets of X and V1, . . . , Vm are disjoint open subsets of Y , we have U ≃ V .
Moreover, X∖U and Y ∖V are piecewise isomorphic (take the locally closed subsets
X1 ∖ U1, . . . , Xm ∖ Um, Xm+1, . . . , Xn and Y1 ∖ V1, . . . , Ym ∖ Vm, Ym+1, . . . , Yn of X
and Y , respectively). By construction, dimX ∖ U < dimX.

“(2)⇒ (1)”: The decomposition of X∖U , together with U , gives the decomposition
of X, and we do similarly for Y .

“(2)⇒ (3)”: By assumption we have [U ] = [V ] inside K0(Vark). As X ∖U , Y ∖ V

are piecewise isomorphic and since dimX∖U = dimY ∖V < dimX = dimY , we may
proceed by induction on d in order to get [X ∖ U ] = [Y ∖ V ] inside K0(Vark). This
implies (3).

“(3)⇒ (4)”: Follows from Lemma 4.2. □

Corollary 4.11. — If X and Y are two varieties that are both equidimensional and
piecewise isomorphic, then X and Y are birational to each other.

Proof. — Follows from the implication (1) ⇒ (2) in Lemma 4.10. □
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Example 4.12. — Corollary 4.11 really needs both X and Y to be equidimensional.
Indeed, A1 ⨿ {pt} and P1 are piecewise isomorphic, but not birational.

Lemma 4.13. — For i ∈ {1, 2}, let Γi be a variety of dimension 1, and let Γ′
i ⊆ Γi

be the union of the irreducible components of Γi of dimension 1 (we remove isolated
points). Then, the following are equivalent:

(1) Γ1 and Γ2 are piecewise isomorphic;
(2) Γ′

1 and Γ′
2 are birational, and χ(Γ1) = χ(Γ2).

Proof. — “(1) ⇒ (2)”: Suppose that Γ1 and Γ2 are piecewise isomorphic. The im-
plication (1) ⇒ (2) in Lemma 4.10 implies that Γ′

1 and Γ′
2 are birational and the

implication (1)⇒ (4) yields χ(Γ1) = χ(Γ2).
“(2) ⇒ (1)”: As Γ′

1 and Γ′
2 are birational, there are open dense subsets U1 ⊆ Γ′

1

and U2 ⊆ Γ′
2 such that U1 ≃ U2. For each i ∈ {1, 2}, the set Ui is open in Γi, and

Fi = Γi ∖ Ui is finite. As χ(Γ1) = χ(Γ2) and χ(U1) = χ(U2), Lemma 4.2 implies
that χ(F1) = χ(F2). The two finite sets F1 and F2 are thus isomorphic, which proves
that Γ1 and Γ2 are piecewise isomorphic. □

Lemma 4.14
(1) Let X be a disjoint union of trees of smooth projective rational curves, with r

irreducible components and s connected components. Then, X is piecewise isomorphic
to the disjoint union of r copies of A1 and s points.

(2) Let X, Y be two disjoint unions of trees of smooth projective rational curves.
Then, X and Y are piecewise isomorphic if and only if they have the same number
of irreducible components and the same number of connected components.

Proof
(1) If T is a tree of smooth projective rational curves, with r irreducible compo-

nents, it is piecewise isomorphic to the disjoint union of one point and r copies of A1.
Hence, if X has r irreducible components and s connected components, then X is
piecewise isomorphic to the disjoint union of r copies of A1 and s points, and thus
satisfies χ(X) = r + s (Lemma 4.2 and Example 4.4)

(2) By Lemma 4.13, X and Y are piecewise isomorphic if and only if they are
birational and χ(X) = χ(Y ). The first assertion is equivalent to ask that X and Y

have the same number of irreducible components. The above calculation shows that
the two assertions are equivalent to ask that X and Y have the same number of
irreducible components and the same number of connected components. □

Lemma 4.15. — Let U be a smooth surface. For i = 1, 2, let

Xi := U ⨿ Si ⨿Ri,

where Si is a disjoint union of si ⩾ 0 points and Ri is the disjoint union of ri ⩾ 0

irreducible curves. If X1 and X2 are piecewise isomorphic, then:
(1) R1 and R2 are birational; in particular r1 = r2.
(2) If moreover all irreducible components of R1, R2 are isomorphic, then s1 = s2.
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Proof. — By Lemma 4.10 there exist open dense subsets U1, U2 ⊆ U that are isomor-
phic and such that E1 := X1 ∖ U1 and E2 := X2 ∖ U2 are piecewise isomorphic.

For any one-dimensional variety Z denote by Z ′ the union of irreducible compo-
nents of dimension one of Z. The isomorphism U1

≃−→ U2 gives a birational map
U U of a smooth completion U of U that decomposes into n blow-ups and n

blow-downs. Hence, (U ∖ U1)
′ and (U ∖ U2)

′ are birational and thus (U ∖ U1)
′ and

(U∖U2)
′ are birational as well (by using that (U∖Ui)

′∪(U∖U)′ is dense in (U∖Ui)
′).

By Lemma 4.13, the unions of one-dimensional irreducible components of E1 and E2

are birational and since Ei = (U ∖ Ui) ⨿ Si ⨿ Ri it follows that R1 and R2 are bira-
tional. If the irreducible components of R1 and R2 are all isomorphic to C, we get
χ(Ei) = χ(U)− χ(Ui) + si + riχ(C) and since χ(E1) = χ(E2), χ(U1) = χ(U2) we get
s1 = s2. □

Example 4.16. — We show that Lemma 4.13 does not generalize to higher dimension.
The irreducible surfaces X = A2 and Y = P2 ∖ {[1 : 0 : 0], [0 : 1 : 0]} are birational

and satisfy χ(X) = χ(Y ) = 1 (Lemma 4.2 and Example 4.4), but X and Y are not
piecewise isomorphic. Indeed, this last assertion follows from Lemma 4.15 and the fact
that X is piecewise isomorphic to A2 ∖ {(0, 0)} ⨿ {pt} and Y is piecewise isomorphic
to A2 ∖ {(0, 0)} ⨿ A1.

Proposition 4.17. — Let X, Y be two varieties, that are piecewise isomorphic and
let E ⊆ X, F ⊆ Y be locally closed subvarieties of dimension at most 1. If E and F
are piecewise isomorphic, then X ∖ E and Y ∖ F are piecewise isomorphic.

