Effective operators on an attractive magnetic edge
Journal de l’École polytechnique — Mathématiques, Volume 10 (2023), pp. 917-944.

The semiclassical Laplacian with discontinuous magnetic field is considered in two dimensions. The magnetic field is sign changing with exactly two distinct values and is discontinuous along a smooth closed curve, thereby producing an attractive magnetic edge. Various accurate spectral asymptotics are established by means of a dimensional reduction involving a microlocal phase space localization allowing to deal with the discontinuity of the field.

Cet article s’intéresse au laplacien avec champ magnétique discontinu dans la limite semi-classique. Le champ est supposé prendre exactement deux valeurs non nulles de signes opposés et changer de signe le long d’une courbe fermée et régulière, la « frontière magnétique ». Nous établissons diverses asymptotiques spectrales à l’aide d’une réduction de dimension mettant en jeu une localisation dans l’espace des phases et permettant de traiter la discontinuité du champ magnétique.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.236
Classification: 81Q20
Keywords: Magnetic Laplacian, discontinuous magnetic field, semiclassical analysis, spectrum
Mot clés : Laplacien magnétique, champ magnétique discontinu, semi-classique, spectre

Søren Fournais 1; Bernard Helffer 2; Ayman Kachmar 3; Nicolas Raymond 4

1 Department of Mathematical Sciences, University of Copenhagen Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
2 Nantes Université, Laboratoire Jean Leray Nantes, France
3 Lebanese University, Department of Mathematics Nabatiye, Lebanon
4 Univ Angers, CNRS, LAREMA, Institut Universitaire de France, SFR MATHSTIC F-49000 Angers, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2023__10__917_0,
     author = {S{\o}ren Fournais and Bernard Helffer and Ayman Kachmar and Nicolas Raymond},
     title = {Effective operators on an attractive magnetic edge},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {917--944},
     publisher = {\'Ecole polytechnique},
     volume = {10},
     year = {2023},
     doi = {10.5802/jep.236},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.236/}
}
TY  - JOUR
AU  - Søren Fournais
AU  - Bernard Helffer
AU  - Ayman Kachmar
AU  - Nicolas Raymond
TI  - Effective operators on an attractive magnetic edge
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 917
EP  - 944
VL  - 10
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.236/
DO  - 10.5802/jep.236
LA  - en
ID  - JEP_2023__10__917_0
ER  - 
%0 Journal Article
%A Søren Fournais
%A Bernard Helffer
%A Ayman Kachmar
%A Nicolas Raymond
%T Effective operators on an attractive magnetic edge
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 917-944
%V 10
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.236/
%R 10.5802/jep.236
%G en
%F JEP_2023__10__917_0
Søren Fournais; Bernard Helffer; Ayman Kachmar; Nicolas Raymond. Effective operators on an attractive magnetic edge. Journal de l’École polytechnique — Mathématiques, Volume 10 (2023), pp. 917-944. doi : 10.5802/jep.236. https://jep.centre-mersenne.org/articles/10.5802/jep.236/

[1] W. Assaad, B. Helffer & A. Kachmar - “Semi-classical eigenvalue estimates under magnetic steps”, 2021, to appear in Anal. PDE | arXiv

[2] W. Assaad & A. Kachmar - “Lowest energy band function for magnetic steps”, J. Spectral Theory 12 (2022) no. 2, p. 813-833 | DOI | MR | Zbl

[3] J.-M. Barbaroux, L. Le Treust, N. Raymond & E. Stockmeyer - “On the Dirac bag model in strong magnetic fields”, 2020, to appear in Pure and Applied Analysis | HAL

[4] V. Bonnaillie-Noël - “On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners”, Asymptot. Anal. 41 (2005) no. 3-4, p. 215-258 | Zbl

[5] V. Bonnaillie-Noël & M. Dauge - “Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners”, Ann. Henri Poincaré 7 (2006) no. 5, p. 899-931 | DOI | Zbl

[6] V. Bonnaillie-Noël, F. Hérau & N. Raymond - “Purely magnetic tunneling effect in two dimensions”, Invent. Math. 227 (2022) no. 2, p. 745-793 | DOI | MR | Zbl

[7] R. Fahs, L. Le Treust, N. Raymond & S. Vũ Ngọc - “Edge states for the Robin magnetic Laplacian” (2022), Manuscript in preparation

[8] S. Fournais & B. Helffer - “Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian”, Ann. Inst. Fourier (Grenoble) 56 (2006) no. 1, p. 1-67 | DOI | Numdam | MR | Zbl

[9] S. Fournais & B. Helffer - Spectral methods in surface superconductivity, Progress in Nonlinear Differential Equations and their Appl., vol. 77, Birkhäuser Boston, Inc., Boston, MA, 2010 | DOI

[10] S. Fournais, B. Helffer & A. Kachmar - “Tunneling effect induced by a curved magnetic edge”, in The physics and mathematics of Elliott Lieb—the 90th anniversary. Vol. I, EMS Press, Berlin, 2022, p. 315-350 | DOI | Zbl

[11] S. Fournais & A. Kachmar - “On the energy of bound states for magnetic Schrödinger operators”, J. London Math. Soc. (2) 80 (2009) no. 1, p. 233-255 | DOI | Zbl

[12] R. L. Frank - “On the asymptotic number of edge states for magnetic Schrödinger operators”, Proc. London Math. Soc. (3) 95 (2007) no. 1, p. 1-19 | DOI | Zbl

[13] C. Gérard, A. Martinez & J. Sjöstrand - “A mathematical approach to the effective Hamiltonian in perturbed periodic problems”, Comm. Math. Phys. 142 (1991) no. 2, p. 217-244 | DOI | MR | Zbl

[14] A. Giunti & J. J. L. Velázquez - “Edge states for generalized Iwatsuka models: magnetic fields having a fast transition across a curve”, Ann. Henri Poincaré 24 (2023) no. 1, p. 73-105 | DOI | Zbl

[15] B. Helffer & A. Morame - “Magnetic bottles in connection with superconductivity”, J. Funct. Anal. 185 (2001) no. 2, p. 604-680 | DOI | MR | Zbl

[16] B. Helffer & J. Sjöstrand - “Multiple wells in the semi-classical limit. I”, Comm. Partial Differential Equations 9 (1984), p. 337-408 | DOI | Zbl

[17] B. Helffer & J. Sjöstrand - “Puits multiples en mécanique semi-classique. V. Étude des minipuits”, in Current topics in partial differential equations, Kinokuniya, Tokyo, 1986, p. 133-186 | Zbl

[18] B. Helffer & J. Sjöstrand - “Puits multiples en mécanique semi-classique. VI. Cas des puits sous-variétés”, Ann. Inst. H. Poincaré Phys. Théor. 46 (1987) no. 4, p. 353-372 | Numdam | Zbl

[19] P. D. Hislop, N. Popoff, N. Raymond & M. P. Sundqvist - “Band functions in the presence of magnetic steps”, Math. Models Methods Appl. Sci. 26 (2016) no. 1, p. 161-184 | DOI | MR | Zbl

[20] A. Kachmar & A. Khochman - “Spectral asymptotics for magnetic Schrödinger operators in domains with corners”, J. Spectral Theory 3 (2013) no. 4, p. 553-574 | DOI | Zbl

[21] P. Keraval - Formules de Weyl par réduction de dimension. Applications à des laplaciens électro-magnétiques, Ph. D. Thesis, Université de Rennes 1, 2018

[22] A. Martinez - “A general effective Hamiltonian method”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 18 (2007) no. 3, p. 269-277 | DOI | MR | Zbl

[23] N. Raymond - Bound states of the magnetic Schrödinger operator, EMS Tracts in Math., vol. 27, European Mathematical Society, Zürich, 2017 | DOI

[24] B. Simon - “The bound state of weakly coupled Schrödinger operators in one and two dimensions”, Ann. Physics 97 (1976) no. 2, p. 279-288 | DOI | Zbl

[25] M. Zworski - Semiclassical analysis, Graduate Studies in Math., vol. 138, American Mathematical Society, Providence, RI, 2012 | DOI

Cited by Sources: