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EFFECTIVE OPERATORS

ON AN ATTRACTIVE MAGNETIC EDGE

by Søren Fournais, Bernard Helffer, Ayman Kachmar
& Nicolas Raymond

Abstract. — The semiclassical Laplacian with discontinuous magnetic field is considered in
two dimensions. The magnetic field is sign changing with exactly two distinct values and is
discontinuous along a smooth closed curve, thereby producing an attractive magnetic edge.
Various accurate spectral asymptotics are established by means of a dimensional reduction
involving a microlocal phase space localization allowing to deal with the discontinuity of the
field.

Résumé (Opérateurs effectifs sur une discontinuité magnétique). — Cet article s’intéresse au
laplacien avec champ magnétique discontinu dans la limite semi-classique. Le champ est supposé
prendre exactement deux valeurs non nulles de signes opposés et changer de signe le long d’une
courbe fermée et régulière, la « frontière magnétique ». Nous établissons diverses asymptotiques
spectrales à l’aide d’une réduction de dimension mettant en jeu une localisation dans l’espace
des phases et permettant de traiter la discontinuité du champ magnétique.
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1. Introduction

1.1. General framework. — In this article, we consider the magnetic Laplacian on
the plane R2,

(1.1) Pa
h := (−ih∇+A)2 =

2∑
j=1

(−ih∂xj
+Aj)

2,

with magnetic potential A := (A1, A2) ∈ H1
loc(R2;R2), generating the piecewise con-

stant magnetic field

(1.2) B = 1Ω1
+ a1Ω2

,

where −1 ⩽ a ⩽ a0 and a0 is a fixed negative constant. Here h > 0 is a small
parameter (the semiclassical parameter). Throughout this paper, we assume that

(1.3)
{
Ω1 ⊂ R2 is a connected and simply connected open set, Ω2 = R2 ∖ Ω1,

Γ := ∂Ω1 is a C∞ smooth closed curve.

}
and we refer to Γ as the magnetic edge (see Figure 1). We will denote the length of Γ
by |Γ| = 2L.

Figure 1. The plane R2 = Ω1 ∪ Ω2 ∪ Γ with the edge Γ = ∂Ω1 dashed.

The operator Pa
h is self-adjoint in L2(R2) with domain

(1.4) Dom(Pa
h) = {u ∈ L2(R2) : (−ih∇+A)ju ∈ L2(R2), j = 1, 2}.

Its essential spectrum is determined by the magnetic field at infinity (in our case it is
equal to a). More precisely, by Persson’s lemma, we have

inf spess(P
a
h) ⩾ |a|h.

The purpose of this paper is to study the spectrum of Pa
h in the energy window

Jh = [0, Eh] with E ∈ (0, |a|) a fixed constant (thus, we analyze the spectrum below

J.É.P. — M., 2023, tome 10



Attractive magnetic edge 919

the essential spectrum) and in the semiclassical limit h → 0. We denote by λn(P
a
h)

the n’th eigenvalue of Pa
h, and have

sp(Pa
h) ∩ [0, Eh] = {λn(Pa

h)}Nn=1,(1.5)

with N = N(h).
Let us stress that our spectral analysis will be uniform with respect to a ∈ [−1, a0]

and that the condition on the sign of a is crucial since we will see that it implies a
localization of the eigenfunctions associated with eigenvalues in Jh near the edge Γ.
That is why we will say that the edge is attractive.

1.2. Heuristics, earlier results, and motivation

1.2.1. Analogy with an electric well and mini-wells. — The problem investigated
in this paper shares common features with the semiclassical asymptotics of the
Schrödinger operator, −h2∆+ V , with an electric potential V , in the full plane, see
[16, 17, 24, 18]. In this context, the “well” is the set ΓV := {x ∈ R2 : V (x) = minR2 V },
which attracts the bound states in the limit h → 0. The well is said to be non-
degenerate if ΓV is a regular manifold, in which case the bound states might be
localized near some points of ΓV , the mini-wells. This phenomenon of mini-wells is
a manifestation of a multi-scale localization of the bound states. Interestingly, this
phenomenon occurs also in the setting of the magnetic Laplacian, with a Neumann
boundary condition, or with a magnetic field having a step-discontinuity as in the
present article. In particular, if we consider the Neumann Laplacian with a constant
magnetic field in a bounded, smooth domain, the boundary of the domain acts as
the “well” and the set of points of the boundary with maximum curvature acts as
the “mini-well” (see [15, 8]).

1.2.2. Some known results. — Recently in [1, 2], the operator Pa
h was considered in

L2(Ω) with Dirichlet boundary condition on ∂Ω, Ω1 ⊂ Ω and Γ a smooth curve
that meets ∂Ω transversely. The edge Γ acts as the “well” and the set of points of Γ
with maximum curvature acts as the “mini-well”. Moreover, when the curvature has
a unique non-degenerate maximum along the edge Γ, an accurate eigenvalue asymp-
totics displaying the splitting of the individual eigenvalues of Pa

h has been derived in
[1, Th. 1.2], when −1 < a < 0. This result is clearly reminiscent of [8].

1.2.3. Motivation. — In the present article, we propose another perspective on the
problem. Our spectral analysis will be uniform in various ways. Firstly, it will allow
to derive, given some E ∈ (0, |a|), an effective operator in the whole energy window
Jh = [0, Eh] with h ∈ (0, h0]. In particular, the same strategy will provide us with
Weyl estimates (estimating the number of eigenvalues in Jh) and the behavior of the
individual eigenvalues. Secondly, it will also be uniform with respect to the parameter
a ∈ [−1, a0]. This uniformity is the key to the understanding of the transition between
the regimes a ∈ (−1, 0) and a = −1. This is all the more motivating since the mini-
well phenomenon does not occur when a = −1. It is indeed rather satisfactory to have
a point of view encompassing quite different phenomena and showing their unity.
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920 S. Fournais, B. Helffer, A. Kachmar & N. Raymond

1.3. The band functions. — The statement of our main results involves a family of
1D Schrödinger operators and their lowest eigenvalues, namely the operators obtained
when the magnetic step is along a straight line, in which case a dimensional reduction
is possible. This family has been the object of recent works (see [2, 19]). Let us briefly
recall some of its basic properties. Straightening the edge Γ locally, it is natural to
consider the following “tangent” operator on R2 with magnetic field

B = curlA = 1R+×R + a1R−×R,

where a ∈ [−1, a0] is a fixed constant.(1) This operator is explicitly given by

(1.6) P
tgt
h = h2D2

t + (hDs − tba(t))
2, ba(t) = 1R+(t) + a1R−(t).

By using a rescaling and a partial Fourier transformation along the straight edge
t = 0, we are led to consider the analytic family of Schrödinger operators

(1.7) ha[σ] = −∂2t +
(
σ − ba(t)t

)2
,

with domain

(1.8) B2(R) = {u ∈ L2(R) : u′′ ∈ L2(R), t2u ∈ L2(R)},

where σ ∈ R is a parameter.
The operator ha[σ] is self-adjoint in L2(R) and has compact resolvent. We denote by
(µ

[n]
a (σ))n⩾1 the non-decreasing sequence of the eigenvalues (repeated according to

their multiplicity) of ha[σ]. For shortness, we let

µa(σ) = µ[1]
a (σ) = inf sp(ha[σ]).(1.9)

By the Sturm-Liouville theory, we have the following proposition.

Proposition 1.1. — All the eigenvalues of ha[σ] are simple. The eigenfunction asso-
ciated with µ[n]

a (σ) has exactly n− 1 simple zeroes on R.

The functions µ[n]
a (σ), are called the band functions. When a = 1, we are reduced

to the harmonic oscillator and µ
[n]
a (σ) = 2n − 1. When −1 ⩽ a < 1, the functions

µ
[n]
a (σ) are no more constant functions, see [19]. The lowest band function, µa(σ) is

studied in [2].

Proposition 1.2 ([2, 19]). — For all n ⩾ 1, the function µ
[n]
a is analytic as a function

of σ. Moreover, the lowest band function satisfies

(1.10) lim
σ→−∞

µa(σ) = +∞, lim
σ→+∞

µa(σ) = |a|,

and µa has a unique critical point, which is a non-degenerate minimum βa ∈ (0, |a|),
attained at σ(a) > 0.

(1)Our investigation concerns the attractive magnetic edge, which is the case when a < 0. In the
opposite case, a ∈ (0, 1), the magnetic edge will no longer attract the bound states, since µa(σ)
(defined in (1.9)) becomes a monotone decreasing function with infσ∈R µa(σ) = a.
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In light of Proposition 1.2, we write, for E ∈ (0, |a|),

(1.11) µ−1
a ([βa, E]) =

[
σ−(a,E), σ+(a,E)

]
,

where −∞ < σ−(a,E) < σ(a) < σ+(a,E) < +∞.

1.4. Main results. — Our analysis will reveal that the semiclassical spectral asymp-
totics of Pa

h in the interval [0, Eh] is governed by that of an effective operator acting
on the edge Γ. In particular, we obtain accurate asymptotics for the low-lying eigen-
values of Pa

h highlighting a significant difference between the cases where −1 < a < 0

and a = −1.

Theorem 1.3 (Case −1 < a < 0). — Assume that k has a unique maximum, which is
non-degenerate:

kmax := max
Γ

k = k(smax), k′′(smax) < 0.

For all a ∈ (−1, 0), there exists C(a) > 0 such that, for all n ⩾ 1,

λn(P
a
h) = βah− C(a)kmaxh

3/2 +
(
n− 1

2

)
h7/4

√
−C(a)µ′′

a(σ(a))k
′′(smax) + on(h

7/4).

Remark 1.4
(i) Theorem 1.3 recovers the asymptotics obtained in [1]. The constant is given by

C(a) = −M3(a) > 0, with M3(a) defined in (2.2) and calculated in (2.5).
(ii) The asymptotics in Theorem 1.3 is consistent with the phenomenon observed in

surface superconductivity (see [8] and references therein) and the semiclassical analysis
for the Schrödinger operator with a degenerate well in [17]. In this comparison, the
well corresponds here to Γ and the mini-wells correspond to the points of maximal
curvature.

(iii) Actually, the proof of Theorem 1.3 provides us with a uniform description of
the spectrum in [0, Eh] and could also help determining the behavior of the eigenvalues
close to Eh when E is non-critical for µa, i.e., when E ̸= βa. In the context of the
Robin Laplacian, such considerations are the object of the ongoing work [7]. Note also
that there are some results high up in the spectrum in the recent work [14], where
Dirichlet conditions are considered.

(iv) It might happen that k does not have a unique minimum and even that Γ has
some symmetry properties. In this case, tunneling occurs and the eigenvalue splitting
is exponentially small (see [10]). The proof is similar to the case of the Laplacian
with a constant magnetic field and Neumann boundary condition in a symmetric
domain [6].

When a = −1, we will prove that C(a) = 0 and thus the second and third terms
in the asymptotics formally vanish. We still get accurate estimates for the low-lying
eigenvalues of Pa

h when a = −1, which involves an operator on the edge Γ ≃ [−L,L),
whose half-length is denoted by L.
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Theorem 1.5 (Case a = −1). — There exists C0 < 0 such that, for every n ∈ N, we
have as h→ 0,

λn(P
{a=−1}
h ) = β−1h+ h2γn(h) + on(h

2),

where γn(h) is the non-decreasing sequence of the eigenvalues of the differential oper-
ator

µ′′
−1(σ(−1))

2
(Ds + αh)

2
+ C0k(s)

2, with Ds = −i∂s,

acting on [−L,L) with periodic boundary conditions, and

(1.12) αh :=
|Ω1|
2Lh

− σ(−1)√
h

.

Here |Ω1| is the area of Ω1.

The quantity αh in (1.12) involves the circulation of the magnetic potential along Γ.
In fact, by Stokes’ Theorem, the circulation satisfies

1

|Γ|

∫
Γ

A · τ ds(x) = 1

|Γ|

∫
Ω1

curlA dx =
|Ω1|
2L

.

At the first glance, Theorems 1.3 and 1.5 seem independent. However, they both
result from the analysis of the effective operator of Pa

h (see Theorem 1.6 below), which
provides us with an accurate spectral description for −1 ⩽ a < 0.

This effective operator can be described as an ℏ-pseudodifferential operator
on R with a 2L-periodic symbol with respect to the space variable, and acting on
2L-periodic functions. Here and along the whole paper the parameter

(1.13) ℏ := h1/2

is called the effective semiclassical parameter. Let us describe the shape of our effective
operator. For a given symbol pℏ(s, σ) ∈ SR2(1),(2) we consider the Weyl quantization,
i.e., the operator defined by

(1.14) (Opwℏ (pℏ)u)(s) =
1

2πℏ

∫
R2

ei(s−s̃)·σ/ℏpℏ

(s+ s̃

2
, σ
)
u(s̃) ds̃dσ.

For an introduction to pseudo-differential operators, the reader is referred for instance
to [25], where rigorous definitions are given and several fundamental properties are
established. These operators being well defined on S(R), they can be extended by
duality as operators on S′(R). We now underline that, if pℏ(s+2L, σ) = pℏ(s, σ), then
Opwℏ (pℏ) transforms all the 2L-periodic distributions into 2L-periodic distributions.
In fact, Opwℏ (pℏ) also preserves the space of 2L-periodic functions that are in L2

loc,
denoted by L2

2L(R) (see Section 4.1).
Such an induced operator will give us our effective operator and we will call

it a pseudodifferential operator on the edge, s representing the coordinate on Γ

(parametrized by arc-length).

(2)that is, a smooth bounded function on R2 such that its derivatives at any order are also
bounded, uniformly in ℏ ∈ (0, 1].
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The main result in this article is the following.

Theorem 1.6 (Spectral reduction to the edge). — There exists a self-adjoint ℏ-pseudo-
differential operator (with symbol peffℏ ∈ SR2(1)) on the edge, whose principal symbol
coincides with µa below E, such that the spectrum of Opwℏ (p

eff
ℏ ) is discrete in [0, E]

for ℏ in some interval (0, ℏ0].
Moreover, for all n ∈ N such that λn(Pa

h) ∈ Jh = [0, Eh], we have as h→ 0,

λn(P
a
h) = hλn(Opwℏ (p

eff
ℏ )) + o(h2),

uniformly with respect to a ∈ [−1, a0], where −1 < a0 < 0. Here λn(Opwℏ (p
eff
ℏ ))

denotes the n-th eigenvalue of Opwℏ (p
eff
ℏ ).

The discreteness of the spectrum of such an ℏ-pseudodifferential operator, for ℏ
small enough, is rather classical. Indeed, fixing E+ ∈ (E, |a|), we shall see that the
principal symbol of peffℏ coincides with µa below E+ and thus, since µa has a unique
minimum, we can consider a smooth function of σ with compact support, denoted
by χ, such that peffℏ (s, σ)+χ(σ) ⩾ E+. Since Opwℏ χ is a compact operator on L2

2L(R),
we get that the essential spectra of Opwℏ (p

eff
ℏ )+Opwℏ χ and Opwℏ (p

eff
ℏ ) coincide. By using

the Gårding inequality, this essential spectrum is contained in (E,+∞).
The power of Theorem 1.6 is that it yields the two different asymptotics in The-

orems 1.3 and 1.5. The analysis in [1] only works for −1 < a < 0, in which case
the eigenfunctions are localized near the edge point(s) of maximal curvature, while
in the perfectly symmetric situation when a = −1, the localization near the edge is
displayed via an effective operator essentially independent of h (and thus the corre-
sponding eigenfunctions are not particularly localized near specific points on the edge,
even in the limit h→ 0).

Of course, the present statement of Theorem 1.6 is not very informative if we do not
describe the effective operator (see (7.1) for the expression of peffℏ , involving the curva-
ture k along the edge Γ, viewed as a function of the arc-length s). However, it already
gives an idea of the dimensional reduction approach using the tools developed in [21]
and inspired by [13, 22].

Besides the accurate asymptotics of the low-lying eigenvalues obtained in Theo-
rems 1.3 and 1.5, another interesting result that follows from Theorem 1.6 is a Weyl
estimate.

Theorem 1.7 (Asymptotic number of edge states). — We have

N(Pa
h, Eh) ∼

ℏ→0

L(σ+(a,E)− σ−(a,E))

π
√
h

.

The above Weyl estimate is similar to the one for the Neumann Laplacian with a
magnetic field obtained by purely variational methods not involving pseudodifferential
techniques in [12, 11, 20].
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Remark 1.8
(i) Our work does not cover the case when Γ has corners, in which case a strategy of

dimensional reduction might be inefficient (as in the case for the Neumann magnetic
Laplacian on corner domains, see [4, 5]).

(ii) Another interesting question is to analyze the behavior of the spectrum near
the Landau level |a|h, where we loose the uniformity in our estimates and we can
expect that another regime occurs.

1.5. Organization. — In Section 2, we discuss and recall some elementary properties
of the model in R2 with a flat edge. Section 3 is devoted to the description of the
Frenet coordinates along the edge Γ and the reduction of our problem to the study of
an operator in a neighborhood of Γ. In Section 4, we express the operator obtained
in Section 3 as an ℏ-pseudodifferential operator with operator symbol and expand
this operator in powers of ℏ. In Section 5, we use a Grushin problem to construct a
parametrix (that is an approximate inverse) for the operator introduced in Section 3.
In Section 7, we deduce accurate eigenvalue estimates from the Grushin reduction,
finish the proof of Theorem 1.6, and show how it yields the other theorems announced
in the introduction.

2. The flat edge model

This section is devoted to the study of the flat edge model (1.6) and more precisely
to the properties of the fibered family (1.7). We recall that our analysis holds for
[−1, a0], with −1 < a0 < 0.

2.1. More on the band functions. — We will use the following lemma.

Lemma 2.1. — For all σ ∈ R, we have

µ[2]
a (σ) > |a|.

Proof. — Let us consider the L2-normalized eigenfunction u := u
[2]
a,σ associated with

µ
[2]
a (σ). We have

−u′′(t) + (σ − tba(t))
2u(t) = µ[2]

a (σ)u(t).

By the Sturm-Liouville theory, u has exactly one simple zero t0. Assume first that
t0 ⩾ 0. Then, for all t ⩾ 0,

−u′′(t+ t0) + (σ − (t+ t0))
2u(t+ t0) = µ[2]

a (σ)u(t+ t0).

The (non-zero) function v = u(· + t0) is an eigenfunction of the Dirichlet realization
on R+ of −∂2t + (σ − t0 − t)2. Since v does not vanish on R+, we have µ[2]

a (σ) =

µDir
1 (σ − t0) > 1 ⩾ |a|. Now, assume that t0 < 0. Then, for all t ⩽ 0,

−u′′(t+ t0) + (σ − a(t+ t0))
2u(t+ t0) = µ[2]

a (σ)u(t+ t0).

In the same way, we infer that µ[2]
a (σ) > |a|. □
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For later use, we can consider a smooth bounded increasing function χ1 on R
such that χ1(σ) = σ on a neighborhood of the interval [σ−(a,E+), σ+(a,E

+)
]
, see

(1.11). In particular µa ◦χ1 has still a unique minimum at σa, which is not degenerate
and not attained at infinity (since lim inf |σ|→+∞ µa(χ1(σ)) > µa(σa)). The functions
◦
µ
[n]

a = µ
[n]
a ◦ χ1 will serve as bounded versions of µ[n]

a . We denote by ◦
uσ the positive

and normalized ground state of

(2.1) ◦
n0(σ) := ha[χ1(σ)],

where ha is defined in (1.7).
We can express the projection on span(

◦
uσ) as Π∗(σ)Π(σ) where

Π(σ) = ⟨·, ◦uσ⟩ and Π∗(σ) = · ◦
uσ,

where we emphasize that Π∗(σ) ∈ L(C, L2(R)). Thanks to Lemma 2.1 (and the spec-
tral theorem), for all z ∈ [0, E+], we can consider the regularized resolvent(3)

◦
R0,z(σ) = (

◦
n0(σ)− z)−1

(
Id−Π∗(σ)Π(σ)

)
.

Example 2.2. — As mentioned in the introduction, we will work with pseudodifferen-
tial operators in the s-variable (parallel to the boundary). A key example is given by Π

above. We view (s, σ) 7→ Π(σ) ∈ L (L2(R),C) as an operator-valued symbol. Thereby
we get, using the Weyl quantization of (1.14) in the introduction, for φ = φ(s, t),

(Opwℏ (Π)φ)(s) =
1

2πℏ

∫
R2

ei(s−s̃)·σ/ℏ(Π(σ)φ)(s̃) ds̃dσ

=
1

2πℏ

∫
R2

ei(s−s̃)·σ/ℏ
∫
R
φ(s̃, t)

◦
uσ(t) dt ds̃dσ.

Similarly, (s, σ) 7→Π(σ)∗∈L (C, L2(R)) is an operator-valued symbol and for ψ=ψ(s),
we have

(Opwℏ (Π
∗)ψ)(s, t) =

1

2πℏ

∫
R2

ei(s−s̃)·σ/ℏψ(s̃)
◦
uσ(t) ds̃dσ.

Proposition 2.3. — For all z ∈ [0, E+] (or more generally Rez ⩽ E+), the matrix
operator

P0,z(σ) =

(
◦
n0(σ)− z Π∗(σ)

Π(σ) 0

)
: B2(R)× C −→ L2(R)× C

is bijective for all σ ∈ R and

P0,z(σ)
−1 =

 ◦
R0,z(σ) Π∗

Π z − ◦
µ
[1]

a (σ)

 =: Q0,z(σ).

Moreover, the operator symbols (s, σ) 7→ P0,z(σ) and (s, σ) 7→ Q0,z(σ) belong to
S
(
R2,L (B2(R)×C, L2(R)×C)

)
and S

(
R2,L (L2(R)×C, B2(R)×C)

)
, respectively.

(3)Since [0, |a|)∩ sp(
◦
n0(σ)) = {µ[1]a (σ)}, ◦

n0(σ)− z can be inverted on the orthogonal complement
of ◦
uσ , for 0 ⩽ z < E+ < |a|.
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We recall that S(R2, F ) is the set of smooth functions on R2, valued in F with
bounded derivatives (at any order).

Proof. — By straightforward computations, we can verify the identities

Q0,z(σ)P0,z(σ) = IdB2(R)×C and P0,z(σ)Q0,z(σ) = IdL2(R)×C . □

2.2. Some useful formulas. — Let us recall some formulas and results from [2].
Let ϕa be the positive and L2-normalized ground state of the operator ◦

n0(σ(a)).
introduced in (2.1). It is proved in [2, Th. 1.1] that ϕ′a(0) < 0 for all a ∈ (−1, a0).

Some useful identities involve the moments

(2.2) Mn(a) =

∫
R

1

ba(τ)

(
ba(τ)τ − σ(a)

)n|ϕa(τ)|2 dτ,
for n ∈ N. It has been proved in [2] that

M1(a) = 0,(2.3)

M2(a) = −1

2
βa

∫
R

1

ba(τ)
|ϕa(τ)|2 dτ +

1

4

(1
a
− 1
)
σ(a)ϕa(0)ϕ

′
a(0),(2.4)

M3(a) =
1

3

(1
a
− 1
)
σ(a)ϕa(0)ϕ

′
a(0).(2.5)

The case a = −1 is special because

M2(−1) =M3(−1) = 0,

while, for −1 < a < 0, M3(a) < 0.
Finally, we will also need the following two identities [1, Rem. 2.3],∫

R
τ(σ(a)− ba(τ)τ)

2|ϕa(τ)|2 dτ =M3(a) + σ(a)M2(a),∫
R
ba(τ)τ

2(σ(a)− ba(τ)τ)|ϕa(τ)|2 dτ = −M3(a)− 2σ(a)M2(a).

(2.6)

2.3. The symmetric case a = −1 and the de Gennes model. — Let us recall the
definition and properties of the de Gennes model occurring in the analysis of sur-
face superconductivity within the Ginzburg-Landau model [9, §3.2] (and references
therein). We start with the family of harmonic oscillators

h[σ] = −∂2t + (σ − bt)2

on the half-axis R+ with Neumann condition at 0. Let us denote the positive normal-
ized ground state of h[σ] by fσ and the ground state energy by µ(σ). Then, minimizing
with respect to σ ∈ R we get

Θ0 = inf
σ∈R

µ(σ) = µ(ξ0), where ξ0 =
√
Θ0.

Let f0 := fξ0 . Then, for a = −1, we get by a symmetry argument

ϕa(t) = f0(|t|) and σ(−1) = ξ0.
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Moments. — Let us introduce the following moments

Mk =

∫
R+

(ξ0 − t)k|f0(t)|2 dt.

Then, by [8], we have

(2.7) M0 = 1, M1 = 0, M2 =
Θ0

2
, M3 = −|f0(0)|2

6
,

and
M4 =

3

8

(
1 + Θ2

0 − ξ0f0(0)
2
)
=

3

8
(1 + Θ2

0 + 6ξ0M3).

3. Decay of bound states and spectral reduction

In this section, we consider the eigenfunctions of the operator Pa
h = Ph with eigen-

values in the energy window

(3.1) J+
h = [0, E+h] where E < E+ < |a|.

We prove that the eigenfunctions associated with eigenvalues in J+
h are exponen-

tially localized near Γ, see Corollary 3.3. To describe the effect of the edge on the
localization, it is natural to use the classical tubular coordinates near Γ, whose defini-
tion will be recalled in Subsection 3.1. In order to prove Corollary 3.3, we will have to
combine Agmon estimates and a rough estimate on the number of eigenvalues in J+

h

(polynomially in h−1)), which will be discussed in Subsection 3.2.

3.1. Tubular coordinates. — For all ε > 0, consider the ε-neighborhood of Γ

(3.2) Γ(ε) = {x ∈ R2 : dist(x,Γ) < ε}.

Consider a parameterization M(s) of the edge Γ by the arc-length coordinate
s ∈ [−L,L), where L = |Γ|/2. Consider the unit normal n(s) to Γ pointing inward
to Ω1, and the unit oriented tangent t(s) = ṅ(s) so that (t(s),n(s)) is a direct frame,
i.e., det(t(s),n(s)) = 1. We can now introduce the curvature k(s) at the point M(s),
defined by n̈(s) = k(s)n(s).

Let us represent the torus (R/2LZ) by the interval [−L,L) and pick ε0 > 0 so that

Φ : R/(2LZ)× (−ε0, ε0) ∋ (s, t) 7−→ M(s) + tn(s) ∈ Γ(ε0)

is a diffeomorphism, with Jacobian

(3.3) m(s, t) = 1− tk(s).

The Hilbert space L2(Γ(ε0)) is transformed into the weighted space

L2
(
(R/2LZ)× (−ε0, ε0);m dsdt

)
and the operator Ph is (locally near the edge) transformed into the following operator
(see [9, App. F])):

P̃h := −h2m−1∂tm∂t

+m−1
(
−ih∂s + γ0 − ba(t)t+

k

2
ba(t)t

2
)
m−1

(
−ih∂s + γ0 − ba(t)t+

k

2
ba(t)t

2
)
,

J.É.P. — M., 2023, tome 10



928 S. Fournais, B. Helffer, A. Kachmar & N. Raymond

where ba is defined in (1.7) and

(3.4) γ0 =
|Ω1|
2L

.

3.2. Number of eigenvalues. — We give a preliminary, rough bound on the number
of eigenvalues in J+

h . As we will see, this first estimate will be enough to deduce a
stronger one at the end of our analysis.

Proposition 3.1. — Let N(Ph, E
+h) = Tr

(
1Jh

(Ph)
)
. There exist C, h0 > 0 such that,

for all h ∈ (0, h0),
N(Ph, E

+h) ⩽ Ch−2.

Proof. — Let us introduce a fixed partition of the unity

χ2
out + χ2

e + χ2
in = 1,

such that supp(χout) ⊂ R2 ∖ Ω1 = Ω2, supp(χin) ⊂ Ω1, and supp(χe) ⊂ Γ(ε0). The
quadratic form associated with Ph is given by

Qh(ψ) =

∫
R2

|(−ih∇+A)ψ|2 dx,

for all ψ ∈ L2(R2) such that (−ih∇+A)ψ ∈ L2(R2).
The usual localization formula (see, for instance, [23, §4.1.1]) gives the existence

of a constant C > 0 such that

Qh(ψ) ⩾ Qh(χoutψ) +Qh(χeψ) +Qh(χinψ)− Ch2∥ψ∥2.

By noticing that ψ 7→ (χoutψ, χeψ, χinψ) is injective, and thanks to the min-max
theorem, we find that

N(Ph, E
+h) ⩽ N(Pout

h , E+h+ Ch2) +N(Pe
h, E

+h+ Ch2) +N(Pin
h , E

+h+ Ch2),

where the operators Pout
h , Pe

h and Pin
h are the Dirichlet realizations of (−ih∇ +A)2

on Ω2, Γ(ε0) and Ω1, respectively. We recall that E+ < |a| ⩽ |a0| < 1 and notice that
Pout
h ⩾ |a|h and Pin

h ⩾ h. When h is small enough, E+h+Ch2 < |a|h < h, so we must
have N(Pout

h , E+h+ Ch2) = N(Pin
h , E

+h+ Ch2) = 0. Thus,

N(Ph, E
+h) ⩽ N(Pe

h, E
+h+ Ch2).

Therefore, we are reduced to estimate the number of eigenvalues of the operator with
compact resolvent Pe

h below E+h + Ch2. For that purpose, we can use the tubular
coordinates and notice that, for all ψ ∈ H1

0 (Γ(ε0)),

Qh(ψ) =

∫
(R/2LZ)×(−ε0,ε0)

(
|h∂tψ|2 +m−2|(hDs + γ0 − ba(t)t+

k

2
t2)ψ|2

)
m dsdt.

This gives the following rough estimate, for some c0, C0 > 0,

Qh(ψ)

∥ψ∥2
⩾ c0

∫
(R/2LZ)×(−ε0,ε0)

|h∂tψ|2 + |h∂sψ|2 dsdt∫
(R/2LZ)×(−ε0,ε0)

|ψ|2 dsdt
− C0.

Thanks to the min-max theorem, this implies the upper bound

N(Pe
h, E

+h+ Ch2) ⩽ N(−h2∆Dir, c−1
0 (E+h+ Ch2 + C0)),
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where −∆Dir is the Dirichlet Laplacian on the cylinder (R/2LZ) × (−ε0, ε0). The
spectrum of this operator can be computed explicit thanks to Fourier series, and we
get the rough estimate

N(−h2∆Dir, c−1
0 (E+h+ Ch2 + C0)) ⩽ C̃h−2. □

Since E+ < |a|, the eigenfunctions of Ph associated with eigenvalues in the allowed
energy window J+

h are localized near the edge, see [2].

Proposition 3.2. — There exist constants α, h0, C0 > 0 such that, if h ∈ (0, h0]

and uh is an eigenfunction of Ph associated with an eigenvalue in J+
h , then the fol-

lowing holds,

(3.5)
∫
R2

(
|uh|2 + h−1|(−ih∇+A)uh|2

)
exp
(2α dist(x,Γ)

h1/2

)
dx ⩽ C0∥uh∥2L2(R2).

Combining Propositions 3.1 and 3.2, we get the following estimate.

Corollary 3.3. — Let η ∈ (0, 1/2). There exists h0 > 0 such that for all h ∈ (0, h0)

and uh ∈ dist1Jh
(Ph), we have outside Γ(h1/2−η)

(3.6)
∫
R2∖Γ(h1/2−η)

(
|uh|2 + |(−ih∇+A)uh|2

)
dx ⩽ e−h−η

∥uh∥2L2(R2).

Corollary 3.3 suggests to use the rescaling t = ℏt̃. We also consider a smooth cutoff
function

(3.7) cµ(t̃) = c(µt̃), µ = hη = ℏ2η,

where c ∈ C∞
0 (R) is even and satisfies c = 1 on [−1, 1] and c = 0 on R ∖ (−2, 2).

This cutoff function is convenient to define the new operator on the Hilbert space
L2
(
(R/2LZ)× R;mℏ ds̃dt̃

)
, by

Ñℏ = −m−1
ℏ ∂t̃mℏ∂t̃

+m−1
ℏ

(
ℏDs̃ + ℏ−1γ0 − bat̃+ ℏcµ

k

2
bat̃

2
)
m−1

ℏ

(
ℏDs̃ + ℏ−1γ0 − bat̃+ ℏcµ

k

2
bat̃

2
)

acting on the domain

Dom(Ñℏ) =
{
u ∈ L2

(
(R/2LZ)× R

)
: ∂2

t̃
u ∈ L2

(
(R/2LZ)× R

)
,

(ℏDs̃ + ℏ−1γ0 − bat̃)
2u ∈ L2

(
(R/2LZ)× R

)}
.

As in Proposition 3.2, we can prove that the eigenfunctions of Ñh associated with
eigenvalues in Jh are localized near t̃ = 0.

Proposition 3.4. — The spectra of Ph and Ñh in J+
h coincide modulo O(h∞).
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Therefore, we are reduced to the spectral analysis of Ñh. For shortness, we drop
the tildes. Up to a change of gauge, we are reduced to the operator

Nℏ,θ = −m−1
ℏ ∂tmℏ∂t

+m−1
ℏ

(
ℏDs + θ − bat+ ℏcµ

k

2
bat

2
)
m−1

ℏ

(
ℏDs + θ − bat+ ℏcµ

k

2
bat

2
)
,

with
mℏ(s̃, t̃) := 1− ℏcµ(s̃, t̃)t̃k(s̃),

and domain

Dom(Nℏ,θ) = {u ∈ L2
(
(R/2LZ)× R) : ∂2t u ∈ L2((R/2LZ)× R

)
,

(ℏDs + θ − bat)
2u ∈ L2(((R/2LZ))× R)}.

Here
(3.8a) θ = θ(ℏ) = ℏ−1γ0 −

mπ

L
ℏ,

where m ∈ Z is chosen so that
(3.8b) θ(ℏ) ∈ [0, ℏπL−1).

Before going ahead, we have to deal with the inconvenience of working in a
Hilbert space with a weighted measure, which also depends on ℏ. Thus, let us use
the canonical conjugation and work in the fixed Hilbert space with flat measure
L2((R/2LZ)× R, dsdt):

(3.9) Nℏ,θ = m
1/2
ℏ Nℏ,θm

−1/2
ℏ = −m−1/2

ℏ ∂tmℏ∂tm
−1/2
ℏ +

(
m

−1/2
ℏ Tℏm

−1/2
ℏ

)2
,

where
(3.10) Tℏ,θ = ℏDs + θ − bat+ ℏcµ

k

2
bat

2.

Note that
(3.11) −m−1/2

ℏ ∂tmℏ∂tm
−1/2
ℏ = −∂2t − (∂tmℏ)

2

4m2
ℏ

+
∂2tmℏ

2mℏ
,

so that
(3.12) Nℏ,θ = −∂2t − (∂tmℏ)

2

4m2
ℏ

+
∂2tmℏ

2mℏ
+
(
m

−1/2
ℏ Tℏ,θm

−1/2
ℏ

)2
.

We restate the Proposition 3.4 in terms of the new notation.

Proposition 3.5. — The spectra of Ph and Nℏ,θ in J+
h coincide modulo O(h∞).

4. A pseudodifferential operator with operator valued symbol

4.1. Preliminaries. — Let us briefly prove that an operator given by (1.14) with a
2L periodic symbol, pℏ(s+ 2L, σ) = pℏ(s, σ), preserves 2L-periodic distributions and
also locally square integrable 2L-periodic functions. More generally, it also preserves
the set of functions

(4.1) Fℏ,θ := {u ∈ L2
loc(R) : u(s+ 2L) = e2iθL/ℏu(s)},

equipped with the L2-norm on a period [−L,L). The operator Opwℏ (pℏ) acts
continuously on Fℏ,θ. In fact, this is even true in the vector valued case where
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we replace u ∈ L2
loc(R) by u ∈ L2

loc(R;F ) for some Hilbert space F in the definition
of Fℏ,θ.

Let us explain this for θ = 0. From the composition theorem for pseudodifferential
operators (see [25, Th. 4.18]), we see that ⟨x⟩−1 Opwℏ (pℏ)⟨x⟩ is a pseudodifferential
operator with symbol in S(1) (and thus it is bounded on L2(R) thanks to the Calderón-
Vaillancourt theorem, see [25, Th. 4.23]). This shows that Opwℏ (pℏ) is bounded from
L2(R, ⟨x⟩−2 dx) to L2(R, ⟨x⟩−2 dx). Notice that there exist C1(L) > 0, C2(L) > 0 and
C3(L) > 0 such that for all u ∈ L2

2L(R),

∥u∥2L2(R,⟨x⟩−2 dx) ⩽ C1(L)
∑
ℓ∈Z

⟨ℓ⟩−2∥u∥2L2(2ℓL−L,2ℓL+L) ⩽ C2(L)∥u∥2L2
2L(R)

⩽ C3(L)∥u∥2L2(R,⟨x⟩−2 dx).

Now the operator Nℏ,θ introduced in (3.12) (with Tℏ,θ introduced in (3.10)) can be
seen as the action of an ℏ-pseudodifferential operator Nℏ with operator symbol nℏ on
Fℏ,θ(ℏ) where θ(ℏ) is defined in (3.8b). We have

(4.2) Nℏ = −∂2t − (∂tmℏ)
2

4m2
ℏ

+
∂2tmℏ

2mℏ
+
(
m

−1/2
ℏ Tℏm

−1/2
ℏ

)2
,

with
Tℏ = ℏDs − bat+ ℏcµ

k

2
bat

2.

Note that, by using the Floquet-Bloch transform, Nℏ is unitarily equivalent to the
direct integral of the Nℏ,θ.

We recall the classical notation for the Weyl quantization

(4.3) Opwℏ (nℏ)u(s) =
1

(2πℏ)

∫
R2

ei(s−s̃)·σ/ℏnℏ

(s+ s̃

2
, σ
)
u(s̃) ds̃dσ.

Let us explain why the operator Nℏ can be written under the form (4.3). Note
already that, at a formal level, we expect that

nℏ ≃ n0 = −∂2t + (σ − bat)
2.

This formal principal symbol suggests to consider a set of operator-valued symbols
(containing n0). We will need to introduce the space B2

(s,σ)(R). As a vector space we
have B2

(s,σ)(R) = B2(R) (as defined in (1.8)) and the index (s, σ) refers to the norm,
given by

∥ψ∥2B2
(s,σ)

(R) = ⟨σ⟩4
(
∥∂2t ψ∥2 + ∥⟨t2⟩ψ∥2

)
.

Here we used the standard notation

(4.4) ⟨u⟩ = (1 + |u|2)1/2.

We denote by S
(
R2,L (B2

(s,σ)(R), L
2(R))

)
the class of symbols Ψ on R2 with value

in L (B2
(s,σ)(R), L

2(R)), such that, for all j, k ∈ N, there exists Cj,k > 0

∥∂js∂kσΨ(s, σ)∥L (B2
(s,σ)

(R),L2(R)) ⩽ Cj,k.

It is inconvenient for a pseudodifferential calculus that the norm above depends
on σ. Therefore, to have uniformity in σ we will later introduce a localization in σ,
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so that σ will essentially be bounded in all expressions. The notation B2(R) (without
indices) will refer to the space with norm

∥ψ∥2B2(R) = ∥∂2t ψ∥2 + ∥⟨t2⟩ψ∥2.

Similarly, S
(
R2,L (B2(R), L2(R))

)
denotes the class of symbols Ψ on R2 with value

in L (B2(R), L2(R)).
More generally, we define, for j ∈ N,

(4.5) ∥ψ∥2
Bj

(s,σ)
(R) = ⟨σ⟩2j

(
∥∂jtψ∥2 + ∥⟨tj⟩ψ∥2

)
, ∥ψ∥2Bj(R) = ∥∂jtψ∥2 + ∥⟨tj⟩ψ∥2.

Our symbols can be ℏ-dependent and in this case we impose above the uniformity of
the constants with respect to ℏ. The representation of Nℏ as a pseudo-differential oper-
ator follows from the results of composition for operator symbols (see [21, Th. 2.1.12])
and by noticing that the symbol of (3.10) (obtained by replacing ℏDs by σ) belongs to
S
(
R2,L (B1

(s,σ)(R), L
2(R))

)
and also to S

(
R2,L (B2

(s,σ)(R), B
1
(s,σ)(R))

)
. Indeed, the

function t 7→ ℏbacµt2 is bounded, uniformly in ℏ, since µ = ℏ2η (for η fixed small
enough).

Remark 4.1. — We recall that the operator and its Weyl symbol are related by the
following exact formula (see for instance [25, Th. 4.19 & 4.13] whose proof can be
adapted to operator-valued symbols):

nℏ(s, σ) = e−i(ℏ/2)DsDσ
[
e−isσ/ℏNℏ(e

i·σ/ℏ)
]
(s, σ),

where e−i(ℏ/2)DsDσ is defined as a Fourier multiplier thanks to the Fourier transform
with respect to (s, σ).

4.2. Expansion of Nℏ. — Let us now describe an expansion of nℏ—the symbol
of Nℏ—in powers of ℏ. We would like to write

(4.6) nℏ ≃ n0 + ℏn1 + ℏ2n2 + · · ·

With this writing, we mean an expansion of the associated operator Nℏ of the following
form

(4.7) Nℏ = n0 + ℏn1 + ℏ2n2 + ℏ3R(3)
ℏ + ℏwℏ,

where, for some N ∈ N, C, ℏ0 > 0, we have, for all ℏ ∈ (0, ℏ0),
(i) wℏ is a smooth function supported in {(s, t) : C−1ℏ−2η ⩽ ⟨t⟩ ⩽ Cℏ−2η} and

such that wℏ = O(⟨t⟩) ,
(ii) R

(3)
ℏ is a pseudodifferential operator whose symbol belongs to a bounded set

in S(R2,L (B2
(s,σ)(R), L

2(R, ⟨t⟩−N dt))).
Note that (4.6) is not an expansion in the symbol class S(R2,L (B2

(s,σ)(R), L
2(R))),

which contains nℏ. We start by expanding the differential operator Nℏ (see (3.12))
with respect to ℏ, with µ (involved in the cutoff functions cµ) considered as a param-
eter.(4)

(4)Note that ℏcµ(t)t converges to 0 uniformly as ℏ tends to 0 since µ = ℏ2η and η < 1/2.
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In the following proposition, we describe the (symmetric) differential operators nj .

Proposition 4.2. — The decomposition (4.7) holds with

(4.8)

n0 = −∂2t + p20,

n1 = p0p1 + p1p0,

n2 = p0p2 + p21 + p2p0 − c2µ
k2

4
,

where

(4.9)

p0 = ℏDs − bat,

p1 = cµt
(k
2
p0 +

1

2
p0k +

k

2
bat
)
,

p2 = c2µt
2
(k2
2

p0 +
1

2
p0k

2 +
k2

2
bat
)
.

Proof. — Let us provide a Taylor expansion of (3.12). (3.10) can be rewritten in the
form

Tℏ = p0 + ℏcµ
k

2
bat

2.

Straightforward computations yield,

m
−1/2
ℏ Tℏm

−1/2
ℏ = m−1

ℏ p0 +m
−1/2
ℏ

(
ℏDsm

−1/2
ℏ

)
+ ℏcµ

k

2
bat

2m−1
ℏ

= m−1
ℏ p0 + ℏ2m−2

ℏ cµt(Dsk) + ℏm−1
ℏ cµ

k

2
bat

2.

Now we expand m−1
ℏ in powers of ℏ and get

m−1
ℏ = 1 + ℏcµtk + ℏ2c2µt2k2 + ℏ3

(cµtk)
3

1− ℏcµtk
,

so that

ℏ2m−2
ℏ = ℏ2 + ℏ3

2cµtk

1− ℏcµtk
+ ℏ4

c2µt
2k2

(1− ℏcµtk)2
,

ℏm−1
ℏ = ℏ+ ℏ2cµtk + ℏ3

c2µt
2k2

1− ℏcµtk
.

We have the following expansion

m
−1/2
ℏ Tℏm

−1/2
ℏ = p0 + ℏkcµt

(
p0 +

1

2
bat
)
+ ℏ2

(
k2c2µt

2
(
p0 +

1

2
bat
)
+

1

2
cµt(Dsk)

)
+

ℏ3cµtk
1− ℏcµtk

(
(cµtk)

2p0 +
(
2 +

ℏcµtk
1− ℏcµtk

)
cµt(Dsk) +

2c2µt
3k2

2

)
.

The previous expression can be rearranged as follows

m
−1/2
ℏ Tℏm

−1/2
ℏ = p0 + ℏp1 + ℏ2p2 + ℏ3Rℏ
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and

(4.10) Rℏ = −ℏc2µt2(Dsk)k

+
cµtk

1− ℏcµtk

(
(cµtk)

2p0 +
(
2 +

ℏcµtk
1− ℏcµtk

)
cµt(Dsk) +

2c2µt
3k2

2

)
.

Recalling (3.11), we can also expand the operator in the transversal variable and get

(4.11a) −m−1/2
ℏ ∂tmℏ∂tm

−1/2
ℏ = −∂2t − ℏ2c2µ

k2

4
+ ℏ3vℏ + ℏwℏ,

where the functions vℏ and wℏ satisfy, uniformly with respect to s, and ℏ,

(4.11b) vℏ(s, t) = O
(
⟨t⟩4

)
and wℏ(s, t) = O

(
|c′′µt|+ |⟨t⟩c′µ|

)
,

which gives in particular (i).
We get the expansion of the operator in (4.7) and the remainder term is expressed

via Rℏ in (4.10) as follows

R
(3)
ℏ = p1p2 + p2p1 + p0Rℏ + Rℏp0

+ ℏ
(
p1Rℏ + Rℏp1 + p22

)
+ ℏ2

(
p2Rℏ + Rℏp2

)
+ O

(
ℏ3⟨t⟩4

)
.

We see that the remainder R
(3)
ℏ satisfies (ii). □

We can now establish an expansion of the form (4.6) by considering the Weyl sym-
bols of the pj in (4.9) (and the composition of pseudodifferential operators). We get
the decomposition

(4.12a) nℏ = n0 + ℏn1 + ℏ2n2 + ℏ3r3,ℏ + wℏ,

where
n0(s, σ) = −∂2t + (σ − bat)

2,

n1(s, σ) = cµk(s)
(
2t(σ − bat)

2 + bat
2(σ − bat)

)
,

n2(s, σ) = c2µk(s)
2
(
3t2(σ − bat)

2 + 2bat
3(σ − bat) +

1

4
b2at

4
)
− c2µ

k(s)2

4
,

(4.12b)

(4.12c) rℏ,3 ∈ S(R2,L (B2
(s,σ)(R), L

2(R, ⟨t⟩−N dt))),

and wℏ is introduced in (4.11b).

5. The Grushin reduction

Instead of the operator Nℏ, we consider its truncated version defined by

(5.1) Nc
ℏ = Opwℏ (n

c
ℏ), ncℏ,0(s, σ) = nℏ(s, χ1(σ)),

where χ1 is defined in Section 2.1.
This localization effectively makes σ bounded in all estimates. Therefore, we avoid

the use of the (s, σ) dependent spaces Bj
(s,σ)(R) (defined in (4.5)) but can work in their

uniform versions Bj(R). In particular, the remainder terms appearing in applications
of the symbolic calculus such as (4.7) will therefore be uniform in σ.
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Consider the operator symbol, for all z ∈ [0, E] and E < E+ < |a|,

(5.2) Pℏ,z(s, σ) =

(
ncℏ − z Π∗

σ

Πσ 0

)
= P0,z + ℏP1 + ℏ2P2 + · · · ,

where, Πσ = ⟨·, ◦uσ⟩ and for all j ⩾ 1,

(5.3) Pj =

(
ncj 0

0 0

)
, ncj(s, σ) = nj

(
s, χ1(σ)

)
.

The operator P0,z is introduced in Proposition 2.3. Recall that it is bijective (since
z ∈ [0, E]) and

(5.4) P−1
0,z = Q0,z =

(
q0,z q

+
0,z

q−0,z q
±
0,z

)
is explicitly given in Proposition 2.3.

Proposition 5.1. — Consider

Q1,z = −Q0,zP1Q0,z =

(
q1,z q

+
1,z

q−1,z q
±
1,z

)
and

Q2,z = −Q1P1Q0 − Q0P2Q0 =

(
q2,z q

+
2,z

q−2,z q
±
2,z

)
.

We let

Qℏ(z) = Q0,z + ℏQ1,z + ℏ2Q2,z =

(
qℏ,z q

+
ℏ,z

q−ℏ,z q
±
ℏ,z

)
.

Then,

Opwℏ (Qℏ(z)) Opwℏ (Pℏ(z)) = Id+ℏ3Eℏ,l,

Opwℏ (Pℏ(z)) Opwℏ (Qℏ(z)) = Id+ℏ3Eℏ,r,

where Eℏ,l/r is a pseudodifferential operator, whose operator-valued symbol belongs to
the class S

(
R2,L

(
L2(R)×C, L2(R, ⟨t⟩−N dt)×C

))
, uniformly in ℏ, for some N ∈ N

independent of ℏ.

The coefficients appearing in Proposition 5.1 can be computed explicitly. Of par-
ticular importance to us is

(5.5) q±ℏ,z(s, σ) = z − ◦
µa(σ) + ℏq±1 (s, σ) + ℏ2q±2,z(s, σ),

where

q±1 (s, σ) = −⟨n1(s, χ1(σ))
◦
uσ,

◦
uσ⟩,(5.6)

q±2,z(s, σ) = ⟨q0,zn1(s, χ1(σ))
◦
uσ, n1(s, χ1(σ))

◦
uσ⟩ − ⟨n2(s, χ1(σ))

◦
uσ,

◦
uσ⟩.(5.7)

Here ◦
uσ is the positive ground state of the operator in (2.1) and n0, n1, n2 are intro-

duced in (4.12b).
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Proposition 5.2. — Writing

Opwℏ
(
Qℏ(z)

)
=

(
Qℏ Q

+
ℏ

Q−
ℏ Q±

ℏ

)
, Pℏ = Opwℏ (Π),

we have

Qℏ(N
c
ℏ − z) +Q+

ℏ Pℏ = Id+ℏ3R+
ℏ , Q−

ℏ (N
c
ℏ − z) +Q±

ℏ Pℏ = ℏ3R±
ℏ ,(5.8)

Q−
ℏ = Pℏ + ℏE −

ℏ , Q+
ℏ = P∗

ℏ + ℏE +
ℏ ,(5.9)

where R+
ℏ ,R

±
ℏ are pseudodifferential operators whose symbols belong to the class

S
(
R2,L

(
L2(R) × C, L2(R, ⟨t⟩−N dt) × C

))
, and where E −

ℏ ,E
+
ℏ are pseudodifferen-

tial operators whose symbols belong to the class S
(
R2,L

(
L2(R) × C, L2(R) × C

))
,

uniformly in ℏ.

6. Spectral applications

6.1. Localization of the eigenfunctions of Nℏ,θ. — In order to perform the spectral
analysis of Nℏ,θ, we need to prove that its eigenfunctions (associated with eigenvalues
in [0, E+]) are ℏ-microlocalized, with respect to σ + θ in

{ς ∈ R : µa(ς) ⩽ E+ + ε}, with ε > 0 such that E+ + ε < a.

This can be formulated in terms of the semiclassical wavefront/frequency set (see
[25, §8.4.2, p. 188]), however we write a stronger estimate in Proposition 6.1 below
which holds uniformly with respect to θ ∈ R. This is a consequence of the behavior
of the principal operator symbol n0,θ = −∂2t +(σ+ θ+ bat)

2 (which appears after the
Bloch-Floquet transform), which is bounded from below by µa(σ + θ).

The following estimate holds (see [6, §5] where similar considerations are described
in detail).

Proposition 6.1. — Consider a smooth function χ equal to 1 away from {µa⩽E++ε}
and to 0 on {µa ⩽ E++ε/2}. Then, for any θ ∈ R and any normalized eigenfunction ψ
of the operator Nℏ,θ associated with an eigenvalue in [0, E+], we have

(6.1) Opwℏ (χ(·+ θ))ψ = O(ℏ∞),

uniformly with respect to θ ∈ R, where O(ℏ∞) holds in the sense of the norm

u 7−→ ∥⟨t⟩2u∥H2((R/2LZ)×R+).

In addition, (6.1) also holds for all normalized ψ ∈ dist1[0,E+](Nℏ,θ).

Let us consider the operator Nc
ℏ,θ (with periodic boundary conditions) defined as

the operator induced by Nc
ℏ on Fℏ,θ (defined in (4.1)). By using Proposition 6.1 and

the min-max theorem, we get the following.

Proposition 6.2. — The spectra of Nℏ,θ and Nc
ℏ,θ in [0, E+] coincide (with multiplic-

ity) modulo O(ℏ∞), uniformly with respect to θ ∈ R. More precisely, for all N ⩾ 1,
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there exist ℏ0, C > 0 such that, for all θ ∈ R and all ℏ ∈ (0, ℏ0) and all k ⩾ 1 such
that λk(Nℏ,θ) ⩽ E+, we have

|λk(Nℏ,θ)− λk(N
c
ℏ,θ)| ⩽ ChN .

6.2. Weyl estimate. — A remarkable consequence of Proposition 5.1 and its corol-
lary is the following Weyl estimate, which improves Proposition 3.1.

Proposition 6.3. — Let θ = θ(ℏ) be as defined in (3.8a). For E ∈ (0, |a|), we have as
ℏ → 0,

N(Nℏ,θ, E) ∼
ℏ→0

N(Nc
ℏ,θ, E) ∼

ℏ→0

L(σ+(a,E)− σ−(a,E))

πℏ
,

where σ±(a,E) is defined in (1.11). In particular,

N(Ph, Eh) ∼
ℏ→0

L(σ+(a,E)− σ−(a,E))

π
√
h

.

Proof. — The first asymptotics, N(Nℏ,θ, E) ∼
ℏ→0

N(Nc
ℏ,θ, E), follows from Proposi-

tion 6.2. Let us focus on establishing the second one.
Note that Q± = Op(q±h (z)) with q±h (z) given in (5.5). Let us now test (5.8) (with

z = 0) and (5.9) with functions of Fℏ,θ of the form u = eiθs/ℏψ, with ψ in the domain
of the operator Nc

ℏ,θ (with periodic conditions). We get

(6.2) Q−
ℏ,θN

c
ℏ,θψ +Q±

ℏ,θPℏ,θψ = ℏ3R±
ℏ,θψ.

where the index θ refers to the conjugation by eiθs/ℏ (or the translation by θ of the
symbol in σ). Then, we take the inner product with Pℏ,θψ. To deal with the term
involving Q−

ℏ,θ, we use the first equality in (5.9), and this gives

(6.3) ⟨Opwℏ
(◦
µa(·+ θ)

)
Pℏ,θψ,Pℏ,θψ⟩ ⩽ Re⟨Nc

ℏ,θψ,P
∗
ℏ,θPℏ,θψ⟩+ Cℏ∥Nc

ℏ,θψ∥∥ψ∥

+ (Cℏ3∥⟨t⟩Nψ∥+ Cℏ∥ψ∥)∥Pℏ,θψ∥.

We apply this inequality to ψ being a linear combination of eigenfunctions of Nc
ℏ,θ

associated with eigenvalues less than E and thus, thanks to the Agmon estimates
(with respect to t), we can write, for some C0 > 0, η ∈ (0, 1) and for ℏ small enough,

⟨Opwℏ
(◦
µa(·+ θ)

)
Pℏ,θψ,Pℏ,θψ⟩ ⩽ ∥Nc

ℏ,θψ∥(∥P∗
ℏ,θPℏ,θψ∥+Cℏ∥ψ∥) +Cℏ∥ψ∥∥Pℏ,θψ∥.

By definition of Pℏ,θ, we see that the principal symbol of P∗
ℏ,θPℏ,θ is a projection so

that

⟨Opwℏ
(◦
µa(·+ θ)

)
Pℏ,θψ,Pℏ,θψ⟩ ⩽ (1 + C̃ℏ)∥Nc

ℏ,θψ∥∥ψ∥+ Cℏ∥ψ∥∥Pℏ,θψ∥.

Applying this inequality to functions in the space spanned by the k first eigenfunc-
tions(5) of Nc

ℏ (provided that λk(Nc
ℏ,θ) ⩽ E), we get

⟨Opwℏ
(◦
µa(·+ θ)

)
Pℏ,θψ,Pℏ,θψ⟩ ⩽ (1 + C̃ℏ)λk(Nc

ℏ,θ)∥ψ∥2 + Cℏ∥ψ∥∥Pℏ,θψ∥,

(5)associated with eigenvalues repeated according to the multiplicity.
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and also

(6.4) ⟨Opwℏ
(◦
µa(·+ θ)

)
Pℏ,θψ,Pℏ,θψ⟩ ⩽ (λk(N

c
ℏ,θ) + Cℏ)∥ψ∥2.

We have now to check that, when ψ runs over our k-dimensional space, Pℏ,θψ runs
over a k-dimensional space. Using the first equality in (5.8) with the j-th eigenfunction
ψ = ψj and z = λj(N

c
ℏ), and by using the Agmon estimates, we see that, there exists

C > 0 such that for all j, ℓ,∣∣⟨P∗
ℏ,θPℏ,θψj , ψℓ⟩ − δjℓ

∣∣ ⩽ Cℏ.

Then, writing ψ =
∑k

j=1 αjψj , we have

(6.5) ∥Pℏ,θψ∥2 = Re

k∑
j,ℓ=1

αjαℓ⟨Pℏ,θψj ,Pℏ,θψℓ⟩ ⩾ (1−Cℏ)
k∑

j=1

|αj |2 = (1−Cℏ)∥ψ∥2.

Recalling (6.4) and using the min-max theorem, this shows that there exist C, ℏ0 > 0

such that for all ℏ ∈ (0, ℏ0),

λk

(
Opwℏ

(◦
µa(·+ θ)

))
⩽ λk(N

c
ℏ,θ) + Cℏ,

provided that λk(Nc
ℏ,θ) ⩽ E. By using Proposition 5.1 and similar arguments, we

get the reversed inequality. Let us only sketch the proof. Thanks to Proposition 5.1,
we get, for all f ∈ L2

loc(R) that is 2L-periodic,

Re⟨(Nc
ℏ,θ − z)(Q+

ℏ,θf), Q
+
ℏ,θf⟩ ⩽ −Re⟨P∗

ℏ,θQ
±
ℏ,θ(z)f,Q

+
ℏ,θf⟩+ Cℏ3∥f∥∥Q+

ℏ,θf∥.

By taking z = 0 and by using the Calderón-Vaillancourt theorem to deal with the
right-hand-side, we get

⟨Nc
ℏ,θ(Q

+
ℏ,θf), Q

+
ℏ,θf⟩ ⩽ Re⟨Opwℏ

◦
µa(·+ θ)f,Pℏ,θQ

+
ℏ,θf⟩+ Cℏ∥f∥2.

Then, we have

⟨Nc
ℏ,θ(Q

+
ℏ,θf), Q

+
ℏ,θf⟩ ⩽ Re⟨Opwℏ

◦
µa(·+ θ)f, f⟩+ C̃ℏ∥f∥2.

We can check that ∥Q+
ℏ,θf∥ ⩾ c∥f∥ for some c > 0. From the min-max theorem,

we infer that
λk(N

c
ℏ,θ) ⩽ λk

(
Opwℏ

(◦
µa(·+ θ)

))
+ Cℏ.

There exist C, ℏ0 > 0 such that for all k ⩾ 1 and all ℏ ∈ (0, ℏ0),∣∣∣λk (Opwℏ
(◦
µa(·+ θ)

))
− λk(N

c
ℏ,θ)
∣∣∣ ⩽ Cℏ,

as soon as λk(Nc
ℏ,θ) ⩽ E.

It remains to apply the usual Weyl estimate available for a ℏ-pseudodifferential
operator whose principal symbol is ◦

µa(σ + θ) and remember that θ → 0 when ℏ → 0

and that the symbol is 2L-periodic with respect to s. □
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7. Estimate of the bottom of the spectrum

Let us now focus on the bottom of the spectrum. Here, we follow the analysis in
[3, §8.3], where quite similar considerations were used in the context of the magnetic
Dirac operator. In this section, we only highlight the most important steps. We will
sometimes write σa = σ(a) to lighten the notation in this section.

We consider Proposition 5.1 with z ∈ [0, βa + Cℏ]. In view of (5.5), this suggests
to consider the operator whose Weyl symbol is

(7.1) peffℏ (s, σ) =
◦
µa(σ)− ℏq̂±1 (s, σ)− ℏ2q̂±2,βa

(s, σ).

We let
peffℏ,θ(s, σ) = peffℏ (s, σ + θ).

Proposition 7.1. — We have, for all n ⩾ 1,

λn(N
c
ℏ,θ) = λn

(
Opwℏ (p

eff
ℏ,θ)
)
+ o(ℏ2),

uniformly with respect to θ ∈ R.

Proof. — Let us only sketch the proof. We recall that we have (5.8) and (5.9). Thus,
for all ψ in the space spanned by the n first eigenfunctions associated with the first n
eigenvalues of Nc

ℏ,θ (which all approach βa, as we can check thanks to similar manip-
ulations as in the proof of Proposition 6.3),

∥Q±
ℏ,θ(z)Pℏ,θψ∥ ⩽ C∥(Nc

ℏ,θ − z)ψ∥+ Cℏ3∥ψ∥,

where we used the Agmon estimates to deal with the term of order ℏ3. Applying this
to z such that z = βa + o(1), we see that

∥
(
Opwℏ (p

eff
ℏ,θ)− z

)
Pℏ,θψ∥ ⩽ C∥(Nc

ℏ,θ − z)ψ∥+ o(ℏ2)∥ψ∥.

With (6.5) and the spectral theorem,(6) this shows that the n first eigenvalues (repea-
ted with multiplicity) of Nc

ℏ,θ lie at a distance o(ℏ2) to the spectrum of Opwℏ (p
eff
ℏ,θ).

In particular, this gives the lower bound

λn(N
c
ℏ,θ) ⩾ λn

(
Opwℏ (p

eff
ℏ,θ)
)
+ o(ℏ2).

The upper bound follows from similar arguments. □

Then, we can check that the eigenfunctions of Opwℏ (p
eff
ℏ,θ) are microlocalized with

respect to σ + θ near σ(a) at the scale ℏγ/2 (for all γ ∈ (0, 1)) by using that the
principal symbol has a unique minimum, which is non-degenerate. This leads us to
write the Taylor expansion

peffℏ (s, σ) =
µ′′
a(σa)

2
(σ − σa)

2 − ℏq̂±1 (s, σa)− ℏ(σ − σa)∂σ q̂
±
1 (s, σa)− ℏ2q±2,βa

(s, σa)

+ O
(
ℏ(σ − σa)

2 + ℏ2(σ − σa) + (σ − σa)
3
)
.

(6)Use z = λj((N
c
ℏ,θ) and take ψ in the corresponding eigenspace.
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Rearranging the first terms, we get

(7.2) peffℏ (s, σ) = bℏ(s, σ) + O(ℏ(σ − σa)
2 + ℏ2(σ − σa) + (σ − σa)

3),

where

(7.3) bℏ(s, σ) =
µ′′
a(σa)

2

(
σ − σa − ℏ

∂σ q̂
±
1 (s, σa)

µ′′
a(σa)

)2
− ℏq±1 (s, σa)

+ ℏ2
(
q±2,βa

(s, σa) +
(∂σq

±
1 (s, σa)

2

2µ′′
a(σa)

)
.

We let
bℏ,θ(s, σ) = bℏ(s, σ + θ).

Note that Opwℏ bℏ,θ is a differential operator of order 2 and that it shares common
features with that of [3, (8.10)]. The difference is the presence of the a priori non-zero
term ℏ q̂±1 (s, σa). In Lemmas 7.2 and 7.3, we describe the terms appearing in (7.3).

Lemma 7.2. — When a > −1,

q±1 (s, σa) = C(a)k(s) + O(ℏ∞),

with C(a) = −M3(a) > 0, with M3(a) defined in (2.2) and calculated in (2.5). When
a = −1, we have q±1 (s, σa) = O(ℏ∞).

Proof. — By (5.6) and the definition of n1 in (4.12),

q±1 (s, σa) = −k(s)
∫
R
cµ
(
2t(σa − bat)

2 + bat
2(σa − bat)

)
|ϕa(t)|2 dt,

where ϕa =
◦
uσa

and where cµ was defined in (3.7). Since ϕa decays exponentially at
±∞, we get

q±1 (s, σa) = −k(s)
∫
R

(
2t(σa − bat)

2 + bat
2(σa − bat)

)
|ϕa(t)|2 dt+ O(ℏ∞)

= −k(s)M3(a) + O(ℏ∞),

where we used (2.6). By (2.5), M3(−1) = 0 and M3(a) < 0 for −1 < a < 0. □

Lemma 7.3. — When a = −1, we have

q±2,βa
(s, σ(a)) = C0k(s)

2 + O(ℏ∞), and ∂σq
±
1 (s, σ(a)) = 0,

with C0 < 0 a universal constant.

The proof below establishes that C0 = −1/4 +G, where G is given by (7.5).

Proof. — Let us recall (5.6) and (4.12). For a = −1 , the function τ 7→ ◦
uσ(τ) is even

and the functions
τ 7−→n1(s, σ) = k(s)cµ(τ)

(
2τ(σ − baτ)

2 + baτ
2(σ − baτ)

)
,

τ 7−→∂σn1(s, σ) = k(s)cµ(τ)
(
4τ(σ − bτ ) + baτ

2
)

are odd. So we get ∂σq±1 (s, σ(a))|a=−1 = 0.
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By the same considerations, using (5.7) and (4.12b), we have

q±2,βa
(s, σ(a))|a=−1 = −k(s)

2

4
+ k(s)2G+ O(ℏ∞),

where (recall the function f0 defined in Section 2.3)

(7.4) G = 2⟨v, w⟩ − 2

∫ +∞

0

(
3t2(ξ0 − t)2 + 2t3(ξ0 − t) +

1

4
t4
)
|f0(t)|2 dt.

Here w =
(
2t(ξ0 − t)2 + t2(ξ0 − t)

)
f0(t) and v is the unique solution of{

−v′′ + (ξ0 − t)2v −Θ0v = w on R+,

v(0) = 0.

We will prove by a somewhat lengthy but elementary calculation that

G = −13

4
M4 +

3

2
ξ0M3 −

3

8
Θ2

0 = −39

32
− 51

32
Θ2

0 −
93

16
ξ0M3.(7.5)

From the definitions M2,M4 > 0 and ξ0 > 0. It follows from (2.7) that M3 < 0.
Consequently it is immediate (from the first expression for G) that G < 0. So to finish
the proof of Lemma 7.3 it only remains to prove (7.5).

For all k ⩾ 1, we set
Pk = (ξ0 − t)k

and we observe that
3t2(ξ0 − t)2 = 3P4 − 6ξ0P3 + 3Θ0P2,

2t3(ξ0 − t) = −2P4 + 6ξ0P3 − 6Θ0P2 + 2ξ0Θ0P1,

1

4
t4 =

1

4
P4 − ξ0P3 +

3

2
Θ0P2 − ξ0Θ0P1 +Θ2

0.

Consequently,

2

∫ +∞

0

(
3t2(ξ0 − t)2 + 2t3(ξ0 − t) +

1

4
t4
)
|f0(t)|2 dt

=
5

2
M4 − 2ξ0M3 − 3Θ0M2 + 2ξ0Θ0M1 + 2Θ2

0

=
5

2
M4 − 2ξ0M3 +

Θ2
0

2
.

Let us now compute

(7.6) ⟨v, w⟩ = ⟨Pv, f0⟩,

where

P (t) = 2t(ξ0 − t)2 + t2(ξ0 − t) = −(ξ0 − t)3 +Θ0(ξ0 − t) = −P3(t) + Θ0P1(t).

Let p, q be two polynomial functions such that

v0 := pf0 + qf ′0

satisfies {
−v′′0 + (ξ0 − t)2v0 −Θ0v0 = Pf0 on R+,

v0(0) = 0,
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thereby yielding the condition p(0) = 0 and(
−p′′ + 2P1q + (Θ0 − P2)q

′)f0 + (−2p′ − q′′)f ′0 = Pf0 on R+.

We look for p and q satisfying the condition −2p′ − q′′ = 0 and q in the form q =

aP2 + bP1 + c, where a, b and c are to be determined.
We find after straightforward computations:

−p′′ + 2P1q+(Θ0 − P2)q
′ = −P3 +Θ0P1

⇐⇒ 4aP3 + 3bP2 + 2(c− aΘ0)P1 − bΘ0 = −P3 +Θ0P1

⇐⇒ a = −1

4
, b = 0, c =

Θ0

4
,

and therefore
p(t) =

t

4
,

q(t) = −1

4
(ξ0 − t)2 +

Θ0

4
,

v = v0 = pf0 + qf ′0 =
1

4

(
(ξ0 − P1)f0 + (−P2 +Θ0)f

′
0

)
.

We can now compute (7.6). Noticing that

Pp =
1

4
(P4 − ξ0P3 −Θ0P2 + ξ0Θ0P1), P q =

1

4
(P5 −Θ0P3 −Θ0P2 +Θ2

0),

we have
⟨Pv, f0⟩ =

1

4
(M4 − ξ0M3 −Θ0M2)−

1

4
⟨(P5 −Θ0P3 −Θ0P2 +Θ2

0)f
′
0, f0⟩.

After an integration by parts, we have
2⟨(P5 −Θ0P3 −Θ0P2 +Θ2

0)f
′
0, f0⟩

= −
〈
(P5 −Θ0P3 −Θ0P2 +Θ2

0)
′f0, f0

〉
− |f0(0)|2(P5 −Θ0P3 −Θ0P2 +Θ2

0)(0)

= −
〈
(−5P4 + 3Θ0P2 + 2Θ0P1)f0, f0

〉
+ 0

= 5M4 − 3Θ0M2.

Therefore,
⟨Pv, f0⟩ = −3

8
M4 −

ξ0
4
M3 +

1

8
Θ0M2.

Inserting this into (7.6), we infer from (7.4) that (7.5) is true. This finishes the proof.
□

The study of the differential operator Opwℏ (bℏ,θ) is rather easy and the behavior of
the spectrum depends on a.

When a > −1, thanks to our assumption on the maximum of the curvature, we are
reduced to use the harmonic approximation at (smax, σ(a)) and we get the following.

Proposition 7.4 (Case a > −1). — When a > −1 and k has a unique maximum
which is non-degenerate, we have

λn
(
Opwℏ (bℏ,θ)

)
= −C(a)kmaxℏ+ (n− 1/2)ℏ3/2

√
−C(a)µ′′

a(σ(a))k
′′(smax) + o(ℏ3/2),

uniformly with respect to θ ∈ R.
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In the case a = −1, there is essentially nothing to do.

Proposition 7.5 (Case a = −1). — When a = −1, we have

λn
(
Opwℏ (bℏ,θ)

)
= ℏ2λn (Bℏ,θ) + O(ℏ∞),

where
Bℏ,θ =

µ′′
a(σ(a))

2

(
Ds + ℏ−1θ − ℏ−1σ(a)

)2
+ C0k(s)

2.

Taking θ = θ(ℏ) (see (3.8a)) and arguing as in [3, §8.3] to deal with the remainders
in (7.2), we deduce Theorems 1.3 and 1.5 from Propositions 6.2 and 7.1. Since there
has been a number of changes of notation along the way, let us guide the reader
to this conclusion. Recall that ℏ = h1/2. To prove Theorem 1.3, by Proposition 3.5
it suffices to prove the eigenvalue asymptotics for λn(Nℏ,θ). By Proposition 6.2 it
suffices to consider the operator Nc

ℏ,θ (defined just before the proposition), and by
Proposition 7.1 to consider Opwℏ (p

eff
ℏ,θ), which by (7.2) and the localization estimates

reduces to the statement of Proposition 7.4. The proof of Theorem 1.5 follows the
same lines, only applying Proposition 7.5 in the last step instead of Proposition 7.4.
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