Proof. — By definition, X and Y can be decomposed as disjoint unions of n ⩾ 1

locally closed subsets X1, . . . , Xn and Y1, . . . , Yn, respectively, such that there is an
isomorphism φi : Xi

≃−→ Yi for each i ∈ {1, . . . , n}.
(A) We first consider the case where E is one point (and thus F is also one point).

In this case, there is exactly one i ∈ {1, . . . , n} and one j ∈ {1, . . . , n} such that
E ⊆ Xi and F ⊆ Yj . If i = j, the isomorphism φi induces an isomorphism from
Xi∖ (E∪φ−1

i (F )) to Yi∖ (F ∪φi(E)), and we are done if φi(E) = F or otherwise use
an isomorphism from the point φ−1

i (F ) to the point φi(E). If i ̸= j, then φi gives an
isomorphisms Xi ∖E

≃−→ Yi ∖φi(E) and φj gives an isomorphism Xj ∖φ−1
j (F )

≃−→
Yj ∖ F . It then remains to use an isomorphism from the point φ−1

j (F ) to the point
φi(E).

(B) If E (and thus F ) is finite, we proceed by induction on the number of points,
applying (A), and obtain the result.

(C) In the general case, we proceed by induction on the number of irreducible
components of E of dimension 1. When no such component exists, we are done by (B).
As E and F are piecewise isomorphic, there are open subsets U ′ ⊆ E and V ′ ⊆ F

such that E ∖ U ′ and F ∖ V ′ are finite, with the same number of points, and there
is an isomorphism ψ : U ′ ≃−→ V ′ (Lemma 4.10). We take an open subset U ⊆ U ′,
that is irreducible and infinite, take V = ψ(U) ⊆ V ′, which is also open, irreducible
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and infinite, and obtain that E ∖ U and F ∖ V are piecewise isomorphic. As U, V
are irreducible curves, there is exactly one i ∈ {1, . . . , n} and one j ∈ {1, . . . , n} such
that U ∩ Xi and V ∩ Yj are infinite. By removing finitely many points of U and V

respectively, we may assume that U ⊆ Xi, V ⊆ Yj and still assume that U , V are
isomorphic (we remove points outside of Xi or Yj and their images under ψ or ψ−1),
and that E ∖ U , F ∖ V are piecewise isomorphic. We now prove that X ∖ U and
Y ∖ V are piecewise isomorphic, which will achieve the proof, as E ∖ U and F ∖ V

are piecewise isomorphic, with one irreducible component of dimension 1 less.
If i = j, the isomorphism φi restricts to an isomorphism

Xi ∖ (U ∪ φ−1
i (V ))

≃−→ Yi ∖ (V ∪ φi(U)),

so we only need to see that φ−1
i (V ) ∖ (U ∩ φ−1

i (V )) and φi(U) ∖ (V ∩ φi(U)) are
piecewise isomorphic. Applying φi to the first set, we need to show that V ∖(φi(U)∩V )

and φi(U)∖ (V ∩ φi(U)) are piecewise isomorphic. If φi(U) ∩ V is finite, this follows
from (B). If φi(U)∩V is infinite, then V ∖(φi(U)∩V ) and φi(U)∖(V ∩φi(U)) are both
finite, with the same number of points by using the topological Euler characteristic
(Lemma 4.2).

If i ̸= j, then φi gives an isomorphism Xi ∖ U
≃−→ Yi ∖ φi(U) and φj gives an

isomorphism Xj ∖ φ−1
j (V )

≃−→ Yj ∖ V . It then remains to use an isomorphism from
the curve φ−1

j (V ) to the curve φi(U). □

Lemma 4.18. — Let X be a smooth projective rational surface with Picard group
Pic(X) ≃ Zn. Then, there is an open subset U ⊆ X isomorphic to A2, a point
p ∈ X and locally closed curves C1, . . . , Cn ⊆ X such that each Ci is isomorphic
to A1 and X is the disjoint union

X = U ⨿ C1 ⨿ · · · ⨿ Cn ⨿ {p}.

Moreover, for each finite set ∆ ⊆ X and each closed curve E ⊆ X, we may choose
the above decomposition such that ∆ ⊆ U , {p} ∩ (∆ ∪ E) = ∅ and Ci ̸⊆ E for each
i ∈ {1, . . . , n}.

Proof. — If X = P2, we choose a general line ℓ ⊆ P2 and a general point p ∈ ℓ, and
let U = P2 ∖ ℓ, C1 = ℓ∖ {p}. This gives the statement in case X = P2.

We may thus assume that X is not isomorphic to P2, so there is a birational
morphism X → Fd for some Hirzebruch surface Fd where d ⩾ 0. We proceed by
induction on the number of blow-ups of X → Fd. If X = Fd, we choose a general
section ℓ1 of Fd → P1 of self-intersection d and a general fiber ℓ2 of Fd → P1 and let
p := ℓ1 ∩ ℓ2, U := Fd ∖ (ℓ1 ∪ ℓ2). Then, Ci = ℓi ∖ {p} ≃ A1 for each i ∈ {1, 2}.

We then do successive blow-ups, where we may always assume that the points
blown-up are in the subset U ≃ A2. Then, taking a general line of A2 passing through
the point, the strict transform of the line is a closed curve Ci ≃ A1 of the blow-up
of A2, with complement isomorphic to A2. □
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Proposition 4.19. — Let Y be a normal projective rational surface, that admits a
desingularization X → Y with Pic(X) ≃ Zn and exceptional divisor being a finite
disjoint union of trees of smooth rational curves with r ⩾ 0 irreducible components
(this holds for instance when Y only has Du Val singularities). Then, Y is piecewise
isomorphic to the disjoint union of A2, one point, and n−r copies of A1, with n−r ⩾ 1.

Proof. — If Y is smooth, then the result, with r = 0, directly follows from
Lemma 4.18. We then assume that Y is singular. Let E ⊆ X be the exceptional
divisor of the desingularization X → Y , let r be the number of irreducible compo-
nents of E and let s be the number of connected components of E. Then s is equal
to the number of points of the image of E under X → Y , since all fibres of X → Y

are connected by the normality of Y , see Zariski’s main theorem, [Har77, Ch. III,
Cor. 11.4]. Moreover, r, s ⩾ 1, since otherwise every fiber of the proper birational
morphism X → Y onto the normal variety Y would be a single point, i.e., X → Y

would be an isomorphism, see [Gro61, Cor. 4.4.9].
We observe that n− r ⩾ 1. Indeed, the r irreducible components E1, . . . , Er of E,

together with the pull-back P of an irreducible curve of Y not passing through the
image of E under Y → X are r+1 effective divisors on X, that are linearly indepen-
dent: Assume D := aP +

∑r
i=1 aiEi = 0 in Pic(X) for some a, a1, . . . , ar ∈ Z. Then

0 = L ·D = aL2, which shows that a = 0. Since the intersection matrix (Ei · Ej) is
negative definite (see [Art62, §2, (2.1)]), we get a1 = · · · = ar = 0.

By Lemma 4.141, E is piecewise isomorphic to the disjoint union of r copies of A1

and s points. By Lemma 4.18, X is piecewise isomorphic to the disjoint union of A2

with one point and n copies of A1.
Hence, Proposition 4.17 shows that X ∖ E is piecewise isomorphic to the disjoint

union of A2 ∖∆ with n− r copies of A1, where ∆ is a finite set of s− 1 points.
Let S be the image of E under X → Y . As Y ∖ S is isomorphic to X ∖ E and S

contains s points, this proves that Y is piecewise isomorphic to the disjoint union
of A2 with one point and n− r copies of A1. □

Example 4.20. — Let f, g ∈ k[x, y, z]∖ {0} be homogeneous polynomials of degree 3

and 4, respectively, without common factor. Then, VP2(f, g) consists of r points, with
1 ⩽ r ⩽ 12. We define X ⊆ P3 to be the quartic rational surface given by

X = {[w : x : y : z] ∈ P3 | wf(x, y, z) = g(x, y, z)},

and consider the open subset Xf ⊆ X where f is non-zero and its complement
F := X ∖Xf = VP3(f, g). The hypersurface X is normal, since the singular locus is
finite, see e.g. [Har77, Ch. II, Prop. 8.23]. We have an isomorphism

Xf
≃−→ P2

f , [w : x : y : z] 7−→ [x : y : z],

and F is the union of r lines through q = [1 : 0 : 0 : 0]. Hence, X is piecewise
isomorphic to the disjoint union of P2

f with one point and r copies of A1. We now
distinguish different cases for the zero locus Γ := VP2(f) ⊆ P2.
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If Γ consists of one, two or three lines meeting in one point, then X is piecewise
isomorphic to the disjoint union of A2 with one point and s copies of A1, for some
s ⩽ r, similarly as in Proposition 4.19. The same holds if Γ is the union of a conic
and a line, meeting at only one point.

If Γ consists of three general lines, then X is piecewise isomorphic to the disjoint
union of A2 with two points and r−2 copies of A1. It is then not piecewise isomorphic
to a smooth projective rational surface. Indeed, this follows from Lemma 4.15, since
a smooth projective rational surface is piecewise isomorphic to a disjoint union of A2,
one point and some copies of A1, see Lemma 4.18. A similar result holds if Γ is the
union of a conic and a line meeting at two points.

If Γ is a cuspidal cubic curve, it is piecewise isomorphic to a line, so P2
f is piecewise

isomorphic to A2 (Proposition 4.17). Hence, this case is similar to the one of a line.
If Γ is a nodal cubic, it is piecewise isomorphic to A1 ∖ {0} and thus X is piecewise
isomorphic to the disjoint union of A2 with two points and r copies of A1, and thus X
is again not piecewise isomorphic to a smooth rational projective surface.

If Γ is a smooth irreducible cubic, this one is not rational. Let P1 ⊆ P2 be a line
that intersects Γ in exactly one point p ∈ P2 and let Γ0 := Γ ∖ p. As X is piecewise
isomorphic to A2∖Γ0⨿{pt}⨿

∐r+1
i=1 A1, it follows that X is not piecewise isomorphic

to a smooth rational projective surface Y , since such a Y is piecewise isomorphic to
A2 ∖ Γ0 ⨿ {pt} ⨿ Γ0 ⨿

∐s
i=1 A1 for some s ⩾ 1, see Lemma 4.15.

Example 4.21. — In Example 4.20, we may choose f to obtain a singular normal
rational quartic X ⊆ P3 which is not piecewise isomorphic to a smooth rational
projective surface, and thus which does not admit a desingularization by trees of
smooth rational curves (follows from Proposition 4.19).

We now choose f = xy(x+ y) and g ∈ k[x, y, z]4 general, and check that this gives
an example of a normal rational quartic

X = {[w : x : y : z] ∈ P3 | wf(x, y, z) = g(x, y, z)},

which admits a desingularization by trees of smooth rational curves, but that does
not have Du Val singularities. For this, we consider the birational map

ψ : P2 X, [x : y : z] 7−→ [g(x, y, z) : xf(x, y, z) : yf(x, y, z) : zf(x, y, z)],

and observe that it has exactly twelve base-points, being VP2(f, g). Denoting by
η : Y → P2 the blow-up of the twelve points, we obtain a birational morphism
ψ ◦ η : Y → X, that contracts the strict transforms of the three lines defined by
VP2(f). These curves are smooth rational curves on Y with self-intersection −3, inter-
secting into a common point. This tree of smooth rational curves is contracted to the
singular point of multiplicity three of X.

5. Partial answers in low degree

In this chapter, we give for certain cases affirmative answers to Questions (2)
and (3). Moreover, over an algebraically closed field, we show for any irreducible
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hypersurface H ⊆ Pn of degree d that there exists an element of Aut(P3 ∖ H) that
does not extend to an automorphism of P3 in case d = 2 or n = d = 3 and H is
singular. This gives thus a negative answer to Question (1) in the above mentioned
cases.

5.1. Degree two. — The goal of this subsection is to prove Theorem B, which gives
an affirmative answer to Question (2) (and thus (3)) for irreducible quadric hypersur-
faces in Pn

k over an algebraically closed field k. For doing this, we count the Fq-rational
points, where Fq denotes the finite field with q elements.

We start with a lemma that is certainly well-known to the specialists. For lack of
a reference, we insert a proof.

Lemma 5.1. — Let Z ⊆ A, Z ⊆ B be finitely generated ring extensions such that A, B
are integral domains. If there exists a field K and a K-isomorphism between K ⊗Z A

and K ⊗Z B, then Fq ⊗Z A and Fq ⊗Z B are Fq-isomorphic for some prime power q.

Proof. — As Z is a principal ideal domain, it is a regular ring. Using that A, B are
integral domains, we get that A, B are flat Z-modules; see [Har77, Ch. III, Prop. 9.7].
Hence, every ring extension R1 ⊆ R2 induces injections

R1 ⊗Z A ⊆ R2 ⊗Z A and R1 ⊗Z B ⊆ R2 ⊗Z B.

Let a1, . . . , an ∈ A with A = Z[a1, . . . , an] and b1, . . . , bm ∈ B with B =

Z[b1, . . . , bm]. Denote by φ : K ⊗Z A
∼−−→ K ⊗Z B a K-isomorphism. There exist

finitely many c1, . . . , cr ∈ K such that the Z-algebra R spanned by c1, . . . , cr inside K
satisfies φ(ai) ∈ R ⊗Z B for all i with 1 ⩽ i ⩽ n and φ−1(bj) ∈ R ⊗Z A for all j
with 1 ⩽ j ⩽ m. In particular, φ restricts to an R-isomorphism R ⊗Z A ≃ R ⊗Z B.
We may assume that R is non-zero and thus contains a maximal ideal m. Then we
get an R/m-isomorphism

(R/m)⊗Z A
∼−−→ (R/m)⊗Z B.

Denote by F the prime field of R/m, i.e., the quotient field of the image of the
unique ring homomorphism Z→ R/m. As R is finitely generated as a Z-algebra, R/m
is finitely generated as an F -algebra and by Noether’s normalization theorem, the
field extension F ⊆ R/m is finite. By the Artin-Tate lemma (see [AM69, Prop. 7.8])
it follows that F is a finitely generated Z-algebra. Hence, F cannot be isomorphic
to Q and thus F = Fp where p = char(R/m). As the field extension F ⊆ R/m is
finite, R/m = Fpr for some r ⩾ 1. □

Corollary 5.2. — Let X,Y be affine integral schemes of finite type over Z such
that X → Spec(Z), Y → Spec(Z) are dominant. If the pull-backs XK , YK are K-
isomorphic for some field K, then there exists a prime power q and a bijection between
the Fq-rational points X(Fq) → Y (Fq) that maps the regular Fq-rational points of X
bijectively onto the regular Fq-rational points of Y .

Proof. — This is a direct consequence of Lemma 5.1. □
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In the following lemmas, we denote by Z(Fq) (Z(Fq)reg, Z(Fq)sing) the set of (reg-
ular, singular) Fq-rational points of a scheme Z that is defined over Z. Note that
Z(Fq)reg = Z(Fq)∖ Z(Fq)sing.

In case Z is a hypersurface in An+1
Z given by a polynomial f ∈ Z[x0, . . . , xn], the set

Z(Fq) consists of those points in (a0, . . . , an) ∈ Fn+1
q that satisfy f(a0,. . . , an) = 0 and

(a0, . . . , an) ∈ Z(Fq) is regular, if not all the partial derivatives ∂f/∂x0, . . . , ∂f/∂xn ∈
Z[x0, . . . , xn] vanish at (a0, . . . , an).

Lemma 5.3. — For all integers m,n with 1 ⩽ 2m−1 ⩽ n, let Xm,n be the hypersurface
in An+1

Z given by
m−1∑
i=0

x2ix2i+1 = 1.

Then for any prime power q we get

#Xm,n(Fq) = #Xm,n(Fq)reg = qn−m(qm − 1).

Proof. — As Xm,n is smooth over Spec(Z), Xm,n(Fq)reg = Xm,n(Fq). We proceed
now by induction on m ⩾ 1. For any n ⩾ 1, we get #X1,n(Fq) = qn−1(q− 1), as X1,n

and (A1
Z ∖ {0})× An−1

Z are isomorphic over Z. Moreover, for m > 1:

Xm,n(Fq) = VXm,n
(x2m−1)(Fq)

∐
(Xm,n)x2m−1

(Fq).

As (Xm,n)x2m−1
and (A1

Z ∖ {0})× An−1
Z are isomorphic over Z, it follows that

#(Xm,n)x2m−1
(Fq) = qn−1(q − 1).

As VXm,n(x2m−1) and Xm−1,n−1 are isomorphic over Z, we get by induction

#Xm,n(Fq) = #Xm−1,n−1(Fq) + qn−1(q − 1)

= qn−m(qm−1 − 1) + qn−1(q − 1) = qn−m(qm − 1). □

Lemma 5.4. — For all integers m,n with 0 ⩽ 2m ⩽ n, let Ym,n be the hypersurface
in An+1

Z that is given by (m−1∑
i=0

x2ix2i+1

)
+ x22m = 1.

Then for every odd prime power q we get

#Ym,n(Fq) = #Ym,n(Fq)reg = qn−m(qm + 1),

and for every even prime power q, we have

#(Ym,n)(Fq) = qn and #(Ym,n)(Fq)reg = qn−2m(q2m − 1).

Proof. — Suppose first that q is odd. Here, Ym,n is smooth over Spec(Z) ∖ {(2)},
so Ym,n(Fq)reg = Ym,n(Fq). We proceed by induction on m ⩾ 0. For any n ⩾ 1,
we get #Y0,n = 2qn, as Y0,n is given by x20 − 1 in An+1

Z over Z. Assume m > 0. As in
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Lemma 5.3, we count the points where x2m−1 = 0 and the points where x2m−1 ̸= 0,
and obtain:

#Ym,n(Fq) = #Ym−1,n−1(Fq) + qn−1(q − 1)

= qn−m(qm−1 + 1) + qn−1(q − 1) = qn−m(qm + 1).

Suppose now that q is a power of 2. As Fq → Fq, t → t2 is bijective, the projec-
tion Ym,n → An

Z, (x0, . . . , xn) 7→ (x0, . . . , x2m−1, x2m+1, . . . , xn) induces a bijection
Ym,n(Fq)

≃−→ An
Z(Fq), which yields #(Ym,n)(Fq) = qn. The set of singular Fq-rational

points of Ym,n is equal to

(Ym,n)(Fq)sing = {(0, . . . , 0, 1, x2m+1, . . . , xn) | x2m+1, . . . , xn ∈ Fq}

and hence (Ym,n)(Fq)sing = qn−2m. This gives the result. □

Proposition 5.5. — If k is algebraically closed, every irreducible quadric hypersurface
in Pn is given, under a suitable change of coordinates, by

m−1∑
i=0

x2ix2i+1 or
(m−1∑

i=0

x2ix2i+1

)
+ x22m,

where 1 < 2m− 1 ⩽ n in the first case and 0 < 2m ⩽ n in the second case.

Proof. — This follows from [Pfi95, Th. 1.8] if char(k) ̸= 2 and from [Pfi95, Th. 4.3]
if char(k) = 2. □

Proof of Theorem B. — Let
M = MX

∐
MY ,

where

MX := {Xm,n | 1 < 2m− 1 ⩽ n} and MY := {Ym,n | 0 < 2m ⩽ n}

andXm,n, Ym,n are defined in Lemmas 5.3 and 5.4, respectively. Using Proposition 2.1,
Remark 2.2 and Proposition 5.5, it is enough to show that distinct elements of M are
non-isomorphic over k. By Corollary 5.2, an isomorphism over k between two elements
from M would give a bijection between the Fq-rational points and between the regular
Fq-rational points, for some prime power q.

We consider for every prime power q the map

Φq : M −→ N0, Z 7−→ #Z(Fq)reg.

By Lemmas 5.3–5.4, we get

Φq(Xm,n) = qn−m(qm − 1) for all prime powers q

and

Φq(Ym,n) =

{
qn−m(qm + 1) if q is an odd prime power,
qn−2m(q2m − 1) if q is a power of 2.

Hence, for odd prime powers q, the map Φq is injective. If q = 2r for some r ⩾ 1, then
the restrictions Φ2r |MX

and Φ2r |MY
are still injective. By the Lemmas 5.3–5.4, all
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F2r -rational points of Xm,n are regular, whereas Ym,n has singular F2r -rational points.
This achieves to prove that distinct elements from M are non-isomorphic over k. □

The following example shows that Question (1) has a negative answer for degree 2

and any n ⩾ 2:

Example 5.6. — Let n ⩾ 2. For each f ∈ k[x3, . . . , xn], homogeneous of degree 2

(we choose f = 0 if n = 2), the following morphism defines a Ga-action

ρ : Ga × Pn
x0x1+x2

2+f −→ Pn
x0x1+x2

2+f

(t, [x0 : x1 : · · · : xn]) 7−→ [x0 : x1 − 2tx2 − t2x0 : x2 + tx0 : x3 : · · · : xn].

Since x20/(x0x1 + x22 + f) is a Ga-invariant function on Pn
x0x1+x2

2+f
, it follows that for

every non-constant univariate polynomial q the following map

[x0 : x1 : · · · : xn] 7−→ ρ
(
q
( x20
x0x1 + x22 + f

)
, [x0 : x1 : · · · : xn]

)
gives an element of Aut(Pn

x0x1+x2
2+f

) that doesn’t extend to an element of Aut(Pn).
Similarly, for each n ⩾ 3 and each polynomial g ∈ k[x4, . . . , xn] (again g = 0

if n = 3), the following morphism defines a Ga-action

ρ : Ga × Pn
x0x1+x2x3+g −→ Pn

x0x1+x2x3+g

(t, [x0 : x1 : · · · : xn]) 7−→ [x0 : x1 − tx3 : x2 + tx0 : x3 : · · · : xn].

Since x20/(x0x1 + x2x3 + g) is a Ga-invariant function on Pn
x0x1+x2x3+g, it follows that

for every non-constant univariate polynomial q the following map

[x0 : x1 : · · · : xn] 7−→ ρ
(
q
( x20
x0x1 + x2x3 + g

)
, [x0 : x1 : · · · : xn]

)
defines an automorphism of Pn

x0x1+x2x3+g that doesn’t extend to an element of
Aut(Pn).

If k is algebraically closed, it follows from Proposition 5.5 that every irreducible
quadric is of one of the above form, up to change of coordinates.

5.2. Degree three and beyond in dimension three. — Throughout this subsection
we assume always that k is algebraically closed.

Recall that an irreducible hypersurface in P3 is normal if and only if its singular
locus is finite [Har77, Ch. II, Prop. 8.23].

Remark 5.7. — Let X ⊆ P2 be a normal rational irreducible cubic hypersurface.
Then there exist six (possibly infinitely near) points p1, . . . , p6 in P2 such that the
blow-up π : X̃ → P2 of them satisfies: There exists a birational morphism η : X̃ → X

and it is the minimal desingularization of X. In case X is singular this follows from
the proof of Lemma 5.9 and in case X is smooth this follows from [Har77, Ch. V,
Cor. 4.7, Rem. 4.7.1]. Moreover in the smooth case p1, . . . , p6 belong to P2 (and are in
general position).
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Lemma 5.8. — An irreducible cubic hypersurface in P3 is non-rational if and only if
it is the cone over a smooth cubic curve in P2.

Proof. — Let X ⊆ P3 be a non-rational irreducible cubic hypersurface. Then X has a
singularity (as otherwise it would be the blow-up of P2 at six points, see Remark 5.7),
say at P = [1 : 0 : 0 : 0] ∈ P3 and it is given by a homogeneous polynomial of the form
f2(x, y, z)w + f3(x, y, z), where [w : x : y : z] denote the homogeneous coordinates
of P3 and fi ∈ k[x, y, z] is homogeneous of degree i. As X is non-rational, we get
f2 = 0 (otherwise the projection to x, y, z gives a birational map to P2) and X is the
cone in P3 over a cubic curve Γ ⊂ P2 given by f3 = 0. As X is irreducible, so is Γ.
Then, X is birational to Γ×P1, and thus Γ is non-rational as X is. This implies that Γ
is smooth, and that X is the cone in P3 over a smooth cubic curve in P2.

Assume now that X is a cone over a smooth cubic curve C. Blowing up the vertex
yields a projective smooth ruled surface S over C. In particular H1(S,OS) doesn’t
vanish (see [Har77, Ch. V, Cor. 2.5]) and henceX is not rational (see [KSC04, Th. 3.2]).

□

The next lemma is certainly known to the specialists. For lack of a proof in any
characteristic we provide one:

Lemma 5.9. — Let X ⊆ P3 be a normal rational cubic hypersurface. Then X has
only Du Val singularities and is piecewise isomorphic to the disjoint union of A2, one
point, and n copies of A1, with 1 ⩽ n ⩽ 7. Moreover, 3 ⩽ χ(X) = 2 + n ⩽ 9 and
χ(X) = 9 if and only if X is smooth.

Proof. — If X is smooth, then X is the blow-up of 6 points of P2 (Remark 5.7) and
is thus piecewise isomorphic to the disjoint union of A2, one point and seven copies
of A1 by Lemma 4.18. In particular, χ(X) = 9.

Thus we may assume that X is singular and after some coordinate change we
may assume that X is given by f2(x, y, z)w + f3(x, y, z), where f2, f3 ∈ k[x, y, z] are
homogeneous polynomials of degree 2, 3, respectively, and [w : x : y : z] denote the
homogeneous coordinates in P3. If f2 = 0, then, X is a cone over VP2(f3). As X
is a rational cubic, f3 is irreducible and VP2(f3) has to be singular (Lemma 5.8),
contradicting the fact that X is normal. Hence, f2 ̸= 0.

The projection X ∖ {[1 : 0 : 0 : 0]} → P2, [w : x : y : z] 7→ [x : y : z] gives a
birational morphism whose inverse Φ: P2 99K X is given by

[x : y : z] 7−→ [f3(x, y, z) : xf2(x, y, z) : yf2(x, y, z) : zf2(x, y, z)].

By [Sak10, Prop. 1.5], there exists a smooth projective surface X̃ which is the blow-
up π : X̃ → P2 of six (possibly infinitely near) points in the zero locus S = V (f2, f3)

such that η := Φ ◦ π : X̃ → X is a morphism and η is given by the complete linear
system | −KX̃ |, where KX̃ denotes the canonical divisor in X̃. Let Xreg be the open
subvariety of regular points in X and let Xsing be its complement in X.

By applying the adjunction formula to the smooth closed hypersurface Xreg in
P3 ∖Xsing, we get that the canonical divisor KX of X is equal to −H, where H is a
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hyperplane section of X ⊆ P3. This gives η∗KX = KX̃ . By [Art62, Th. 2.7] it follows
that the exception locus of η is a finite union of trees and that in fact X has only
Du Val singularities.

By Proposition 4.19, X is piecewise isomorphic to a disjoint union of A2, one point
and 7− r copies of A1, with 1 ⩽ r ⩽ 6. In particular, 3 ⩽ χ(X) ⩽ 8. □

We will use the following classification of non-normal irreducible cubic surfaces
in P3:

Proposition 5.10 (see [LPS11, Th. 3.1]). — Let X ⊆ P3 be a non-normal irreducible
cubic surface. Denote by [w : x : y : z] the homogeneous coordinates in P3.

– If X is a cone over a curve in P2, then up to a coordinate change of P3, the
hypersurface X is given by

(∗) x2w + y3 or x2w + y3 + xy2 or xyw + x3 + y3.

Moreover, if char(k) ̸= 3, then x2w + y3 and x2w + y3 + xy2 are the same up to a
linear coordinate change in w, x, y.

– If X is not a cone over a curve in P2, then up to a coordinate change of P3, the
hypersurface X is given by

(∗∗) x2w + y2z or xyw + y2z + x3 or xyw + (x2 + y2)z.

Moreover, if char(k) ̸= 2, then x2w+ y2z and xyw+ (x2 + y2)z are the same up to a
linear coordinate change in w, x, y, z.

In particular, X always contains a line with multiplicity 2 (the line given by x =

y = 0 in the above equations).

In the following lemma, we give a similar decompositions into locally closed subsets
as in Lemma 5.9 for irreducible non-normal cubic hypersurfaces in P3:

Lemma 5.11. — Let
f1 = xyw + x3 + y3, f2 = x2w + y3, f3 = x2w + y3 + xy2,

f4 = xyw + y2z + x3, f5 = x2w + y2z, f6 = xyw + (x2 + y2)z.

Then, Xi = VP3(fi) ⊆ P3 is piecewise isomorphic to the disjoint union of A2, one
point, and ni copies of A1, with n1 = 0, n2 = n3 = n4 = 1 and n5 = n6 = 2.
In particular, χ(Xi) = 2 + ni ∈ {2, 3, 4}.

Proof. — We can decompose Xi into Xi ∩ P3
x and Xi ∩ VP3(x). Then we get Table 1,

where P1 ∨ P1 denotes two copies of P1 in P2 (that intersect transversally in exactly
one point). This implies the statement. □

Corollary 5.12. — Let X be a rational cubic hypersurface of P3. Then, X is piecewise
isomorphic to the disjoint union of A2, one point, and n copies of A1, with 0 ⩽ n ⩽ 7.
Moreover, 2 ⩽ χ(X) = 2 + n ⩽ 9.

Proof. — If X is normal, this follows from Lemma 5.9. Otherwise, this follows from
Lemma 5.11 in combination with Proposition 5.10. □
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Table 1.

Equation Xi ∩ P3
x Xi ∩ VP3(x)

xyw + x3 + y3 A1 × (A1 ∖ {0}) P1

x2w + y3 A2 P1

x2w + y3 + xy2 A2 P1

xyw + y2z + x3 A1 × (A1 ∖ {0}) P1 ∨ P1

x2w + y2z A2 P1 ∨ P1

xyw + (x2 + y2)z A2 P1 ∨ P1

Lemma 5.13. — Let X ⊆ P3 be an irreducible cubic hypersurface. If X is rational,
then χ(X) ⩾ 2. If X is not rational, then χ(X) = 1.

Proof. — If X is rational, then Corollary 5.12 gives χ(X) ⩾ 2.
Assume now that X is non-rational. By Lemma 5.8, X is the cone over a smooth

cubic curve C in P2. Let p ∈ X be the unique singularity. Then X ∖ {p} is a local-
ly trivial A1-bundle over C (with respect to the Zariski topology). Hence χ(X) =

1 + χ([X ∖ p]) = 1 + χ(C) = 1, where the second and third equality follow from
Example 4.5 and Example 4.3, respectively. □

Proposition 5.14. — Let X1, X2 be normal projective rational surfaces having only
singularities that can be resolved by trees of smooth rational curves (e.g. Du Val
singularities). Then the following statements are equivalent

(1) X1 and X2 are piecewise isomorphic;
(2) [X1] = [X2] inside K0(Vark);
(3) χ(X1) = χ(X2).

Proof. — The implications “(1)⇒ (2)” and “(2)⇒ (3)” both follow from Lemma 4.10.
Proposition 4.19 says that Xi is piecewise isomorphic to the disjoint union of A2, one
point and si ⩾ 0 copies of A1. If χ(X1) = χ(X2), then we get s1 = s2, i.e., X1, X2

are piecewise isomorphic. This gives the implication “(3) ⇒ (1)”. □

Corollary 5.15. — Let f, g ∈ k[x, y, z, w] be irreducible homogeneous polynomials
such that P3

f ≃ P3
g. Assume moreover that the zero loci X := VP3(f), Y := VP3(g)

(a) are both normal, rational and each admits a desingularization by trees of smooth
rational curves or

(b) are both of degree 3 and rational.
Then X, Y are piecewise isomorphic.

