On quantum dissipative systems: ground states and orbital stability
Journal de l’École polytechnique — Mathématiques, Volume 10 (2023), pp. 447-511.

We investigate the existence and stability of ground states for a model coupling the Schrödinger equation to the wave equation in transverse directions. The model is intended to describe complex interactions between quantum particles and their environment. The result can be interpreted as a dissipation statement, induced by the energy exchanges with the environment. The proofs use either concentration-compactness arguments or spectral analysis of the linearized energy. Difficulties arise related to the fact the model does not satisfy scale invariance properties.

Nous étudions l’existence et la stabilité des états fondamentaux pour un modèle couplant l’équation de Schrödinger à l’équation d’onde dans des directions transverses. Ce modèle vise à décrire les interactions complexes entre des particules quantiques et leur environnement. Le résultat peut être interprété comme une propriété de dissipation, induite par les échanges d’énergie avec l’environnement. Les démonstrations reposent soit sur des arguments de concentration-compacité, soit sur une analyse spectrale de l’énergie linéarisée. Des difficultés surviennent liées au fait que le modèle ne satisfait pas de propriétés d’invariance d’échelle.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.222
Classification: 35Q40, 35Q51, 35Q55
Keywords: Open quantum systems, particles interacting with a vibrational field, Schrödinger-wave equation, ground states, orbital stability
Mot clés : Systèmes quantiques ouverts, particules en interaction avec un environnement vibratoire, système Schrödinger-ondes, états fondamentaux, stabilité orbitale
Thierry Goudon 1; Léo Vivion 1

1 Université Côte d’Azur, Inria, CNRS, LJAD Parc Valrose, F-06108 Nice, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2023__10__447_0,
     author = {Thierry Goudon and L\'eo Vivion},
     title = {On quantum dissipative systems: ground~states~and orbital stability},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {447--511},
     publisher = {\'Ecole polytechnique},
     volume = {10},
     year = {2023},
     doi = {10.5802/jep.222},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.222/}
}
TY  - JOUR
AU  - Thierry Goudon
AU  - Léo Vivion
TI  - On quantum dissipative systems: ground states and orbital stability
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 447
EP  - 511
VL  - 10
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.222/
DO  - 10.5802/jep.222
LA  - en
ID  - JEP_2023__10__447_0
ER  - 
%0 Journal Article
%A Thierry Goudon
%A Léo Vivion
%T On quantum dissipative systems: ground states and orbital stability
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 447-511
%V 10
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.222/
%R 10.5802/jep.222
%G en
%F JEP_2023__10__447_0
Thierry Goudon; Léo Vivion. On quantum dissipative systems: ground states and orbital stability. Journal de l’École polytechnique — Mathématiques, Volume 10 (2023), pp. 447-511. doi : 10.5802/jep.222. https://jep.centre-mersenne.org/articles/10.5802/jep.222/

[1] R. Alonso, T. Goudon & A. Vavasseur - “Damping of particles interacting with a vibrating medium”, Ann. Inst. H. Poincaré C Anal. Non Linéaire 34 (2017) no. 7, p. 1727-1758 | DOI | MR | Zbl

[2] V. Bach, J. Fröhlich & I. M. Sigal - “Return to equilibrium”, J. Math. Phys. 41 (2000) no. 6, p. 3985-4060 | DOI | MR | Zbl

[3] F. Bolley, D. Cordero-Erausquin, Y. Fujita, I. Gentil & A. Guillin - “New sharp Gagliardo-Nirenberg-Sobolev inequalities and an improved Borell-Brascamp-Lieb inequality”, Internat. Math. Res. Notices (2020) no. 10, p. 3042-3083 | DOI | MR | Zbl

[4] L. Bruneau & S. De Bièvre - “A Hamiltonian model for linear friction in a homogeneous medium”, Comm. Math. Phys. 229 (2002) no. 3, p. 511-542 | DOI | MR | Zbl

[5] A. O. Caldeira & A. J. Leggett - “Quantum tunnelling in a dissipative system”, Ann. Physics 149 (1983) no. 2, p. 374-456 | DOI

[6] T. Cazenave - Semilinear Schrödinger equations, Courant Lect. Notes in Math., vol. 10, American Mathematical Society, Providence, RI, 2003 | DOI

[7] T. Cazenave & P.-L. Lions - “Orbital stability of standing waves for some nonlinear Schrödinger equations”, Comm. Math. Phys. 85 (1982) no. 4, p. 549-561 | DOI | Zbl

[8] P. d’Avenia & M. Squassina - “Soliton dynamics for the Schrödinger-Newton system”, Math. Models Methods Appl. Sci. 24 (2014) no. 3, p. 553-572 | DOI | Zbl

[9] S. De Bièvre, F. Genoud & S. Rota Nodari - “Orbital stability: analysis meets geometry”, in Nonlinear Optical and Atomic Systems, Lect. Notes in Math., vol. 2146, Springer, Cham, 2015, p. 147-273 | DOI | MR | Zbl

