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LOCAL RIGIDITY OF MANIFOLDS

WITH HYPERBOLIC CUSPS II. NONLINEAR THEORY

by Yannick Guedes Bonthonneau & Thibault Lefeuvre

Abstract. — This article is the second in a series of two whose aim is to extend a recent result of
Guillarmou-Lefeuvre [GL19] on the local rigidity of the marked length spectrum from the case
of compact negatively-curved Riemannian manifolds to the case of manifolds with hyperbolic
cusps. We deal with the nonlinear version of the problem and prove that such manifolds are
locally rigid for nonlinear perturbations of the metric that slightly decrease at infinity. Our
proof relies on the linear theory addressed in [GBL23a] and on a careful analytic study of the
generalized X-ray transform operator Π2. In particular, we prove that the latter fits in the
microlocal theory for cusp manifolds developed in [GB16, GBW22, GBL23a].

Résumé (Rigidité locale des variétés à pointes hyperboliques II. Théorie non linéaire)
Cet article est le second d’une série de deux visant à étendre un résultat récent de

Guillarmou-Lefeuvre [GL19] sur la rigidité locale du spectre des longueurs marquées, passant
du cas des variétés riemanniennes compactes à courbure négative au cas des variétés à pointes
hyperboliques. Nous abordons la version non linéaire du problème et montrons que de telles
variétés sont localement rigides pour des perturbations non linéaires de la métrique qui
décroissent légèrement à l’infini. Notre démonstration repose sur la théorie linéaire abordée
dans [GBL23a] et sur une étude analytique approfondie de l’opérateur de transformée en
rayons X généralisée Π2. En particulier, nous montrons que ce dernier s’inscrit dans la théorie
microlocale des variétés à pointes développée dans [GB16, GBW22, GBL23a].
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1442 Y. Guedes Bonthonneau & Th. Lefeuvre

1. Introduction

1.1. Burns-Katok’s conjecture. Main result. — If (M, g) is a smooth closed (com-
pact, without boundary) Riemannian manifold with negative sectional curvature,
and C denotes the set of free homotopy classes on M , one can consider for every
free homotopy class c ∈ C, the length ℓg(γg(c)) of the corresponding unique closed
g-geodesic γg(c) ∈ c. This allows to define the marked length spectrum map as:

(1.1) L : Met<0 −→ CN, g 7−→ (ℓg(γg(c)))c∈C,

where Met<0 is the space of negatively-curved metrics. This map is naturally invariant
under the action of the group of diffeomorphisms that are isotopic to the identity,
namely, if ϕ is a smooth diffeomorphism on M one has Lϕ∗g = Lg. The marked
length rigidity problem is to understand whether this is the only obstruction to the
injectivity of the map (1.1). The celebrated Burns-Katok conjecture [BK85] asserts
that, on closed negatively-curved manifolds, the marked length spectrum (1.1) should
determine the metric up to isometries isotopic to the identity.

Several authors contributed to this long-standing problem. Katok [Kat88] proved
the result when the two metrics are conformal. A few years later, Croke [Cro90]
and Otal [Ota90] independently proved the conjecture for compact surfaces. Then,
Hamenstädt [Ham99], using the work of Besson-Courtois-Gallot [BCG95], proved the
conjecture when one of the metrics is a locally symmetric space. The problem did not
really evolve until the recent analytical proof of a local version of the conjecture by
Guillarmou and the second author [GL19], see also [GKL22]. For further references
on this problem, we refer to the surveys of Croke [Cro04] and Wilkinson [Wil14].

The aim of the present article is to study the marked length spectrum rigidity ques-
tion on noncompact manifolds whose ends are real hyperbolic cusps. More precisely,
we will consider complete negatively-curved Riemannian manifolds (M, g0) with a
finite numbers of ends of the form

(1.2) Za,Λ = [a,+∞)y × (Rd/Λ)θ,

where d ⩾ 1, a > 0, and Λ is a crystallographic group with covolume 1, endowed with
a metric

(1.3) g0 =
dy2 + dθ2

y2
.

The sectional curvature of g0 in the cusp is constant equal to −1, and the volume of
Za,Λ is finite. In the following, such metrics satisfying (1.3) will be called exact cusp
metrics. Perturbations of exact cusp metrics by a small symmetric 2-tensor decaying
sufficiently fast at infinity will be called cusp metrics.

Note that, in dimension two, all the cusps are isometric and Λ = Z. However,
in higher dimensions, unless Λ and Λ′ are in the same SO(d,Z)-orbit, Za,Λ and Za′,Λ′

are never isometric. Observe that in general Λ ⊂ O(d) ⋉ Rd. However, according to
Bieberbach’s theorem, taking a finite cover we can assume that Λ is actually a lattice
of translations in Rd. As a consequence, instead of dealing directly with the non-lattice
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Local rigidity of manifolds with hyperbolic cusps 1443

case, we will consider the case of manifold with cusps, whose cusps are defined with
lattices, and posit the existence of a finite group of isometries acting freely.

Z1

Z2

Z3

M0

Figure 1. A surface with three cusps. In red, a closed geodesic in a
hyperbolic free homotopy class. In blue, a curve in a free homotopy
class of loops wrapping once around a cusp: this class does not contain
any closed geodesic.

As in the compact case, we will denote by C the set of free homotopy classes on M .
On an exact cusp manifold, some of these classes do not contain closed geodesics: they
correspond to curves winding exclusively around the same cuspidal end. We will de-
note by Chyp the set of free homotopy classes that do not wind exclusively around the
same cuspidal end and call them hyperbolic free homotopy classes. Equivalently, the
set Chyp is in one-to-one correspondence with the set of hyperbolic conjugacy classes
of π1(M,x0), x0 ∈M . In this setting, using the Anosov structure of the geodesic flow,
one can still prove that for each such class c ∈ Chyp of smooth curves on M , there
is a unique g0-geodesic representative γg0(c) ∈ c. This is still true for small pertur-
bations g of an exact cusp metric of reference g0 satisfying some mild assumptions
on its behaviour at infinity, see Appendix A. The marked length spectrum of such a
manifold (M, g) is then defined similarly to (1.1),

(1.4) L : Met<0 −→ CN
hyp, g 7−→ (ℓg(γg(c)))c∈Chyp

.

We will prove the following result:

Theorem 1.1. — Let (Md+1, g0) be a negatively-curved complete manifold whose ends
are real hyperbolic cusps of the form (1.2), (1.3). For every ε > 0, there exists δ > 0

such that the following holds: if g is a metric such that ∥g−g0∥y−εC3+ε(M,⊗2
ST

∗M) < δ

and g has same marked length spectrum (1.4) as g0, then g is isometric to g0.

The functional spaces of the form yρCr(M,⊗2
ST

∗M), ρ, r ∈ R are described pre-
cisely in Section 2.3: they correspond to the standard Cr-spaces induced by the Rie-
mannian structure and multiplied by a weight yρ encoding the decaying/growing be-
haviour of the function at infinity. Note that if Theorem 1.1 is proved for cusps defined
with lattices, it follows for the general case since we can take a finite cover for which
Theorem 1.1 applies: we then have on this finite cover a finite group acting freely
by isometries and since all constructions are geometric, everything is appropriately
equivariant.
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1444 Y. Guedes Bonthonneau & Th. Lefeuvre

For surfaces of finite area, following the works of [Cro90, Ota90], the Burns-Katok
conjecture was globally addressed by [Cao95] without any assumption on the closeness
of g and g0, and our result is not new. However, in dimension ⩾ 3, this is the first
non-linear result concerning the Burns-Katok conjecture obtained allowing variable
curvature on non-compact manifolds. As in [GL19], the previous Theorem is actually
a corollary of a stronger result which quantifies the distance between isometry classes
in terms of the cohomology class of the geodesic stretch, see Theorem 6.1 for further
details. This statement is new even in dimension 2.

1.2. Main difficulties. — We now describe the main analytic obstacles in proving
Theorem 1.1 and to what extent it is much more than just a mere adaptation of
[GL19]. In the closed case, as observed by Guillarmou and the second author in
[Gui17, GL19], there exists a natural pseudodifferential operator Π2, called the nor-
mal operator or generalized X-ray transform, whose invertibility implies the local
injectivity of the marked length spectrum map (1.1). This operator is constructed
from the meromorphic extension of the resolvent of the geodesic flow, which itself
relies on the Anosov (that is, hyperbolic) structure of this flow guaranteed by the
negative sectional curvature. In the present article, we will mainly follow the same
strategy, but there are major difficulties to overcome when dealing with noncompact
manifolds. Actually, one faces similar obstacles as the ones encountered when devel-
oping a pseudodifferential calculus on noncompact manifolds. When the geometric
ends of the manifold are quite explicit (for instance, asymptotically Euclidean), the
standard way to do this is to use an approach developed by Melrose [Mel93], known as
b-calculus: the Fredholm properties of pseudodifferential operators acting on weighted
Sobolev/Hölder-Zygmund spaces can be read off from the behaviour of their indicial
operator, that is, the way they behave at infinity on a model space.

Although we will not make use of b-calculus, our analytic approach is rather sim-
ilar in spirit: a specific microlocal calculus was tailored for exact cusp manifolds in
[GB16, GBW22, GBL23a], whose aim was precisely to analyze Fredholmness of nat-
ural geometric operators (such as the Laplacian for instance) on weighted spaces
Sobolev (resp. Hölder-Zygmund) of the form yρHr(M) (resp. yρCr(M)), ρ, r ∈ R,
by means of an indicial operator on the cusp “at infinity”. This calculus, as well as
its main features, is explained at length in Section 3. Theorem 1.1 then relies on the
following fundamental point: the normal operator Π2 fits into this calculus. Combined
with an earlier result obtained in our first article, see [GBL23a, Th. 1] (injectivity of
the X-ray transform), this is what will eventually allow us to show that Π2 is elliptic,
invertible, and satisfies some important elliptic estimates on certain weighted spaces.

Nevertheless, we point out that in an earlier version of the present article, we were
only able to prove Theorem 1.1 up to a codimension 1 submanifold in the mod-
uli space of isometry classes. The main reason for that was that we were running
our argument with Sobolev spaces. Although more convenient for analytic purposes,
Sobolev spaces have the disadvantage of being unnatural from the point of view of
geometry, especially when studying the marked length spectrum map (1.1) where one
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Local rigidity of manifolds with hyperbolic cusps 1445

rather expects Hölder regularity to appear. This observation was previously forcing us
to apply some Sobolev-Hölder embedding estimates. However, in the case of cusp man-
ifolds, these embeddings are highly problematic insofar as they involve a weight yd/2
(for instance H(d+1)/2+(M) embeds continuously into yd/2+L∞(M), see [GBL23a,
Lem. 2.1]), eventually leading our final estimates in Section 6 to fall outside the range
of weights for which we know that the operator Π2 is invertible. This is the reason
why the codimension 1 assumption appeared in an earlier draft of this article.

In order to bypass this difficulty and prove Theorem 1.1, we had to resort to using
only Hölder-Zygmund spaces. A pseudodifferential calculus for exact cusp manifolds
on Hölder-Zygmund spaces was studied in our previous article [GBL23a]. However,
the study of the resolvent of the geodesic flow on cusp manifolds was only carried out
in [GBW22] on anisotropic Sobolev spaces. Hence, in Section 4, we had to go through
the study of that resolvent on anisotropic Hölder-Zygmund spaces. We point out that
even in the case of closed manifolds, where meromorphic extension on anisotropic
Sobolev spaces is well-known (see [FS11, DZ16] for instance), this extension on Hölder-
Zygmund spaces is new (it seems that [AB22] would be the closest work to that).

As a closing remark, observe that we are able to perturb only metrics with curvature
exactly −1 in some neighbourhood of the cusp, because we are using the meromorphic
continuation of the resolvent of the geodesic flow of g0. This is only available when g0
has curvature −1 outside of a compact set.

1.3. Strategy of proof. — We now describe more precisely the sequence of argu-
ments leading to Theorem 1.1. They are detailed in the last section Section 6 of the
paper. If g0 is some fixed exact cusp metric on M , then the moduli space of isometry
classes of metrics near g0 can be understood by means of a slice theorem, mainly due
to Ebin [Ebi68]: there exists an affine space of symmetric 2-tensors, passing through
g0, and denoted by g0 + kerD∗, such that for any metric close to g, there exists a
(unique) diffeomorphism ϕ :M →M such that ϕ∗g − g0 ∈ kerD∗. The space kerD∗

is known as the space of solenoidal tensors. For closed manifolds, this is a well-known
fact (see [GL19, Lem. 4.1] for instance) but on exact cusp manifolds, this is not trivial
and can actually only be achieved for certain metrics g with a decaying behaviour at
infinity, see Lemma 6.1.

After this gauge reduction, known as the solenoidal reduction, the proof boils down
to showing that the marked length spectrum (1.1), when restricted to g0 + kerD∗, is
injective. For that, we use the notion of geodesic stretch defined on the unit tangent
bundle SMg0 of the metric of reference g0. This stretch is defined as follows: it is
known that for g close to g0, the two metrics have an orbit-conjugate geodesic flow
(see Appendix A where this is further described for noncompact manifolds), that is,
there exists a homeomorphism ψ : SMg0 → SMg that conjugates the flows up to a
time reparametrization. In other words, there exists ag ∈ Cα(SMg0) such that:

∀z ∈ SMg0 , dψ(Xg0(z)) = ag(z)Xg(ψ(z)),

where Xg, Xg0 are the respective geodesic vector fields of the metrics g and g0. An im-
portant property of the stretch is that it describes the length of periodic g-geodesics
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1446 Y. Guedes Bonthonneau & Th. Lefeuvre

by integration along periodic g0-geodesics, that is,

∀c ∈ C, Lg(c) =

∫
γg0 (c)

ag.

The Livšic theorem [Liv72] then asserts that the two metrics g and g0 have same
marked length spectrum if and only if ag is cohomologous to 1, that is, there exists
a Hölder-continuous function u such that ag − 1 = Xg0u. A function of the form
Xg0u is called a coboundary. Following [GBL23a], this still holds for cusp manifolds.
Moreover, this stretch satisfies a Taylor-expansion of the form: setting h := ϕ∗g− g0,

(1.5) 1
2π

∗
2h = ag − 1+Xg0u+ O(∥h∥2),

where π∗
2 : C∞(M,⊗2

ST
∗M) → C∞(SM) is some natural pullback map of symmetric

2-tensors, see Section 2.4 for further details. We do not make explicit the norm in the
right-hand side of (1.5) in order to simplify the exposition of the argument.

Using the meromorphic extension of the resolvent of the geodesic flow, it is possible
to construct an operator Π, called the averaging operator, mapping regular functions
to distributions, with the property that it vanishes on coboundaries, see Section 4.3
for further details. Hence, applying Π to (1.5), we obtain:

1
2Ππ

∗
2h = Π[ag − 1] + O(∥h∥2),

where [ag − 1] denotes the cohomology class of ag − 1 (modulo coboundaries).
Applying π2∗, the adjoint of π∗

2 , we then recover on the left-hand side π2∗Ππ∗
2 =:

Π2, which is precisely equal to the so-called normal operator, and turns out to be
pseudodifferential. As we shall see in Section 5, it enjoys good elliptic properties on
solenoidal tensors, and is invertible on a certain range of weighted spaces, as follows
from our first article [GBL23a]. This will lead to elliptic estimates of the form:

∥h∥ ≲ ∥Π2h∥ ≲ ∥π2∗Π[ag − 1]∥+ O(∥h∥2).

However, when g and g0 have same marked length spectrum, ag is cohomologous to 1,
that is [ag−1] = 0, and we thus obtain that ∥h∥ ≲ ∥h∥2, which is a contradiction for h
small enough, unless h = ϕ∗g − g0 ≡ 0, thus showing that the metrics are isometric.

1.4. Outline of the paper. — In Section 2, we recall the main features of exact cusp
manifolds and some elements of Riemannian geometry. The next section Section 3
surveys the main properties of the pseudodifferential calculus that we use, and which
was mainly developed in [GB16, GBW22, GBL23a]. We explain the important no-
tions of admissible and indicial operators and give some basic examples such as the
Laplacian, or the exterior derivative. In Section 4, we study the resolvent of the geo-
desic flow of exact cusp manifolds on anisotropic Hölder-Zygmund spaces and show
some crucial boundedness properties of this resolvent. In section Section 5, we intro-
duce the normal operator Π2 (or generalized X-ray transform) and show that it fits
into the microlocal calculus detailed in Section 3. We study its main properties, show
that it is invertible on a certain range of weighted Sobolev/Hölder-Zygmund spaces,
and that it satisfies an elliptic estimate. Eventually, we prove the main Theorem 1.1
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Local rigidity of manifolds with hyperbolic cusps 1447

in Section 6. Two appendices A and B are devoted to extending well-known results
on closed negatively-curved manifolds to the case of cusp manifolds: the structural
stability of geodesic flows, and radial source/sink estimates. In the last appendix C,
we prove a technical result on the boundedness of the resolvent of the geodesic flow
on the full cusp when acting on anisotropic Hölder-Zygmund spaces.

Acknowledgements. — We thank Viviane Baladi, Sébastien Gouëzel, Colin Guillar-
mou, Sergiu Moroianu, Davi Obata, Frédéric Paulin, Frédéric Rochon for helpful
remarks and useful discussions. T.L. also thanks the reading group on b-calculus
in Orsay for sharing their knowledge and enthusiasm.

2. Geometric setup

2.1. Exact cusp manifolds. — Let M be a smooth manifold. We say that M has the
topology of a cusp manifold if M is non-compact and can be written as:

M =M0 ∪ Z0 ∪ · · · ∪ Zℓ,

where M0 is a compact manifold with boundary, Z1, . . . , Zℓ are the (finitely many)
non-compact ends of M which are required to be diffeomorphic to a cylinder
[1,+∞)y × Tdθ , where T = R/Z denotes the unit circle. We will use the variable y for
the [1,+∞)y-coordinate and θ for the toral part Tdθ .

Definition 2.1. — We say that a smooth metric g on M is exactly hyperbolic in the
cusps if there is a unimodular lattice(1) Λ in Rd and coordinates [a,+∞)y × (Rd/Λi)θ
on the cusps so that:

g0|Zi∩{y>a} ≃
dy2 +

∑d
i=1 dθ

2
i

y2
.

The terminology exact cusp metric (or exact cusp manifold) will be also used at
several places below. By this, we mean a smooth manifold with the topology of a cusp
manifold, equipped with a smooth metric that is exactly hyperbolic in the cusps.
A cusp metric is a perturbation of an exact cusp metric by a symmetric 2-tensor
decaying as y → +∞, see Section 2.3 for further details on the functional spaces.

Since we will be considering the geodesic flow on cusp manifolds, it is convenient
to introduce some coordinates on SZ, the unit tangent bundle over the cusp. Given
a vector in TZ,

v = vyy∂y + vθ · y∂θ,
one has that |v|2 = v2y + v2θ . In particular, we can take spherical (ϕ, u) coordinates
in SZ. Here, ϕ ∈ [0, π] and u ∈ Sd−1, and (y, θ, ϕ, u) denotes the point

cosϕy∂y + sinϕ u · y∂θ.

The geodesic vector field over Z is then given by
(2.1) X = cosϕy∂y + sinϕ∂ϕ + y sinϕ u · ∂θ.

Observe that u is invariant under the geodesic flow of the cusp.

(1)Normalized with determinant equal to 1.
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1448 Y. Guedes Bonthonneau & Th. Lefeuvre

In the main arguments, we will need to consider manifolds constructed out of cusp
manifolds such as the unit tangent bundle of a Riemannian manifold with exactly
hyperbolic metric in the cusps. As a consequence, we introduce the following slightly
more general geometric setup: we are given a non-compact manifold N with a finite
number of ends Nℓ, which take the form Nℓ ≃ Zℓ,a × Fℓ, where

Zℓ,a = {z ∈ Zℓ | y(z) > a} and Zℓ = (0,+∞)y × Rd/Λℓ,

Λℓ ⊂ Rd being a lattice and the slice (Fℓ, gFℓ
) is a compact Riemannian manifold of

dimension k. We will use the variables (z, ζ) ∈ Zℓ × Fℓ and z = (y, θ) ∈ [a,+∞) ×
Rd/Λℓ. We will also sometimes involve the change of coordinate y = er, with r ∈ R.
We further assume that N is endowed with a metric g, equal over the cusps to

(2.2) dy2 + dθ2

y2
+ gFℓ

.

We call such a manifold N a fibered exact cusp manifold.

Example 2.1 (Unit sphere bundle). — The unit sphere bundle

SM := {(x, v) ∈ TM | |v|g = 1}

is a typical example of manifold N = SM that we will consider. The natural metric
on N induced by g is the Sasaki metric, see [GB15, App. A.3.2]. Note that in this
specific case, g is not exactly product as in (2.2) since gFℓ

depends on (y, θ) but this
dependence is mild, that is, g is uniformly equivalent to the product metric g0 + gSd

on Zℓ × Sd.

We also have a vector bundle L → N , and we assume that for each ℓ, there is a
vector bundle Lℓ → Fℓ, so that

L|Nℓ
≃ Zℓ × Lℓ.

Whenever L is a Hermitian vector bundle with metric gL, a compatible connection
∇L is one that satisfies

XgL(Y,Z) = gL(∇L
XY, Z) + gL(Y,∇L

XZ).

Taking advantage of the product structure, we impose that when X is tangent to Z,

(2.3) ∇XY (z, ζ) = dzY (X) +Az(X) · Y,

where the connection form Az(X) is an anti-symmetric endomorphism depending
linearly on X, and A(y∂y), A(y∂θ) do not depend on y, θ. In particular, we get that
the curvature of ∇L is bounded, as are all its derivatives. Such data (L→ N, g, gL,∇L)

will be called an admissible bundle.

Example 2.2. — Given an exact cusp manifold (M, g), the bundle of differential forms
over M is an admissible bundle. Since the tangent bundle of a cusp is trivial, any
linearly constructed bundle over M is admissible. For example, the bundle of forms
over the Grassmann bundle of M , or over the unit cosphere bundle S∗M .
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The notion of model space or cusp at infinity will be important to us. By this,
we simply mean the space

I(N) := (0,∞)y × F.

More generally, when we are given an admissible vector bundle, the model space will
be L → I(N). We shall see below in Section 3 that geometric operators such as
the Laplacian for instance, will induce natural indicial operators on the model space
I(N), and these operators will be invariant by the natural dilation y 7→ λy, for λ > 0.
Of utmost importance will be the model spaces:

I(Z) = (0,∞)y = Rr, I(SZ) = (0,∞)y × Sd = Rr × Sd.

2.2. Sphere bundle. Geodesic flow. — Throughout the paper, we will use several
features of the geodesic flow that we recall now. We refer to [Pat99, Kni02] for detailed
accounts on the geodesic dynamics. Let (Md+1, g) be an exact cusp manifold, and
further assume that the sectional curvature of g is everywhere negative. In that case,
the geodesic flow (φt)t∈R of g, generated by the vector field X ∈ C∞(SM,T (SM)) is
hyperbolic (or Anosov) and we denote the corresponding Anosov splitting as:

T (SM) = RX ⊕ Eu ⊕ Es,

where for all t ⩾ 0,

(2.4) ∥dφtv∥ ⩽ Ce−λt∥v∥, ∀v ∈ Es, ∥dφ−tv∥ ⩽ Ce−λt∥v∥, ∀v ∈ Eu,

and ∥•∥ is the standard Sasaki norm(2) on SM , and C, λ > 0 are uniform constants.
We set E0 := RX.

We denote by π : SM →M the canonical projection. The vertical bundle V is the
kernel of dπ. Parallel transport with respect to the Levi-Civita connection on TM

allows to define Htot, the total horizontal bundle, and we define H := (RX)⊥ ∩Htot,
where the ⊥ is understood with respect to the Sasaki metric and we have V ⊕ H =

Eu ⊕ Es. The sphere bundle SM is also endowed with the Liouville 1-form α such
that ιXα = 1, ιXdα = 0. The Liouville measure

(2.5) µ := α ∧ (dα)d

is the natural smooth measure preserved by the geodesic flow.
Since we will be working in the cotangent bundle, it is convenient to introduce the

dual spaces

E∗
u := (Eu ⊕ E0)⊥, E∗

s := (Es ⊕ E0)⊥, E∗
0 := (Eu ⊕ Es)⊥, H∗ = V⊥,

where, given F ⊂ T (SM), F⊥ ⊂ T ∗(SM) denotes the bundle such that F⊥(F ) = 0.
The geodesic flow has a natural extension to T ∗(SM) as a flow of symplectomor-
phisms:

(2.6) Φt : (z, ξ) 7−→ (φt(z), (dzφt)
−⊤ξ).

(2)The Sasaki metric is the natural metric induced by g on SM , see [Pat99, Ch. 1] for further
details.
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By definition, we obtain that for t ⩾ 0,

(2.7) ∥Φtξ∥ ⩽ Ce−λt∥v∥, ∀ξ ∈ E∗
s , ∥Φ−tξ∥ ⩽ Ce−λ|t|∥ξ∥, ∀ξ ∈ E∗

u.

It has been known since Green [Gre56] that the stable and unstable bundles can be
described using Jacobi vector fields. This yields two important consequences. The first
one is that Eu and Es are always transverse to V, see [Kli74, Prop. 6]. The second one
is that since negative curvature does not permit conjugate points, φt(V) ∩ V = {0}
as soon as t ̸= 0. In terms of dual bundles, this translates to

H∗ ∩ E∗
s = H∗ ∩ E∗

u = {0}.(2.8)
φt(H∗) ∩H∗ ∩ (E∗

s ⊕ E∗
u) = {0} for all t ̸= 0, uniformly as t −→ ±∞.(2.9)

As the equation (2.1) for the geodesic vector field X shows, the geodesic flow
commutes with translations in the θ-variable for y ≫ 1 large enough. Thus, the
geodesic flow induces a flow (still denoted by (φt)t∈R) on the full cusp

I(SZ) := (0,∞)y × Sd(u,ϕ),

where the θ-coordinate has now been removed. The generator of this flow will be
denoted by I(X) and is given by (2.1). By slight abuse of notation, we still call this
flow the geodesic flow. Its dynamics are easy to understand and depicted in Figure 2:
as t → +∞, all points are attracted to the sink y = 0, ϕ = π, except the ones with
initial direction ϕ = 0, and conversely, as t → −∞, all points are attracted to the
source y = 0, ϕ = 0, except the ones with initial direction ϕ = π.

y

φ = 0 φ = π

y = 0

Figure 2. A schematic representation of the geodesic flow on the full cusp.

In the hyperbolic space HnR, we also have some stable/unstable bundles Eu/sHn
R

, which
are invariant under isometries of HnR, so that they can be pushed forward to the cusps.
We can compare the bundles of HnR and those of the geodesic flow (φt)t∈R on SM
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high in the cusps. Following the arguments in the proof of [GBW22, Lem. 2.5], there
exists a constant C > 0 such that in the cusps

dP(SM)(E
u, EuHn

R
) ⩽ C/y, dP(SM)(E

s, EsHn
R
) ⩽ C/y,

where dP(SM) denotes the distance on the projective space P(SM) induced by the
Riemannian structure of SM . In particular, sufficiently high in the cusps, we can
find global arbitrarily small neighborhoods of Eu and Es that are invariant by local
isometries of the cusps.

By definition, the unit tangent bundle of a cusp end Z ⊂M has a natural product
structure SZ ≃ Z×Sd. As a consequence, we can lift the vector fields y∂y, ∂θ defined
(sufficiently high) on the cusp Z ⊂ M to SZ ⊂ SM by simply lifting them trivially
on the first coordinate of Z×Sd. Note that this does not necessarily coincide with the
horizontal lift. We can then identify T ∗(I(SZ)) = T ∗((0,∞)×Sd) with (∂θ)

⊥ ⊂ T ∗SZ.
It will be convenient to understand the intersection of objects in T ∗(SM) with (∂θ)

⊥,
which is particularly simple:

(2.10)
E∗
u ∩ (∂θ)

⊥ = T ∗
ϕ=πSd, E∗

s ∩ (∂θ)
⊥ = T ∗

ϕ=0Sd,

H∗ ∩ (∂θ)
⊥ =

{
R
dy

y

∣∣∣ ϕ = π/2
}
.

2.3. Functional spaces. — We now introduce the functional spaces we will be work-
ing with throughout the article. First of all, we start with general notation. The
subscript c will denote compactly supported functions (or distributions): for instance,
C∞
c (M) denotes the space of smooth functions with compact support, and the space

of distributions D′(M) is the dual of C∞
c (M). The subscript 0 in functional spaces will

indicate convergence to 0 as y → +∞. For the sake of simplicity, in this paragraph,
we restrict ourselves to functions but sections of an admissible vector bundle can be
handled similarly. We refer to [GBL23a, §2.1.2] for further details.

Let f be a function on N . We define for an integer k ⩾ 0:

∥f∥Ck(N) := sup
0⩽j⩽k

sup
z∈N

∥∇jf(z)∥,

where ∇ is the Levi-Civita connection induced by gN . This is consistent with Sec-
tion A.1. We write f ∈ C∞(N) if all the derivatives of f are bounded. If f is infinitely
many times differentiable, but its derivatives are not bounded, we simply say that f
is smooth.

The Christoffel coefficients of the metric in the cusp in the frame

Xy := y∂y, Xθ := y∂θ, Xζ := ∂ζ

are independent of (y, θ) (see [GB15, App. A.3.2]). As a consequence, in the cusp,
there are uniform constants such that(3)

(2.11) sup
0⩽j⩽k

∥∇jf(z)∥ ≍ sup
|α|⩽k

|Xαf(z)|,

(3)We use the notation a ≍ b if there exists a uniform constant C > 0 such that 1/C × a ⩽ b ⩽
C × a.
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for all z = (y, θ, ζ) ∈ N . Here, α is an ordered multi-index with values in {y, θ, ζ}k.
Hölder spaces are defined in the following way: we let 0<r<1 and define f ∈Cr(N) if:

∥f∥Cr := sup
z∈N

|f(z)|+ sup
z,z′∈N,z ̸=z′

|f(z)− f(z′)|
d(z, z′)r

<∞,

where d(·, ·) refers to the Riemannian distance induced by the metric gN . One can also
define Cr for r ∈ R+∖N by requiring that f ∈ C [r](N) and that the [r]-th derivatives
of f are r− [r] Hölder-continuous (where [x] denotes the integer part of x). The spaces
yρCr(N) are defined for ρ ∈ R by the norm:

∥f∥yρCr(N) := ∥y−ρf∥Cr(N).

Here, there is a slight abuse of notations: y actually denotes the extension of the
height function y to the whole manifold N by a positive function.

The Lebesgue spaces Lp(N), for p ⩾ 1, are the usual spaces defined with respect to
the Riemannian measure dµ induced by the metric gN . Over the cusp, it has the par-
ticular expression dµ = y−(d+1)dydθd volFℓ

(ζ), where d volFℓ
denotes the Riemannian

measure induced by the metric gFℓ
. For r ∈ R, we define (via the spectral theorem):

(2.12) ∥f∥Hr(N) := ∥(−∆+ 1)rf∥L2(N),

and Hr(N) is the completion of C∞
comp(N) with respect to this norm. Here ∆ is the

Laplacian induced by the metric gN . Similarly, one can define the yρHr(N) spaces
for ρ ∈ R.

Eventually, the Hölder-Zygmund spaces Cr∗(N) (for r ∈ R) are defined thanks to a
hyperbolic Paley-Littlewood decomposition. We briefly recall their definition, as they
were introduced in [GBL23a]. In the compact core of the manifold, the definition is
standard and we refer to [Tay97], for instance. It is therefore sufficient to describe the
non-compact ends, that is the cusp ends. For that, we consider a smooth non-negative
function ψ ∈ C∞

comp(R) such that ψ(s) = 1 for |s| ⩽ 1 and ψ(s) = 0 for |s| ⩾ 2.
We define, for j ∈ N∗, the following function on the cotangent bundle to the

hyperbolic space T ∗Hd+1 ≃ Hd+1 × Rd+1:

(2.13) φj(x, ξ) = ψ(2−j⟨ξ⟩)− ψ(2−j+1⟨ξ⟩),

where (x, ξ) ∈ T ∗Hd+1, x = (y, θ) ∈ Hd+1 and ⟨ξ⟩ :=
√
1 + y2|ξ|2 is the hyperbolic

Japanese bracket with |ξ| = |ξ|euc being the euclidean norm of the (co)vector ξ ∈ Rd+1.
Observe that

suppφj ⊂
{
(x, ξ) ∈ Hd+1 × Rd+1 | 2j−1 ⩽ ⟨ξ⟩ ⩽ 2j+1

}
.

Then, with φ0 = ψ(⟨ξ⟩),
∑+∞
j=0 φj(x, ξ) = 1. Of course, the functions φj are translation

invariant and thus descend to a cusp Z = (0,+∞)×Rd/Λ. We will still denote them
by φj . Following [GBL23a, Def. 3.1], we then introduce the

Definition 2.2. — We define the Hölder-Zygmund space of order r ∈ R as:

Cr∗(Z) :=
{
u ∈ ∆NL∞(Z) + L∞(Z) | ∥u∥Cr

∗
<∞

}
,
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where:

∥u∥Cr
∗
:= sup

j∈N
2jr∥Op(φj)u∥L∞(Z)

and N = 0 for r > 0 and N > (|r|+ d+ 1)/2 when r ⩽ 0.

We recall that for r > 0 not equal to an integer, the space Cr∗ coincide with the
usual Hölder space Cr, that is, the space of C [r] functions whose [r]-th derivative is
(r − [r])-Hölder continuous, see [GBL23a, Prop. 3.2].

Functions in the cuspidal ends depend on the variables (y, θ) ∈ [a,+∞) × Td.
It is thus possible to use Fourier analysis on the torus in the θ-variable. As we will
see, the zeroth Fourier mode of distributions restricted to cusps will play a par-
ticular role. In some sense, from an analytic perspective, when restricting to func-
tions/distributions such that the zeroth Fourier mode vanishes in the cusps, the man-
ifold becomes compact. As we shall see below in Section 3, if (L→ N, g, gL,∇L) is an
admissible bundle, the zeroth Fourier mode of sections can be “pushed forward” in
order to distributional sections of the model space Lℓ → Rr×Fℓ. Hence, we will have
to consider functions/distributions on Rr × Fℓ and when we write Hs(R × Fℓ, Lℓ),
or Cs∗(R×Fℓ, Lℓ), we will always be referring to the usual Sobolev or Hölder-Zygmund
spaces on the product manifold R × Fℓ (where R is endowed with the standard
Lebesgue measure dr).

In Appendix C, we will also have to use W r,1(R × Fℓ, Lℓ), the space of functions
in L1, with r derivatives in L1, r ∈ (0, 1). The natural norm of this space is as usual

(2.14) ∥u∥W r,1(R×Fℓ,Lℓ) = ∥u∥L1(R×Fℓ,Lℓ) +

∫
|z−z′|⩽1

|u(z)− u(z′)|
|z − z′|1+dim(Fℓ)+r

dz dz′,

where z = (r, ζ) is the generic point (note that r = log y, where y is the variable in
the cusp) in R×Fℓ, |z− z′| denotes (with some abuse of notation) the usual distance
on R × Fℓ, that is, |z − z′| = |r − r′| + dFℓ

(ζ, ζ ′) and dz = drd volFℓ
= dyd volFℓ

/y

is the usual volume form. From the perspective of hyperbolic geometry, the volume
form e−rddrd volFℓ

= dyd volFℓ
/yd+1 is more natural. We will often go from the r to

the y = er coordinate. We also warn the reader that the letter r is used both for the
coordinate, and to denote the regularity of the functional spaces (e.g. W r,1); this is
unfortunate but we believe that the context is usually clear enough and prevents all
possible confusion.

Ultimately, we will also use the pairing

⟨f, g⟩ :=
∫
R×Fℓ

f(z)g(z)e−rddz.

It is a classical result that for r < 0:

(2.15) ∥f∥Cr
∗(R×Fℓ) ⩽ sup{⟨f, u⟩ | u ∈ C∞

c (R× Fℓ), ∥u∥erdW r,1 ⩽ 1}.

We refer to [BCD11, Prop. 2.76] for a proof of this fact for instance.
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2.4. X-ray transform and symmetric tensors. — We now introduce some extra geo-
metric content which will play a crucial role in the proof of the main result. For a
general function f ∈ C0(SM), we define its X-ray transform by

Igf(c) =
1

ℓ(γg(c))

∫ ℓ(γg(c))

0

f(γ(t), γ̇(t))dt,

where c ∈ C, γ is a unit-speed parametrization of the unique closed g-geodesic in c.
Although we will mostly use 1- and 2-tensors, it is convenient to introduce notations
for general symmetric tensors. We will be using the injection

πm : v ∈ C∞(M,SM) −→ v ⊗ · · · ⊗ v ∈ C∞(M,SM⊗m).

Given a symmetric m-tensor h ∈ C∞(M,⊗mS T ∗M), we can define a function on SM

by pulling it back via πm:

π∗
mh : (x, v) 7−→ hx(v ⊗ · · · ⊗ v).

Definition 2.3. — The X-ray transform on symmetric m-tensors is defined in the
same way as for C0 functions on SM : if h is a symmetric m-tensor,

Igmh(c) =
1

ℓ(γg(c))

∫ ℓ(γg(c))

0

π∗
mh(γ(t), γ̇(t))dt,

where t 7→ γ(t) is a parametrization by arc-length, c ∈ C.

Given a symmetric m-tensor h, we can consider its covariant derivative ∇h, which
is a section of

T ∗M ⊗ (⊗mS T ∗M) −→M.

If S denotes the symmetrization operator from ⊗m+1T ∗M to ⊗m+1
S T ∗M , we define

the symmetric derivative as

Dh = S(∇h) ∈ C∞(M,⊗m+1
S T ∗M).

Given x ∈M , the pointwise scalar product for tensors in ⊗mT ∗
xM is defined by

⟨v∗1 ⊗ · · · ⊗ v∗m, w
∗
1 ⊗ · · · ⊗ w∗

m⟩x =

m∏
j=1

g(vj , wj),

where vj , wj ∈ TxM and v∗j , w∗
j denotes the dual vector given by the musical isomor-

phism. We can then endow the spaces C∞(M,⊗mS T ∗M) with the scalar product

(2.16) ⟨h1, h2⟩ =
∫
M

⟨h1(x), h2(x)⟩xd vol(x).

We obtain a global scalar product on C∞
c (M,⊗mS T ∗M) by declaring that whenever

m ̸= m′, C∞
c (M,⊗mS T ∗M) is orthogonal to C∞

c (M,⊗m′

S T ∗M). Following conventions
we denote by −D∗ the adjoint of D with respect to this scalar product. One can
compute that for a tensor T , for any orthogonal frame (e1, . . . , ed+1),

D∗T (·) = Tr(∇T )(·) =
∑
i

∇ei
T (ei, ·).
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The operator D∗ is called the divergence, and one can check that it maps symmetric
tensors to symmetric tensors.

Definition 2.4. — We say that a symmetric tensor f is solenoidal if it satisfies
D∗f = 0.

We now introduce the following numbers:

(2.17) λ±d = d/2±
√
d+ d2/4.

It can be easily checked for all d ⩾ 1, −1 < λ−d < −1/2 < d+1/2 < λ+d < d+1. It was
proved in [GBL23a, Lem. 5.5] (see Lemma 3.2) that any tensor f ∈ yρCr∗(M,⊗2

ST
∗M)

for ρ ∈ (λ−d , λ
+
d ) and r ∈ R can be uniquely decomposed as:

(2.18) f = Dp+ h,

where p ∈ yρCr+1
∗ (M,T ∗M), h ∈ yρCr(M,⊗2

ST
∗M) and D∗h = 0. We call Dp the

potential part of f and h the solenoidal part. The numbers λ±d in (2.17) are called
indicial roots (of a certain Laplace operator acting on 1-forms) and they will be further
described in Section 3. They correspond to the specific behaviour of this operator “at
infinity” in the cusps. The decomposition (2.18) and the reason for the existence of
these specific weights λ±d is further discussed in Example 3.4.

We can also define πm∗, which is the formal adjoint of π∗
m — with respect to the

usual scalar product on L2(SM). Moreover, one can check that

π∗
m+1D = Xπ∗

m.

This last relation shows that the kernel of the X-ray transform Igm always contains
potential tensors and one can wonder if the restriction of the X-ray transform to
solenoidal tensors is injective. The following theorem was the main result of our first
article, see [GBL23a, Th. 1]:

Theorem 2.1. — Let (Md+1, g) be a negatively-curved complete manifold whose ends
are exact real hyperbolic cusps. Let −λ2 be the maximum of the sectional curvature.
Then, for all α > 0 and β ∈ [0, λ), the X-ray transform Ig2 is injective on

yβCα(M,S2T ∗M) ∩H1(M,S2T ∗M) ∩ kerD∗.

3. Microlocal calculus on cusp manifolds

In [GBL23a], techniques of inversion of elliptic pseudodifferential operators have
been developed for cusp manifolds, mainly inspired by the work of Melrose [Mel93].
The main obstacle to the construction of parametrices is that smoothing operators are
no longer compact since the manifold is not compact. The setting we will be working
with is that of the microlocal calculus introduced in [GB16] and further expanded in
[GBW22]. One of the main results of [GBL23a] was the construction of parametrices
for pseudodifferential operators on Hölder-Zygmund spaces Cs∗ (see [GBL23a, §3]) and
this will be used at several places in the rest of the article. This calculus was also used
in [GBW22] in order to invert the infinitesimal generator X of the geodesic flow on the
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unit tangent bundle SM which is not an elliptic operator. This will appear in Section
Section 4, where the analytic properties of the meromorphic resolvents (X ± s)−1 at
s = 0 will be investigated.

3.1. Hyperbolic quantization. — Throughout this section, (Md+1, g) is an exact
cusp manifold. Before introducing pseudodifferential operators, we introduce the class
of remainders of our hyperbolic pseudodifferential calculus:

(1) The set of R-residual operators, denoted by Ψ̇−∞
R , is the set of linear operatorsR

bounded as maps
R : yρH−k(N,L1) −→ y−ρHk(N,L2),

for any ρ > 0, k ⩾ 0. Equivalently (see [GBL23a, Prop. 3.3]), this is the set of operators
bounded as maps

R : yρC−k
∗ (N,L1) −→ y−ρCk∗ (N,L2).

(2) The set of R-smoothing operators, denoted by Ψ−∞
R , is the set of linear opera-

tors R bounded as maps

R : yρH−k(N,L1) −→ yρHk(N,L2),

for all ρ ∈ R, k ⩾ 0.
(3) Given a non-trivial interval I = (ρ−, ρ+) ⊂ R, the set of I-residual operators,

denoted by Ψ̇−∞
I , is the set of linear operators R bounded as maps

R : yρ−d/2H−k(N,L1) −→ yρ
′−d/2Hk(N,L2),

for all ρ, ρ′ ∈ I, and any k ⩾ 0. Equivalently, this is the set of operators bounded as
maps

R : yρC−k
∗ (N,L1) −→ yρ

′
Ck∗ (N,L2).

(4) The set of I-smoothing operators, denoted by Ψ−∞
I , is the set of linear opera-

tors R bounded as maps

R : yρ−d/2H−k(N,L1) −→ yρ−d/2Hk(N,L2),

for all ρ ∈ I, and all k ⩾ 0.
We now introduce the symbols that we will quantize. First of all, we let

⟨ξ⟩ :=
√
1 + g∗N (ξ, ξ),

be the Japanese bracket of ξ ∈ T ∗N with respect to the natural metric g∗N on T ∗N

(this is the dual metric to the Sasaki metric). Due to the product structure of the
metric gN on N over the cusp part, it is equal to g∗Zℓ

+g∗Fℓ
. Over the cusps, we denote

by (Y, J, η) ∈ R × Rd × T ∗Fℓ the dual variables to (y, θ, ζ) ∈ [a,+∞) × Rd/Λ × Fℓ
(such global coordinates are possible because the (co)tangent bundle of the cusp is
trivial). In the case that Fℓ is a point, we then have:

⟨ξ⟩ =
√
1 + y2|ξ|2euc =

√
1 + y2(Y 2 + J2).
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Definition 3.1. — A symbol of order m is a smooth section a of Hom(L1, L2) → T ∗N ,
that satisfies the usual estimates over N0 (the compact core of N), and above each Nℓ
(the cuspidal parts), and in local charts for Fℓ, for each α, β, γ, α′, β′, γ′, there is a
constant C > 0:∣∣∣(y∂y)α(y∂θ)β(∂ζ)γ (y−1∂Y )

α′
(y−1∂J)

β′
(∂η)

γ′
a
∣∣∣
Hom(L1,L2)

⩽ C⟨ξ⟩m−α′−|β′|−|γ′|.

We write a ∈ Sm(T ∗N,Hom(L1, L2)).

Note that technically, symbols take values in Hom(π∗L1, π
∗L2), where π : T ∗N→N

is the projection on the base; for the sake of simplicity, we drop the π∗ in the notation.
We can then introduce the hyperbolic quantization. We refer to [GB16] and [GBW22,
App.] for further details. For the sake of simplicity, let us assume that L1 = L2 = C.
We consider a finite cover of N =

⋃
i∈I Ui such that κi : Ui → Rd+1 × Rk is a

diffeomorphism, where k is the dimension of the fiber F ; we further ask that over the
cusp ends Zℓ ×Fℓ, these charts are global i.e., κℓ,j : Zℓ × Vj → (a,+∞)×Rd/Λ×Rk

is a diffeomorphism, where
⋃
j Vj = Fℓ is an open cover for Fℓ. Any symbol/function

over (a,+∞)×Rd/Λ×Rk is then lifted to a Λ-periodic function on (a,+∞)×Rd×Rk.
We let Icomp and Icusp be the index referring respectively to the compact/cusp parts.
We take

∑N
i=1 Ψi = 1, a partition of unity subordinated to the cover N =

⋃
i Ui,

Ψ′
i a set of cutoff functions with support contained in Ui and such that Ψ′

i ≡ 1 on the
support of Ψi, and we set ψi := Ψ ◦ κ−1

i .
On Rm, we denote by OpR

m

(a) the usual left-quantization. Then:

(3.1) Op(a)f :=
∑

i∈Icomp

κ∗i

(
ψ′
iOpR

d+1×Rk

((κi)∗(Ψia)) [(κi)∗(Ψ
′
if)]

)
+

∑
i∈Icusp

κ∗i

(
ψ′
iOpR

d+1×Rk

χ ((κi)∗(Ψia)) [(κi)∗(Ψ
′
if)]

)
.

Let us explain the meaning of the index χ in the quantization in the second sum. In
order to avoid decay issues of the kernel of our pseudodifferential operators in the cusps
off the diagonal {y = y′}, we take a cutoff function χ ∈ C∞

comp(R) supported near 0

such that χ(0) = 1 and truncate the kernel of the operator obtained by the standard
left-quantization. More precisely, in the cusp ends identified with Ry>0 × Rd × Rk,
given OpR

d+1×Rk

(a), we denote by K
OpRd+1×Rk (a)

its Schwartz kernel (with respect to

the Euclidean volume) and define by OpR
m+1

χ the operator whose Schwartz kernel is
χ(y′/y − 1)K

OpRd+1×Rk (a)
.

We then introduce the class of small pseudo-differential operators:

Definition 3.2. — The class of small pseudo-differential operators is defined as:

Ψmsmall(N,L1 → L2) :=
{
Op(a) +R | a ∈ Sm(T ∗N,Hom(L1, L2)), R ∈ Ψ−∞

R
}
.

The choice of the adjective “small” refers to Melrose’s small calculus [Mel93].
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Remark 3.1. — One can also define a semiclassical version of these operators by
introducing a small semiclassical parameter h > 0 and setting

Ψmh,small(N,L1 → L2) :=
{
Oph(a) + OΨ−∞

h
(h∞) | a ∈ Sm(T ∗N,Hom(L1, L2))

}
,

where Oph(a) := Op(a(•, h•)) consists in quantizing the symbol a after fiberwise dila-
tion by the factor h in the radial direction in T ∗M . The usual rules of the semiclassical
calculus then apply, see [GB16] for further details.

We then have a notion of uniform ellipticity:

Definition 3.3. — Let a ∈ Sm(T ∗N,Hom(L1, L2)). We will say that a is left
(resp. right) uniformly elliptic if there exists C > 0 and b ∈ S−m(T ∗N,Hom(L2, L1))

such that b is a left (resp. right) inverse for a, in the sense that b(z, ξ)a(z, ξ) = 1L1

(resp. a(z, ξ)b(z, ξ) = 1L2
) for all (z, ξ) ∈ T ∗N such that g∗N (ξ, ξ) ⩾ C. When L1

and L2 have the same dimension, both definitions are equivalent and we just say that
a is uniformly elliptic.

The class of small operators introduced in Definition 3.2 satisfies the usual prop-
erties expected for pseudodifferential operators:

Proposition 3.1
(1) Let m ∈ R. Then A ∈ Ψmsmall(N,L1 → L2) is bounded as a map

yρHr(N,L1) −→ yρHr−m(N,L2),

yρCr∗(N,L1) −→ yρCr−m∗ (N,L2),

for all r, ρ ∈ R.
(2) Let m,m′ ∈ R, a ∈ Sm(T ∗N,Hom(L1, L2)) and b ∈ Sm

′
(T ∗N,Hom(L2, L3)).

Then Op(a)Op(b) ∈ Ψm+m′

small , and

Op(a)Op(b)−Op(ab) ∈ Ψm+m′−1
small .

In particular, Ψ∗
small :=

⋃
m∈R Ψmsmall is an algebra.

(3) Let a ∈ Sm(T ∗N,Hom(L1, L2)) be left (resp. right) uniformly elliptic. Then
there exists Q ∈ Ψ−m

small(N,L2 → L1) such that

QOp(a) = 1+R (resp. Op(a)Q = 1+R),

with R ∈ Ψ−∞
small(N,L1 → L1).

We refer to [GBL23a, §§2 & 3] for further details. Given a uniformly elliptic small
pseudodifferential operator A, one would like to construct a parametrix modulo com-
pact remainders. However, smoothing operators are no longer compact in our context
due to the lack of compactness of the manifold, and one therefore needs to understand
more precisely the behaviour of the operator at infinity. This will be achieved for a
subclass of operators called admissible and described in the next paragraph. To such
an operator will be associated a holomorphic family of operators C ∋ λ 7→ IZ(λ,A)

acting on C∞(FZ , LZ), called the indicial family. It is the (non-)invertibility of this
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family which will allow us to construct a parametrix for A modulo compact remain-
ders.

Eventually, we conclude this paragraph by quickly recalling the classical notion
of wavefront set of a distribution and of an operator, see [GS94] for instance. Given
(x0, ξ0) ∈ T ∗M ∖ {0} and u ∈ D′(M), we say that (x0, ξ0) is not in the wavefront set
WF(u) of u, if there exists A ∈ Ψ0

small(M), elliptic in a conic neighborhood of (x0, ξ0)
and supported near x0, and k > 0, such that for all r ∈ R, there exists C > 0 such
that:

∥Au∥Hr(M) ⩽ C∥u∥ykH−k(M).

It is straightforward to generalize this definition to functions/distributions defined
on the manifold N , or to any section of an admissible bundle L → N . Given an
operator A ∈ Ψmsmall(M), we say that (x0, ξ0) is not in the wavefront set WF(A) of A
if there exists B ∈ Ψ0

small(M), elliptic on a conic neighborhood of (x0, ξ0) such that
AB ∈ Ψ−∞

R (M) is R-smoothing. As in the closed case, the notion of wavefront set
satisfies Egorov’s Theorem, namely, given a diffeomorphism ϕ : M → M fixing the
cusp ends, one has

(3.2) WF((ϕ−1)∗Aϕ∗) = Φ(WF(A)),

where Φ : T ∗M → T ∗M,Φ(x, ξ) := (ϕ(x), dxϕ
−⊤ξ) is the symplectic lift of ϕ to T ∗M .

3.2. Admissible operators. — Given a function f ∈ C∞(N) (and more generally a
section of an admissible bundle L→ N), one can decompose f according to its Fourier
modes in the θ variable (since the latter belongs to a compact quotient Rd/Λθ). Most
of the operators one wants to consider on manifolds are usually geometric in the
sense that they are constructed naturally out of the metric, such as the Laplacian.
As a consequence, if the metric enjoys symmetries, so will these operators. In our
case, since an exactly hyperbolic metric in the cusp is invariant by translation in
the θ-variable, the geometric operators we will consider will act diagonally (modulo
compact remainders) on the decomposition between zero and non-zero Fourier modes.
We will use the terminology admissible for a pseudodifferential operator P that does
not make zero and non-zero Fourier modes in the θ-variable interfere.

Let us give a formal definition to that. For the sake of simplicity, let us assume
that M has a single cusp Z; extension to multiple cusps is straightforward. We let

ı∗ : C∞
comp((a,+∞)× FZ , LZ) −→ C∞

comp(N,L),

be defined by ı∗f |N∖Z = 0 and ı∗f |Z(y, θ, ζ) = f(y, ζ). Consider the restriction
operator on the zero Fourier mode:

PZ : D′(N,L) −→ D′((a,+∞)× FZ , LZ),

defined for f ∈ D′(N,L) and ϕ ∈ C∞
comp((a,+∞)× FZ , LZ) by:

(3.3) ⟨PZf, ϕ⟩ := ⟨f, ı∗ϕ⟩.
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Consider the space E′
0((a,+∞) × FZ , LZ) ⊂ D′((a,+∞) × FZ , LZ) defined in the

following way: f ∈ E′
0((a,+∞) × FZ , LZ) if and only if there exists A > a such that

supp(f) ⊂ (A,+∞)× FZ . We introduce the extension operator

EZ : E′
0((a,+∞)× FZ , LZ) −→ D′(N,L),

defined for f ∈ E′
0((a,+∞)× FZ , LZ) and ϕ ∈ C∞

comp(N,L) by:

(3.4) ⟨EZf, ϕ⟩ = ⟨f, χϕPZϕ⟩,

where χϕ ∈ C∞((a,+∞)×FZ ,R) is a smooth cutoff function defined in the following
way: χϕ ≡ 1 on [a+ (A− a)/2,+∞)×FZ and χϕ ≡ 0 on (a, a+ (A− a)/2020)×FZ .
It can be checked that (3.4) does not depend on the choice of χϕ due to the support
condition on f .

For χ ∈ C∞([a,+∞)), a cutoff function constant equal to 1 sufficiently high, and
f ∈ C∞(N), we can write:

f = (1− EZχPZ)f + EZχPZf,

where the first summand corresponds to the (L2-orthogonal) projection onto non-zero
Fourier modes and the second one to the projection onto the zero Fourier mode. In the
following, it will be sometimes easier to work with the r = log y variable rather than
the y variable. We can now define admissible operators:

Definition 3.4 (Admissible operators). — Let I := (ρ−, ρ+) be an interval. Given
A ∈ Ψmsmall(N,L1 → L2), we say that A is (ρ−, ρ+)-admissible if:

(1) There exists a pseudo-differential operator IZ(A) ∈ Ψm(Rr × FZ , LZ) (in the
usual Kohn-Nirenberg class with ρ = 1, δ = 0, see [Shu01, Def. 1.1] for instance) of
order m, called the indicial operator of A, such that [IZ(A), ∂r] = 0 (in other words,
IZ(A) is a convolution operator(4) in the r-variable),

(2) There exists a smooth cutoff function χA ∈ C∞((a,+∞)) (depending on A),
such that χA is supported in {y > 2a} and equal to 1 in {y > CA}, where CA > 2a is
a constant (depending on A). Additionally,

(3.5) χA[A, ∂θ]χA and EZχA [PZAEZ − IZ(A)]χAPZ

are (ρ−, ρ+)-residual operators, in the sense of Section 3.1.
(Here, by abuse of notations, χA is identified with a function on N , supported in the
cuspidal parts and only depending on the y variable.)

The space I(N) := Rr × FZ is the model space (or cusp at infinity) already dis-
cussed at the end of Section 2.1. We refer to [GBL23a, §4] for a more extensive

(4)By convolution operator, we mean the following: there exists a Schwartz kernel K ∈ D′(Rr ×
FZ × FZ) such that:

IZ(A)f(r′, ζ′) =

∫
R×FZ

K(r′ − r, ζ′, ζ)f(r, ζ)drd volgF (ζ),

for all f ∈ C∞
comp(R× FZ).
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discussion concerning admissible operators. Note that the indicial operator is neces-
sarily unique when defined. Modulo compact remainders, the first condition in (3.5)
means that the operator A preserves the θ-Fourier modes; the second condition im-
plies that sufficiently high in the cusp, A is a convolution operator in the r = log y

variable when acting on the zeroth Fourier mode. In particular, if B is a compactly
supported pseudo-differential operator, B is admissible, and IZ(B) = 0.

3.3. Indicial family. Indicial roots. — Associated to each admissible pseudodiffer-
ential operator is a family of convolution operators called the indicial family, see
[GBL23a, §4.2.1]. For elliptic operators, this object will act as a symbol at infinity,
and the operator will be Fredholm whenever the relevant indicial operator is invertible
(see Remark 3.2 and Theorem 3.1 where this is further explained).

Given an interval I = (ρ−, ρ+), it will be convenient to introduce the notation

CI := {λ ∈ C, ℜλ ∈ (ρ−, ρ+)}.

Definition 3.5. — Let A be an I-admissible operator of order m. For λ ∈ CI , we in-
troduce (IZ(A, λ))λ∈CI

, the indicial family associated with A, defined as the operators
C∞(FZ , LZ) → C∞(FZ , LZ) obtained for f ∈ C∞(FZ , LZ) by:

(3.6) IZ(A, λ)f(ζ) = e−λrIZ(A)
[
eλr

′
f(ζ ′)

]
.

For a fixed λ ∈ CI , IZ(A, λ) is well-defined as an operator acting on C∞(FZ , LZ),
due to the fact that IZ(A) is a convolution operator in the r-variable. Moreover,
IZ(A, λ) is a pseudodifferential operator acting on FZ which is semiclassical in the
ℑ(λ)−1-variable, see [GBL23a, Lem. 4.7]. It satisfies the following important proper-
ties, making it a homomorphism (see [GBL23a, Lem. 4.8]):

Lemma 3.1. — Let A be an I-admissible operator. Its indicial family

CI ∋ λ 7−→ IZ(A, λ) ∈ Ψm(FZ , LZ)

is holomorphic (as a map taking values in a Fréchet space) and is a homomorphism
in the sense that for all I-admissible operators P and Q, for all λ ∈ CI :

IZ(PQ, λ) = IZ(P, λ)IZ(Q,λ) IZ(P +Q,λ) = IZ(P, λ) + IZ(Q,λ).

Observe that when FZ reduces to a point (which will often be the case, but not
always), the indicial operator IZ(A, λ) is simply an element of End(LZ), where LZ
is a copy of the fiber over the cusp, that is it is a matrix-valued holomorphic family
rather than a pseudodifferential-valued family. In order to study the marked length
spectrum problem, the operators D or ∆ acting on 1-forms and the formal operator
Π2 acting on symmetric 2-tensors will be of this particular form, see Section 5 where
this is further discussed. We also provide some simple examples below which have this
particular form. However, for the geodesic vector field X, one has to take LZ = C
(trivial line bundle) but FZ = Sd.

We now further assume that A is I-admissible operator and uniformly elliptic.
We can then define the notion of indicial roots:
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Proposition 3.2 (Definition of indicial roots). — Let A be an I-admissible operator.
Then IZ(A, λ) is Fredholm of index 0 on every space Hr(FZ , LZ), r ∈ R, and invert-
ible for ℑλ large enough, locally uniformly in ℜλ ∈ I. We call indicial roots of A
(at cusp Z) the λ’s in CI such that IZ(A, λ) is not invertible. We also let

(3.7) S(A) := {ρ ∈ I | there exists an indicial root of A in ρ+ iR} ⊂ I.

This set is discrete in I.

Details of proof of the existence of indicial roots can be found in [GBL23a, §4.2.2].

Remark 3.2. — The interest of indicial operators is the following: given a small uni-
formly elliptic pseudodifferential operator P , we can construct a parametrix such
that R := QP − 1 is smoothing by Proposition 3.1. The lack of compactness for R
is due to a lack of compactness in certain Sobolev/Hölder-Zygmund injections; more
precisely, yρHr+1 ↪→ yρHr is not compact in our setting. In order to obtain a com-
pact remainder R, one also needs to obtain an operator that decreases the weight
in y, that is an operator that is bounded as a map R : yρH−k → yρ−εHk for in-
stance. The upshot is then the following: if I(P, λ) has no indicial root for ℜ(λ) = ρ,
then one can invert I(P, λ)−1 for all ℜ(λ) = ρ and this allows to define a refined
parametrix Q′, constructed from Q and I(P, λ)−1 for ℜ(λ) = ρ, such that the new
remainder R′ := Q′P − 1 is not only smoothing but also has decaying properties in
powers of y (that is R′ : yρH−k → yρ−εHk will be bounded), hence providing its
compact nature. We refer to [GBL23a, §4.2.3] for further details.

In order to conclude this section, let us give some simple examples to illustrate the
previous definitions:

Example 3.1 (Laplacian on functions). — We consider ∆g, the (non-negative) Lapla-
cian acting on C∞(M). Here N =M , FZ reduces to a point and LZ = C. The model
space is thus simply I(Z) ≃ Rr = (0,∞)y. The expression for ∆g in the cusps is
given by:

∆gf = −y2∂2yf + (d− 1)y∂yf − y2∂2θf.

This is indeed a R-admissible operator in the small calculus since it acts diagonally
on the Fourier decomposition. In order to compute its indicial family, it suffices to
drop the operator y2∂2θ (this is zero on the zero Fourier mode) and then to replace
y∂y by λ: indeed, in the r = log y coordinates, we have ∂reλr = λeλr; equivalently in
the y coordinates, we have y∂y(yλ) = λyλ. Writing y2∂2y = (y∂y)

2 − y∂y, we thus get:

IZ(∆g, λ) = −λ2 + dλ.

The indicial roots are the roots of this polynomial expression, namely λ = 0 and
λ = d. We also point out that from this computation (and Theorem 3.1 below), it is
not difficult to infer the standard fact that the Laplacian ∆, when acting on L2(M),
has discrete spectrum in [0, d2/4] and essential spectrum in [d2/4,+∞).
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Example 3.2 (Exterior derivative). — Consider

d : C∞(M,ΛkT ∗M) −→ C∞(M,Λk+1T ∗M),

acting on k-forms. Here M = N , FZ reduces to a point and (L1)Z = ΛkT ∗M, (L2)Z =

Λk+1T ∗M . This is also a R-admissible operator. The model space is thus given by
I(Z) ≃ Rr endowed with the vector bundles ΛkRd+1,Λk+1Rd+1. More precisely,
over the cusps, a section of T ∗M → M can be decomposed in the (global) basis
(dy/y, dθi/y, i = 1, . . . , d) and this basis also provides a natural basis for ΛkT ∗M . For
the sake of simplicity, we write dx0 = dy/y, dxi = dθi/y. If f = xIdxI for some index
I ⊂ {0, . . . , d}k, we get:

df =

d∑
i=0

∂xi
fIdxi ∧ dxI = y∂yfI

dy

y
∧ dxI +

d∑
i=1

y∂θifI
dθi
y

∧ dxI .

The indicial operator I(d) corresponds to the action of the operator d on θ-inde-
pendent section. Hence, in the previous equality, the term involving derivatives in θ

vanishes. As explained in the previous example, to obtain

I(d, λ) : ΛkRd+1 −→ Λk+1Rd+1,

it suffices to replace y∂y by the multiplication by λ. Hence:

I(d, λ) : ΛkRd+1 ∋ ξ 7−→ λ
dy

y
∧ ξ ∈ Λk+1Rd+1.

The only indicial root of this operator is λ = 0.

Example 3.3 (Vanishing indicial family). — Let A ∈ Ψm(N,L1 → L2) be an I-ad-
missible operator and assume that I(A) = 0. This is the case for instance if A has
compactly supported Schwartz kernel. Then, this means that sufficiently high in the
cusp, the operator A acts as the 0 operator on sections that are independent of the θ
variable. More precisely, this means that if I = (ρ−, ρ+) and f ∈ yρ+−εCr∗(N,L1)

satisfies ∂θf = 0 sufficiently high in the cusp, then Af ∈ yρ−+εCr−m∗ (N,L2), where
ε > 0 can be taken arbitrarily small. In particular, if A is R-admissible, one can take
ρ− = −k, ρ+ = k for arbitrary k ∈ N. We refer to [GBL23a, Lem. 4.10] for further
details.

3.4. Main inverting result. — The main result of [GBL23a, Th. 3] is the following
theorem, relative to the construction of a parametrix for admissible pseudodifferential
operators in the small calculus that are uniformly elliptic.

Theorem 3.1. — Let L → N be an admissible bundle over a fibered exact cusp man-
ifold as in Section 2.1. Assume that L is endowed with a (ρ, ρ′)-admissible pseudo-
differential operator P of order m ∈ R that is uniformly elliptic. Then then there is
a discrete set S(P ) ⊂ (ρ, ρ′) of indicial roots such that for each connected component
I ⊂ (ρI−, ρ

I
+)∖S(P ), there is an I-admissible pseudodifferential operator QI such that

PQI = 1 mod Ψ̇−∞
I , QIP − 1 mod Ψ̇−∞

I ,

J.É.P. — M., 2023, tome 10



1464 Y. Guedes Bonthonneau & Th. Lefeuvre

that is both PQI − 1 and QIP − 1 are bounded as operators

yρ
I
+−ε−d/2H−k(N,L) −→ yρ

I
−+ε−d/2Hk(N,L),

yρ
I
+−εC−k

∗ (N,L) −→ yρ
I
−+εCk∗ (N,L),

for all ε > 0 small enough, k > 0. In particular, P is Fredholm on these spaces, and
the index does not depend on the space.

The presence of the d/2-shift for Sobolev spaces is due to the expression of the
Riemannian volume in the cusps, see [GBL23a, Lem. 4.4]. One can also show a relative
Fredholm index formula (see [GBL23a, §4.2.5]), that is the Fredholm index of the
operator jumps when crossing an indicial root (and the shift corresponds to the rank
of a finite-rank operator obtained as the residue of IZ(A, λ)−1). Theorem 3.1 will be
used in a crucial manner throughout this article. In particular, this is what will allow
us to invert the normal operator Π2 studied below in Section 5, which plays a crucial
role in the marked length spectrum problem.

Example 3.4 (Laplacian on 1-forms. Decomposition of symmetric tensors)
By standard arguments, the existence and uniqueness of the decomposition (2.18)

of symmetric 2-tensors as f = Dp + h follows from the invertibility of the Laplace
operator ∆ := D∗D acting on 1-forms. Now, it was proved in [GBL23a, Lem. 5.4]
that I(∆) has no indicial root in the window (λ−d , λ

+
d ), where λ±d were introduced in

(2.17). Hence, using Theorem 3.1 and this absence of indicial root, it was proved in
[GBL23a, Lem. 5.4] that whenever ρ ∈ (λ−d , λ

+
d ), r ∈ R, the operator

∆ : yρCr+2
∗ (M,T ∗M) −→ yρCr∗(M,T ∗M)

is invertible and its inverse ∆−1 is a (λ−d , λ
+
d )-admissible small pseudodifferential

operator of order −2. In turn, it implies [GBL23a, Lem. 5.5], which we reproduce
here:

Lemma 3.2. — For symmetric 2-tensors, the L2-orthogonal projection πkerD∗ on the
kernel of D∗ is well defined, and pseudo-differential, (λ−d , λ

+
d )-admissible of order 0.

4. Resolvent of the geodesic flow

Since the geodesic vector field X preserves the Liouville volume, the expressions

R+(s) = (X + s)−1 =

∫ +∞

0

e−t(X+s)dt,

R−(s) = (X − s)−1 = −
∫ +∞

0

et(X−s)dt,

(4.1)

define for ℜs>0 holomorphic families of operators bounded on L2(SM) (or C0(SM)),
called forward and backward resolvent of X. By definition here, etXf = f ◦φt; it coin-
cides with the unitary propagator eitP , with P = −iX acting as a self-adjoint operator
on L2(SM) since X preserves the Liouville measure.
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As explained in Section 2, the vector field X is Anosov. In the case of closed
manifolds, meromorphic extension of the resolvent of Anosov flows to the whole com-
plex plane (in the distributional sense) is now a well-established result, part of the
so-called theory of Pollicott-Ruelle resonances and we refer to [FS11, GLP13, FT13,
DZ16, AB22] among other references.

However, in the non compact case, fewer references are available and for cusp
manifolds, the study of this resolvent was carried out in [GBW22]. We will recall
these results in Section 4.1; they are stated in terms of scales of Sobolev spaces.
However, for the purpose of proving our main theorem, we have to measure objects
in Hölder-Zygmund spaces. For this reason, the results of [GBW22] are not sufficient,
and we have to generalize them to a scale of Hölder-Zygmund-type spaces. This is
presented in Section 4.2, with the proofs in Section 4.4. This study of the resolvents
of X provides us with an averaging operator, whose definition and properties will be
the theme of Section 4.3.

4.1. Resolvent on anisotropic Sobolev spaces. — It was the main result in the
paper [GBW22] that both s 7→ R±(s) have meromorphic extensions to C as operators
from C∞

c (SM) to D′(SM). We will be chiefly interested in the behaviour near s = 0,
so we will not go into the (interesting!) phenomena taking place for ℜs very negative.

More precisely, it was proved that there exists a constant C > 0 such that, for all
−d/2 < ρ < d/2, r ⩾ C|ρ|, s 7→ R±(s) continues meromorphically from ℜs ≫ 0 to
ℜs > |ρ| − d/2 as a family of operators bounded from yρHr(SM) to yρH−r(SM).
Continuation further than ℜs > −d/2 is possible but involves the appearance of
indicial roots (as introduced in Section 3.3). This is the consequence of the technical
result (see [GBW22, Th. 3 & Lem. 4.16]):

Theorem 4.1 (Bonthonneau-Weich ’17). — There exists a constant C > 0 and a scale
of anisotropic Sobolev spaces Hr(SM) defined for r > 0 such that the following holds:
for all ρ ∈ (−d/2, d/2), r ⩾ C|ρ|, the family s 7→ R+(s) continues meromorphically
from ℜs≫ 0 to ℜs ⩾ |ρ| − d/2 on the space yρHr(SM).

The strategy of [GBW22] is rather similar to [FS11]. Since X is a vector field,
it is not elliptic and, in order to circumvent this, one constructs an escape function
G ∈ C∞(T ∗SM) for the dynamics, that is, a function decreasing along the flow lines
of the symplectic lift (2.6) of X, such that erG ∈ Srε,1−ε(T

∗SM) (for all ε > 0) is a
symbol for every r ∈ R, see [GBW22, Lem. 2.3]. Then, one constructs the anisotropic
Sobolev spaces using G as:

Hr(SM) := Op(erG)L2(SM).

The spaces Hr(SM) can be easily described using microlocal analysis. If the func-
tion f ∈ Hr(SM), it is microlocally Hr near E∗

s (resp. H−r near E∗
u), that is, for

A ∈ Ψ0
small(SM) microlocally supported near E∗

s (resp. E∗
u), one has ∥Af∥Hr(SM) ⩽

C∥f∥Hr(SM). Moreover, it can be checked that the following embedding holds:

(4.2) yρHr(SM) ⊂ yρHr(SM) ⊂ yρH−r(SM).
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Using the anisotropic spaces, it is not difficult in the compact case to show the
meromorphic extension of R+(s) when acting on Hr(SM). However, as already ex-
plained at length in Section 3, smoothing operators are not compact anymore on cusp
manifolds and this is what makes Theorem 4.1 more difficult to obtain.

In order to prove Theorem 4.1, one thus needs to carry a similar analysis as the one
performed in Section 3.2 involving the indicial operator of X. Indeed, it was proved
in [GBW22] that, as a differential operator of order 1, X is R-admissible on SM in
the sense of Definition 3.4, with indicial operator

(4.3) I(X) = sinϕ ∂ϕ + y cosϕ ∂y, I(X,λ) = sinϕ ∂ϕ + λ cosϕ,

acting on the model space I(SZ) = (0,∞)y × Sd. Here, (ϕ, u) is a set of spherical
coordinates on the sphere as introduced in Section 2.1, with ϕ = 0 corresponding
to outgoing trajectories, and ϕ = π to the incoming ones. We refer to Section 2.2
for a description of the flow generated by this vector field on the model space. The
expression (4.3) can be read off directly from (2.1) by dropping the ∂θ-part of the
vector field and changing y∂y to λ. One has to think of I(X,λ) as a North-South
dynamics on the sphere with a potential depending on λ.

We introduce the following spaces, respectively on the model space I(SZ) =

(0,∞)y × Sd and on Sd:

Hr(I(SZ)) := I(Op(erG))L2(I(SZ), y−(d+1)dyd volSd),

Hr(Sd) := I(Op(erG), λ)L2(Sd).

The space Hr(Sd) does not depend on λ, see [GBW22, §3.3]. Although not completely
explicit, it has an important feature:

f ∈ Hr(Sd) =⇒ f

{
is Hr(Sd) near ϕ = 0,

is H−r(Sd) near ϕ = π.

It then turns out that I(X,λ) + s is a Fredholm family of operators on Hr(Sd) for
|ℜλ| < d/2, ℜs > −1, and r large enough, see [GBW22, Lem. 3.24] for a description of
the range of parameters. When ℜs > 0 is large, it is invertible, and one can compute
the indicial roots. They are completely explicit, see [GBW22, Prop. 5.5 & Lem. 5.8]:

Proposition 4.1. — The set of λ∈C such that I(X,λ)+s is not invertible on Hr(Sd) is{
−s− k | k ∈ N0

}
∪
{
s+ d+ k | k ∈ N0

}
.

One can invert I(X) + s from the knowledge of (I(X,λ) + s)−1, following the idea
of [GBL23a, Prop. 4.5] and setting for f ∈ yρHr(I(SZ))

I(R+(s))f(r, ·) = 1

2iπ

∫
ℜλ=ρ

eλ(r−r
′)(I(X,λ) + s)−1f(r′, ·)dr′dλ.

We refer to [GBW22, Th. 2] for more about I(R+(s)). The following holds and is
contained in the results of [GBW22, Lem. 4.16]:
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Lemma 4.1. — The resolvent R+(s) admits I(R+(s)) as an indicial operator in the
sense that if χ1, χ2 are supported for y ≫ 1, and χ1χ2 = χ2, both operators

(4.4) χ2[∂θ, R
+]χ1, χ2PZR

+(s)EZχ1 − χ2I(R
+(s))χ1,

map continuously yd/2−εHr(I(SZ)) to y−d/2+εHr(I(SZ)), provided ε > 0 is small
enough, ℜs > −1 and r is large enough. Additionally, we have

(4.5) I(R+(s)) =

∫ +∞

0

e−tI(X+s)dt.

In the case of admissible pseudo-differential operators, we would require that the
operators in (4.4) not only gain decay, but also regularity. However, the resolvent of
the flow is not pseudo-differential, and in particular, it modifies the wavefront set of
even smooth compactly supported functions, and this precludes the operators in (4.4)
from being smoothing.

4.2. Resolvent on anisotropic Hölder-Zygmund spaces. — The aim of this para-
graph is to state a similar result to Theorem 4.1 but for anisotropic Hölder-Zygmund
spaces. We start by describing the functional space involved.

We let A ∈ Ψ0
small(SM) be a small admissible pseudodifferential operator such that

A ≡ 1 microlocally on a cone C0
u, and micro-supported in a closed cone C1

u, so that
E∗
u ⊂ C0

u ⊂ C1
u, and C1

u does not intersect E∗
s ⊕ E∗

0 . We will also further require that
the covertical direction H∗, defined in Section 2.2 by H∗(V) = 0, satisfies H∗∩C1

u = ∅.
Additionally, we can assume that, sufficiently high in the cusps, C0,1

u are invariant by
local isometries of the cusps. Such an A exists because high in the cusps the stable
and unstable directions of the flow are very close to the stable/unstable bundles of
constant curvature, as explained in Section 2.2.

From (2.7), it follows that E∗
u is an attractor for the dynamics in positive time.

In particular there exists a time T > 0 such that for all t ⩾ T , φt(C1
u) ⊂ C0

u.
For r > 0, define the norm:

(4.6) ∥u∥⋆ := ∥Au∥C−r
∗ (SM) + ∥(1−A)u∥Cr

∗(SM).

Taking the completion of C∞
c (SM) with respect to the norm ∥•∥⋆ would define a

Banach space. But, as we shall see, this space would have many drawbacks, the first
of them being that the propagator etX would not bounded on it for short times. One
standard way to circumvent this obstacle is to define an integrated version of (4.6), see
[BT08, AB22] for instance, where this idea appears. The anisotropic Hölder-Zygmund
space we shall work with is denoted by Cr(SM) and defined as the completion of
C∞
c (SM) with respect to the norm

(4.7) ∥u∥Cr(SM) :=

∫ T

0

∥e−τXu∥⋆ dτ,

where T > 0 was introduced above. It is clear from the definition of Cr(SM) that
the following embeddings hold:

(4.8) Cr∗,0(SM) ↪−→ Cr(SM) ↪−→ C−r
∗ (SM),
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where Cr∗,0(SM) denotes the space of r-Hölder continuous functions converging to
zero as y → +∞. Inverting the roles of Eu and Es in the previous definitions, we can
proceed with the same construction, and we denote by C−r(SM) the corresponding
spaces, which is adapted to the resolvent in positive time R−(s).

Similarly to Theorem 4.1, we will prove:

Theorem 4.2. — There exists a constant C > 0 such that for all ρ ∈ (0, d), r ∈ (0, 1),
the resolvent R+(s) : yρCr(SM) → yρCr(SM) extends from ℜs ≫ 0 to ℜ(s) >
max(−ρ, ρ− Cr) as a meromorphic family of bounded operators. Likewise for R−(s)

on the space yρC−r(SM).

This theorem will be used in the case where R± is extended up to s = 0, i.e when
Cr > ρ. Here the condition r ∈ (0, 1) could be easily generalized to r > 0. However, as
it involves more tedious computations and that we shall only need Theorem 4.2 for r
arbitrarily small, we do not deal with the case of large r. The proof of Theorem 4.2
is postponed to Section 4.4. Before that, we derive an important corollary which will
play a key role in the proof of the main Theorem 1.1 in Section 6, namely, the analytic
description of the averaging operator.

4.3. The averaging operator. — Similarly to the closed case, the resolvents R±(s)

have a simple pole at s = 0 whose residue is given by the L2-orthogonal projection
onto the constant functions, see [Gui17, §2] and [CL22, §§5.1 & 5.2] where this is
further discussed. More precisely, we have the expansion near s = 0:

R±(s) = R±
0 +

∫
SM

• dµ

s
+ O(s),

where R±
0 is the analytic part of R±(s) at s = 0. By construction, we have for

f ∈ C∞
c (SM) such that µ(f) = 0,

R±
0 Xf = XR±

0 f = f.

We also know that the R±
0 vanish on constants. Then we define the averaging opera-

tor Π as:

(4.9) Πf := (R+
0 −R

−
0 )f +

∫
SM

f dµ,

Using the embedding (4.8) and Theorem 4.2, it is clear that Π is bounded a map

(4.10) Π : yρCr∗(SM) −→ yρC−r
∗ (SM),

for ρ ∈ (0, d), 1 > Cr > ρ. We can further describe the properties of the averaging
operator:

Proposition 4.2. — There exists a constant C > 0 such that for all ρ ∈ (0, d) and
1 > r > Cρ > 0,

(1) the operator Π : Hr(SM) → H−r(SM) is bounded and selfadjoint;
(2) we have: ∀f ∈ yρCr∗(SM), XΠf = 0;
(3) we have: ∀f ∈ yρCr∗(SM) such that Xf ∈ yρCr∗(SM), ΠXf = 0;
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(4) if f ∈ yρCr∗(SM), µ(f) = 0 then: f ∈ kerΠ if and only if there exists a solution
u ∈ yρCr∗(SM) to the cohomological equation Xu = f (and such a u is unique modulo
constants);

(5) the operator Π is positive in the sense of quadratic forms, that is, for all f ∈
C∞
c (SM), ⟨Πf, f⟩ ⩾ 0.

Proof. — The proof of the first four items is very similar to the proof of [Gui17,
Th. 1.1]. Statement (1) comes from the definition of Π and the description on the
resolvent on Sobolev spaces, see Section 4.1. Statements (2) and (3) come directly
from the definition (4.9) of Π. In order to prove item (4), we observe that if f ∈
yρCr∗(SM), Πf = 0 and µ(f) = 0, then R+

0 f = R−
0 f . We let u = R+

0 f ∈ yρCr(SM)

by Theorem 4.2. Then u is microlocally Cr∗ except possibly at E∗
u. However, since

u = R−
0 f , u is also microlocally Cr∗ except possibly at E∗

s , so that u actually has to be
in yρCr∗(SM). Eventually, for item (4), we can proceed as in [Lef19, p. 58–59] which
shows that, under the assumption that periodic orbits equidistribute with respect
to the Liouville measure, the operator Π is positive. Now, such an equidistribution
result on cusp manifolds can be obtained by gathering [PPS15, Th. 7.2, p. 145], [Riq18,
Th. 1.1] and [PPS15, Th. 9.11]. □

Eventually, at a crucial step of the proof of Theorem 1.1, we will also need the
following boundedness result:

Corollary 4.1 (of Theorem 4.2). — There exists C > 0 such that for all ρ ∈ (0, d),
1 > r > Cρ, the operator

π2∗Π : yρCr∗(SM) −→ yρCr∗(M,⊗2
ST

∗M)

is bounded.

Proof. — We use the embedding (4.8) and the boundedness of Π in (4.10) which
give that yρCr∗(SM) ↪→ yρCr(SM)

Π−→ yρCr(SM) is bounded. Now, recall that
the covertical direction H∗ was defined in Section 2.2. It then suffices to observe by
a wavefront set argument that π2∗ only selects the wavefront set near H∗, that is,
if B ∈ Ψ0

small(SM) is a pseudodifferential operator with wavefront set in a small conic
neighborhood of H∗ and microlocally equal to 1 near H∗, then: for all ρ, s, t ∈ R and
f ∈ yρCs∗(SM),

(4.11) ∥π2∗Bf∥yρCs
∗
≲ ∥f∥yρCs

∗
, ∥π2∗(1−B)f∥yρCt

∗
≲ ∥f∥yρCs

∗
.

(This follows from the fact that π2∗ is a pushforward operator: it consists in integrating
the function in the spherical fibers of the fibration SM →M .)

Hence, since distributions in yρCr(SM) are microlocally yρCr∗ near H∗ (by the
choice of the operator A in the definition of yρCr(SM), see the beginning of Sec-
tion 4.2), the proof of Corollary 4.1 is immediate. □
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4.4. Proof of the boundedness result. — The proof of Theorem 4.2 consists of
three steps:

(1) We prove that the propagator e−tX acts as a bounded semi-group on Cr(SM),
see Section 4.4.1.

(2) Next, we use source and sink estimates described in Appendix B in order to
prove a quasi-smoothing property of the propagator (that is, the propagator is compact
up to a small bounded operator), see Section 4.4.2.

(3) Finally, we will study the model resolvent acting on our anisotropic Hölder-
Zygmund spaces directly in the cusp, prove it is conveniently bounded, and conclude
using the same ideas as in the Sobolev case, see Section 4.4.3.

4.4.1. Closed operator. Boundedness of the propagator. — In this paragraph, we prove
that X acts in a consistent fashion on yρCr(SM).

Lemma 4.2. — The operator X with domain

D(X) := {u ∈ yρCr(SM) | Xu ∈ yρCr(SM)}

is closed on yρCr(SM).

Proof. — Consider a sequence un ∈ D(X) such that un → u in yρCr(SM), and
Xun → v in yρCr(SM). Since X acts continuously on distributions, we have Xu = v,
which readily implies that u ∈ D(X), and thus X is closed. □

We will also need:

Lemma 4.3. — There exists a constant C > 0 such that for r ∈ (0, 1), ρ ∈ (0, d) and
t ⩾ 0

∥e−tXu∥yρCr(SM) ⩽ CeCt(r+ρ)∥u∥yρCr(SM).

The limitation on the weight ρ will not come from this lemma but from another
lemma below involving the indicial resolvent of the geodesic flow. In order to simplify
the arguments, we will always specify that ρ ∈ (0, d) from now on. As a corollary of
Lemma 4.3, we obtain that

R+(s) =

∫ +∞

0

e−t(X+s)dt

is a well-defined converging integral acting on yρCr(SM), as long ℜs > C(r + ρ).
In order to prove Lemma 4.3, we will also need to use the boundedness of the

propagator on isotropic Hölder-Zygmund spaces: there exists a constant C > 0 such
that for all r, ρ ⩾ 0,

(4.12) ∥etX∥yρC±r
∗ →yρC±r

∗
⩽ CeCt(r+ρ).

This can be seen by an interpolation argument. First, it can be checked that the
space yρC+r

∗ (SM) (for r ∈ (0, 1)) is an interpolation space between yρC0(SM) and
yρCLip(SM). On yρC0(SM), the propagator is bounded by

∥etXf∥yρC0 = ∥((etXy)/y)ρ(y−ρf)∥C0 ⩽ etρ∥y−ρf∥C0 = ∥f∥yρC0 .
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Similarly, on yρCLip(SM), it is bounded by ≲ eCtρ and by interpolation, one obtains
(4.12) on yρC+r

∗ .
In order to obtain the bound on yρC−r

∗ , one can argue by duality: it suffices to
show the same bound as (4.12) but on y−ρW 1,r(SM), that is ∥etX∥y−ρW 1,r→y−ρW 1,r ≲
eCt(r+ρ). As in the previous paragraph, this is obtained by interpolation.

Proof of Lemma 4.3. — The notion of wavefront set used in the proof below is intro-
duced at the end of Section 3.1. For the sake of simplicity, we introduce

(4.13) ∥u∥ρ,⋆ := ∥Au∥yρC−r
∗ (SM) + ∥(1−A)u∥yρCr

∗(SM).

We start by considering the norms before the averaging:
∥e−tXu∥ρ,⋆ = ∥Ae−tXu∥yρC−r

∗
+ ∥(1−A)e−tXu∥yρCr

∗

⩽ ∥Ae−tXAu∥yρC−r
∗

+ ∥Ae−tX(1−A)u∥yρC−r
∗

+ ∥(1−A)e−tXAu∥yρCr
∗
+ ∥(1−A)e−tX(1−A)u∥yρCr

∗
.

(4.14)

Using the boundedness of the propagator on isotropic Hölder-Zygmund spaces (4.12),
one can easily control all terms on the right-hand side by ≲ eCt(r+|ρ|)∥u∥yρCr(SM),
except for the third term. Indeed, the other ones can be readily controlled by
≲ C(t, r, ρ)∥u∥⋆ with

C(t, r, ρ) = (∥A∥yρC−r
∗

+∥A∥yρCr
∗→yρC−r

∗
+∥1−A∥yρCr

∗
)(∥e−tX∥yρC−r

∗
+∥e−tX∥yρCr

∗
).

Taking ρ = r = 0, we find that C(t, 0, 0) is bounded uniformly in time. For r = ±3/2

(here, the value r = ±3/2 is arbitrary) and ρ = 0, we find C(t, 3/2, 0) ⩽ CeCt. Finally,
when r = ±3/2, ρ = ±(d + 1), we get an estimate of the same kind. For r ∈ (0, 1),
ρ ∈ (0, d), using interpolation since yρCr∗ can be obtained as an interpolation space
between C0, C

±3/2
∗ and y±(d+1)C

±3/2
∗ , we deduce that for r ∈ (0, 1), ρ ∈ (0, d),

(4.15) C(t, r, ρ) ⩽ CeCt(r+ρ).

Let us now turn to the third term in the right-hand side of (4.14). Using Egorov’s
theorem (see (3.2)), we know that WF(e−tXAetX) = Φt(WF(A)). In particular, when
t ⩾ T , this is strictly contained in the complement of WF(1−A), so that

(1−A)e−tXA =
(
(1−A)e−tXAetX

)
e−tX

is a smoothing operator. Acting on C0, its norm is uniformly bounded in time. Now,
we need to obtain a bound on y±(d+1)C

±3/2
∗ , with exponential growth in time. For

this, we can decompose, for t ∈ [NT, (N + 1)T ]

(1−A)e−tXA = (1−A)e−tX/N [A+ (1−A)]e−tX/N · · · [A+ (1−A)]e−tX/NA.

Expanding the product, we get 2N terms, and for each one, we can use a bound for
t ∈ [T, T + 1]. Then, we can use the same interpolation argument as before to obtain
a bound similar to (4.15), for the C−r

∗ → Cr∗ norm of (1−A)e−tXA.
Hence, we know so that for some constant C > 0, for ρ ∈ (0, d) and r ∈ (0, 1), and

t ⩾ T ,
∥e−tXu∥ρ,⋆ ⩽ CeCt(r+ρ)∥u∥ρ,⋆.
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This gives the boundedness of e−tX for t ⩾ T on yρCr(SM). Now, for small times
t ∈ [0, T ], we get (for some constant C > 0 which might change from line to line):

∥e−tXu∥yρCr =

∫ T

0

∥e−(t+τ)Xu∥ρ,⋆dτ

=

∫ T

t

∥e−τXu∥ρ,⋆dτ +
∫ t

0

∥e−(T+τ)Xu∥ρ,⋆dτ

⩽
∫ T

t

∥e−τXu∥ρ,⋆dτ + CeCT (r+ρ)

∫ t

0

∥e−τXu∥ρ,⋆dτ ⩽ CeCT (r+ρ)∥u∥yρCr .

This completes the proof. □

4.4.2. Quasi-smoothing property. — Our next step is to obtain the following local
compactness result

Proposition 4.3. — There exists a constant C > 0, an R-smoothing operator K ∈
Ψ−∞

R (SM) as defined in Section 3.1, such that for all r ∈ (0, 1), ρ ∈ (0, d), and
ℜ(s) > ρ− rC:

∀u ∈ C∞
c (SM), ∥u∥yρCr ⩽ C (∥(X + s)u∥yρCr + ∥Ku∥yρCr ) .

The proof is based on Hölder-Zygmund radial estimates which are postponed to
Appendix B. They are similar to the ones developed by the authors in the com-
pact case in [GBL23b]. For hyperbolic flows, radial estimates go back to the work of
Dyatlov-Zworski [DZ16] in Sobolev regularity.

Proof. — In the proof, K denotes a smoothing operator that may change from line
to line. For the sake of simplicity, we will address the case s = 0. The general case
follows from minor adaptation by applying the radial estimates of Appendix B with
the potential V = ℜ(s).

In the estimation of the norm of u in yρCr, we start with the part involving A

since it is the easier step. According to the sink estimate, see Proposition B.2, we can
find Ã, micro-supported where A is elliptic, and microlocally the identity near E∗

u,
so that

∥Au∥yρC−r
∗

⩽ C
(
∥AXu∥yρC−r

∗
+ ∥(A− Ã)u∥yρC−r

∗
+ ∥Ku∥yρC−r

∗

)
,

where K is a smoothing operator. (For s ̸= 0, one has to apply the sink estimate of
Proposition B.2 with potential V = ℜ(s). The threshold condition is then guaranteed
if ℜ(s)−Cr + ρ < 0, where C > 0 is some constant coming from an upper bound on
the Jacobian ∥dφt|Es

∥.)
Next, we use that for L > 0,

(4.16) u = e−LXu+

∫ L

0

e−τXXudτ.
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As a consequence, denoting B := A− Ã and using (4.16), we get:

(4.17)
∫ T

0

∥Be−tXu∥yρC−r
∗
dt ⩽

∫ L

0

∫ T

0

∥BXe−(t+τ)Xu∥yρC−r
∗
dtdτ

+

∫ T

0

∥Be−(t+L)Xu∥yρC−r
∗
dt.

In the right-hand side of (4.17), the first term is controlled by ≲ ∥Xu∥yρCr by simply
writing

BXe−(t+τ)X = e−τX(eτXBe−τX)(A+ (1−A))Xe−tX ,

and using appropriate boundedness on yρC−r
∗ (see (4.12)). For the second term in

(4.17), we observe by Egorov’s theorem (see (3.2)) that

WF(eLXBe−LX) = Φ−L(WF(B)),

which is contained in the elliptic set of 1 − A for L large enough. Using elliptic
estimates, we then obtain:∫ T

0

∥Be−(t+L)Xu∥yρC−r
∗

⩽ C

(∫ T

0

∥(1−A)e−tXu∥yρCr
∗
dt+ ∥Ku∥yρCr

)
.

We conclude that for some smoothing K,
(4.18)∫ T

0

∥Ae−tXu∥yρC−r
∗
dt ⩽ C

(
∥Xu∥yρCr + ∥Ku∥yρCr +

∫ T

0

∥(1−A)e−tXu∥yρCr
∗
dt

)
.

We now study the part of ∥u∥yρCr involving 1 − A. First, we use (4.16) and the
same propagation argument as before to obtain:∫ T

0

∥(1−A)e−tXu∥yρCr
∗
dt

⩽
∫ L

0

∫ T

0

∥(1−A)e−(t+τ)XXu∥yρCr
∗
dtdτ

+ C

∫ T

0

∥(eLX(1−A)e−LX)e−tXu∥yρCr
∗
dt

⩽
∫ L

0

∥e−tXXu∥yρCrdt+ C

∫ T

0

∥(eLX(1−A)e−LX)e−tXu∥yρCr
∗
dt

⩽ C

(
∥Xu∥yρCr +

∫ T

0

∥(eLX(1−A)e−LX)e−tXu∥yρCr
∗
dt

)
,

where the last inequality follows from the boundedness of the propagator on yρCr,
obtained in Lemma 4.3.

It remains to estimate the term involving CL := eLX(1 − A)e−LX . By Egorov’s
theorem (see (3.2)), we have WF(CL) = Φ−L(WF(1 − A)). When L > 0 is large
enough, 1 − A is thus elliptic on the wavefront set of CL. We can decompose CL =

C0
L+CsL, where CsL is micro-supported in a small neighbourhood of E∗

s (and as small
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as we want by taking L large enough), and X is elliptic on the microsupport of C0
L.

As a consequence, we get by elliptic estimates

∥C0
Le

−tXu∥yρCr
∗
⩽ C

(
∥(1−A)Xe−tXu∥yρCr

∗
+ ∥Ke−tXu∥yρC−r

∗

)
.

By the source estimate, see Proposition B.1, we also get:

∥CsLe−tXu∥yρCr
∗
⩽ C

(
∥(1−A)Xe−tXu∥yρCr

∗
+ ∥Ke−tXu∥yρC−r

∗

)
.

Integrating in time gives the bound

(4.19)
∫ T

0

∥(1−A)e−tXu∥yρCr
∗
dt ⩽ C

(
∥Xu∥yρCr + ∥Ku∥yρCr

)
.

Hence, combining (4.18) and (4.19), we obtain the desired estimate, thus concluding
the proof of Proposition 4.3. □

4.4.3. Fredholmness. Indicial resolvent. — In the closed case, Proposition 4.3 would
be sufficient to prove that s 7→ X + s is a holomorphic family of Fredholm operators
of order 0 acting on yρCr(SM), and by the analytic Fredholm theorem, this would
yield the meromorphic extension of s 7→ R+(s). However, as explained at length in
Section 3, smoothing operators are not necessarily compact on manifolds with cusps.
The defect to compactness can be characterized completely by studying the action
on the zeroth Fourier mode in cusps. For this reason, we will study the flow and its
resolvent directly in the cusp. Recall from Section 4.1 that the geodesic vector field X,
when acting on functions supported in a cusp Z that do not depend on θ, takes the
form

I(X)f = y cosϕ∂yf + sinϕ∂ϕf.

By some slight abuse of notation, we also write (φt)t∈R for the corresponding geodesic
flow on the model space I(SZ) ≃ (0,∞)y×Sd(u,ϕ). For y ∈ (0,∞), u ∈ Sd−1, ϕ ∈ (0, π),
we have:

I(R+(s))u(y, u, ϕ) =

∫ +∞

0

e−tsu(φ−t(y, u, ϕ))dt.

A priori, this is only well-defined for ℜs≫ 0 large enough. Nevertheless, as explained
in Section 4.1, it was proved in [GBW22] that it actually continues as a meromor-
phic family of operators from C∞

c (I(SZ)) to D′(I(SZ)), and also on some weighted
anisotropic Sobolev spaces.

Similarly to the spaces Hr(I(SZ)) defined in Section 4.1, we define the space
Cr(I(SZ)) as the completion of smooth compactly supported functions with respect
to the norm

(4.20) ∥u∥yρCr(I(SZ))

:=

∫ T

0

(
∥I(A)e−τXu∥C−r

∗ (I(SZ)) + ∥(1− I(A))e−τXu∥Cr
∗(I(SZ))

)
dτ.

Note that, by construction in Section 4.2, A is assumed to be admissible, so it makes
sense to talk about the indicial operator on the full cusp associated to A. By con-
struction, we have the continuous mapping χPZ : yρCr(SM) → yρCr(I(SZ)), for χ
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supported high in the cusp and equal to 1 near y = +∞. The same boundedness
result for the propagator e−tX holds on yρCr(I(SZ)), similarly to Lemma 4.3.

The key ingredient is to show a boundedness result of I(R+(s)) on the full cusp.

Proposition 4.4. — The resolvent I(R+(s)) : yρCr(I(SZ)) ⟲ is bounded, provided
that ρ ∈ (0, d), r ∈ (0, 1) and ℜs > max(−ρ, ρ− r).

The proof of Proposition 4.4 is done “by hand”. It is quite technical as it involves
tedious computations in coordinates. In order not to flood the discussion, its proof
is postponed to Appendix C. We now show how it allows to conclude the proof of
Theorem 4.2.

Proof of Theorem 4.2. — Our aim is to show that there exists C > 0 such that X+s is
a holomorphic family of Fredholm operators on yρCr(SM) for ℜs > max(−ρ, ρ−Cr)
and invertible for ℜs ≫ 0. Then, Theorem 4.2 follows from the analytic Fredholm
theorem, see [Zwo12, App. D] for instance.

Let χ be a cutoff function supported for y ⩾ 1, and equal to 1 for y large enough.
Proposition 4.4 implies that

EZχI(R
+(s))χPZ : yρCr(SM) −→ yρC−r

∗ (SM)

is bounded provided ρ ∈ (0, d), r ∈ (0, 1), and ℜs+ ρ > 0, ℜs+ r > ρ, since

χPZ : yρCr(SM) −→ yρCr((0,∞)× Sd)

is bounded. We then use Proposition 4.3 and decompose the remainder term K. For
all r ∈ (0, 1), ρ ∈ (0, d), and ℜ(s) > max(−ρ, ρ− rC), for all u ∈ C∞

c (SM):

(4.21) ∥u∥yρCr

⩽ C
(
∥(X + s)u∥yρCr + ∥KEZχ

2PZu∥yρCr + ∥K(1− EZχ
2PZ)u∥yρCr

)
.

Observe that, using the boundedness of I(R+(s)) obtained in Proposition 4.4 and the
fact that K is smoothing, we have:

∥KEZχ
2PZu∥yρCr = ∥KEZχI(R

+(s))(I(X) + s)χPZu∥yρCr

⩽ ∥KEZχI(R
+(s))χPZ(X + s)u∥yρCr

+ ∥KEZχI(R
+(s))[I(X), χ]PZu∥yρCr

⩽ C∥(X + s)u∥yρCr + ∥KEZχI(R
+(s))[I(X), χ]PZu∥yρCr .

Going back to (4.21), we thus obtain:

(4.22) ∥u∥yρCr ⩽ C∥(X + s)u∥yρCr

+ C∥KEZχI(R
+(s))[I(X), χ]PZu∥yρCr + C∥K(1− EZχ

2PZ)u∥yρCr .

We now claim that the two operators in the second line of (4.22) are compact.
Indeed, for K(1 − EZχ

2PZ), this follows from the fact that smoothing operators,
when acting on the orthogonal of the zeroth Fourier mode in the cusps, are compact,
see [GBL23a, Lem. 4.1]. For KEZχI(R

+(s))[I(X), χ]PZ , this follows from the fact
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that [I(X), χ] is a multiplication operator (of order 0) with compact support, hence
for ε > 0 small enough:

yρCr(SM)
[I(X), χ]

−−−−−−−−→ yρ−εCr(I(SZ))
χI(R+(s))

−−−−−−−−−→ yρ−εC−r
∗ (I(SZ))

KEZ−−−−−→ yρCr(SM),

and the last operator is compact.
As a consequence, for s ∈ C in the range ℜs > max(−ρ, ρ − Cr), we get from

(4.22) by standard arguments that X + s : D(X) → yρCr(SM) has closed range
and finite-dimensional kernel. In [DZ16] and other references for this type of results,
it is customary to prove a bound similar to Proposition 4.3 replacing X by its adjoint
which proves that the codimension of the range of X+ s is finite. However, this is not
quite necessary, because we can invoke the theory of semi-Fredholm operators [Kat95,
Th. 5.17, p. 235]: indeed, we have proved so far that X + s is semi-Fredholm (i.e., has
closed range, and finite-dimensional kernel) for ℜs > max(−ρ, ρ−Cr) on yρCr(SM),
and since we already know that it is invertible for ℜs ≫ 0 large enough, we deduce
that it is actually Fredholm for all such values of s, and that s 7→ R+(s) continues as
a meromorphic family of bounded operators yρCr(SM) → yρCr(SM) for s in that
range. This proves the claim. □

5. The normal operator

Following [Gui17], we define the normal operator on 2-tensors as:

(5.1) Π2 := π2∗Ππ
∗
2 .

It is also called the generalized X-ray transform, and is the key ingredient in the proof
of Theorem 1.1. Since π∗

2D = Xπ∗
1 , we get that Π2D = 0, and D∗Π2 = 0. Instead

of general tensors, it is thus more fruitful to consider Π2 as an operator acting on
solenoidal tensors.

Using the microlocal calculus developed in [GBL23a] and recalled in Section 3,
we prove:

Theorem 5.1. — Π2 is a small (0, d)-admissible pseudodifferential operator of order
−1. Moreover, it is uniformly elliptic and invertible on solenoidal tensors, in the sense
that there exists another (0, d)-admissible operator Q2 of order 1, such that:

Q2Π2 = Π2Q2 = πkerD∗ ,

where πkerD∗ is the L2-orthogonal projection onto the kernel of D∗ as in Lemma 3.2.
Moreover, for r ∈ R and ρ ∈ (0, d), there exists C > 0 such that

(5.2) ∀f ∈ Cr∗(M,⊗2
ST

∗M) ∩ kerD∗, ∥f∥yρCr
∗
⩽ C∥Π2f∥yρCr+1

∗
.

For compact manifolds, [GL21, Lem. 4.9] is the equivalent of this statement. Our
proof is divided into three parts:

J.É.P. — M., 2023, tome 10



Local rigidity of manifolds with hyperbolic cusps 1477

– in Section 5.1, we show that Π2 is a small (0, d)-admissible pseudodifferential
operator in the sense of Definition 3.4,

– in Section 5.2, we compute the indicial roots of the operator,
– in Section 5.3, we invert the normal operator and complete the proof of Theo-

rem 5.1.
Before continuing, let us observe that in this section, we will work mostly with

Sobolev spaces instead of Hölder spaces, and use results from [GBW22], recalled in
Section 4.1.

5.1. Admissibility of the normal operator. —According to Proposition 4.2, Π2 maps
continuously yρCr∗(SM) to yρC−r

∗ (SM) provided 0 < Cρ < r are small enough.
However, a much stronger statement holds:

Lemma 5.1. — The normal operator Π2 is a small (0, d)-admissible pseudodifferential
operator of order −1. Its indicial operator is given by

(5.3) I(Π2)f = π2∗

∫
R
(π∗

2f) ◦ φt dt = π2∗(I(R
+
0 ) + I(R−

0 ))π
∗
2 .

Here (φt)t∈R denotes the flow of I(X) = y cosϕ∂y+sinϕ∂ϕ as in Section 4.4.3 acting
on the full cusp I(SZ) = (0,∞)y × Sd.

Proof. — We first pick a cutoff χ equal to 1 in [−t0, t0], define

Π2,χf = π2∗

∫
R
χ(t)(π∗

2f) ◦ φtdt,

and prove the following lemma:

Lemma 5.2. — Π2,χ is a small R-admissible pseudodifferential operator.

In the compact case, this is now a standard lemma which can be found in [Gui17,
GL21], for instance.

Proof. — This operator commutes with local isometries in the cusp, and is properly
supported. Additionally, one can check in local coordinates around a given point that it
is pseudodifferential, see [Lef19, §2.5] for instance. (This pseudodifferential behaviour
simply comes from both the integration in the time variable and the π2∗ operator
which consists in integrating over the spherical fibers of SM .) Hence, invariance by
isometries guarantees that it is still pseudodifferential for large y and that it belongs
to the class of small R-admissible pseudodifferential operator. □

It remains to study the difference Π2 −Π2,χ, and prove that it is a smoothing, L2

admissible operator. By integration by parts in the t-variable, we can write:

(5.4) Π2 −Π2,χ =

[
1−

∫
R
χ

] ∫
SM

• dµ

+ π2∗

[∫ +∞

0

χ′(t)φ∗
tR

−
0 dt

]
π∗
2 + π2∗

[∫ 0

−∞
χ′(t)φ∗

tR
+
0 dt

]
π∗
2 .

J.É.P. — M., 2023, tome 10



1478 Y. Guedes Bonthonneau & Th. Lefeuvre

The first term in the right-hand side is (0, d)-residual in the sense of Section 3.1 since
it is bounded as a map yd/2−εH−N (SM) → y−d/2+εH+N (SM) for every ε > 0,
N > 0 (the constant function 1 is in

⋂
N>0,ε>0 y

−d/2+εHN (SM)). As a consequence,
we only have to deal with the second line in (5.4). By symmetry, it suffices to consider

U :=

∫ −t0

−∞
χ′(t)π2∗φ

∗
tR

+
0 π

∗
2dt.

The following formula defines a convolution operator on R× Sd:

I(U)f := π2∗

∫
R−

(1− χ(t))(π∗
2f) ◦ φtdt,

where (φt)t∈R still denotes the flow induced by I(X) on the full cusp. Lemma 5.1 thus
follows from the next lemma. □

Lemma 5.3. — The operator U is a smoothing (0, d)-admissible operator with indicial
operator I(U), that is:

(1) U : yρH−N (SM) → yρHN (SM) is bounded for all ρ ∈ (−d/2, d/2), N ∈ N,
(2) χU [∂θ, U ]χU : yd/2−εH−k(SM) → y−d/2+εH+k(SM) is bounded for all ε > 0,

k ∈ N, where χU is some cutoff function supported high in the cusp and equal to 1

near y = +∞,
(3) The operator

EZχU (PZUEZ − I(U))χUPZ : yd/2−εH−k(SM) −→ y−d/2+εH+k(SM)

is bounded for all ε > 0, k ∈ N.

Proof of Lemma 5.3. — We start with item (1). In the compact case, the original
argument for smoothness is given in the proof of [Gui17, Th. 3.1]; let us recall its
main ingredients.

First of all, we show that U is smoothing, that is, it is bounded H−N
comp(SM) →

HN
loc(SM). Recall from [GBW22, Th. 3] that

(5.5) WF′(R+
0 ) ⊂ ∆(T ∗SM) ∪ {(φt(x, ξ), (x, ξ)) | t ⩾ 0, ⟨ξ,X⟩ = 0} ∪ Eu∗ × Es∗,

where WF′(A) (for an operator A : C∞(SM) → D′(SM)) denotes the set

WF′(A) := {(x, ξ, y,−η) | (x, ξ, y, η) ∈ WF(KA)} ⊂ T ∗(SM)× T ∗(SM),

and KA ∈ D′(SM×SM) is the Schwartz kernel of A; the usual wavefront set (denoted
by WF) was introduced at the end of Section 3.1.

Since averaging along the flow is smoothing in that direction, we deduce

WF′
[∫

R−
χ′(t)φ∗

tR
+
0

]
⊂ {(φt(x, ξ), (x, ξ)) | t ⩾ t0, ⟨ξ,X⟩ = 0} ∪ Eu∗ × Es∗.
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However, we also have

WF(π∗
2f) ⊂ {((x, v), dπ⊤ξ︸ ︷︷ ︸

∈H∗

, 0︸︷︷︸
∈V∗

) | (x, ξ) ∈ WF(f)} ⊂ H∗.(5.6)

WF(π2∗f) ⊂ {(x, ξ) | ∃v ∈ SxM, ((x, v), dπ⊤ξ︸ ︷︷ ︸
∈H∗

, 0︸︷︷︸
∈V∗

) ∈ WF(f)}.(5.7)

According to (2.8), (5.5) and (5.6), for f ∈ D′(SM) with compact support,

WF

(∫
R−

χ′(t)φ∗
tR

+
0 π

∗
2f

)
⊂

⋃
t>t0

φt(H∗) ∩ (Es∗ ⊕ Eu∗ ),

so that applying (2.9) and (5.7), we deduce that

(5.8) WF′(U) = ∅.

A priori, this is a local result, which implies that U : H−N
comp(SM) → HN

loc(SM).
However, the statements (5.6), (5.7) and (5.8) are actually shorthands for estimates
involving pseudo-differential operators. Instead of using compactly supported oper-
ators, one can use operators with a uniform behaviour in cusps; this will give the
announced property. So we are now going to prove precisely the requested bounded-
ness properties of item (1).

In the definition of the Sobolev anisotropic space Hr(SM), there is a liberty in the
choice of the function G. The construction of this escape function in [GBW22, §2.1] is
a construction in the same fashion as in [FS11]. It is well known that one can choose
the sign of G on closed cones Γ ⊂ T ∗SM that do not intersect E∗

u,s. For compact
manifolds, this is provided by [DGRS20, Lem. 3.2], and the presence of cusps does
not change the proof. As a consequence, choosing the sign of G on H∗, given N > 0,
taking r > 0 large enough and ρ ∈ (0, d), we get

either (a) π∗
2(y

ρH−N (M,⊗2
ST

∗M)) ⊂ yρHr(SM),

or (b) π2∗(yρHr(SM)) ⊂ yρHN (M,⊗2
ST

∗M).
(5.9)

Let us now improve (5.8) to obtain uniform estimates in cusps. For this, we work
with the h-semiclassical quantization. We consider the following microlocal decompo-
sition:

π2∗ = π2∗Areg + π2∗Aell + π2∗Aprop + OyρH−N→yρHN (hN ),

here Areg,ell,prop, are R-admissible operators of order 0, such that Areg is microlocally
supported around the zero section. Aell is micro-supported in the region of ellipticity
of the flow. And finally, Aprop is micro-supported in a small conical neighbourhood of
H∗ ∩ {|ξ| > 1} ∩ Σ, where Σ := Es∗ ⊕ Eu∗ .

Since

−X
∫ 0

−∞
χ′(t)φ∗

t dt =

∫ 0

−∞
χ′′(t)φ∗

t dt,

we can use a parametrix construction to find for M > 0

Aell

∫
χ′(t)φ∗

t dt = AMell

∫
χ(M+1)φ∗

t dt+ OyρH−M→yρHM (hM ),
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with AMell of order −M . Using item (a) of (5.9), and the embedding (4.2), we deduce
that for any N > 0 there exists M > 0 and a constant C > 0 such that for h > 0

small enough ∥∥∥∥π2∗Aell

∫
R−

χ′(t)φ∗
tR

+
0 π

∗
2u dt

∥∥∥∥
yρHN

⩽ Ch−M∥u∥yρH−N .

Next, since φt(WFh(Aprop)) is eventually in a neighbourhood of Es∗ when t→ −∞,
and since φt(H∗∩Σ) is always transverse with H∗∩Σ, uniformly as t→ −∞ (see (2.8)),
we deduce from the propagation of singularities [GBW22, Prop. A.21 & A.23] that
there is C ∈ Ψ0 whose wavefront set does not encounter H∗ ∩ Σ, and such that for
u ∈ yρHr, and t ⩽ −t0,

∥Apropφ
∗
tu∥yρHr ⩽ Cth

−1∥CXu∥yρHr + O(hN∥u∥yρH−N ).

(the constants are locally uniform in t). Using now item (b) of (5.9) and that WF(C)∩
H∗ ∩ Σ = ∅, we get

∥π2∗Apropφ
∗
tR

+
0 π

∗
2u∥yρHN ⩽ Ct∥Cπ∗

2u∥yρHr + O(hN∥u∥yρH−N ) ⩽ O(hN∥u∥yρH−N ).

Finally, for fixed h, Areg is bounded from yρH−N to yρHN (with norm ∼ h−2N ).
We conclude that

∥Uu∥yρHN ⩽ C∥u∥yρH−N ,

by taking h > 0 small enough. In all the arguments above, the only limitation on ρ is
that we require that R−

0 is bounded on yρHr for r large enough, hence the restriction
ρ ∈ (−d/2, d/2). This eventually proves (1).

Let us now turn to the item (2). Actually, this follows from item (1). Indeed, recall
from [GBL23a, Lem. 4.3] that the subspace of elements of yρHN (SM) whose zeroth
Fourier mode vanishes in the cusp is contained in yρ−N/2HN/2(SM). Decomposing

χU [U, ∂θ]χU = χUU∂θχU − χU∂θUχU ,

consider first χU∂θUχU . According to item (1), it is bounded from yρH−N to yρHN

for every N > 0; but it is also valued in functions whose average in the θ variable
vanishes, so it takes values in yρ−N/2HN/2 for every N > 0.

For χUU∂θχU , we apply (−∆+1)N+1/2 and find that elements of yρH−N−1 whose
θ-average vanishes are contained in yρ−N/2H−3N/2−1 for every N > 0. In particular
∂θχU maps yρH−N into yρ−N/2H−3N/2−1, and we can apply item (1).

We now prove the third item. The gain of decay follows from Lemma 4.1 but not
the gain of regularity (see the discussion following Lemma 4.1). For that, we can also
play with the formula for the resolvent. Recall that

χU (PZUEZ − I(U))χU =

∫
R−

χ′(t)π2∗χUφ
∗
t

(
PZR

+
0 EZ − I(R+

0 )
)
χUπ

∗
2dt.
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Now, we write

χUφ
∗
tPZR

+
0 EZχU = I(R+

0 )[I(X), χU ]φ
∗
tPZR

+
0 EZχU

+ I(R+
0 )χUφ

∗
tχU −

∫
SM

χU •dµ I(R+
0 )χU ,

and obtain

χU (PZUEZ − I(U))χU = π2∗I(R
+
0 )PZ [I(X), χU ]

∫
R−

χ′(t)φ∗
tR

+
0 EZχUπ

∗
2

+ π2∗

∫
χ′(t)[I(R+

0 ), χU ]φ
∗
tχUπ

∗
2 dt−

∫
SM

χUπ
∗
2•dµ π2∗I(R

+
0 )χU .

In the first line, the term [I(X), χU ] is the multiplication by a smooth compactly
supported function. It does not add wavefront set, but gives decay as y → ±∞.
Hence, mimicking the arguments of item (1) and using the boundedness of the indicial
resolvent on weighted Sobolev spaces (see Proposition 4.1 and the discussion above),
we get the expected boundedness result.

For the third line, we observe that f 7→
∫
SM

χUπ
∗
2fdµ π2∗I(R

+
0 )χU is a finite rank

operator, and the expected results follows from the fact χU ∈ yρHN for all N > 0,
ρ ∈ (−d/2, d/2).

As to the second line, we write out

[I(R+
0 ), χU ] = I(R+

0 )(1− [I(X), χU ]I(R
+
0 )− 1) = −I(R+

0 )[I(X), χU ]I(R
+
0 ),

and again apply the arguments of item (1) to conclude. □

5.2. Indicial roots of the normal operator. — We now study the indicial operator
I(Π2) acting on sections in ⊗2

SRd+1 of the model space I(Z) ≃ Rr ≃ (0,∞)y. More
precisely, on the full cusp, the set{dy2

y2
,
dydθi + dθidy

2y2
,
dθidθj
y2

∣∣ 1 ⩽ i, j ⩽ d
}

gives a global basis of the space of symmetric 2-tensors, and I(Π2) acts on sections
of the form

f(y) = a(y)
dy2

y2
+
∑
i

bi(y)
dydθi + dθidy

2y2
+
∑
i,j

ci,j(y)
dθidθj
y2

.

Since Π2D = 0, there is no hope of inverting I(Π2). However we will be able to invert
its restriction to ker I(D∗). The key ingredient will be the following computation:

Lemma 5.4. — For ℜ(λ) ∈ (0, d), I(Π2, λ) is invertible on ker I(D∗, λ).

Proof. — Consider a symmetric 2-tensor

f = a
dy2

y2
+
∑
i

bi
2

(dy
y

dθi
y

+
dθi
y

dy

y

)
+

∑
i,j

ci,j
dθi
y

dθj
y
,
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where a = a∞y
λ, bi = bi∞y

λ, ci,j = ci,j∞yλ, c being a symmetric matrix. Then:

(5.10) D∗f = (a(λ− d) + Tr(c))
dy

y
+

1

2
(λ− (d+ 1))

∑
i

bi
dθi
dy

.

If ℜ(λ) ∈ (0, d), we get that f is solenoidal if and only if bi ≡ 0 for all i ∈ {1, . . . , d}
and:

(5.11) a∞(λ− d) + Tr(c∞) = 0.

From now on, we assume that these conditions hold. We now compute Ππ∗
2f . We use

the coordinates on I(SZ) = (0,∞)y × Sd, the unit tangent bundle of the full cusp,
introduced in (2.1).

Given z = (y0, ϕ0, u0) a point in I(SZ) = (0,+∞)y × (0, π) × Sd−1, we write
φt(z) = (yt, ϕt, ut) and we have:

Ππ∗
2

(
a
dy2

y2

)
(y0, ϕ0, u0) = Π(a∞y

λ cos2 ϕ)(y0, ϕ0)

= a∞

∫ +∞

−∞
yλt cos

2(ϕt)dt

= a∞

( y0
sinϕ0

)λ ∫ +∞

−∞
sinλ(ϕt)(1− sin2(ϕt))dt

= a∞

( y0
sinϕ0

)λ
(H(λ)−H(λ+ 2)),

where H(λ) :=
∫ +∞
−∞ sinλ(ϕt)dt. This is independent of ϕ0 (as long as ϕ0 ̸= 0) and one

can check that:

(5.12) H(λ) =
√
π

Γ(λ/2)

Γ((λ+ 1)/2)
.

Thus H(λ)−H(λ+ 2) = H(λ)/(λ+ 1) and we get:

(5.13) Ππ∗
2

(
a∞y

λ dy
2

y2

)
= a∞

( y

sin(ϕ)

)λH(λ)

λ+ 1
.

In the same fashion:

(5.14) Ππ∗
2

(∑
i,j

yλci,j∞
dθidθj
y2

)
=

( y

sin(ϕ)

)λλH(λ)

λ+ 1

∑
i,j

ci,j∞uiuj .

Since π∗
2 and π2∗ are formally adjoint operators on the d-dimensional sphere, it is

sufficient to check that:

⟨y−λΠπ∗
2f, y

−λπ∗
2f⟩L2(Sd) ̸= 0.
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Now, this is equal to:

⟨y−λΠπ∗
2f, y

−λπ∗
2f⟩L2(Sd)

=
H(λ)

λ+ 1

∫
Sd

(
|a∞|2 cos2(ϕ) +

∑
kl

ackl∞ukul sin
2(ϕ) + λ

∑
ij

acij∞uiuj cos
2(ϕ)

+ λ
∑
ijkl

cij∞c
kl
∞uiujukul sin

2(ϕ)

)
dµSd

sinλ(ϕ)
,

where dµSd = sind−1(ϕ)dϕdµSd−1(u) is the usual measure on the sphere. After some
(non-trivial) simplifications, and using the fact that a∞(λ − d) + Tr(c∞) = 0, we
obtain:

1

vol(Sd−1)
⟨y−λΠπ∗

2f, y
−λπ∗

2f⟩L2(Sd)

=
H(λ)H(d− λ)

(λ+ 1)(d+ 1− λ)

[
|a∞|2

(
1 +

|d− λ|2

d
+
λ(d− λ)

d
+ |d− λ|2λ(d− λ)

d(d+ 2)

)
+ 2Tr |c∞|2λ(d− λ)

d(d+ 2)

]
=

π

(λ+ 1)(d+ 1− λ)

Γ (λ/2) Γ ((d− λ)/2)

Γ ((λ+ 1)/2) Γ ((d+ 1− λ)/2)

×
[
|a∞|2

(
1 +

|d− λ|2

d
+
λ(d− λ)

d
+ |d− λ|2λ(d− λ)

d(d+ 2)

)
+ 2Tr |c∞|2λ(d− λ)

d(d+ 2)

]
.

On the strip {0 < ℜ(λ) < d}, the cross-ratio of Γ functions is holomorphic and does
not vanish (in particular, it is a positive real number on the line λ = d/2 + it).
The term between parenthesis can be written in the form η(λ) + λ(d − λ)µ(λ) =

−µ(λ)λ2 + λdµ(λ) + η(λ), where η(λ), µ(λ) ⩾ 0 when λ ∈ (0, d). The roots of this
equation must then satisfy λ = d/2±

√
d2/4 + η(λ)/µ(λ) so they are outside the strip

{0 < ℜ(λ) < d}. □

Remark 5.1. — It also has an interest on its own to compute the indicial roots of the
operator Π0 to determine on which spaces it will be invertible. Considering a function
on the whole cusp f = a∞y

λ for λ ∈ C and carrying the same sort of computations
as before, one finds out that:

⟨y−λΠπ∗
0(a∞y

λ), y−λπ∗
0(a∞y

λ)⟩L2(Sd) = |a∞|2π Γ (λ/2) Γ ((d− λ)/2)

Γ ((λ+ 1)/2) Γ ((d− λ)/2 + 1/2)
.

In particular, it has no roots for 0 < ℜ(λ) < d, as Π2. This may be true for tensors
of higher order m ∈ N but we did not do the general computation.

5.3. Inverting the normal operator. — We now proceed to showing that Π2 is in-
vertible on weighted solenoidal tensors.
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5.3.1. Ellipticity of the normal operator. — Given (x, ξ) ∈ T ∗M , we can decompose
the space of symmetric 2-tensors into:

⊗2
ST

∗
xM = kerσ(D∗)(x, ξ)⊕ ranσ(D)(x, ξ)

= ker iξ ⊕ ran Sjξ,

where iξ is the contraction by ξ♯, Sjξ : u 7→ S(ξ ⊗ u) is the symmetric multiplication
by ξ. We denote by πker iξ the projection on the left space, parallel to the right space.
Note in particular that the principal symbol of πkerD∗ is given by σ(πkerD∗) = πker iξ .
Since the principal symbol of an operator is obtained by a local computation, one
gets that the principal symbol of Π2 is also that of Π2,χ which in turn reduces to the
compact case:

Lemma 5.5. — One has:

σ(Π2)(x, ξ) =
2π

Bd
|ξ|−1πker iξπ2∗π

∗
2πker iξ ,

where Bd =
∫ π
0
sind+3(ϕ)dϕ.

For the proof, we refer to [GL21, Th. 4.4]. Next, according to Lemma 3.2, πkerD∗

itself is [0, d]-admissible. Its principal symbol σ(πkerD∗) = πker iξ is a projector and
σ(Π2) is invertible on the range of σ(πkerD∗), in the sense that we can factorize:

qσ(Π2) = σ(πkerD∗) = πker iξ ,

for some q ∈ S1(T ∗M,End(⊗2
ST

∗M)), a symbol of order 1. Note that this is not
the usual definition of ellipticity (or uniform ellipticity) introduced in Definition 3.3;
one would rather say that the operator is elliptic on kerD∗ i.e., relatively to an
infinite-dimensional subspace. Nevertheless, this will not prevent us from applying
the parametrix construction of [GBL23a], modulo some slight modifications.

5.3.2. Parametrix construction. — We cannot apply verbatim Theorem 3.1 since Π2 is
not uniformly elliptic in the usual sense. Nevertheless, we will obtain the parametrix
construction by slightly adapting the proof of Theorem 3.1, which can be found in
[GBL23a, §4.2.3].

Lemma 5.6. — There exists Q′ ∈ Ψ1
small(M,⊗2

ST
∗M), a small (0, d)-admissible pseu-

dodifferential operator such that Q′Π2 − πkerD∗ is bounded as an operator
yd/2−εH−k(M,⊗2

ST
∗M) −→ yε−d/2Hk(M,⊗2

ST
∗M),

yd−εC−k
∗ (M,⊗2

ST
∗M) −→ yεCk∗ (M,⊗2

ST
∗M),

for all ε > 0, k ∈ N.

Proof. — We already know that we have a symbol q0 such that

Op(q0)Π2 = πkerD∗ + O(Ψ−1).

However, Π2 = Π2πkerD∗ , so the principal symbol of the remainder can be written

rσ(πkerD∗) + O(S−2).
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Then, we can find q1 so that q1σ(Π2) = rσ(πkerD∗), and improve the parametrix to
O(Ψ−2). By induction, we obtain a formal solution q ∼ q0 + q1 + · · · , for which we
can build a Borel sum q ∈ S1, and we get

πkerD∗ Op(q)Π2 = πkerD∗(1+R)πkerD∗ ,

where Op(q) and R are (0, d)-L2 admissible, of order 1,−∞ respectively and in the
small calculus introduced in Section 3.1.

Now, we have to correct πkerD∗ Op(q) on the zeroth Fourier mode in the cusps,
to obtain compact remainders. For this, we have to build an indicial “inverse”. Let us
denote by S(Π2, λ) the matrix coinciding with the inverse of I(Π2, λ) on ker I(D∗, λ),
and vanishing on ker I(πkerD∗ , λ), provided by Lemma 5.4. According to the compu-
tation just above, we find that

I(πkerD∗ Op(q), λ)I(Π2, λ) = I(πkerD∗ , λ)(1+ I(R, λ))I(πkerD∗ , λ).

Since R is smoothing, I(R, λ) = O(|ℑλ|∞) by [GBL23a, Lem. 4.7], so that for ℑλ
large enough,

S(Π2, λ) = I(πkerD∗ , λ)(1 + O(|ℑλ|∞))I(Op(q), λ)I(πkerD∗ , λ).

In particular, as ℑλ→ ∞, S(Π2, λ) behaves as a symbol of order 1. As a consequence,
we can follow the strategy in [GBL23a, Prop. 4.5] to define a convolution kernel for
ρ0 ∈ (0, d)

S(Π2)(r) =

∫
ℜλ=ρ0

eλrS(Π2, λ)dλ.

This provides a convolution operator S(Π2), bounded from

eρrCs∗(R,⊗2
SRd+1) −→ eρrCs−1

∗ (R,⊗2
SRd+1),

for s ∈ R and ρ ∈ (0, d), that satisfies

I(πkerD∗)S(Π2) = S(Π2)I(πkerD∗) = S(Π2), S(Π2)I(Π2) = πkerD∗ .

Now, we follow the arguments from [GBL23a, §4.2.3]. We replace the operator
πkerD∗ Op(q) by

Q′ = πkerD∗

[
Op(q) +

∑
ℓ

EZℓ
χ[S(Π2)− I(πkerD∗ Op(q))]χPZℓ

]
,

for some cutoff function χ equal to 1 in the cusps. This is an operator such that

Q′Π2 = πkerD∗(1+R)πkerD∗ = πkerD∗ + πkerD∗RπkerD∗ ,

where all these operators are (0, d)-admissible and this construction is done so that
the smoothing remainder term K := πkerD∗RπkerD∗ satisfies I(K) = 0. By [GBL23a,
Lem. 4.10] (see also Example 3.3), this ensures that, when acting on the zero Fourier
mode, K decreases the weight, that is a section in yd/2−εH−k(M,⊗2

ST
∗M) which is

independent of the θ variable sufficiently high in the cusp is mapped to a section in
y−d/2−εH+k(M,⊗2

ST
∗M) (where ε > 0, k ∈ N are arbitrary). Moreover, using the
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trade-off [GBL23a, Lem. 4.3] between regularity and decay in powers of y in non-zero
Fourier modes, one gets that the remainder actually maps boundedly:

K : yd/2−εH−k(M,⊗2
ST

∗M) −→ y−d/2−εH+k(M,⊗2
ST

∗M),

or equivalently K : yd/2−εC−k
∗ → y−d/2+εC+k

∗ . □

5.3.3. End of the proof of Theorem 5.1. — First of all, we prove that Π2 is injective
on solenoidal tensors:

Lemma 5.7. — If Π2f = 0 and

f ∈ yd−εCr∗(M,⊗2
ST

∗M) ∩ kerD∗ or f ∈ yd/2−εHr(M,⊗2
ST

∗M) ∩ kerD∗,

for some ε > 0, r ∈ R, then f ≡ 0.

Proof. — The existence of a parametrix for Π2 in Lemma 5.6 automatically implies
that such a f in the kernel of Π2 is actually in

⋂
r∈R,ε>0 y

εCr∗(M,⊗2
ST

∗M). By embed-
ding estimates (see [GBL23a, Lem. 2.1]), it is in particular in

⋂
r∈RH

r(M,⊗2
ST

∗M).
Hence, we can consider the pairing:

0 = ⟨Π2f, f⟩L2 = ⟨Ππ∗
2f, π

∗
2f⟩L2 .

Since Π is self-adjoint, non-negative by Proposition 4.2, this implies that Ππ∗
2f = 0.

Hence, by Proposition 4.2, there exists r0 > 0 and u ∈
⋂
ρ>0,r⩽r0

yρCr∗(M,⊗2
ST

∗M)

such that π∗
2f = Xu. In turn, this implies that f is in the kernel of the X-ray transform

operator Ig2 introduced in Definition 2.3. Now, as recalled in Theorem 2.1, it was one
of the main results of [GBL23a, Th. 1], that Ig2 is injective on spaces of the form

yβCα(M,⊗2
ST

∗M) ∩H1(M,⊗2
ST

∗M) ∩ kerD∗

with α, β small enough, and f is indeed contained in this space. □

Lemma 5.8. — The operators

Π2 : yρCr∗(M,⊗2
ST

∗M) ∩ kerD∗ −→ yρCr+1
∗ (M,⊗2

ST
∗M) ∩ kerD∗

Π2 : yρ−d/2Hr(M,⊗2
ST

∗M) ∩ kerD∗ −→ yρ−d/2Hr+1(M,⊗2
ST

∗M) ∩ kerD∗

are invertible for all ρ ∈ (0, d), r ∈ R.

Proof. — The operator Π2 is selfadjoint on L2. As a consequence, its Fredholm index
on that space is zero. Since we already know that it is injective, it is also surjective
and this proves the second line of the lemma (i.e., for Sobolev spaces) for ρ = d/2,
r = 0. Now by [GBL23a, Prop. 4.6], the Fredholm index does not depend on r nor
on ρ as long as it is in the window of admissibility and does not cross any indicial
root. This proves the second line of the lemma. As far as the Hölder-Zygmund spaces
are concerned, this is a straightforward consequence using embedding estimates, see
[GBL23a, Prop. 4.9]. □

We can now conclude the proof of Theorem 5.1:
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Proof. — The pseudodifferential operator Π2 is invertible by the previous lemma,
that it admits an operator Q such that

QΠ2 = πkerD∗ and Q(1− πkerD∗) = 0 = (1− πkerD∗)Q.

It is a standard microlocal argument that this operator Q has to differ from the
operator Q′ by a smoothing term (and this term is also (0, d)-admissible smoothing
here), hence Q is indeed a small (0, d)-admissible pseudodifferential operator.

To obtain (5.2), it suffices to write for ρ ∈ (0, d), r ∈ R and f ∈ Cr(M,⊗2
ST

∗M)∩
kerD∗:

∥f∥yρCr
∗
= ∥QΠ2f∥yρCr

∗
⩽ C∥Π2f∥yρCr+1

∗

by boundedness of Q on the spaces above. □

6. Proof of the main theorem

We can now start the proof of the main result, Theorem 1.1. In the following,
we assume that (Md+1, g0) is a fixed exact cusp manifold as in Section 2.1.

6.1. Reduction to solenoidal perturbations. — In our setting, there is an obvi-
ous group of gauge transformation, the diffeomorphisms of the manifold. It is thus
necessary to fix a gauge. Since we will use the operator Π2, which has good ana-
lytic properties on solenoidal tensors, we will work in the solenoidal gauge (as in
the compact case of [GL19]). This means that we will be looking for a diffeomor-
phism ψ so that ϕ∗g− g0 is solenoidal. The modern procedure to do this is explained
in [GL19, Lem. 4.1] but the ideas go back to [Ebi68]. The idea is to consider the map
(ϕ, g) 7→ D∗

g0(ϕ
∗g), where ϕ is a diffeomorphism close to the identity. Its derivative at

identity with respect to ϕ is the Laplacian ∆ = D∗D acting on 1-forms. Thus, in order
to apply the implicit function theorem, one needs to understand to what extent this
map is invertible. The analytic properties of this Laplace operator on weighted spaces
were studied in [GBL23a, Lem. 5.4].

Given a vector field V on M , we let expV be the map expV (x) := expg0x (V (x)),
where expg0 is the exponential map given by g0 on M . Provided V is sufficiently C1

small, this is as smooth as V , injective and a local diffeomorphism. Since it is proper,
it has to be surjective so it is a diffeomorphism (see also Lemma A.4 where a similar
argument is detailed).

Lemma 6.1. — Fix r ⩾ 2, ρ ∈ (λ−d , 0], where λ−d is given by (2.17). Then, there exists
C, δ > 0 such that for all metrics g such that ∥g−g0∥yρCr

∗
⩽ δ, there exists a (unique)

diffeomorphism ϕ := expV for some small V ∈ yρCr+1
∗ (M,TM) such that

ϕ∗g − g0 ∈ yρCr∗(M,⊗2
ST

∗M) ∩ kerD∗.

Moreover,

(6.1) ∥ϕ∗g − g0∥yρCr
∗
⩽ C∥g − g0∥yρCr

∗
.
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When r takes an integer value, one really needs to use the Hölder-Zygmund
space Cr∗ (and not the usual Cr-spaces). The proof is the same as in the compact
case once the adequate microlocal tools for cusp are available. It relies on [GBL23a,
Lem. 5.4].

Proof of Lemma 6.1. — Given f ∈ yρCr∗(M,⊗2
ST

∗M) small enough, we want to apply
the implicit function theorem in order to find a (unique) V ∈ yρCr+1

∗ (M,TM) such
that D∗(exp∗V (g0 + f)) = 0. For that, we let

Φ : yρCr∗(M,⊗2
ST

∗M)× yρCr+1
∗ (M,TM) −→ yρCr−1

∗ (M,T ∗M),

Φ(f, V ) := D∗(exp∗V (g0 + f)).

We have ∂V Φ|f=0,V=0(Z) = D∗LZg = 2∆Z♯, where ∆ denotes the Laplacian on
1-forms and ♯ : TM → T ∗M is the musical isomorphism. But by [GBL23a, Lem. 5.4],
the operator

∆ : yρCr+1
∗ (M,T ∗M) −→ yρCr−1

∗ (M,T ∗M),

is an isomorphism whenever ρ belongs to the window (λ−d , λ
+
d ), where λ±d is de-

fined in (2.17). By the implicit function theorem, this shows the existence of a
unique ϕ := expV satisfying the required conditions. Moreover, the map g 7→ Vg ∈
yρCr+1

∗ (M,TM) is C1 since Φ is C1 (see [GL19] for instance). As a consequence, we
also have:

∥ϕ∗g − g0∥yρCr
∗
⩽ C∥g − g0∥yρCr

∗
,

for some constant C > 0. □

6.2. Geodesic stretch modulo coboundaries. — Given a fixed exact cusp metric g0
on M , the geodesic flows of nearby metrics are also Anosov, and Cν-orbit conjugated
to that of g0. This is known as the structural stability of Anosov flows and is discussed
at length in Appendix A in the setting of cusp manifolds. In this conjugacy, a time
dilation factor appears, known as the geodesic stretch. Note that in this specific geo-
metric framework involving geodesic flows, it can be expressed in terms of geodesics
of different metrics with same endpoints at infinity. This will not be needed but we
refer to [Gro00] for further details.

6.2.1. Structural stability. — The geodesic flow of g0 is defined on the unit tangent
bundle SMg0 , which will be simply denoted by SM from now on. However, if we
replace g0 by g, we have a new geodesic flow acting on a different sphere bundle SMg.
We thus start by rescaling the flows: for g another metric on M , we define

Φg : SM ∋ v 7−→ v

|v|g
∈ SMg.

Denoting by Xg the geodesic vector field of g on SMg, we let Yg = Φ∗
gXg, which is

now a vector field on SM . The geodesic vector field of g0 will still be denoted by Xg0 .
We also introduce the rescaled evaluation map of symmetric 2-tensors:

π∗
2,gh : SM ∋ v 7−→ h(v, v)

|v|2g
.
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It will also be convenient to pull back the Liouville one-form αg defined in (2.5),
letting βg = Φ∗

gαg. We recall that βg is a contact form, with distribution kerβg =

Eu(g)⊕ Es(g) ⊂ TSM , and that βg(Yg) = 1.
Orbit conjugacies are never unique and their construction relies on the choice of

a gauge condition. To make it explicit, we will use the following notation: if V ∈
Cν(SM,T (SM)) is a Hölder vector field, we let as before:

expV (v) := expv(V (v)), ∀v ∈ SM.

Beware that, contrary to Section 6.1, this is now the exponential map on SM , induced
by the Sasaki metric of g0 on SM . Actually, the exponential map of any metric
equivalent (in some mild sense) to the Sasaki metric would also be suitable. Eventually,
given a smooth vector field W on SM , we denote by CνW (SM,T (SM)) the space of
vector fields V on SM , which are Cν , and such that LWV is also Cν . We can now
state the structural stability result we will need:

Proposition 6.1 (Structural stability). — Let (M, g0) be a smooth cusp manifold with
Anosov geodesic flow. Then, there exists ν0 ∈ (0, 1), δ > 0 satisfying the following:
for any metric g such that ∥g − g0∥C2 ⩽ δ, there exists a unique pair of maps

g 7−→

{
Vg ∈ Cν0Xg0

(SM,T (SM)),

ag ∈ Cν0(SM,R+),

so that Vg is valued in kerβg0 , and

d expVg
(Xg0(v)) = ag(v)Yg ◦ expVg

(v), ∀v ∈ SM.

For k ⩾ 1, the maps ag, Vg are Ck when g0 is measured in Ck+2 topology. Additionally,
the map Ψg := expVg

: SM → SM is a Cν0-regular homeomorphism, and its inverse
is also Hölder-continuous.

In the closed case, Proposition 6.1 is a fundamental result in the theory of hyper-
bolic dynamical systems, see [KKPW89, Con92] for instance (among other references).

The choice Vg ∈ kerβg0 is the above-mentioned gauge condition. Proposition 6.1
follows from the slightly more general result in Appendix A.2, see Theorem A.1. The
exponent ν0 > 0 is locally uniform with respect to the metric g0 (with respect to
the C2-topology). Indeed, it is obtained as a lower bound extracted from the Hölder
regularity of the Anosov splitting of all metrics in a C2-neighborhood of g0. The
existence of such a locally uniform lower bound for the Hölder regularity is explained
in [GBL23b, Lem. 5.4]. The adaptation of the arguments to the noncompact case is
straightforward (the regularity is simply obtained from a pinching of stable/unstable
Lyapunov exponents).

We can now introduce the geodesic stretch:

Definition 6.1 (Geodesic stretch). — The time-rescaling function ag ∈ Cν0(SM)

given by Proposition 6.1 is called the geodesic stretch (between g0 and g).
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Since Proposition 6.1 is based on an application of the implicit function theorem,
it is possible to recover the derivatives of the maps at g = g0. We record this now,
as it will be needed later.

For a Hölder-continuous vector field W valued in kerβg, we can decompose it into
stable and unstable directions of Yg, W =Wu +W s ∈ Es(g)⊕ Eu(g), and set

RgW = −
∫ +∞

0

(φ
Yg

t )∗Wudt+

∫ 0

−∞
(φ
Yg

t )∗W sdt.

These integrals converge absolutely, and define Rg a resolvent at zero of the geodesic
flow (of g) acting on vector fields. The operator Rg plays a crucial role in the proof
of structural stability (see [GBL23b, Lem. 5.4] for instance).

The following holds:

Lemma 6.2. — For g0 satisfying the assumptions of Proposition 6.1, and for a tensor
h ∈ C3(M,⊗2

ST
∗M), we have

∂gYg|g=g0(h) = −1

2
π∗
2,g(h)Xg0 +W⊥

g0(h),(6.2)

∂gag|g=g0(h) =
1

2
π∗
2,g0(h),(6.3)

∂gΨg|g=g0(h) = Rg0W
⊥
g0(h),(6.4)

where W⊥
g0(h) is valued in kerβg0 . Moreover, for all α ∈ [0, 2], there exists C > 0 such

that: for all h ∈ C3(M,⊗2
ST

∗M),

(6.5) ∥π∗
2,g(h)∥Cα ⩽ C∥h∥Cα , ∥W⊥

g (h)∥Cα ⩽ C∥h∥C1+α .

This statement is the transposition to the case of cusp manifolds of [GBL23b,
Lem. 5.4, 5.5 & 5.6]. The proof is literally the same, so we will not give further details.

6.2.2. Taylor expansion of the geodesic stretch. — As before, we assume that g0 is some
fixed exact cusp metric on M . For α > 0, β > 0, we let

Dα,β(SM) = {Xg0u | u ∈ yαCβ(SM), Xg0u ∈ yαCβ(SM)},

be the space of coboundaries. According to Proposition 4.2, this is also kerΠ ∩
yαCβ(SM), so it is closed in yαCβ(SM), provided 0 < Cα < β are small enough.
The main result of this paragraph is the following proposition. It is very similar to
[GBL23b, Prop. 5.3] which deals with the compact case.

Proposition 6.2. — Let g0 be an exact cusp metric of negative sectional curvature.
There exists α0, ν0 > 0 such that for all ε > 0, there exists C, δ > 0 such that for all
metrics g such that ∥g − g0∥C2 ⩽ δ, there exists Xg0u ∈ Dα0,ν0 satisfying∥∥ag − 1− 1

2π
∗
2(g − g0)−Xg0u

∥∥
Cε ⩽ C∥g − g0∥C1∥g − g0∥C1+ε/ν0 .

The exponent ν0 > 0 appearing in Proposition 6.2 is the same as the one provided
by Proposition 6.1. The proof of Proposition 6.2 is based on a Taylor expansion of
the geodesic stretch. Before proving it, we make some preliminary observations.
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First of all, assume that Ψ is a Hölder-continuous homeomorphism, close to the
identity, C1+ν0 -regular along Xg0 , and such that there exists a Hölder-continuous
function a ∈ Cν0(SM) such that

(6.6) dΨ(Xg0(v)) = a(v)×Xg0 ◦Ψ(v), ∀v ∈ SM.

We want to show that any such Ψ (that is, any self orbit-conjugacy of (φg0t )t∈R) is of
the form Ψ(v) = φ

Xg0

u(v)(v) for some function u : SM → R.
First, we claim that a−1 = Xg0u, for some u ∈ Dα0,ν0(SM), with α0 > 0. Indeed,

a− 1 integrates to zero along every closed orbit of Xg0 since (6.6) is equivalent to

Ψ(φ
Xg0
t (v)) = φ

Xg0

κ(t,v)(Ψ(v)), κ(t, v) :=

∫ t

0

a(φsv)ds,

for all t ∈ R, v ∈ SM ; taking v periodic (of period T ), Ψ(v) is also periodic and on
the same orbit as v, and we get κ(T, v) = T , that is a − 1 integrates to 0 along the
orbit of v.

By the exact Livšic theorem [GBL23a, Th. 5], this implies that there exists a func-
tion u, ν0-Hölder regular such that a − 1 = Xg0u. However, unlike the closed case,
the function u may grow at infinity. More precisely, if −κ0 is the maximum of the
sectional curvature(5) of g0, we know that u ∈ yαCν0(SM) for all 0 < α <

√
κ0ν0, as

described in [GBL23a, Th. 5]. For the sake of simplicity, we will thus fix

(6.7) α0 :=
√
κ0ν0/2.

Hence, u ∈ Dα0,ν0(SM) and it is easy to check that Ψ(v) = φ
Xg0

u(v)(v).
For u ∈ yαCν0(SM), we now introduce the notation Υu(v) := φ

Xg0

u(v)(v), where
v ∈ SM . As a consequence of the previous paragraph, if Ψj , j = 1, 2 are two ν0-
Hölder regular orbit-conjugacies between Xg0 and Yg (for g close to g0) with stretches
a1, a2 ∈ Cν0(SM), we deduce that there exists u ∈ Dα0,ν0(SM) as above such that
Ψ−1

1 ◦ Ψ2 = Υu, that is, Ψ2 = Ψ1 ◦ Υu. By the chain rule, a2 = (1 +Xg0u)a1 ◦ Υu.
Moreover, it is immediate to check that a1 − a2 integrates to 0 along every closed
orbit and thus there exists u′ ∈ Dα0,ν0(SM) such that

(6.8) a2 = (1 +Xg0u)a1 ◦Υu = a1 +Xg0u
′.

From these observations, we can now prove Proposition 6.2.

Proof of Proposition 6.2. — We consider g0, the fixed exact cusp metric, and two other
metrics g, g′ close to g0 in the C2-topology. For the sake of clarity, we denote by
ag0→g, ag→g′ and Ψg0→g,Ψg→g′ the maps obtained by applying Proposition 6.1 with
the respective pairs (g0, g) and (g, g′).

We now consider the composition Ψg→g′ ◦ Ψg0→g. Since it is an orbit conjugacy
between the flows of Xg0 and Yg′ , we deduce by (6.8) and the chain rule that:

(6.9) ag0→g′ = ag0→g × ag→g′ ◦Ψg0→g mod Dα0,ν0 .

(5)In the case where g0 is not negatively-curved, but with merely Anosov geodesic flow, we can
adapt the proof of the Livšic theorem to replace κ0 by the smallest Lyapunov exponent.
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Differentiating with respect to g′ in (6.9) and using (6.3), we then get that:

∂gag0→g(h) =
1

2
π∗
2,gh ◦Ψg0→g mod Dα0,ν0 .

Next, we write h = g − g0, gt = g + th, and make a Taylor expansion:

ag0→g = 1+

∫ 1

0

∂gag0→gt(h)dt = 1+

∫ 1

0

1
2π

∗
2,gth ◦Ψg0→gtdt mod Dα0,ν0 .

Using the same argument as in the proof of [GBL23b, Lem. 5.7], we deduce then that

∂g

[1
2
π∗
2,gh ◦Ψg0→g

]
(h)

=
(
− 1

4 (π
∗
2,gh)

2 + 1
2dπ

∗
2,g(h)(RgW

⊥
g (h))

)
◦Ψg0→g × ag0→g mod Dα0,ν0 .

It follows that by a Taylor expansion to order 2, we get:

ag0→g mod Dν0,β0 = 1 + 1
2π

∗
2(h)

+

∫ 1

0

(1− t)
(
− 1

4 (π
∗
2,gth)

2 + 1
2dπ

∗
2,gt(h)(RgtW

⊥
gt (h))

)
◦Ψg0→g × ag0→g dt.

The same arguments as in [GBL23b, Lem. 5.8] carry on in this context. They imply
that for ε > 0 small enough, using (6.5), the Cε-norm of the term under the integral
is controlled by ∥h∥C1+ε/ν0 ∥h∥C1 . This proves the claim. □

6.3. End of the proof. — We now prove Theorem 1.1. It will come as a byproduct
of the more general stability estimate described below. Before that, we introduce the
following quotient norm on the space of functions modulo coboundaries:

∥[f ]∥yαCβ(SM) := inf
u∈Dα,β(SM)

∥f +Xg0u∥yαCβ(SM).

We have:

Theorem 6.1. — Let (Md+1, g0) be a negatively-curved complete exact cusp manifold.
Then, there exists ν0 depending only on g0 such that the following holds. For all ε > 0,
there exists C, δ > 0 such that for all metric g such that

∥g − g0∥y−εC
3+ε(2/ν0−1)
∗

< δ,

there exists a C3+ε(2/ν0−1)
∗ -diffeomorphism ϕ :M →M such that:

(6.10) ∥ϕ∗g − g0∥yεCε−1
∗

⩽ C∥[ag − 1]∥yεCε
∗
.

Of course, we retrieve Theorem 1.1 as a byproduct of Theorem 6.1 since the met-
rics g and g0 have same marked length spectrum if and only if ag is cohomologous
to 1 (in that case, the right-hand side in (6.10) is zero).

Proof. — We fix ε > 0 small enough and consider g close to g0 in the y−εC3+ε(2/ν0−1)-
topology. By Lemma 6.1 applied with ρ = −ε, r = 3 + ε(2/ν0 − 1), there exists a
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diffeomorphism ϕ :M →M such that g′ := ϕ∗g ∈ y−εC
3+ε(2/ν0−1)
∗ is solenoidal with

respect to g0 (i.e., in kerD∗). Moreover, by (6.1), we have

(6.11) ∥ϕ∗g − g0∥y−εC
3+ε(2/ν0−1)
∗

⩽ C1∥g − g0∥y−εC
3+ε(2/ν0−1)
∗

,

for some constant C1 > 0, independent of g.
Applying Proposition 6.2, we can write (recall f = ϕ∗g − g0):

(6.12) 1/2× π∗
2f = ag − 1+Xg0h+ r,

where r is bounded by

(6.13) ∥r∥Cε
∗
⩽ C∥f∥C1∥f∥

C
1+ε/ν0
∗

.

Letting h ∈ yεCε∗(SM) be an arbitrary function such that Xh ∈ yεCε∗(SM), the
following sequence of equalities and inequalities holds (the constant C > 0 might
change from one line to another):

(6.14)

∥f∥yεCε−1
∗

⩽ C∥Π2f∥yεCε
∗

by Theorem 5.1,
= C∥π2∗Ππ∗

2f∥yεCε
∗

⩽ C∥π2∗Π(ag − 1+Xg0u+ r)∥yεCε
∗

by (6.12),
= C∥π2∗Π(ag − 1+ r)∥yεCε

∗
ΠX = 0 by Prop. 4.2,

⩽ C
(
∥[ag − 1]∥yεCε

∗
+ ∥r∥yεCε

∗

)
by Corollary 4.1,

⩽ C
(
∥[ag − 1]∥yεCε

∗
+ ∥r∥Cε

∗

)
⩽ C

(
∥[ag − 1]∥yεCε

∗
+ ∥f∥C1∥f∥

C
1+ε/ν0
∗

)
by (6.13),

⩽ C2

(
∥[ag − 1]∥yεCε

∗
+ ∥f∥yεCε−1∥f∥

y−εC
3+ε(2/ν0−1)
∗

)
by interpolation,

where C2 > 0 is a uniform constant, independent of h.
Hence, assuming that ∥g − g0∥y−εC

3+ε(2/ν0−1)
∗

⩽ δ := 1/1515C1C2, we obtain by
(6.11) that

∥f∥
y−εC

3+ε(2/ν0−1)
∗

= ∥ϕ∗g − g0∥y−εC
3+ε(2/ν0−1)
∗

⩽ C1∥g − g0∥y−εC
3+ε(2/ν0−1)
∗

⩽
1

1515C2

and thus by (6.14):

∥f∥yεCε−1
∗

= ∥ϕ∗g − g0∥yεCε−1
∗

⩽ C∥[ag − 1]∥yεCε
∗
,

for some other constant C > 0, uniform with respect to g. This concludes the proof
of the Theorem 6.1. □

Appendix A. Anosov structural stability for non-compact manifolds

In this first appendix, we discuss structural stability of Anosov flows on non-
compact manifolds. Although classical on closed manifolds (and probably well-known
to the expert in the broader setting of non-compact spaces), we could not locate any
reference for that, so we included the proofs.
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A.1. Bounded geometry. — Let (N, g) be a complete Ck-regular (k ⩾ 2) Riemannian
manifold without boundary. We introduce the following terminology:

Definition A.1. — We say that (N, g) has local Ck-bounded geometry if the Rie-
mann curvature tensor R of g, as well as all its derivatives ∇ℓR are bounded for
ℓ ∈ {0, . . . , k − 2}.

The classical definition of bounded geometry adds the requirement that the local
injectivity radius admits a global positive lower bound. For example, a cusp mani-
fold has local bounded geometry, but does not have bounded geometry, because the
injectivity radius goes to zero in the cusps.

In the rest of the appendix, we will assume that (N, g) has local Ck-bounded
geometry. We consider X, a vector field on N , and (φt)t∈R, the corresponding flow.
When there exists a constant C > 0 such that ∥∇ℓX∥C0 ⩽ C for ℓ ∈ {1, . . . , k},
we say that the vector field X is Ck-bounded (or just Ck). Observe that this makes
sense because the operators ∇ℓ involve differentiating the metric ℓ times. We require
that (N, g) has local Ck-bounded geometry in order to define Ck bounded vector
fields on N , because otherwise, we would not have stability under natural operations
of the metric. In particular, if (N, g) is Ck-bounded, (SN, gSasaki) has local Ck−1

bounded geometry, where SN stands for the unit tangent bundle, and the geodesic
vector field Xg on SN is Ck−1 bounded.

It is worth observing at this stage that if X is Ck-bounded on N , then we have
estimates

∥f ◦ φt∥Cℓ(N) ⩽ Cℓe
λℓ|t|∥f∥Cℓ(N), ∀ℓ ∈ {0, . . . , k},

for t ∈ R, and λ > 0 some positive number (which has an interpretation in terms of
Lyapunov exponents). We refer to [GB15, Prop. A.4.A] for a proof.

We say that X is Anosov if X preserves a global decomposition of TN into stable
and unstable distributions along which the exponential expansion rate is globally
controlled, namely there exists a continuous flow-invariant splitting of TN such that

TN = R ·X ⊕ Es ⊕ Eu,

and
∀t ⩾ 0, ∀w ∈ Es, |dφt(w)| ⩽ Ce−tλ|w|,

∀t ⩽ 0, ∀w ∈ Eu, |dφt(w)| ⩽ Ce−|t|λ|w|,
(A.1)

where the constants C, λ > 0 are uniform and | · | = g(·, ·)1/2. More generally, we will
say that (N, g) is Anosov if its geodesic flow is Anosov.

A.2. Flow conjugacy. — Given two vector fields X,Y on a closed manifold, if X
is Anosov and Y is sufficiently C1-close to X, then Y is also Anosov, and there is a
Hölder-continuous orbit conjugacy between X and Y . This is the content of structural
stability. We will extend this result to the case of Ck-bounded Anosov flows, following
quite closely the classical reference [dlLMM86, App. A].
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We consider (N, g) and an Anosov vector field X, respectively Ck+1- and Ck-
bounded (k ⩾ 2). Since N has local bounded geometry, there is a global r > 0 such
that expx is a local diffeomorphism from B(x, r) to its image, for all x (that is, it has
invertible differential map). This suggests to consider maps of the form

expV : x 7−→ expx(V (x)),

with V being a continuous vector field. If ∇XV is continuous, d expV (X) exists, and it
is simply given by the value at expx(V (x)) of the Jacobi field along t 7→ expx(tV (x)),
such that J(0) = X(x), and J ′(0) = ∇XV . Our analysis will be carried on the space:

Bν := {V ∈ Cν(N,TN) | ∇XV ∈ Cν},

where ν > 0 is some fixed exponent. This is a Banach space when endowed with the
norm

∥V ∥ := max
(
r−1∥V ∥L∞(N,TN), ∥∇XV ∥L∞(N,TN)

)
.

Note that, since ∇XV −∇VX = LXV , we could replace ∇X by LX in the definition
of the space. We will apply an inverse function theorem on the set

Dν := {V ∈ Bν | |V |L∞ < r, |∇XV |L∞ < 1}.

Observe that since it is an open set of a Banach space, it is a smooth Banach manifold.

Theorem A.1. — Let (N, g) be a Ck+2 manifold with bounded local geometry (k ⩾ 2),
and let X be an Anosov Ck-bounded vector field on (N, g). There exists δ, ν > 0 and
maps

Ck(N,TN) ∋ Y 7−→

{
VY ∈ Dν ,

aY ∈ Cν(N, [δ, 1/δ]),

defined for ∥Y −X∥C1 < δ such that

d expVY
(X(x)) = aY (x)× (Y ◦ expVY

(x)), ∀x ∈ N,

or equivalently

expVY
(φXt (x)) = φYτY (x,t)(expVY

(x)), ∀x ∈ N, t ∈ R,

with

τY (x, t) :=

∫ t

0

aY (φ
X
t (x))dt.

Moreover, expVY
is a Cν-homeomorphism.

Theorem A.1 is restated in the core of the article as Proposition 6.1 for cusp
manifolds. The exponent ν > 0 can be bounded from below locally uniformly for X
in the C1-topology. These maps are Ck−1 in this topology, but they are Ck as maps

Ck(N,TN) ∋ Y 7−→

{
expVY

∈ D0,

aY ∈ C0(N,R+).

The loss of 1 derivative for ν > 0 is due to the lack of regularity of the composition
operator on Hölder spaces, see [dlLO99] where this is further investigated.
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Theorem A.1 has a strong consequence for periodic orbits. Indeed, if φXt (x)=x,
then φYτY (x,t)(expVY

(x)) = expVY
(x) and thus all periodic orbits of X can be per-

turbed into periodic orbits of Y . Since fuY is a homeomorphism, and t 7→ τ(x, t) is a
continuous increasing map, with τ(x,R) = R, we deduce the converse statement that
all periodic orbits of Y are a perturbation of a periodic orbits of X.

Proof of Theorem A.1. — We follow the proof of [dlLMM86]. We start by considering

Bν1 := {V ∈ Bν | ∀x, V (x) ∈ Eu ⊕ Es},

the space of vector fields with values in the stable and unstable bundles of the vector
field X. Since the bundles Eu, Es are uniformly Cβ for some β ∈ (0, 1), this is a closed
linear subspace of Bν for ν ∈ (0, β]. Since Eu ⊕ Es is smooth (C∞) along X, Bν1 is
not empty, and we will be using this indirectly. We will also consider Dν

1 = Bν1 ∩Dν .
Next, consider the map Ψ defined by

Ψ(Y, V, a) : x 7−→ (dV expx)
−1 [d expV (X(x))− a(x)Y (expV (x))] ∈ TxN.

If Y is a Ck vector field, V ∈ Dν
1 and a ∈ Cν(N), Ψ(Y, V, a) is a Cν-regular vector

field. More precisely,

Lemma A.1. — Ψ is Ck−1 as a map

Ck(N,TN)×Dν
1 × Cν(N,R) −→ Cν(N,TN).

Proof. — To prove this, we may work locally, in a neighbourhood of x in the universal
cover — that is to say in a local exponential chart of radius r. We will use some well-
known facts as input. Multiplication is smooth (C∞) on Hölder spaces. Additionally,
the composition

f1 ∈ Ck, f2 ∈ Cν 7−→ f1 ◦ f2 ∈ Cν

is Ck−1 for k ⩾ 1 and ν ∈ (0, 1). This is true in Euclidean spaces and comes with
local estimates. Hence it is still true on (N, g) whenever (N, g) has locally bounded
geometry. Finally, since (N, g) is a Ck+2 metric, its exponential map is Ck+1, and
thus the pull back exp∗ Y is Ck. □

Given Y close to X in the C1-topology, we want to find VY , aY solving the equation
Ψ(Y, VY , aY ) = 0. For this, we will apply the implicit function theorem. We need to
compute dV,aΨ(X, 0, 1) and show that it is invertible.

Lemma A.2. — We have:

dΨ(X, 0, 1) : Bν1 × Cν(N) ∋ (V, a) 7−→ LXV − aX ∈ Cν(N,TN).

Proof. — For fixed x, consider V (x) ∈ Eux ⊕ Esx, and the Jacobi fields (i.e.,
endomorphism-valued) J1, J2 along expx(tV/|V |) satisfying

J1(0) = 1,J′
1(0) = 0, J2(0) = 0,J′

2(0) = 1.

Then
dV expx(w) =

1

|V |
J2(|V |) · w.
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We also have

d expV (X(x)) = J1(|V |) ·X(x) +
1

|V |
J2(|V |) · ∇XV.

In particular,

Ψ(X, tV , 1 + sa)

= t∇XV + t|V |J−1
2 (t|V |)

(
J1(t|V |) ·X(x)− (1 + sa(x))X(expx(tV (x)))

)
= t(∇XV −∇VX)− saX(x) + o(s, t)

= tLXV − saX + o(s, t).

This proves the claim. □

Lemma A.3. — The map

Bν1 × Cν(N) ∋ (V, a) 7−→ LXV − aX ∈ Cν(N,TN)

is a linear isomorphism.

Proof. — The proof of this lemma follows closely the lines of [dlLMM86, Lem. A.7,
p. 597]. First, recall that there is an α0 > 0 such that the angle between Eu and X is
at least α0. Indeed, since X is C1, there is a constant Λ > 0 such that ∥dφt∥ ⩽ eΛ|t|.
Then, if the angle between Eu and X at some point is α′, then we can find v ∈ Eu

such that ∥v∥ = 1 and, with λ = 1/|X|, we have

∥v + λX∥2 = 2(1− cosα′) ≃
α′→0

α′2.

Next, we observe that for t > 0,

eΛtα′ ⩾ ∥dφt(λX + v)∥ = ∥λXt + dφtv∥ ⩾
1

C
eβt − |Xt|

|X|
,

where Xt = X ◦ φt. From this, we deduce that the projection on Eu ⊕Es along X is
uniformly bounded.

Now, assume that LXV = aX. Then, since Eu ⊕ Es is invariant by the flow,
we obtain a = 0, and LXV = 0. But then, since V is bounded, the hyperbolicity
of the flow implies that V has to be directed along X, so it has to vanish. On the
other hand, consider W a Cν-regular vector field, and let us find V, a such that
LXV − aX = W . Decompose W = λX +Wu +W s. Then λ, Wu and W s are Cν
bounded thanks to the uniformity of the projection. We deduce that necessarily, a = λ,
and LXV =Wu +W s. To solve this last equation, we let

V :=

∫ +∞

0

(φt)
∗Wudt−

∫ 0

−∞
(φt)

∗W sdt.

The proof that V is Cν-regular is quite classical and relies on the definition of the
stable/unstable subspaces. Additionally, by construction, ∇XV = LXV +∇VX is Cν .
The value for ν is given by some expression involving the maximal and minimum
Lyapunov exponents, which is upper semi-continuous, so that ν can be chosen locally
uniformly in X. □
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Hence for any Y close to X in the C1-topology, we can find VY ∈ Bν1 , aY ∈ Cν(N),
solving the equation Ψ(Y, VY , aY ) = 0. Then for x ∈ N , letting xt := φXt (x), yt :=
expVY

(xt), we have

d

dt
yt = d expVY

(X(xt)) = aY (xt)Y (yt),

that is, yt is a reparametrized trajectory of Y , as expected. This almost yields Theo-
rem A.1, except for the fact that expVY

is a Cν-homeomorphism. This is the content
of the following lemma:

Lemma A.4. — If ∥X − Y ∥C1 is chosen small enough, then expVY
is a Cν-regular

homeomorphism.

Proof. — We start by observing that if ∥X − Y ∥C1 is chosen small, then ∥VY ∥L∞

and ∥∇XVY ∥L∞ are also small. This implies the existence of C > 0 such that for all
x, x′ ∈ N ,

(A.2) 1/C ⩾ d(x, x′) ⩾ 0, d(expVY
(x), expVY

(x′)) ⩾
1

2
d(x, x′)− C∥VY ∥L∞ .

In turn, this implies that expVY
is surjective: indeed, (A.2) proves that expVY

(M) ⊂M

is closed in M and since expVY
has topological degree 1 (because it is isotopic to the

identity), it must be surjective.
Let us now find a lower bound for the distance between expVY

(x) and expVY
(x′)

when x, x′ are close. This relies on the “expansivity” of φXt . For this we consider a
local section Σ of the flow of X. If x, x′ are on Σ, and d(x, x′) ≪ 1, we know that
there is a t ∈ R such that d(φXt (x), φXt (x′)) ∼ 1, and

1

C
| log d(x, x′)| ⩽ |t| ⩽ C| log d(x, x′)|.

On the other hand, we have

expVY
(x) = φY−τY (x,t) expVY

φXt (x).

The flow φYt contracts at most exponentially, so that

d(expVY
(x), expVY

(x′)) ⩾ Ce−CτY (x,t).

Now, since ∥X − Y ∥C1 is small, so is ∥aY − 1∥L∞ , and thus τY (x, t) ⩽ Ct, so that

d(expVY
(x), expVY

(x′)) ⩾ Ce−Ct ⩾ Cd(x, x′)α,

for some α only depending on the Lyapunov exponents of X and the smallness of
∥X − Y ∥C1 . In particular, it does not depend on ν, so we can choose ν smaller
than α. To close the proof, we observe that it was sufficient to work on Σ since in
the direction of the flow, expVY

is uniformly C1, and X, Y are uniformly transverse
to Σ. □

This concludes the proof of Theorem A.1. □
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Appendix B. Radial source estimates in Hölder-Zygmund regularity

The purpose of this appendix is to prove a radial source estimate for the geodesic
flow in Hölder-Zygmund regularity, similar to [GBL23b], but in the case of an exact
cusp manifold. Using the microlocal calculus of Section 3 and adapted to exact cusp
manifolds, the proof is essentially the same as in the closed case, for which we refer
to [GBL23b]. Nevertheless, for the sake of completeness, we included a proof in the
case of an exact cusp manifolds and tried to highlight the main differences.

Given (M, g) an exact cusp manifold, and V a function on SM , we denote ω+(V, ρ)

and define the unstable threshold as:
(B.1)

inf

{
r > 0

∣∣∣ sup
z∈SM

lim
T→+∞

1

T

(∫ T

0

−V (φ−t(z))dt+ r log ∥dφ−T |Eu
(z)∥

)
+ |ρ| < 0

}
.

The following estimate holds:

Proposition B.1 (Source estimate). — Let ρ ∈ R, V ∈ C∞(SM) be a bounded func-
tion on SM with all derivatives bounded, A ∈ Ψ0

small(SM) be a small pseudodifferen-
tial operator microlocalized near E∗

s . Then, there exists B ∈ Ψ0
small(SM), microlocal-

ized near E∗
s and elliptic on the wavefront set of A such that for all r > ω+(V, ρ) and

N ∈ N, there exists a constant C > 0 such that the following inequality holds: for all
u ∈ C∞

c (SM),

(B.2) ∥Au∥yρCr
∗
⩽ C

(
∥B(X + V )u∥yρCr

∗
+ ∥u∥yρC−N

∗

)
.

This inequality could be phrased in a more general context involving vector bun-
dles, as in [GBL23b]. Also observe that taking ρ = 0 gives ω(V = 0, ρ = 0) = 0.
It was shown in [GBL23b] that such an estimate allows to recover many standard
results in hyperbolic dynamics such as: regularity in the abelian Livšic theorem
[Liv72, dlLMM86], regularity in the cocycle Livšic theorem [NT98], rigidity of the
smoothness of the Anosov foliation [Has92]. We believe that one could obtain similar
results on cusp manifolds following our approach.

We also have a sink estimate, whose statement involves another constant, denoted
ω−(V, ρ):

sup
{
r < 0, sup

z∈SM
lim

T→+∞

1

T

(∫ T

0

−V (φ−t(z))dt− r log ∥dφT |Es(φ−T (z))∥
)
+ |ρ| < 0

}
.

Proposition B.2 (Sink estimate). — Let ρ ∈ R, V ∈ C∞(SM) be a bounded function
on SM with all derivatives bounded, A ∈ Ψ0

small(SM) be a small pseudodifferen-
tial operator microlocalized near E∗

u. Then there exist B ∈ Ψ0
small(SM), elliptic on

E∗
u ∪WF(A), micro-supported near E∗

u, and B1 ∈ Ψ0
small(SM), micro-supported in a

punctured neighbourhood of E∗
u, so that for r < ω−(V, ρ) and N ∈ N, there exists a

constant C > 0 such that for u ∈ C∞
c (SM),

(B.3) ∥Au∥yρCr
∗
⩽ C∥B(X + V )u∥yρCr

∗
+ C∥B1u∥yρCr

∗
+ C∥u∥C−N

∗
.
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Usual statement for radial estimates includes a bootstrap result, that is, if u is
merely a distribution and the right-hand side of (B.2) or (B.3) is bounded, then the
inequality holds and the left-hand side is bounded, but this statement is not useful to
us. It could be obtained by similar methods as in [GBL23b]. In Section 4.4.2 we use
the case where V is constant, and crucially the fact that for some constant C > 0,
for ρ ∈ R,

|ω−(0, ρ)| ⩽ C|ρ|, ω+(0, ρ) ⩽ C|ρ|.

We give a proof for the source estimate. The case of sinks is very much similar,
and we will no include a proof.

Proof of Proposition B.1

Step 1: reducing to ρ = 0. — We can reduce to the case ρ = 0 by conjugating X by
powers of y and changing the potential. Indeed, let s > ω(V, ρ) and f be a smooth
positive function on SM such that f = y in the cusps. If (B.2) holds for ρ = 0,
we apply it with the potential V + ρXf · f−1. We have:

sup
z∈SM

lim
T→+∞

1

T

(∫ T

0

(V + ρXf · f−1)(φ−tz)dt+ s log ∥dφ−t|Eu
(z)∥

)
⩽ sup
z∈SM

lim
T→+∞

1

T

(∫ T

0

V (φ−tz)dt+ s log ∥dφ−t|Eu
(z)∥

)
+ |ρ| < 0,

(here we used that in the cusps, the height y(φtz) grows/decreases at most expo-
nentially fast i.e., |y(φtz)| ⩽ ety(z) due to the constant curvature −1) and thus
s > ω(V + ρXf · f−1, ρ = 0).

Writing Aρ := y−ρAyρ, we get:

∥Au∥yρCr
∗
= ∥y−ρAu∥Cr

∗
= ∥Aρy−ρu∥Cr

∗

≲ ∥B(X + V + ρXf · f−1)y−ρu∥Cr
∗
+ ∥u∥yρC−N

∗

≲ ∥y−ρ(yρBy−ρ)
(
yρ(X + V + ρXf · f−1)y−ρ

)
u∥Cr

∗
+ ∥u∥yρC−N

∗

≲ ∥B−ρ(X + V )u∥yρCr
∗
+ ∥u∥yρC−N

∗
.

The operators Aρ, B−ρ are in the small calculus due to the cutoff near the diagonal
in the hyperbolic quantization (see Section 3.1) and share the same properties as A
and B.

Step 2: Further reductions and integration by parts. — We now take ρ = 0. Since the
proof is very similar to the compact case [GBL23b], we only recall the main steps of the
proof and what could be the main difference when there are cusps. By standard elliptic
arguments, we can always assume that A is microlocally equal to the identity near
E∗
s ∩∂T ∗(SM) (where ∂T ∗(SM) denotes the boundary of the radial compactification

of the cotangent bundle). We need to prove the existence of a constant C > 0 such
that for all j ∈ N:

(B.4) 2jr∥Op(φj)Au∥L∞ ⩽ C
(
∥BXu∥Cr

∗
+ ∥u∥C−N

∗

)
,
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then taking the sup over j ∈ N allows to conclude. It is convenient to see 2−j as
a semiclassical parameter h and to use semiclassical quantization (as defined in Re-
mark 3.1) from now on. We refer to the beginning of [GBL23b, Proof of Th. 3.2], where
this is further described. Modulo smoothing remainders, the left-hand side of (B.4)
can then be written as h−s∥Oph(a

′)u∥L∞ (a small semiclassical operator) and where
a′ ∈ S0(T ∗(SM)) is some other symbol constructed out of φ and A, which is posi-
tive and supported in a small annulus near {|ξ| = 1} ∩ E∗

s . We thus need to bound
h−s∥Oph(a

′)u∥L∞ by the right-hand side of (B.4) uniformly in h ∈ (0, 1). Let us
write A′

h := Oph(a
′). It will be convenient to introduce C :=

⋃
t⩾0 Φ−t(WFh(A

′
h)),

where (Φt)t∈R denotes the symplectic lift to T ∗(SM) of the geodesic flow, and C′ a
slightly larger neighborhood of C that is conic at infinity.

We let X := X + V . The starting point is then an integration by parts:

(B.5) Ahu =

∫ T

0

Ahe
−tXdt Xu+Ahe

−TXu.

A short argument based on Egorov’s lemma (see [GBL23b, Eq. (3.4)] and below in
the compact case) shows that the first term in (B.5) can be bounded by:∥∥∥∥∫ T

0

Ahe
−tXdt Xu

∥∥∥∥
L∞

⩽ CT
(
hr∥BXu∥Cr

∗
+ hN∥u∥C−N

∗

)
,

where CT > 0 is a possibly large constant depending on T > 0 only. Since Egorov’s
lemma is also available in the hyperbolic quantization introduced in Section 3.1 (see
[GB16, Th. 2] for a reference), the same proof as in the compact case applies verbatim.
This yields (up to changing N by N − r), using (B.5):

∥Au∥Cr
∗
⩽ C

(
sup

0<h<1
h−r∥Ahu∥L∞ + ∥u∥C−N

∗

)
⩽ C sup

0<h<1
h−r∥Ahe−TXu∥L∞ + CT

(
∥BXu∥Cr

∗
+ ∥u∥C−N

∗

)
.

(B.6)

Step 3: Exponential contraction. — The third step is to show that for any ε > 0 we can
find T = Tε > 0 large enough so that:

(B.7) sup
0<h<1

h−r∥Ahe−TXu∥L∞ ⩽ ε∥Au∥Cr
∗
+ CT ∥u∥C−N

∗
.

Indeed, if this is the case, then choosing ε > 0 so that Cε < 1/2 and inserting this
inequality in (B.6), one can put the term Cε∥Au∥Cr

∗
in the left-hand side and this

concludes the proof.
Now, we have by Egorov’s lemma:

WFh(e
TXAhe

−TX) ⊂ Φ−T (WFh(Ah)) ⊂
{
(x, ξ) ∈ C′ ∣∣ |ξ| > c inf

η∈C(φT (x))

|dφ⊤
T (η)|
|η|

}
,

where c > 0 is some constant depending on the support of the symbol a′ near {|ξ| = 1}.
Note that the norm |•| used on T ∗(SM) is the natural metric induced by the metric g
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on M ; in particular, in the cusp ends, it is the metric induced by the hyperbolic metric
on the cusps. We introduce

Λ(x, T )−1 := inf
η∈C(φT (x))

|dφ⊤
T (η)|
|η|

,

and we set pT (x, ξ) := χ(|ξ|Λ(x, T )/c), χ ∈ C∞(R+) is a smooth cutoff function such
that χ ≡ 0 on [0, 1/2] and χ ≡ 1 on [1,+∞). Note that by construction, pT satisfies

WFh(e
TXAhe

−TX) ⊂
{
(x, ξ) ∈ C′ ∣∣ |ξ| > c inf

η∈C(φT (x))

|dφ⊤
T (η)|
|η|

}
⊂ {pT = 1}.

As A is microlocally equal to the identity near E∗
s , we have:

Ahe
−TXu = Ahe

−TXAu+ OT,Ψ−∞
h

(h∞)u = Ahe
−TXPTh Au+ OT,Ψ−∞

h
(h∞)u,

where PTh := Oph(pT ). It remains to evaluate the L∞-norm of Ahe−TXPTh A.
First of all, we have:

∥Ahe−TXPTh Au∥L∞ ⩽ C∥e−TXPTh Au∥L∞

for some constant C > 0 (independent of u). Recall here that Ah = Oph(a), where a
is supported in an annulus near {|ξ| = 1}. In the compact part of the manifold, this
is a standard lemma which can be found in [GBL23b, Lem. 2.4] for instance. In the
cusp ends of the manifold, this is precisely [GBL23a, Lem. 3.2] (applied with σ ≡ 1 of
order m = 0 and the semiclassical parameter is h = 2−j).

Now, since X = X + V , we have:

(B.8)
[
e−TXPTh Au

]
(z) ⩽M(z, t)

[
PTh Au

]
(φ−t(z)),

where M(z, t) = exp
(
−
∫ t
0
V (φ−t+s(z))ds

)
. Writing f = Au, we are thus left to bound

|PTh f(z)|. We claim that there exists a constant C > 0 such that for all T ⩾ 0, z ∈ SM :

(B.9) |PTh f(z)| ⩽ C
(
Λ(z, T )rhr∥f∥Cr

∗
+ CTh

N∥f∥C−N
∗

)
.

Let us take (B.9) for granted for the moment. Then:[
e−TXPTh Au

]
(z) ⩽ C

(
M(z, T )Λ(φ−T (z), T )h

r∥Au∥Cr
∗
+ CTh

N∥u∥C−N
∗

)
⩽ C

([
sup
z∈SM

M(z, T )Λ(φ−T (z), T )
r
]
hr∥Au∥Cr

∗
+ CTh

N∥u∥C−N
∗

)
.

It can be checked that Λ(φ−T (z), T ) ⩽ C∥dφ−T |Eu
(z)∥ for some uniform constant

C > 0, see [GBL23b, Step 2 in the proof of Th. 3.2] and thus:

∥e−TXPTh Au∥L∞ ⩽ C
([

sup
z∈SM

M(z, T )∥dφ−T |Eu
(z)∥r

]
hr∥Au∥Cr

∗
+ CTh

N∥u∥C−N
∗

)
.

For r > ω(V, ρ = 0) greater than the threshold, supz∈SM M(z, T )∥dφ−T |Eu
(z)∥r

converges (exponentially fast) to 0 as T → ∞ and this follows from the very definition
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of the threshold and the equality:

lim
T→∞

1

T
sup
z∈SM

log(M(z, T )∥dφ−T |Eu(z)∥r)

= sup
z∈SM

lim
T→∞

1

T
log(M(z, T )∥dφ−T |Eu

(z)∥r),

see [GBL23b, App. A]. Then, taking T ≫ 1 large enough eventually proves (B.7).

Step 4: Proof of (B.9). — It now remains to prove the technical estimate (B.9). Recall
from Section 3.1 that the quantization is defined by means of a set of cutoff charts:

PTh f = Oph(pT )f =

N∑
i=1

κ∗i

(
ψ′
iOpR

d+1×Rd

h ((κi)∗(ΨipT )) [(κi)∗(Ψ
′
if)]

)
,

where
∑
iΨi = 1 is a partition of unity subordinated to the cover SM =

⋃
i Ui,

Ψ′
i ≡ 1 on the support of Ψi and ψ′

i = Ψ′
i ◦ κ

−1
i . We thus need to bound each term.

As explained in Section 3.1, the previous sum contains two kinds of terms: the ones
concerning relatively compact open subsets of the cover, and the ones concerning the
cuspidal parts of the manifold. The first ones are dealt in [GBL23b, Lem. 3.3]; we will
only deal with the cuspidal parts as this is the only difference with the closed case.
For the sake of simplicity, we drop the diffeomorphism κi in the notations and also
remove the cutoff functions.

We thus need to evaluate

OpR
d+1×Rd

h (pT )f(z) =

∫
Rd+1×Rd

ei⟨z,ξ⟩pT (z, hξ)f̂(ξ)dξ,

where pT is supported in {|ξ|Λ(z, T )/c ⩾ 1/2} and equal to 1 in {|ξ|Λ(z, T )/c ⩾ 1}
(note that |ξ| always refers to the hyperbolic norm in T ∗Hd+1), and f is supported
in {y > a} for some constant a > 0. This computation is easier in the compact case,
as we can always choose a dyadic partition of unity which is only ξ-dependent. Here,
this is not the case, since we need to take into account the hyperbolic geometry of
the manifold.

We write

OpR
d+1×Rd

h (pT )f(z) =

∫
Rd+1+d

ei⟨x,ξ⟩
∑
j⩾0

φj(x, ξ)pT (x, hξ)f̂(ξ)dξ

=
∑

2j⩽c/4hΛ(x,T )

∫
Rd+1+d

ei⟨x,ξ⟩φj(x, ξ)pT (x, hξ)f̂(ξ)dξ

+
∑

2j⩾2c/hΛ(x,T )

· · · +
∑

c/4hΛ(x,T )<2j<2c/hΛ(x,T )

· · ·

(B.10)

By construction, the first sum is zero since pT (x, hξ)φj(x, ξ) = 0 for this range of j’s
and in the second sum, pT (x, hξ)φj(x, ξ) = φj(x, ξ). Moreover, the third sum consists
of at most 3 terms and since 2j is of the size of h−1 in this sum, this is a h-semiclassical
smoothing operator, that is we can write the third sum as Oph(kT,x)f(x) for some
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compactly supported (in ξ) symbol kT,x ∈ C∞(T ∗M), supported on an annulus near
{|ξ| = 1}, and defined by

kT,x(x
′, hξ) =

∑
c/4hΛ(x,T )<2j<2c/hΛ(x,T )

φj(x
′, ξ)pT (x

′, hξ).

Observe that kT,x has microlocal support contained in{
c/8hΛ(x, T ) ⩽ |ξ| ⩽ 4c/hΛ(x, T )

}
.

Hence, considering j0(x, T, h) ∈ N, the smallest integer such that 2j0(x,T,h)+1 ⩾
c/8hΛ(x, T ), we get:

Oph(kT,x)f = Oph(kT,x)
(
Op(φj0(x,T,h)) + · · ·+Op(φj0(x,T,h)+7)

)
+Oph(kT,x)

(
1−

(
Op(φj0(x,T,h)) + · · ·+Op(φj0(x,T,h)+7)

))
.

By construction, the second term is a OT,x(h
∞)-smoothing operator since it is a prod-

uct of h-semiclassical operators with disjoint wavefront set. Moreover, the estimates
are uniform in x and we get:

∥Oph(kT,x)
(
1−

(
Op(φj0(x,T,h)) + · · ·+Op(φj0(x,T,h)+7)

))
f∥L∞ ⩽ CTh

N∥f∥C−N
∗
.

As to the first term, we have the following estimate. It is crucial to observe below
that the constant C (which may be different from one line to another) does not depend
on the time T (nor on the point x) and this is explained below:

∥Oph(kT,x)
(
Op(φj0(x,T,h)) + · · ·+Op(φj0(x,T,h)+7)f

)
∥L∞

⩽ C∥
(
Op(φj0(x,T,h)) + · · ·+Op(φj0(x,T,h)+7)f

)
∥L∞

⩽ C2−j0(x,T,h)r∥f∥Cr
∗
⩽ ChrΛ(x, T )r∥f∥Cr

∗
.

In the compact case, the fact that the first inequality comes with a uniform constant
C > 0, independent of T , is contained in [GBL23b, Proof of Lem. 3.3]). In the cuspidal
parts, the reason is essentially the same and the upshot is the following. It suffices
to prove that Oph(kT,x) is bounded on L∞, with norm independent of T, x, h. That
it is bounded independently of h follows from [GBL23a, Lem. 3.2]. To realize that
the bound is also independent of T and x we need to inspect the proof of [GBL23a,
Lem. 3.2]. Indeed, we find that the norm of Oph(kT,x) on L∞ is estimated by constants
of the form

C

∫
|kT,x|+

∑
|α|=2d+1

|⟨ξ⟩|α|XαkT,x|dξ.

Here, Xα = Xα0
0 · · ·Xαd

d denotes a product of radial vector fields (i.e along the ξ
coordinate). The key argument here being that while derivatives of pT along x may be
very large when T becomes large, the derivatives along ξ remain uniformly bounded.
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Going back to (B.10), we obtain:

|Oph(pT )f(x)| ⩽
∑

2j⩾2c/hΛ(x,T )

∥Op(φj)f∥L∞ + ChrΛ(x, T )r∥f∥Cr
∗
+ CTh

N∥f∥C−N
∗

≲
∑

2j⩾2c/hΛ(x,T )

2−jr 2jr∥Op(φj)f∥L∞︸ ︷︷ ︸
≲∥f∥Cr

∗

+ChrΛ(x, T )r∥f∥Cr
∗
+ CTh

N∥f∥C−N
∗

≲ hrΛ(x, T )r∥f∥Cr
∗
+ CTh

N∥u∥C−N
∗
.

This eventually proves (B.9). □

Appendix C. Boundedness of the indicial resolvent

In this section, we will study directly the indicial resolvent acting on I(SZ) =

(0,∞)y ×Sd(u,ϕ). Recall that I(X)f = y cosϕ∂yf +sinϕ∂ϕf is the indicial operator of
the geodesic vector field, and that the indicial resolvent is given by

I(R+(s)) =

∫ +∞

0

e−t(I(X)+s)dt.

The anisotropic Hölder-Zygmund spaces Cr(I(SZ)) on the full cusp are defined by
(4.20). The aim of this section is to prove Proposition 4.4 which we recall for the
reader’s convenience:

Proposition C.1. — The indicial resolvent I(R+(s)) : yρCr(I(SZ)) ⟲ is bounded,
provided that ρ ∈ (0, d), r ∈ (0, 1) and ℜs > max(−ρ, ρ− r).

Note that we will indifferently use the coordinate y ∈ (0,∞) or r = log y ∈ R on
the cusp. For the indicial flow of the vector field I(X), the source and sink (that were
microlocal for the global system) are now projected on the base: the outgoing manifold
(ϕ = 0) is the source, and the incoming manifold (ϕ = π) is the sink. We refer to
Section 2.2 for a description of the dynamics on the full cusp (in particular see (2.10)).
We will deal separately with those regions, and the intermediate region ϕ ∈ (0, π).

We start by observing that there exists η ∈ (0, π/2) such that simultaneously:
• For u supported in y ⩾ 1, |ϕ| ⩽ η, u ∈ Cr(I(SZ)) ⇔ u ∈ Cr0(I(SZ)).

• For u supported in y ⩾ 1, |π − ϕ| ⩽ η, u ∈ Cr(I(SZ)) ⇔ u ∈ C−r
0 (I(SZ)).

(C.1)

Recall that the subscript 0 indicates convergence to zero at y = +∞. We omit the
proof of (C.1) as it is analogous to that of [GBW22, Lem. 5.3]. The technical estimate
is contained in the following lemma:

Lemma C.1. — Let ψ ∈ C∞([0,+∞)) be a smooth cutoff function, equal to 1 around
ϕ = 0, and supported for 0 ⩽ ϕ < π/2. Then, for all ρ ∈ (0, d), r ∈ [0, 1]:

(1) ψI(R+(s))ψ : yρCr0(I(SZ)) ⟲ is bounded when ℜs+ ρ > 0,
(2) ψ(π−•)I(R−)(s)ψ(π−•) : yd−ρW r,1(I(SZ)) ⟲ is bounded when ℜs+r−ρ > 0.

The space yd−ρW r,1(I(SZ)) was defined in Section 2.3. Also recall that Cr0 is the
closure of C∞

c in Cr.
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Proof of Lemma C.1. — First of all, observe that the flows generated by ±I(X) are
conjugate by the map ϕ 7→ π − ϕ, so that item (2) is equivalent to proving that
ψI(R+(s))ψ : yd−ρW r,1(I(SZ)) ⟲ is bounded for ℜs + r − ρ > 0. In the rest of the
proof, we will thus work with |ϕ| < π/2, so that we can use the following expression
for the geodesic flow in negative time: for t ⩾ 0,

(C.2) φ−t(y, u, ϕ) =
(
ye−t

1 + tan2 ϕ/2

1 + e−2t tan2 ϕ/2
, u, 2 arctan e−t tanϕ/2

)
.

We can find better coordinates that simplify greatly the expression of the flow. We set

τ = r + log(1 + tan2 ϕ/2) ∈ R, v = u tanϕ/2 ∈ Rd.

The map κ(r, u, ϕ) := (τ, v) defines a smooth diffeomorphism

{(r, u, ϕ) ∈ R× Sd | 0 ⩽ ϕ < π/2} ∼−→ Ω := R×BRd(0, 1).

It can be checked that its derivatives are uniformly controlled so that

κ∗(eτρCr∗(Ω)) ≡ erρCr∗(I(SZ)), κ∗(eτρW r,1(Ω)) ≡ erρW r,1(I(SZ)),

where Ω is equipped with the natural Lebesgue measure dτdv. We can thus work in
the coordinates (τ, v) ∈ Ω, where the flow is now given by

(C.3) φ−t(τ, v) = (τ − t, e−tv).

In order to prove Lemma C.1, we will proceed by interpolation, using the fact that
eτρCr∗(Ω) is an interpolation space of eτρL∞(Ω) and eτρC1(Ω), and likewise for W r,1

spaces. The cutoff functions in the statement of the lemma are there only to control
the support. We will mostly remove them in order to lighten the notation in what
follows. For f either in L∞ or L1, we denote

h∞ = ψe−τρI(R+(s))eτρψf, h1 = ψeτ(ρ−d)I(R+(s))eτ(d−ρ)ψf.

Let us start with estimates with no derivatives, first for L∞:

|h∞(τ, v)| ⩽
∫ +∞

t=0

e−tℜse−tρ|f(τ − t, e−tv)|dt ⩽ C(s, ρ)∥f∥L∞ ,

provided ℜs+ ρ > 0. Now, for L1:

∥h1∥L1(Ω) =

∫
Ω

|h1|dτdv

⩽
∫ +∞

t=0

∫
τ∈R,|v|⩽1

e−t(ℜs+d−ρ)|f(τ − t, e−tv)|dτdvdt

⩽ C

∫ +∞

0

∫
|v|⩽e−t

e−t(ℜs−ρ)|f(τ, v)|dτdvdt ⩽ C(s, ρ)∥f∥L1(Ω),

provided ℜs − ρ > 0. Under the assumption that f ∈ W 1,1(Ω), this estimate can be
improved. Indeed, if f ∈W 1,1(Ω), then we can see f in particular as a L1 map from R
(with the measure dr) and taking values inW 1,1(Rd), that is, f ∈ L1(R, dr;W 1,1(Rd)).
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By Sobolev embeddings, W 1,1(Rd) ↪→ Lp(Rd), with 1/p = 1 − 1/d and thus for
g ∈ Ld(Rd):∫

Rd

fg d volRd ⩽ ∥f∥Lp(Rd)∥g∥Ld(Rd) ⩽ C∥f∥W 1,1(Rd)∥g∥Ld(Rd).

This yields: ∫
|v|⩽e−t

|f(τ, v)|dτdv ⩽ C∥f∥W 1,1(R×Rd)

(∫
|v|⩽e−t

dv

)1/d

⩽ Ce−t∥f∥W 1,1(R×Rd),

(C.4)

thus eventually showing that

∥h1∥L1(Ω) ⩽ C(s, ρ)∥f∥W 1,1(Ω),

provided ℜs > ρ− 1.
Let us now consider estimates on derivatives. First, we have:

|∂vh∞(τ, v)| ⩽
∫ +∞

t=0

e−t(ℜs+1+ρ)|(∂vf)(τ − t, e−tv)|dt ⩽ C(s, ρ)∥f∥C1(Ω),

provided ℜs+ 1 + ρ > 0. Next, integrating by parts, we get:

|∂τh∞(τ, v)| ⩽ |f(τ, v)|+
∫ +∞

t=0

e−t(ℜs+ρ)
(
(ρ+ ℜs)|f |+ e−t|v · ∂vf |

)
(τ − t, e−tv)dt

⩽ C(s, ρ)∥f∥C1(Ω),

provided ℜs+ρ>0. We now turn to estimates inW 1,1(Ω). First the derivatives along v:

∥∂vh1∥L1(Ω) =

∫
Ω

|∂vh1|dτdv

⩽
∫ +∞

t=0

∫
Ω

e−t(ℜs+d+1−ρ)|∂vf(τ − t, e−tv)|dτdvdt

⩽
∫ +∞

t=0

∫
Ω

e−t(ℜs+1−ρ)|∂vf(τ, v)|dτdvdt ⩽ C(s, ρ)∥f∥W 1,1(Ω),

provided ℜs+ 1− ρ > 0. Next, for the derivative along τ , we have using (C.4) in the
last inequality:

∥∂τh1∥L1(Ω) =

∫
Ω

|∂τh1|dτdv

⩽
∫
Ω

|f |+
∫ +∞

t=0

∫
Ω

e−t(ℜs+d−ρ)
(
|d− ρ+ ℜs| |f |+ e−t|v · ∂vf |

)
(τ − t, e−tv)dτdvdt,

⩽ C(s, ρ)∥f∥W 1,1(Ω) + C

∫
t⩾0, |v|⩽e−t

e−t(ℜs−ρ)|f(τ, v)|dτdvdt ⩽ C(s, ρ)∥f∥W 1,1(Ω),

provided ℜs+ 1− ρ > 0.
We have obtained the announced result for r = 0 and r = 1, both in the Hölder

and in the Sobolev regularity spaces. In order to conclude for r ∈ (0, 1), it now suffices
to interpolate. □
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Proof of Proposition 4.4. — Let ψ1 be a cutoff supported in |ϕ| < η, and equal to 1 for
|ϕ| ⩽ η/2, let ψ̃1 share the same property, and additionally assume ψ1ψ̃1 = 1. Let ψ2

be defined by ψ2(ϕ) = ψ1(π−ϕ), and ψ̃2(ϕ) = ψ̃1(π−ϕ). Finally let ψ3 = 1−ψ1−ψ2.
There exists T > 0 such that for t ⩾ T , if (y, u, ϕ) is in the support of ψ3, then

ψ2(φt(y, u, ϕ)) = 1 and ψ1(φ−t(y, u, ϕ)) = 1. We decompose
I(R+(s)) = (ψ1 + (1− ψ1))I(R

+(s))(ψ̃1ψ1 + ψ2 + ψ3)

= ψ1I(R
+(s))ψ1 + (1− ψ1)ψ̃1I(R

+(s))ψ1

+ (1− ψ1)I(R
+(s)) [ψ̃1, I(X) + s]︸ ︷︷ ︸

=−I(X)ψ̃1

I(R+(s))ψ1 + I(R+(s))(ψ2 + ψ3),

by adding artificially (X + s)I(R+(s)) = 1 between ψ̃1 and ψ1.
In the previous equation, the first term of the right hand side is bounded on yρCr ⟲

according to Lemma C.1; since it is supported near ϕ = 0, it is thus bounded on
yρCr ⟲ according to (C.1). Actually the same holds for the second term by a similar
argument. Let us deal with the term I(R+(s))ψ2. Using the duality (2.15) and the
support properties of I(R+(s))ψ2, we have

∥I(R+(s))ψ2f∥yρC−r = sup
∥g∥

yd−ρWr,1=1

|⟨ψ̃2I(R
+(s))ψ2, g⟩|

= sup
∥g∥

yd−ρWr,1=1

|⟨f, ψ2I(R
−(s))ψ̃2g⟩| ⩽ C∥f∥yρC−r

according to item (2) of Lemma C.1. This proves boundedness on yρCr thanks to
support properties and (C.1) again. It remains to control the terms

−(1− ψ1)I(R
+(s))(I(X)ψ̃1)I(R

+(s))ψ1, I(R+(s))ψ3.

For I(R+(s))ψ3, we use finite time propagation, since

I(R+(s))ψ3f =

∫ T

0

e−ts(ψ3f) ◦ φ−tdt+ e−TsI(R+(s))[(ψ3f) ◦ φ−T ].

Here, since φ∗
−t acts boundedly by composition on yρCr we can control directly the

first integral term. The second corresponds to applying I(R+(s)) on elements of yρCr

supported near ϕ = π. We have already seen how item (2) of Lemma C.1 enables us
to deal with this situation.

Moreover, by the arguments above, (I(X)ψ̃1)I(R
+(s))ψ1 maps yρCr to itself, and

is valued in distributions supported for η/2 < |ϕ| < π − η/2. But then, applying
I(R+(s)) again on such distributions is bounded on yρCr by the above considerations.

□
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