Proof. — Since P3
f ≃ P3

g we get [X] = [Y ] inside K0(Vark) and thus χ(X) = χ(Y ),
see Lemma 4.10. In case (a), the statement follows from Proposition 5.14. So assume
we are in case (b). Then the statement follows from Proposition 4.19 in combination
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with Lemma 5.9 if X and Y are normal and from Proposition 5.10 in combination
with Lemma 5.11 in the other case. □

We now focus on cones over smooth cubic curves, i.e., on non-rational cubic hyper-
surfaces of P3. This constitutes the last unproved part of Theorem C. To prove that for
such hypersurfaces, Question (2) has an affirmative answer, we will need the following
result:

Lemma 5.16. — Let f ∈ k[x, y, z] be an irreducible homogeneous polynomial of degree 3

such that VP2(f) is a smooth cubic curve. Then, the surface

X = VA3(f − 1)

admits no non-trivial Ga-action.

Proof. — Suppose for contradiction that X admits a non-trivial Ga-action. Applying
[BFT23, Prop. 2.5.1], we obtain a Ga-invariant affine dense open subset X ′ ⊆ X, that
is a Ga-cylinder, i.e., X ′ is Ga-isomorphic to Ga×U , where U is a smooth affine curve
and where the Ga-action on Ga × U is given by s · (t, u) := (s + t, u) for s, t ∈ Ga,
u ∈ U .

Using the canonical embedding A3 ↪→ P3, (x, y, z) 7→ [1 : x : y : z] we can view X

as an open subset of the irreducible surface Y = VP3(f − w3), where [w : x : y : z]

denote the homogeneous coordinates on P3. Here, X = Yw is the complement in Y of
a smooth curve Γ and Γ ≃ VP2(f).

Suppose first that Y is a cone over a smooth cubic curve C. Writing p ∈ Y the
singular point, the projection away from p gives to Y ∖ {p} an A1-bundle structure
over C. Hence, every closed rational curve on Y is one of the lines through p. As Γ

is a hyperplane section of Y and as Γ is not rational, it intersects a general such line
into at least one point outside of p. As the open subset X ′ ⊆ Y ∖ Γ is contained in
the smooth locus of Y , it contains only finitely many curves isomorphic to A1. This
contradicts the fact that X ′ is a Ga-cylinder.

In the remaining case, Y is a rational cubic surface (Lemma 5.8). Hence, U is a
smooth affine rational curve, and is thus isomorphic to A1 ∖∆ for some finite set ∆

of r ⩾ 0 points. Hence, X ′ is isomorphic to the open subset V ′ = A1× (A1∖∆) ⊆ A2.
By Corollary 5.12, Y is piecewise isomorphic to the disjoint union of A2, one point,
and n copies of A1, with 0 ⩽ n ⩽ 7, and thus to the disjoint union of X ′ ≃ V ′ with
one point and n+ r copies of A1. As the one-dimensional variety Y ∖X ′ contains Γ,
that is not rational, we get a contradiction, by applying Lemma 4.15, where U := X ′,
S1 is a point, R1 is the disjoint union of n + r copies of A1, and S2 is a finite set,
R2 is a disjoint union of irreducible curves such that Y ∖X ′ is piecewise isomorphic
to S2 ⨿R2. □

We are now able to prove part 3 of Theorem C, that is Proposition 5.17. If k = C,
then Proposition 5.17 follows essentially from [LS12].

J.É.P. — M., 2024, tome 11



764 J. Blanc, P.-M. Poloni & I. Van Santen

Proposition 5.17. — Let f, g ∈ k[x, y, z, w] be irreducible homogeneous polynomials
of degree three such that VP3(f), VP3(g) are non-rational. If P3

f ≃ P3
g, then there exists

φ ∈ Aut(P3) with φ(VP3(f)) = VP3(g).

Proof. — By Lemma 5.8 we may assume after applying automorphisms of P3 to f

and g that f, g ∈ k[x, y, z] and that the zero loci VP2(f), VP2(g) are smooth cubic
curves.

By Lemma 5.16, every Ga-action on the affine surfaces X0 := VA3(f − 1) and
Y0 := VA3(g − 1) is trivial.

Let θ : P3
f → P3

g be an isomorphism. By Proposition 2.1 and Remark 2.2, we get
an isomorphism

φ : A1 ×X0 = VA4(f − 1) −→ VA4(g − 1) = A1 × Y0

such that πg,1 ◦ φ = θ ◦ πf,1, where the morphisms πf,1 : VA4(f − 1) → P3
f and

πg,1 : VA4(g − 1)→ P3
g denote the canonical projections.

Using that X0 admit no non-trivial Ga-action, by [Cra04, Prop. 4.7] it follows that
the intersection of the invariant subalgebras k[A1 ×X0]

Ga inside k[A1 ×X0] over all
Ga-actions on A1 × X0 is equal to k[X0]. Using that a similar statement holds for
Y0×A1, we get that φ maps the fibres of A1×X0 → X0 onto the fibres of A1×Y0 → Y0.
Using the commutative diagrams

A1 ×X0

(t, x0) 7→ x0
��

πf,1
// P3

f

projection
from [1 : 0 : 0 : 0]
��

X0
// P2

f

A1 × Y0

(t, y0) 7→ y0
��

πg,1
// P3

g

projection
from [1 : 0 : 0 : 0]
��

Y0 // P2
g

we get that θ : P3
f → P3

g maps the fibres of the locally trivial A1-bundle P3
f → P2

f (with
respect to the Zariski topology) onto those of P3

g → P2
g. Hence, we get an isomorphism

P2
f ≃ P2

g. As VP2(f) and VP2(g) are non-rational this isomorphism extends to an
automorphism of P2. □

Now we are able to give the proof of Theorem C:

Proof of Theorem C
(1) This follows from Corollary 5.15.
(3) If H is a non-rational cubic surface, then H ′ is a cubic as well (by using the order

of the Picard groups of the complements, see also Lemma 2.6). Since χ(H) = χ(H ′),
Lemma 5.13 implies that H ′ is non-rational. Thus 3 follows from Proposition 5.17.

(2) If H or H ′ is a cubic surface, then as before, both are cubics. If either H or H ′

is non-rational, then 3 implies that H and H ′ are isomorphic, and thus also piecewise
isomorphic. We may thus assume that both H and H ′ are rational. By Corollary 5.12
it follows that H (respectively H ′) is piecewise isomorphic to a disjoint union of A2,
one point and n (respectively n′) copies of A1. As P3∖H and P3∖H ′ are isomorphic,
we get 2 + n = χ(H) = χ(H ′) = 2 + n′ and hence H, H ′ are piecewise isomorphic.
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If moreover H is smooth, then χ(H) = 9 by Lemma 5.9. If H ′ would be non-normal,
then Lemma 5.11 and Proposition 5.10 would imply that χ(H ′) ⩽ 4, which contradicts
χ(H) = χ(H ′). Thus Lemma 5.9 implies that H ′ is smooth. This finishes the proof
of 2. □

We finish this subsection with the following concrete question motivated by Propo-
sition 3.4:

Question 5.18. — Let f, g ∈ k[x, y, z, w] be given by

f = x2y + z3 and g = x2y + z3 + xw2.

Are the varieties P3
f and P3

g isomorphic?

An affirmative answer would give a negative answer to Question (3) in degree
three and dimension three, since the zero locus of f in P3 is non-normal, whereas
the zero locus of g in P3 is normal. Moreover, χ(VP3(f)) = χ(VP3(g)), since P4

f ≃ P4
g

by Proposition 3.4 and since P4
f → P3

f , P4
g → P3

g are locally trivial A1-bundles with
respect to the Zariski topology, see Example 4.5.

5.3. Automorphisms of complements of singular cubic surfaces. — Throughout
this subsection we always assume that k is algebraically closed.

We finish this text by giving some examples, that give a negative answer to Ques-
tion (1), for singular irreducible cubic hypersurfaces of P3. As explained in the intro-
duction, this question is wide open for smooth cubics and known to have a negative
answer for singular cubic surfaces with Du Val singularities in characteristic zero
[CDP18, Th. C & Th. 4.3]. We now extend this to other singular cubics. Each irre-
ducible cubic hypersurface of P3 that does not have Du Val singularities is either the
cone over a smooth cubic curve in P2 or is rational and non-normal (this follows from
Lemmas 5.8 and 5.9). In this latter case, it always contains a line with multiplicity 2

(Proposition 5.10). These two cases are done in the next two simple lemmas, that
work in any dimension.

Lemma 5.19. — Let d ⩾ 1, n ⩾ 3 and let X ⊆ Pn be an irreducible hypersurface of
degree d, having a point of multiplicity d (i.e., being a cone). Then, there exists an
element φ ∈ Aut(Pn ∖X) that does not extend to an element of Aut(Pn).

Proof. — Changing coordinates, we may assume that [0 : · · · : 0 : 1] is a point of X
of multiplicity d. Hence, X = VPn(f), where f ∈ k[x0, . . . , xn−1] is irreducible and
homogeneous of degree d. We define φ ∈ Aut(Pn

f ) to be the involution given by

[x0 : · · · : xn] 7−→
[
x0 : · · · : xn−1 : −xn +

xd+1
0

f(x0, . . . , xn−1)

]
. □

Lemma 5.20. — Let d ⩾ 1, n ⩾ 3 and let X ⊆ Pn be an irreducible hypersurface
of degree d, being of multiplicity d − 1 along a linear subspace L ⊆ Pn of dimension
r ∈ {1, . . . , n − 2}. Then, there exists an element φ ∈ Aut(Pn ∖ X) that does not
extend to an element of Aut(Pn).
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Proof. — Changing coordinates, we may assume that L = VPn(xr+1, . . . , xn). Hence,
X = VPn(f), where f ∈ k[x0, . . . , xn] is irreducible, homogeneous of degree d and of
the form

f = x0a0 + · · ·+ xrar + b,

where a0, . . . , ar, b ∈ k[xr+1, . . . , xn]. We define a Ga-action on Pn
f by

Ga × Pn
f −→ Pn

f

(t, [x0 : · · · : xn]) 7−→
[
x0 + t

a1x
2
n

f(x0, . . . , xn)
: x1 − t

a0x
2
n

f(x0, . . . , xn)
: x2 : · · · : xn

]
and choose φ ∈ Aut(Pn

f ) to be any non-trivial element of Ga ⊆ Aut(Pn
f ). □

The following lemma follows from [CDP18, Th. C & Th. 4.3] in characteristic zero.
We insert a proof (in any characteristic), as the argument is simple.

Lemma 5.21. — Let X ⊆ P3 be a normal rational singular cubic hypersurface. Then
P3∖X contains an open affine subset U that is an A1-cylinder, i.e., U ≃ A1×U ′ for
some affine variety U ′.

Proof. — Since X is singular, we may assume (after a coordinate change) that X is
given by f := f2(x, y, z)w+f3(x, y, z) where fi ∈ k[x, y, z] is homogeneous of degree i
and [w : x : y : z] denote the homogeneous coordinates of P3. As X is normal and
rational, f2 ̸= 0, see Lemma 5.8. Let C := VP2(f2). We may choose the coordinates
(x, y, z) in such a way, that VP2(z) is contained in C if f2 is reducible, and that
VP2(z) is tangent to C if f2 is irreducible. Then P2

zf2
≃ A2

f2(x,y,1)
≃ D × A1, where

D ∈ {A1,A1 ∖ {0}}, and we get an isomorphism

P3
zff2 ≃ A3

f(w,x,y,1)f2(x,y,1)
≃−−→ (A1 ∖ {0})× A2

f2(x,y,1)

(w, x, y) 7−→ (f2(x, y, 1)w + f3(x, y, 1), x, y)(u− f3(x, y, 1)
f2(x, y, 1)

, x, y
)
←− [ (u, x, y). □

Proposition 5.22. — For each singular irreducible cubic hypersurface X ⊆ P3, there
exists an element φ ∈ Aut(P3 ∖X) that does not extend to an element of Aut(P3).

Proof. — If X is a cone, this follows from Lemma 5.19. If X is not normal, it contains
a line with multiplicity 2 (Proposition 5.10), and the result follows from Lemma 5.20.
In the remaining case, X is rational (Lemma 5.8) and normal. As Pic(P3 ∖ X) ≃
Z/3Z is finite, Lemma 5.21 implies that P3 ∖X admits a non-trivial Ga-action, see
e.g. [DK15, Prop. 2].

Since P3∖X is affine and of dimension ⩾ 2, the Krull-dimension of the Ga-invariant
functions is ⩾ 1. As one may multiply the Ga-action by any Ga-invariant function on
P3 ∖ X, we get a faithful Gr

a-action on P3 ∖ X for any r ⩾ 1. On the other hand,
the elements of Aut(P3 ∖X) that extend to automorphisms of P3 form an algebraic
group. This implies the result. □
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