[10] S. De Bièvre, T. Goudon & A. Vavasseur - “Particles interacting with a vibrating medium: existence of solutions and convergence to the Vlasov-Poisson system”, SIAM J. Math. Anal. 48 (2016) no. 6, p. 3984-4020 | DOI | MR | Zbl

[11] S. De Bièvre, T. Goudon & A. Vavasseur - “Stability analysis of a Vlasov-wave system describing particles interacting with their environment”, J. Differential Equations 264 (2018) no. 12, p. 7069-7093 | DOI | MR | Zbl

[12] M. Del Pino & J. Dolbeault - “Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions”, J. Math. Pures Appl. (9) 81 (2002) no. 9, p. 847-875 | DOI | MR | Zbl

[13] E. Faou, L. Gauckler & C. Lubich - “Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus”, Comm. Partial Differential Equations 38 (2013) no. 7, p. 1123-1140 | DOI | Zbl

[14] J. Ginibre & G. Velo - “Generalized Strichartz inequalities for the wave equation”, J. Funct. Anal. 133 (1995) no. 1, p. 50-68 | DOI | MR

[15] T. Goudon & S. Rota Nodari - Plane wave stability analysis of Hartree and quantum dissipative systems (2022) (Technical report)

[16] T. Goudon & A. Vavasseur - “Mean field limit for particles interacting with a vibrating medium”, Ann. Univ. Ferrara Sez. VII (N.S.) 62 (2016) no. 2, p. 231-273 | DOI | MR | Zbl

[17] T. Goudon & L. Vivion - “Numerical investigation of Landau damping in dynamical Lorentz gases”, Phys. D 403 (2020), p. 132310, 23 | DOI | MR | Zbl

[18] T. Goudon & L. Vivion - “Landau damping in dynamical Lorentz gases”, Bull. Soc. math. France 149 (2021) no. 2, p. 237-307 | DOI | MR | Zbl

[19] T. Goudon & L. Vivion - “Numerical investigation of stability issues for quantum dissipative systems”, J. Math. Phys. 62 (2021), p. 011509 | DOI | Zbl

[20] M. Grillakis, J. Shatah & W. Strauss - “Stability theory of solitary waves in the presence of symmetry, I”, J. Funct. Anal. 74 (1987), p. 160-197 | DOI | MR | Zbl

[21] M. Grillakis, J. Shatah & W. Strauss - “Stability theory of solitary waves in the presence of symmetry, II”, J. Funct. Anal. 94 (1990) no. 2, p. 308-348 | DOI | MR | Zbl

[22] V. Jakšić & C.-A. Pillet - “On a model for quantum friction. I. Fermi’s golden rule and dynamics at zero temperature”, Ann. Inst. H. Poincaré Phys. Théor. 62 (1995) no. 1, p. 47-68 | Numdam | MR | Zbl

[23] V. Jakšić & C.-A. Pillet - “Ergodic properties of classical dissipative systems. I”, Acta Math. 181 (1998) no. 2, p. 245-282 | DOI | MR | Zbl

[24] M. Keel & T. Tao - “Endpoint Strichartz estimates”, Amer. J. Math. 120 (1998) no. 5, p. 955-980 | DOI | MR | Zbl

[25] H. Kikuchi & M. Ohta - “Stability of standing waves for the Klein-Gordon-Schrödinger system”, J. Math. Anal. Appl. 365 (2010) no. 1, p. 109-114 | DOI | Zbl

[26] A. Komech, M. Kunze & H. Spohn - “Effective dynamics for a mechanical particle coupled to a wave field”, Comm. Math. Phys. 203 (1999) no. 1, p. 1-19 | DOI | MR | Zbl

[27] A. Komech, H. Spohn & M. Kunze - “Long-time asymptotics for a classical particle interacting with a scalar wave field”, Comm. Partial Differential Equations 22 (1997) no. 1-2, p. 307-335 | DOI | MR | Zbl

[28] M. K. Kwong - “Uniqueness of positive solutions of Δu-u+u p =0 in R n , Arch. Rational Mech. Anal. 105 (1989) no. 3, p. 243-266 | DOI | Zbl

[29] P. Lafitte, P. E. Parris & S. De Bièvre - “Normal transport properties in a metastable stationary state for a classical particle coupled to a non-Ohmic bath”, J. Statist. Phys. 132 (2008) no. 5, p. 863-879 | DOI | MR | Zbl

[30] E. Lenzmann - “Uniqueness of ground states for pseudorelativistic Hartree equations”, Anal. PDE 2 (2009) no. 1, p. 1-27 | DOI | MR | Zbl

[31] E. H. Lieb - “Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation”, Stud. Appl. Math. 57 (1976/77) no. 2, p. 93-105 | DOI | MR | Zbl

[32] E. H. Lieb & M. Loss - Analysis, Graduate Studies in Math., vol. 14, American Mathematical Society, Providence, RI, 2001 | DOI

[33] P.-L. Lions - “The Choquard equation and related questions”, Nonlinear Anal. 4 (1980) no. 6, p. 1063-1072 | DOI | MR | Zbl

[34] P.-L. Lions - “Symétrie et compacité dans les espaces de Sobolev”, J. Funct. Anal. 49 (1982) no. 3, p. 315-334 | DOI | Zbl

[35] P.-L. Lions - “The concentration-compactness principle in the calculus of variations. The locally compact case. I”, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) no. 2, p. 109-145 | DOI | MR | Zbl

[36] P.-L. Lions - “The concentration-compactness principle in the calculus of variations. The locally compact case. II”, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) no. 4, p. 223-283 | DOI | MR

[37] P.-L. Lions - Mathematical topics in fluid mechanics. Vol. 1, Oxford Lecture Series in Math. and its Applications, vol. 3, The Clarendon Press, Oxford University Press, New York, 1996

[38] P.-L. Lions & T. Paul - “Sur les mesures de Wigner”, Rev. Mat. Iberoamericana 9 (1993) no. 3, p. 553-618 | DOI | MR | Zbl

[39] L. Ma & L. Zhao - “Classification of positive solitary solutions of the nonlinear Choquard equation”, Arch. Rational Mech. Anal. 195 (2010) no. 2, p. 455-467 | DOI | MR | Zbl

[40] Y. Martel - “Notes on the interaction of solitary waves for NLS”, https://indico.math.cnrs.fr/event/2946/sessions/320/attachments/1152/1269/Bonn2017.pdf, 2017, Lectures notes for a course given in the summer school “Dispersive equations, solitons, and blow-up” in September 2017 at the Hausdorff Center for Math. in Bonn

[41] Y. Martel & F. Merle - “Asymptotic stability of solitons for subcritical generalized KdV equations”, Arch. Rational Mech. Anal. 157 (2001) no. 3, p. 219-254 | DOI | MR | Zbl

[42] K. McLeod - “Uniqueness of positive radial solutions of Δu+f(u)=0 in n . II”, Trans. Amer. Math. Soc. 339 (1993), p. 495-505 | DOI | MR

[43] F. Merle - “Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power”, Duke Math. J. 69 (1993) no. 2, p. 427-454 | DOI | Zbl

[44] L. Nirenberg - “On elliptic partial differential equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 13 (1959), p. 115-162 | Numdam | MR | Zbl

[45] P. Raphaël - “Concentration compacité à la Kenig-Merle”, in Séminaire Bourbaki, Vol. 2011/2012, Astérisque, vol. 352, Société Mathématique de France, Paris, 2013, p. 121-146, Exp. No. 1046 | Numdam | MR | Zbl

[46] A. Soffer & M. I. Weinstein - “Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations”, Invent. Math. 136 (1999), p. 9-74 | DOI | MR | Zbl

[47] E. M. Stein - Singular integrals and differentiability properties of functions, Princeton Math. Series, vol. 30, Princeton University Press, Princeton, N.J., 1970

[48] W. A. Strauss - “Existence of solitary waves in higher dimensions”, Comm. Math. Phys. 55 (1977) no. 2, p. 149-162 | DOI | MR | Zbl

[49] T. Tao - “Why are solitons stable?”, Bull. Amer. Math. Soc. (N.S.) 46 (2009) no. 1, p. 1-33 | DOI | MR | Zbl

[50] M. E. Taylor - Measure theory and integration, Graduate Studies in Math., vol. 76, American Mathematical Society, Providence, RI, 2006 | DOI | MR

[51] A. Vavasseur - Some models of particles interacting with their environment, Ph. D. Thesis, University Nice Sophia Antipolis, 2016

[52] L. Vivion - Particules classiques et quantiques en interaction avec leur environnement : analyse de stabilité et problèmes asymptotiques, Ph. D. Thesis, Univ. Côte d’Azur, 2020

[53] M. I. Weinstein - “Nonlinear Schrödinger equations and sharp interpolation estimates”, Comm. Math. Phys. 87 (1982) no. 4, p. 567-576 | DOI | Zbl

[54] M. I. Weinstein - “Modulational stability of ground states of nonlinear Schrödinger equations”, SIAM J. Math. Anal. 16 (1985) no. 3, p. 472-491 | DOI | Zbl

[55] M. I. Weinstein - “Lyapunov stability of ground states of nonlinear dispersive evolution equations”, Comm. Pure Appl. Math. 39 (1986) no. 1, p. 51-67 | DOI | MR | Zbl

[56] G. Zhang & N. Song - “Travelling solitary waves for boson stars”, Electron. J. Differential Equations (2019), article ID 73, 12 pages | MR | Zbl

Cited by Sources: