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ON QUANTUM DISSIPATIVE SYSTEMS:
GROUND STATES AND ORBITAL STABILITY

BY THierry Goupon & LLEo Vivion

Apstract. — We investigate the existence and stability of ground states for a model coupling
the Schrédinger equation to the wave equation in transverse directions. The model is intended
to describe complex interactions between quantum particles and their environment. The re-
sult can be interpreted as a dissipation statement, induced by the energy exchanges with the
environment. The proofs use either concentration-compactness arguments or spectral analysis
of the linearized energy. Difficulties arise related to the fact the model does not satisfy scale
invariance properties.

Risumi; (Sur les systémes quantiques dissipatifs : états fondamentaux et stabilité orbitale)

Nous étudions 'existence et la stabilité des états fondamentaux pour un modéle couplant
I’équation de Schrodinger a 1’équation d’onde dans des directions transverses. Ce modele vise &
décrire les interactions complexes entre des particules quantiques et leur environnement. Le ré-
sultat peut étre interprété comme une propriété de dissipation, induite par les échanges d’énergie
avec ’environnement. Les démonstrations reposent soit sur des arguments de concentration-
compacité, soit sur une analyse spectrale de I’énergie linéarisée. Des difficultés surviennent liées
au fait que le modeéle ne satisfait pas de propriétés d’invariance d’échelle.
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1. INnTRODUCTION

This paper is concerned with the study of the following system of PDEs, hereafter
referred to as the Schridinger-wave equation

(1a) (i@tu + %Aiu) (t,x) = (/}Rden o1(x —y)oe(2)U(t,y, z)dy dz) u(t, x),

teR, zeR?,

()@= aes) = o) [ ot plutnPay)
R
teR, zeRY zeR,
endowed with the initial data

(2) ’U,(O,I) = uo(x), (1#(0,.13,2),8“/)(0,37,2)) = (¢0($72)aw1(xa’z))'

Here u represents the wave function of a quantum particle, which interacts with the
vibrational field 1, and ¢ > 0 is a fixed parameter. A key feature of the model is
the fact that the particle motion holds in the space R?, but the vibrations hold in a
transverse direction R™. We are mainly interested in finding particular solitary wave
solutions of the system, with the specific form

(3) u(t,x) = ethQ(:E)a 7/’('% (E,Z) = \I/({E7 Z)v

where w € R, and @, ¥ are real valued, and to investigate the stability of such solu-
tions.

1.1. Morrvation. This work is motivated by the modeling of dissipative systems.
As suggested by A.Caldeira and A.Legget [5] the dissipation arising on a physical
system might come from a coupling with a complex environment. In this approach,
dissipation is interpreted as the transfer of energy from the single degree of freedom
characterizing the system to the more complex set of degrees of freedom describing the
environment; the energy is then evacuated into the environment and does not come
back to the system. There are many possible descriptions of the environment: the case
in which the environmental variables are vibrational degrees of freedom is particularly
appealing. The system (1a)—(1b) belongs to this class of models. More generally, the
questions we address are reminiscent to the analysis of “open systems”, which typically
take the form of Hamiltonian systems where the momentum and energy exchanges
between a subsystem (describing a particle, say) and the environment (an energy
reservoir, say) are expected to lead to equilibration phenomena for the subsystem. The
issue is therefore to understand how the interactions produce an energy dissipation for
the subsystem. These questions have been addressed for a large variety of classical and
quantum couplings, appealing to a large panel of mathematical arguments, ranging
from ergodic theory to spectral analysis, PDE analysis, probability, and numerics,
(2, 22, 23, 27, 26, 29, 46].

The system (1la)—(1b) is nothing but a quantum version of a model introduced
by L.Bruneau and S.deBieévre in [4] for describing a classical particle interacting
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with its environment seen as a bath of oscillators. Roughly speaking in each space
position € R? there is a membrane oscillating on a transverse direction z € R™.
When the particle hits a membrane, its kinetic energy activates vibrations and the
energy is evacuated at infinity in the R™ directions. In particular, the coordinates
(21,--+,2n) € R™ need not have the specific dimension of a length (but adopting
this language might definitely help the intuition). These energy transfer mechanisms
eventually act as a sort of friction force on the particle, an intuition rigorously justified
in [4, Th. 2 & Th. 4]. The system for the position of the particle ¢ — ¢(t) and the state
of the vibrational environment (¢, z) — (¢, z) reads

() )=~ [ Vorla(®) - )ox()i(t.v. ) dzdy. teR,
(4b)  (9i — PAY) (L, 2) = —02(2) o1 (2 — q(1)), teR, zeRY 2R,

completed by the initial data
(5) (q(O)a(j(O)) = (QO7p0>7 (w(O,I,Z),aﬂZJ(O,LE,Z)) = (7/10(%2)71/)1(1772))-

The functions o1 : RY — [0,00) and a5 : R® — [0,00) are form functions encoding
the interaction domain between the particle and the environment. The model can be
extended by considering P-interacting particles, and the mean-field regime P — oo
leads to the following Vlasov-wave system [16]

(6a) O f +v-Vuf —V, (al*x/agz/)dz) Vof =0, teR, zeR? veR?

(6b)  OEh — PALp = —09(2) (01 ko /fdv), teR, zeRY 2R,
(6C) f(O,CL',U) = f0($>v)7 (1#(0795’2)7@1!1(07%2)) = (1110(96;2)’1#1(33’2))7

where f stands for the particle distribution function in phase space. This system
is thoroughly investigated in [1, 11, 51]. In [10], it is proposed to rescale the wave
equation (6b) as follows

(7) D2 — ALY = —Poy <01 *a / f dv>.
As ¢ goes to 400, the solutions of the rescaled system (6a), (7) tend to solutions of

(8a) Of +v-Vaof — Vo (m *a /agidz) Vof=0, teR, zeR veR?

8b) — A =—os(o1xs [ fdv), teR, z €RY zeR”
( ) b b

(Without the rescaling the regime ¢ — oo would simply lead to the free transport
equation for the particle distribution function f ) We can write

d(t,z, 2) = <01*/fdv>

where I' denotes the unique solution of

(9) —A.T = —0y, I ¢ H'(R?).
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This observation allows us to express (8a)—(8b) as a standard Vlasov equation
(10) 8f +v-Vof + KV, (z o /fdv) Vof =0, teR, 2 R veRY,

where the potential is defined by a convolution with the macroscopic density, with
(11) k= |V.T7z, Y =01 %x01.

Quite surprisingly — mind the sign x > 0 — this corresponds to an attractive dy-
namics. This unexpected connection guides the intuition to establish further features
of the solutions of the Vlasov-wave system; it particular, they exhibit Landau damp-
ing phenomena [17, 18]. The analysis of these models, either for a single particle or
the kinetic description, brings out the critical role of the wave speed ¢ > 0 and the
dimension n of the space for the wave equation.

The system (la)—(1b) then appears as the quantum version of the L. Bruneau and
S. deBiévre model. This intuition can be justified by the semi-classical analysis d la
P.-L. Lions-T. Paul [38], which makes a natural connection between the Vlasov-wave
system and (la)—(1b), see Appendix B and [52]. Note that here we have adopted
from the beginning the rescaling where the coupling term in the wave equation (1b)
is of the order of ¢2. We will motivate this choice below. According to the framework
introduced in [4], throughout this article we assume:

(H1) n >3,

(H2) The form functions o1 and o3 are non-negative, smooth, compactly supported
and radially symmetric.
As said above the role of the dimension n for the wave equation is critical in these
models. Indeed, the evacuation of energy in the environment relies on the disper-
sion properties of the wave equation, which are strong enough when n is sufficiently
large [18]. By the way, notice that the definition of  in (11) makes sense when assum-
ing n > 3. The case n = 3 also plays a specific role in the theory presented in [4]. The
assumptions (H1) and (H2) on the form functions are very natural in the modeling
framework of [4]. In what follows, we use the abuse of notation to mix up a radially
symmetric function of # € R? with the underlying function of the scalar quantity |z,
and we will equally refer to the monotonicity of this function. It is likely that the
compactness assumption on the support of the functions o1, 02 can be relaxed into a
fast enough decay property; radial symmetry is however crucial in the present work.
Following the observations made for classical particles, it is instructive to consider the
regime where ¢ goes to +0o in (1a)—(1b). We are led to

1 ~ ~
(12a) 104U + QAEu = <01 *g /021/) dz) u, teR, zeR?,
(12b) — A = —0a(2) (01 %, @) (2), teR, z€RY z e R,
which can be cast in the usual form of an Hartree type equation
1. 19y ~
(13) 10,1 + 5Amu = —k (S *; [0?) @, teR, z e R

This remark will be helpful for the analysis.
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The conservation of the total energy is a remarkable property of all these models.
For the particle equation (4a)—(4b), we set

NT
Epart(t) = @ + %/ (|5t1/J|2 + 02|VZ¢|2)(t,x,z) dzdx

+ / o1(q(t) — )oa(2)b(t,y, ) dy dz

and for the kinetic equation (6a), with (7) (mind the rescaling for the wave equation),
we set

nlt) = 3 [ o fta) dvdot 5 [ (P2 4 v.0) () dda
+ / o1& — )oa(2) 0t y, 2) f(t, 2, v) dv de dy d=.

Then, we have
gpart (t) = 8part(0)7 Ekin(t) = Ekin(o)-
For the quantum model, (1a)—(1b), it becomes

c2

1 1 o|?
Esene(t) = §/|VIu(t,ac)|2da:+§/(‘ dd +|Vzw|2)(t,x,z)dzdx
14
(14) + / o1(z = 9)oa (2t y, 2)|ut, 2) | dz dy dz
= SSchr(O)'
For the asymptotic Hartree equation (13), we get similarly

(15) 56(t) = 5 [ IVait. o) do— 5 [ (- ity Plate. o) do dy = 3(0).

Moreover, both quantum equations are invariant by translation and phase and they
preserve the mass of the wave function:

(16) /\u(t,x)|2dx:/|u(0,x)\2dx, /|ﬂ(t,m)|2dx:/|ﬁ(0,z)|2dz,

constant quantities that we denote .#; and .#,. However, there are fundamental
differences between the two equations. Let

p(t) = Tm / Voult,o)u(t,z)dz,  (t) = Im / VLt 2t ) da

be the momentum associated to (1la)-(1b) and (13), respectively. We have, for (13),

d .

—5=0
a P )

but

< olr) = —/Rd V. (01*/” oa(2)b(t,z, 2) dz) fu(t, )| da
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for (1a)—(1b). We also introduce the center of mass

/ x u(t, z)|? do

Rd _ 2

/ AR =7 /}Rdﬂu(t,xﬂ dx
R ,

associated to (1la)—(1b) and a similar definition ¢(¢) for (13). We have

My at) = plt), A (0) = )

Therefore, the momentum conservation for (13) implies that the center of mass fol-
lows a straight line at constant speed. For (1a)—(1b), the analogy with the case of a
single classical particle would lead to conjecture that the center of mass will stop
exponentially fast. Numerical experiments shed some light on this issue [19]. Fi-
nally, we note that (13) is also Galilean invariant: if w is a solution of (13), then
v(t,z) = U(t,x — tpg)eo (*=tro/2) gtill is a solution of (13). This property is not
fulfilled by the system (la)—(1b), which leads to a specific behavior of the solutions,
consistently with the previous remark.

Note that we find convenient to perform the analysis on a dimensionless version of

b2 [43 ” “

the PDE system (even if we are using terminology like “mass”, “position”, “speed”

q(t) =

that helps the intuition). The identification of the dimensionless parameters is detailed
in Appendix C. In particular, in what follows the “mass” (16) is not necessarily
normalized to 1. The viewpoint has the advantage of making analogies appear more
clearly with the classical system (4a)—(4b). It turns out that the stability issue relies
on the interaction between ¢, the mass of the initial data, and the amplitude of the
perturbation, see [19, 52] for further numerical evidence.

1.2. ScaLin proreRTIES. — It is well-known that scaling invariance plays a central
role in the analysis of nonlinear Schréodinger equations. Here, let (u, 1)) be a solution
of (la)—(1b), and, for given A\, u > 0, let us set

(uru(t,2), Vb, 2, 2)) = (Lu(N2tA2), LA TN, Az, A22)).
It turns out that wy , is a solution of (1a)-(1b) but with the rescaled form functions
ort(z) = pm Aoy (Az) and 03 (2) = A" 2oy (A22).

Since o1 and o9 are not homogeneous functions, (u, ) and (uy ., ¥x,,) are solutions of
the same Schrodinger-wave system if and only if A = 1 = p. The same conclusion ap-
plies to the limiting system: if @ is a solution of (13) then uy (¢, z) = pu(A\?t, Az) is a
solution of (13) with the rescaled potential L*# () = o} xo 1 (z) = p~ 22428 (Az).
Therefore, in contrast to the usual nonlinear Schrédinger or Hartree equations, we
cannot find a relation between A and p such that the (ux,,,%¥a,)’s are solutions of
the same equation than (u,); this lack of scale invariance will have an important
role in the sequel of this paper.

Nevertheless, the scaling property implies that any result valid for the Hartree
equation with a given potential 3 equally applies to the equations with the modified

JIEP. — M., 2023, tome 10



On QUANTUM DISSTPATIVE SYSTEMS: GROUND STATES AND ORBITAL STABILITY /|:')‘§

potentials ¥ #. Considering the case where A\ = 1 = ¢! and letting ¢ go to 0, up to

a suitable renormalization, allows us to consider the regime ¥ — &y which formally
leads to the standard cubic nonlinear Schrédinger equation

1
(17) i0U + 5 AU = —k|U2U.

This equation is L?-subcritical in the case d = 1, it is L?-critical in the case d = 2
and L2-super-critical in the case d > 3. Hence, this formal limit suggests different be-
haviors for the Hartree equation (when a smooth potential is considered), depending
on the dimension d. Even if the continuity with respect to ¥ as ¥ — §g is certainly
wrong when d > 2 — (17) admits solutions which blow up in finite time while so-
lutions of (13) are globally defined when X is smooth — our analysis shows several
differences between the case d = 1 and d > 2, which can be understood from the for-
mal asymptotic to (17). It is thus not surprising that our main results, Theorem 2.8
and Proposition 2.11, require some additional assumptions on the form function o;.
Namely, in the case d = 3, we shall consider ¥ = o7 x o1 such that the rescaled
potentials YN, with A,z > 0, are close enough to | -|~1 (note that when d = 3 and
¥ =|-|7%, the Hartree equation is L2-subcritical). When d = 1 we do not require any
additional assumption on ;: see Proposition 2.16, obtained precisely by using the L?
subcritical feature of (17) when d = 1.

1.3. Sorrrary waves. — The system (1a)—(1b) can be shown to be well-posed, in nat-
ural functional spaces associated to the energy conservation.

Tueorem 1.1. Let (H1)-(H2) be fulfilled. For all initial data ug € H'(RZ),
Yo € L*(RE; HY(RD)) and ¢ € L2(RY; L2(R)), the system (1a)—(1b) and (2) admits
a unique global solution (u,1)) such that u € C°([0,4+00); H(RY)) and

¥ € 0°([0,+00); L*(RE; HY(RT))) N C*([0, +00); L (RE; L2(RD))).

The proof is detailed in Appendix A. The local well-posedness is based on Stri-
chartz’ estimates, which rely on the dispersive properties of the Schrédinger and the
wave equations in the coupling. The difficulty comes from the fact that Strichartz’
estimates for (1a) lead to estimates of w in LY L" norms whereas Strichartz’ estimates
for (1b) lead to estimates on v in L7 L{L? norms. Then, in order to gather these esti-
mates, it is necessary to deal with permutations of Lebesgue-norms in time and space.
For this purpose, assumption (H2) allows us to apply Holder and Young inequalities
in order to always obtain estimates in L{L%-norms. Eventually, that solutions are
globally defined comes from the Hamiltonian structure of the system.

The main purpose of this article is to show the existence and the orbital stability
of solitary waves for the Schrédinger-wave system. Namely, we are going to study
solutions of (1a)—(1b) with the form (3). The existence of such non dispersive solu-
tions is the translation of the presence of some attractive dynamics induced by the
model. The rescaling (7) is important in the discussion. We start by observing that
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if (u,1) = (Q(x)e™t, ¥(x, 2)) is a solution of (1a)—(1b), then (Q, ¥) is a solution of

(18a) — %AzQ +wQ + (01 *z /02\1/ dz> Q =0, z e R?,
(18b) — PN = —Po3(2) (01 %2 Q%) (2), reR? zeR™,

which is in fact independent of the parameter ¢. In turn, the profiles (@, ¥) do not
depend on ¢. Moreover these particular solutions (Q(x)e™? W(z,z2)) are also solu-
tions of the asymptotic system (12a)—(12b). It is therefore relevant to compare the
behavior of the solutions of (la)—(1b) and the solutions of (12a)—(12b) around the
state (Q(x)e™!, W(x, z)): this comparison provides information on the action of the
environment on the quantum particle.

According to the previous discussion, the expected behavior for the Schrédinger-
wave system can be summarized as follows.

Consecrure 1.2. Let (Q, ) be a solution of (18a)—(18b). If ug(z) = Q(z)ero#/M
for some sufficiently small pg and if (1o, 1) = (¥,0), then there exists two functions
x = z(t) and v = v(t) such that

— the unique solution (u,v) of (la)—(1b) associated to these initial conditions
remains close (uniformly in time in some norms that have to be made precise) to
(Q( —2(®)e" ™, W(- —a(t),);

— |&(t)] < Ce ¢ and |x(t) — T| < Ce /e,

In fact, we expect that the stability applies for particular solutions (@, ¥), having
minimal energy, the ground states solutions of (18a)—(18b) The perturbation e?o=/M
is particularly relevant because it corresponds to provide an impulsion py to the
solitary wave @ and it gives rise to a simple solution for the asymptotic model (13):
the solitary wave moves on a straight line with a uniform momentum since

Ut ) = Q(z — tpo/ M) to/M)po/M gitlertp /(M)

is a solution of (13). Hence it can be used as a reference state to understand the
dynamics of (1a)—(1b), which is expected to induce quite intricate deformations of
the solitary wave. This issue is further discussed on numerical grounds in [17].

The orbital stability of solitary waves of nonlinear Schrédinger equations is a clas-
sical result for many years, see for instance [7, 54, 55]. A general theory for ab-
stract Hamiltonian systems d;u = ¢ &”(u) in infinite dimension, where ¢ is a skew-
symmetric operator and & an “energy” functional has been developed in [20, 21], and
recently revisited in [9]. However, there are several difficulties to justify the orbital
stability in the present context, beyond the identification of ¢ and &, and these
arguments cannot be applied directly. The difficulties are related to the fact that the
nonlinearity is non local with, moreover, the fact that the particle-wave unknown has
a vectorial structure, so that the analysis does not reduce to the framework discussed
in [20, 21]. In particular, the “Schrodinger part” and the “wave part” of the system
act on different variables (z and z) and this makes the functional framework, the
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1

spectral analysis and the group action much more intricate. These issues are further
discussed in the simpler context of plane waves solutions in [15].

Nevertheless, we can expect that structure properties of the simpler problem (13)
still apply to the system (1a)—(1b). At first sight, assumption (H2) can be expected to
make the problem easier than the case where ¥ is replaced by the kernel of the Poisson
equation in dimension d = 3, that is ¥°(x) = 1/|z|. This specific case (13) — the
Schrodinger-Newton equation — has been investigated in detail by E. Lenzmann [30].
However, as reported above, while ¥ = o7 * 01 has better regularity and support
properties, it does not satisfy any scale invariance. It turns out that the analysis
of the Schrodinger-Newton equation exploits, in a quite crucial way, either explicit
formulas or the scale invariance which are very specific to the kernel 1/|z|. For this
reason, for establishing the first part of the conjecture (see Theorem 2.8), we shall
use a quite indirect approach, that relies on the perturbative arguments developed
in [30] for establishing spectral properties for the non relativistic Hartree equation.
The second part of the conjecture justifies that the environment acts on the quantum
particle as a friction force and is the object of further investigations on numerical
grounds [19, 52].

Acknowledgements. We are gratefully indebted to Stephan De Bi¢vre for many
motivating discussions and warm encouragements. We also thank Enno Lenzmann
for useful hints and kind advices. Finally, we thank David Chiron who indicated
relevant improvements of the arguments.

2. MAIN RESULTS

As said above, the main objective is to discuss the existence and the stability of
non trivial solutions (with finite mass and energy) of (la)—(1b) with the form (3).
In order to establish the existence, we start by observing that (Q, ¥) has to be a
solution of (18a)—(18b). Then we can express ¥ in terms of ) as follows:

U(x,2) =T(2) 01 % Q*(x),

where T stands for the unique solution of (9). Coming back to (18a), we deduce that @
satisfies

(19) f%A1Q+waH(Z*Q2)Q:O

with the definition (11). This equation is known as the Choquard equation and it has
been intensively studied (see for example [33], [31] or [30] and the references therein).
In particular, we already know from [33] that there exists infinitely many solitary
waves.

2.1. GROUND STATES. Nevertheless, we are only interested in stable solitary waves:
for this reason, we consider solitary waves that minimize the energy of the system
under a mass constraint, a quantity preserved by the evolution equation. Such solitary
waves are called ground states. The specific case of the Newtonian potential X°(z) =
1/]z| in dimension d = 3 has been studied in [31] which establishes the existence
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1

and uniqueness (up a change of phase and translation) of ground states for (13).
The existence part of [31] still applies in the case where ¥ is a smooth, compactly
supported, radially symmetric, non increasing and non negative function. However,
the arguments for proving the uniqueness part of the statement rely strongly on
the specific form of the Newtonian potential. Besides, the definition of the energy
functional for the system (1la)—(1b) differs from those of (13). Therefore, one has to
check that (1a)—(1b) admits ground states. For that purpose we will need the following
additional assumption on the form function o;.

(H3) The form function o; is non increasing.

We interpret the energy functional (14) as depending on u, ¢ and x = 9pb. Namely,
for u: R* — C, 1, x : R* x R" — R, we set

E(u, ¥, x /|v 2)2de + - /(|X| + V.0 )(x,z)dzdx
+ [ oie — p)oa(2)ty. Hluo) dzdyds,

so that Egen(t) = E(u, 1, 04))(t). Similarly, we set

(20) / V(@) de — / (2 — ) u(y) Plu(z) > dz dy,

see (15). In order to establish the existence of ground states we will study the following
three minimization problems.

21a) Iy :=inf{E(u u € H x L2H! x L2L? and ||u|]?>» < M

( ) M 7'(/)7)( 7'(/}7X T itz Tz L2 ’
21b)  Jas := inf{ E(u, v w,,x) € H x L2H} x L2L? and |jul?. = M

( ) M y Wy X y Wy X T xttz Tz L2 ’
(21c) Ky :=inf{E(u,T'oy  |ul*,0) | u € H, and Hu||2L3 =M},

The interest of (21c) comes from the fact that E(u, T o7 x |u|?,0) = H(u) since oy is
radially symmetric and therefore ||y x|u|? ||L2 = [ |u]*(z)X(z—y)|ul*(y) dz dy. Then,
if K(ps is reached at u, u is a ground state “of (13) and we will be able to compare
ground states of (la)—(1b) with ground states of (13). Section 3 is devoted to the
proof of the following theorem.

Tueorem 2.1. — Let (H1)-(H3) be fulfilled.

(i) For every M >0, Ins is reached.

(ii) For every M >0, Inf = Jy = K.

(iii) There exists a mass threshold My > 0 such that for every M € [0, My], Jp =0
and for every M > My, Jy < 0 is reached on (u, v, x) = (u, %, 0) with u non negative,
radially symmetric and non increasing. Moreover (u,v) is a solution of (18a)—(18b)
for a certain w > 0. In particular 1) = T oy x |u|? is non positive, u is an element of
the Schwartz class $(R?) and Ky = Jar is reached at u.

(iv) If d > 2, then My > 0.

(v) If d =1, then My = 0.
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Note that we do not know whether the minimizer in item (iii) is uniquely defined,
up to a possible change of phase and translation. Applying Lieb’s method [31], we
cannot even conclude whether or not the minimizers of Jy; are radially symmetric,
a preliminary step to establish uniqueness, and strictly positive. The alternative ap-
proach of L. Ma and L. Zhao [39, §5] provides a positive answer to the strict positivity
and radial symmetry of the minimizer, though. Note also that the fourth item of this
theorem is reminiscent to the fact that (1a)—(1b) does not have a scale invariance. In
contrast, My = 0 when d = 1, a difference with the cases d > 2 which can be related
with the discussion in Section 1.2.

2.2, OrsrraL staBinity. — The variational characterization will be used in Section 4
to establish the following orbital stability result for these ground states. In this state-
ment, for a given mass M > 0, we denote by Sj; the space of all possible ground
states

S ={(Q,¥) € Hy x L2H! | Q|72 = M and E(Q,¥,0) = Ja}.

Tueorem 2.2. — Let (H1)-(H3) be fulfilled. Let M > My and (Q, W) be in Syr. For
every e > 0 there exists 6. > 0 such that if ug € H!, ¥o € L2H} and xo € L2L? with

lluo — QI + llvo — ‘I’HZLi;Izl +xollF2ze <4,

then the unique solution (u,v,x = Owb) of (la)—(1b) with initial data (uo, o, x0)
satisfies

sup _inf  (|lu(t) = Ql% + 1w(t) = B2, 4, +IX(B)3212) <=
t20 (Q,¥)ESM =7z

The proof is classical and based on the concentration-compactness lemma, see for
instance [7, 35, 36] and the references therein. Since we do not know whether the
ground states are unique (up to the equation invariants), the statement only tells us
that a perturbation of a ground state stay close (uniformly in time) to the manifold of
all the possible ground states. This is weaker than the expected conclusion which would
assert that “a perturbation of a given ground state stay close (uniformly in time) to
the manifold generated by this ground state and the equation invariants (phase and
translation)”.

2.3. STRENGTHENED ORBITAL STABILITY. A strengthened result can be obtained by
using an alternative approach, based on the study of the linearization of the energy
around a ground state (see [41, 54, 55]; we also refer the reader to the lecture notes
[40, §2.6] and the references therein). To be more specific, we fix M > M, and we
consider a ground state (@, ¥) of Jys such that @ is positive, radially symmetric and
decreasing and such that ”QH%E = M. We introduce

W (u, 9, x) = E(u, 9, x) + wllul7:.
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Next, we linearize this quantity around (Q, ¥,0): for every u € H!, ¢ € L2H! and
X € L2 L?, we have

W(Q +u,¥ +1,x) = W(Q,¥,0)
1
+ 3 V.Q - (Veu+ Vyu)de+w [ Qu+7)de
R4 Rd

—|—/ (01*/ GQ\I'dz> Q(u+7u)dx
Rd n
1

+/ GM/’@w%yfm+ﬂ" V.-V, drds

1
+f/ |un|2da?+w/ |u\2dx+/ (01*/ og\Ildz> |u|? dz

2 Rd Rn
+/ (O’l*/ 0'2’(/sz> Qu+u)dx + 2// |x|? dz dz

2 RA xR™
// V. w|2dmdz+/ <01*/ Jg?/}dz> luf? da.

We write this as W(Q +u, ¥ + ¢, x) = W(Q,¥,0) + I; + - - - + I12. Thanks to (18a),
I + I, + Is = 0 and thanks to (18b), Iy + Is = 0. Let us denote

u=f+1g, frgeR.

We can rewrite

1
Ie+---+1n = <L+ (i) ; (£)> +(L-9,9)2 + 52 X122 22
L2XL2L2

where

—EAI-FUJ-F <O’1*/ 0'2\1de> M1
(22) co—| 2 . X
M2 *7Az
2
with

My = (m*/n U2¢d2) Q, Myf = o3 (01 %QFf),

and
1
(23) L_ :—§A$+w+ (01*/ UQ\Isz>.
Let us also introduce the operator L, defined by
1
(24) Lif=—50af +wf—n(Ex Q) f = 26(2 % Q)Q,

which will have an important role in the sequel: it is the analog to £ for W(u) =
H(u) + wl|ul|7.. We eventually obtain the following decomposition

(25) W(Q+u,\ll+w,x)=W(Q,\If,0)+<£+<f>,<f>>
)\ papane

1
#Eo.9)sz + gl + [ (o [ oavas) P a.
z C rE Rd n

JIEP. — M., 2023, tome 10



On QUANTUM DISSTPATIVE SYSTEMS: GROUND STATES AND ORBITAL STABILITY /|59

Remark 2.3. Relation (25) holds true when replacing, for some o € R, My and My
in the definition of £ by aM; and (2 — «)Ms. However, £ is self-adjoint only in
the particular case o = 1.

The key argument to prove an orbital stability result is to characterize the kernel
of L_ and £ and to prove that these operators are coercive under some orthogonality
conditions. The operator L_ is a local operator, and we already have at hand the
following statement, see for example [54].

Levmvia 2.4, — Let (H1)-(H3) be fulfilled. We have Ker(L_) = Span{Q} and there
exists a constant 1 > 0 such that for every g € H},

2

1
(26) (L-9,9)12 = nllgln - .

The difficult part is to obtain an analogous statement for £.. The method consists
in working on the operator L, : the knowledge of the kernel of L, will allow us to
identify the kernel of £, and a coercivity property for L, will provide a coercivity
property for £ too. By direct inspection, it can be checked that

Span{d,,Q |j=1,...,d} C Ker(L,);

we shall work further to establish the reverse inclusion and characterize Ker(L).
Since L, is a non-local operator, classical arguments based on Sturm-Liouville theory
are not applicable. We shall need to develop alternative approaches and perturbative
arguments, inspired from [30].

We are going to exploit results known for some limiting cases, depending on the
dimension d. Namely, in the case d = 1 we will consider the case of the delta function

(27) ZO - (50,

while in dimension d = 3 we will consider the case of the Newtonian potential
1

(28) () = —.
|z

Indeed, for these specific situations the following statement holds.

Lemwa 2.5, — Let d = 1 with the potential (27) or d = 3 with the potential (28).
Let QV stand for the corresponding ground state, associated to the potential X° and
mass M > 0. We have Ker(L, ) = Span{dy, Q% j=1,...,d}. Moreover, there exists
a constant v° > 0 such that for every f € H},

)

In the case d = 1, the result is well known since the paper of M. Weinstein [54]. The

d
(29) (LS, Pz 20NN - % (\<f, Q2+ D |(f,02,Q%) 12
j=1

analysis of the case d = 3 is quite recent: the characterization of the kernel of L has
been obtained by E. Lenzmann in [30, Th. 4] and then, based on this characterization,
P.D’Avenia and M. Squassina [8, Lem. 2.7] established the coercivity property (29).
We need to extend such a property to potentials with the form > = o1 x 01: we denote
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by «7; the set of admissible form functions o7 such that Lemma 2.5 applies in dimen-
sion d when ¥ = 0y x o1. This is made clear by the following definition.

Derintrion 2.6. — We say that oy is an admissible form function if it satisfies (H2)—
(H3) and if there exists a mass interval I of non empty interior such that for every
M € I and every positive and radially symmetric minimizer Qs of Ky, the conclu-
sions of Lemma 2.5 hold (with a constant v which, now, depends on X, w, M, Q).

That «7; is non empty is highly non trivial: in [30], the characterization in
Lemma 2.5 relies strongly on the specific form of the Newtonian potential and the
scale invariance property of equation (19) in this specific case. Let us temporarily
postpone the treatment of this issue; in the meantime, we state the following lemma
which links the properties of the operator £ to the properties of the operator L.
Note that from now on we denote

A ={(u,) € Hy x L2H},
which is a Hilbert space when endowed with the norm defined by
1o, ) = iy + 112, 5,

Levva 2.7, — Assume (H1)—(H3). Let 01 € <y be an admissible form function and
assume that the mass M of the considered ground state Q) is in the interval I of
Definition 2.6. Then Ker(£L,) = Span{(d,,Q,0,,¥)",j = 1,...,d} and there exists a
constant v > 0 such that for every (f,v) € I,

(30) <L+ (ZJ) ’ (?{’) >LngiL§

_ 1 d
> 710 0l — 5 (1@l + 30 48,0,, Qs
j=1

Lemma 2.4, 2.5 and 2.7 can be interpreted as coercivity properties, up to some
orthogonality conditions, see [49, §4], [54, Prop. 2.8 & 2.9], [8, Eq. (2.14)]: £ is coer-
cive on the subspace of 7 characterized by (f,Q)r2 =0 = (f,0,,Q) 2. Considering
solutions of the evolution problems, the latter will be guaranteed by introducing
some appropriate modulation factors ¢ — z(t) and t — ~(t), see [55, sp. §3]. Then,
Lemma 2.7 is the key ingredient to prove the following orbital stability theorem that
strengthens Theorem 2.2. The proof is detailed in Section 5.

Tueorem 2.8. — Assume (H1)-(H3). Let o1 € <7y be an admissible form function and
assume that ||Q|%, € 1. For every (uo,%o, xo) € H} x L2H! x L2L? let us denote
by (u, v, x = 0p) ‘the unique solution of (la) and (1b) associated to the initial data
(10, %0, X0)- Let us assume ||ugl|rz = ||Q||L2. There exists eg > 0 such that for every
€ € (0,e9) we can find n(e) > 0 and §(e) > 0 such that, if

1
||(U0—Q7¢0—‘I’)Hif*'C*QHXOHQLng <n(e)® and W (ug, %o, x0) —W(Q, ¥,0) < §(e),
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then there exists two functions x(t) and y(t), continuous in time, such that for every
t >0, v(t,-) = e " Duy(t,- 4+ x(t)) satisfies the following orthogonality conditions
(31a) <Rev,8ij>L§ =0, j=1,....d,

(315) (v, Q)yy =0

. 2 1
and  sup | (u(t) = 7 OQ( — w(®), v(t) = W~ a(t) |+ IOz <<

t>0 H & rE
Remark 2.9. — Note that in the regime ¢ > 1/¢%, the theorem still applies if the
perturbation xo is not close to zero. It is also worth remarking that n(e) and d(e) are
uniform with respect to c.

Remarxk 2.10. Note that it is still possible, in the spirit of results obtained in [13]
for the standard non linear Schrédinger equation, to justify that orbital stability holds
for initial data with arbitrarily large momentum, (uoe*"”'po/ M abg, %) being close to
(Q,7,0), on finite time interval: typically the solution remain at a distance ¢ of the
manifold of the ground state over time interval of order &'(1/+/¢), see [52, Th.4.2.11 &
§4.6]. The argument relies on the dispersive properties of the wave equation through
Strichartz’ estimates, combined to the conservation of the total momentum.

It is worth commenting the assumption on the mass of ug which did not appear
in Theorem 2.2. Usually, assuming [uollzz = [|@||z2 is not a restriction. Indeed,
as soon as the definition of the map M +— Qs is meaningful (i.e. when ground
states are unique or at least locally unique) and defines a continuous map, any small
perturbation ug of a ground state Qs is also a small perturbation of the ground state
Qlluo |- - Here, relaxing this assumption requires to justify, first, that the ground states
are (at Teast locally) unique and, second, their continuity with respect to the mass M.
We decided not to focus on the uniqueness issues in this work; nevertheless we can
provide some hints. Our approach to find admissible form functions o; is inspired
by the strategy developed by E.Lenzmann [30] in order to prove the uniqueness of
ground states (for almost every sufficiently small mass M) for the non relativistic
Hartree equation. Therefore, it is likely that a similar result applies here for almost
every M € I. Working in this direction may probably allow us to justify that the
assumption on the mass of the perturbation ug is indeed not a restriction.

Theorem 2.8 becomes fully meaningful if we are able to characterize the set of
admissible form function 27, or at least to justify that o7; contains physically relevant
form functions ;. This is the purpose of the following sections which contain the most
original insights of the paper. Our results cover the three-dimensional case d = 3,
which is the most relevant physically, and the one-dimensional case d = 1 for which
numerical investigations is more affordable [19]. It is worthwhile to see the role of the
space dimension in the analysis, and we also provide some hints on the case d = 2.

2.4. Tue case d = 3. — Section 8 is devoted to the construction of admissible form
functions o7 in dimension d = 3. The difficulty in identifying the class of admis-
sible form functions o7 is a weakness of the method compared to the approach by
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concentration-compactness. Nevertheless this additional restriction allows us to obtain
the more precise orbital stability result of Theorem 2.8 and we shall see in Section 8
that we can find many form functions o7 that fit the physical framework introduced
in [4]. We proceed in two steps. The idea is to boil down a perturbative approach for
potentials ¥ close, in an appropriate sense, to |- |1, and then to push this result by
suitable rescalings which allow us to identify physically relevant potentials ¥ = o1 x0;
not necessarily close to |-|~!. An important issue in this approach is to clarify the role
of the mass constraint: Theorem 2.2 applies to any ground state of mass M > M.
Hence, we expect stability results that apply to a continuum of possible masses M,
as stated in Definition 2.6.

Prorosition 2.11. — The set of5 of admissible form functions is non empty.

We will indeed see in Section 8 that the set .73 contains at least every form func-
tion oy satisfying (H2)-(H3) and such that ¥*#(z) = puX(\z) is close enough to
0 = | .|~ for suitable rescaling parameters A, u > 0. As explained above, our strat-
egy to identify admissible form functions and to establish the orbital stability for
the Schrodinger-wave system is based on a perturbative analysis from X°. For this
purpose let us introduce the following more precise notations.

Derinition 2.12. — For a given potential ¥ we denote H* and K}, the corresponding
energy defined by (20), and the minimization problem (21c), respectively. Then we
denote by Q3 a positive and radially symmetric minimizer of K}; and by w(3, Q%)
the constant w > 0 such that Q}; is a solution of (19) with ¥ and w = w(%, Q%)
Note that the notation QY could designate several minimizers since a priori we do not
get the uniqueness of the minimizers of K3;. Similarly, the Lagrange multiplier might
depend on the selected minimizer Q%;, motivating the notation w(%, Q%;). Moreover,
we make precise how the operator L, defined by (22) depends on 3, @ and w. Since we
will only consider cases where w = w(X, Q) we will use the notation Ly = L (X, Q).

We consider a sequence (X¢).so of smooth potentials satisfying the following as-
sumption:

(H4) For every e there exists of satisfying (H2)—(H3) such that 3¢ = of x 0§ and

the sequence (X).5¢ converges to ¥° = |-|~! in the following sense: for every R > 0,
(32) [[(2€ — Eo)lngHLg/? + (=% = EN1 s rllLe = 0.

For such family we know that for each € > 0, there exists a mass threshold M§ > 0
such that K}, is achieved for every M > Mg. In order to work with a fixed mass
M > 0 we will also assume that supg .. (M§) < +oo, for some gg > 0 and we
will consider a mass M such that M > supy..<. (Mg). This assumption is quite
reasonable since ¢ — XY and there is no mass threshold in the case ¥ = X°. We
refer the reader to Lemma 7.1 which ensures that this assumption is indeed always
valid in the previous context and any mass M can be reached that way.
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Then we consider a sequence (Q¢)c~o of smooth, positive, radially symmetric and
decreasing functions and a sequence (w®).sq of positive numbers such that Q¢ = %;
and w® = w(X%, QY ). In particular each Q° is a solution of (19) with ¥ = X and
w = w®. We also consider Q°, the unique positive and radially symmetric minimizer
of K3, Note that QO is also decreasing and we can find w® > 0 such that Q° is a
solution of (19) with ¥ = %% and w = w’. Hence, the cornerstone of the analysis is

given by the following result, established in Section 7.

Prorosition 2.13. Let (H1)-(H3) be fulfilled. With the previous motations and
assuming moreover (H4), the following properties hold.

(i) Convergence. For every § > 0 there exists g > 0 such that for every 0 < e < g,
107 = @l + |w® —w®| < 4.

(ii) Coercivity. There exists £y > 0 such that for every € € (0,50), Q° = Q% and
w® = w(Xe, Q%) there exists v(X5, Q%,w®) > 0 satisfying, for every f € H}

(L (5%, Q7 O Dy 2055, QO 5 (7. @i 314500, ).
Jj=1

where V0 is the best constant possible in Lemma 2.5. Moreover, v(X¢, Q¢,w®) / v/°

when € — 0. This coercivity inequality insures that the kernel of L, (X%, Q%,w®) is

spanned by the 0,,Q° and Lemma 2.5 applies to the kernel 3¢ as well.

Remark 2.14. — In point (i), &9 depends on the chosen sequence (Q°).~o whereas
in point (ii), €y is the same for every sequence (Q¢).~o. However, how the coercivity
constant v(X°, Q°, w®) converges to 1° depends on the considered sequence.

In this proposition, how small ; has to be depends on M; hence the result cannot
be extended to consider, for a fixed potential ¢ close to X, a continuum of possible
masses M. The statement applies for a given mass M but it is not sufficient to justify
that o7 is non empty. This issue is addressed in Section 8.

Remark 2.15. — Another relevant example with a non local definition of the po-
tential without scale invariance is the case of the Hartree equation with the Yukawa
potential ¥(z) = e~#I*! /||, which corresponds to a coupling between the Schrédinger
equation and the screened Poisson equation p?® — A, ® = |u|? for the potential. The
stability analysis for this problem is performed by a variational approach in [56] and
an improved statement has been obtained in [25] by using a perturbative approach
next to u = 0, in the spirit of the arguments we are developing here.

2.5. Tue case d = 1. The characterization of 7 is much easier. This is related
to the remarks made in Section 1.2. Indeed, we can adapt the same strategy than
developed for d = 3, but now considering perturbations around dgy, and using the fact
that the cubic nonlinear Schrédinger equation is L?-subcritical for d = 1. We obtain
the following result.
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Prorosirion 2.16. If o1 satisfies (H2)—(H3), then o1 € 4. Moreover there exists
a mass M* > 0 such that (0, M*) C I. As a consequence, we obtain My = 0.

Let o4 satisfy (H2)—(H3) and consider the sequence (X¢).s¢ of smooth potentials
defined by
Ye(z) = '8(e2), T =o0,%x01.
This sequence converges to [ X(y)dy do, in the usual sense where

iy [ S2(@)o() do = 9(0) x [ () dy

e—0

holds for any ¢ € C2(R). We know that for each € > 0, there exists a mass threshold
Mg > 0 such that K}; is achieved for every M > M. As in the case d = 3, we
can prove (thanks to an easy adaptation of Lemma 7.1) that supy..;(M§) < +o0.
Thanks to the scaling relations of Section 1.2, applied with 4 = A = ¢7!, we can
express M§ in terms of ¢ and M}: M§ = e 'Mg. Combining this relation to the
boundedness of supg..q(Mg) implies M3 = 0 and then M§ = 0, as announced in
Theorem 2.1(v).

Hence, for a given mass M > 0 we can consider a sequence of ground states
Q° = Q3 and Lagrange multipliers w® = w(X%°, Q%) and we can justify that the
conclusions of Proposition 2.13 (where Q° is now the unique positive and even min-
imizer of Kg}’[ and w? is the corresponding Lagrange multiplier) also hold in this
case. We refer the reader to Example 3 in Section 8 where we briefly justify how the
conclusions of Proposition 2.13 allow us to obtain Proposition 2.16.

Remark 2.17. — There is no major difficulty in order to adapt the proof of Proposi-
tion 2.13 to the case d = 1. The compact embedding H' ;(R?) — LP(R?), p € (2, p.)

holds in dimension d > 2, but we can exploit the fact that each Q¢ is decreasing in
order to recover some compactness result (as in the proof of Theorem 2.1(i)).

2.6. Tue case d = 2. — One may naturally wonder what happens in dimension d = 2.
This discussion is speculative, and it can be skipped without compromising the under-
standing of the remainder of the paper. The discussion in Section 1.2 supports the
intuition that the case d = 2 is likely more intricate than d = 1 and studying this situ-
ation can shed some light on the restrictions on o7 adopted when d = 3 (compare the
characterization of the set of admissible form functions for d = 1 in Proposition 2.16
to the weaker statement in Proposition 2.11).

The role of the dimension d appears in the analysis of the minimization problem
for Kps: for d = 1, the mass threshold My is zero, while it is strictly positive in
higher dimensions. We can thus expect to obtain useful information by studying more
precisely the value of My and considering ground states having a mass close to M.
Going back to the proof of My > 0 (see the proof of Lemma 3.1-f)), we are led to
study the best constant C' > 0 in the inequality

[ (5 1uP) luP da| < CITul ful.

JIEP. — M., 2023, tome 10



On QUANTUM DISSTPATIVE SYSTEMS: GROUND STATES AND ORBITAL STABILITY /|G5

This yields to the minimization problem
IVaullze lullZ

a® = inf A (u), A¥(u) = .
uf;gf / (E * \u|2) |u|? da

Indeed, we can prove that My = a*/x and we are thus led to compute a*. Coming
back to the scaling relations discussed in Section 1.2, we set X¢(z) = ¢ 2%(e~la),
uf(r) = e tu(e"'x) and we check that A> (u®) = A¥(u). Accordingly, we have
a” = a* for every € > 0. Passing formally to the limit € — 0 in this relation, which
amounts to saying ¥° — do (note that up to change the value of k, we can always
assume that ||X[|z1 = 1), would lead to identify a* and a® where a® stands for the

best constant in the Gagliardo-Nirenberg inequality

1 .
lullls < =5 IVoullZs fullis,  a® = inf A%(u).
x a0 T T uEHl

u;éOw
It is well known that A% admits minimizers, see the pioneering work [53, Th.B]
which points out the connection to the nonlinear Schrédinger equation, and the re-

cent reviews [3, 12] ; these minimizers are of arbitrary mass (thanks to the relation
A%(Ou) = A% (u) for every 0 # 0) and solution of the equation

1 1IV2Ql172 a%
—58:Q+ 5 £ Q- Q*=0.
2 2 QI Q117

By considering a minimizer of mass a® and thanks to the rescaling Q*(x) = A\Q(\x)
(which leaves both the equation and the mass of the minimizer invariant) we can
simply consider the equation

—AQ Q- QP =0

It is well known that this equation admits a unique positive and radially symmetric
solution, see [28, 42]. By denoting Q% this unique solution we eventually obtain
My = ||Q% |2, /k. This discussion makes formally a bridge appear with the asymptotic
system (17) when ¥ — 0p; this intuition might be a guide for further analysis, which
relies on the following known results for the cubic nonlinear Schrédinger equation in
dimension d = 2, where we keep the notations of Definition 2.12. Details can be found
in the seminal paper [43], and in the in-depth review [45] which contains complete
references.

Turorewm 2.18. — Let d = 2 and My = ||Q%||2, /k. The following assertion hold:

(i) For every 0 < M < My, Kij} =0 while K2 = —co when M > M.

(ii) If u € H} is such that 0 < ”u”%i < My and H%(u) = 0, then there exists
Ao >0, 20 € R? and v € R such that

u(z) = Ao Q‘SU()\ox — x0)e.

NG

As a consequence ||ul|2, = M.
E

JIP — M., 2023, tome 10



466 T. Goupon & L.. Vivion
1

(iii) Let Li? := L (0o, Q% /\/K). There exists a universal constant v > 0 such that
for every f € H},

(33) (LS. ) 2 VIS

2
- %(’<f7 Q50>L§|2 + Z |<f,8ij50>L§]2 + ’<f,.’L‘ . VIQ(SO + Q60>L§|2)~
j=1

(iv) If||uo||%§ < My, then the unique solution u of (17) with initial data ug satisfies

the following scattering estimate: there exists u., € H} such that
() ~ S(eyucellms |~ 0

where S(t)uso stands for the unique solution of the linear Schridinger equation with
nitial data Use.

(v) If |luol|2: = Mo, then there are only three possible scenario for the unique
solution u of (f?) associated to the initial data ug:

— w is a solitary wave (up to the equation’s invariants),
— u blows up in finite time,
— u is globally defined in time and satisfies the scattering property.

Here, we have obtained the analogue of point (i) when a smooth potential ¥ replaces
the delta function dy: in this case the only difference is that K3, is finite and strictly
negative when M > M,. Point (ii) gives the characterization of the manifold of all
possible ground states of mass M. Compared to the case d = 1, here the manifold is
parametrized by an additional parameter (Ao € R ) which is the translation of the
L2-criticality of this case. Hence the coercivity relation in (iii) naturally involves an
additional orthogonality condition, compared to (29). From this discussion, we can
address the following questions for future investigations.

Question 1. — Does A* admit minimizers? If it is so, what is the dimension of
the manifold of all minimizers? It involves at least three free parameters (one for
the phase and two for the translation), but does it need an additional parameter A\g?
In other words, does it exist a transformation T),, continuous with respect to the one-
dimensional parameter Ay, which does not correspond to a translation or a change
of phase, and such that if @) is a ground state then T,,() is a ground state too ?
Moreover, if such a transformation exists, does it preserve the L2-norm of its argument

(for every Ao, 1T Qllzz = [|Qll£2)?

Depending on the answers, it will be possible to obtain a coercivity relation of the
form (29) or with an additional orthogonality relation as in (33). Then, such results
will allow us to justify the (un-)stability of ground states of mass My. Note that the
existence of a transformation T}, is quite natural. Indeed, the continuity of the ground
states with respect to their mass is at least expected in any dimension d. The main
issue is to determine whether or not the transformation also preserves the mass, as it
does for the formal limit case dg.
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QuesTion 2. Is it possible to extend the conclusions for ground states of mass My
(if they do exist) to ground states of mass M > My close to My?

Question 3. — Does the analogue of point (iv) still hold true when w is a solution
of (13)?

Thanks to the smoothness of the potential 3, we already know that every solution
of (13) is globally defined in time. This excludes the scenario where solutions blow
up in finite time. This is a major difference between the dynamics of (17) and (13).
Nevertheless, the similar structure of the infimum of their energy when M < M,
suggests that solutions of (13) with a mass strictly less than My obey the scattering
property. If it is so, this major difference with the case d = 1 (for which ground
states exist for any mass) would indicate that dynamics specific to L-critical or L2-
super-critical equations also hold when d > 2 and (13) is considered with a smooth
potential 3. As a consequence, obtaining positive results of stability when d > 2 seems
much more challenging than in the case d = 1.

In this paper this difficulty is treated at the price of restricting to potentials
close to | - |~ (instead of being close to &y). This viewpoint takes advantage of the
fact that (13) is L%-subcritical when d = 3 and ¥ = | -|~!, which allows us to proceed
with a perturbative analysis. Equation (13) is equally L?-subcritical when ¥ = | -|~¢
with 1 < o < 2 (the case a = 2 being L?-critical): up to the knowledge of stability
results for these cases, the strategy developed in the paper could be adapted to any
potential ¥ close to | - |7%, when 1 < a < 2. For the same reason, these arguments
equally can be used to deal with higher dimensions d > 3, since the results of [30]
likely extend to this case.

3. EXISTENCE OF GROUND STATES: PROOF OF THEOREM 2.1

Let us gather the basic properties of Ip;, Jy and Kjpy in the following lemma,
which is further illustrated by Figure 1.

Levva 3.1. — Let (H1)—(H2) be fulfilled. The following assertions hold:

(a) M — Iy is non increasing.

(b) In = Jo =0 are reached at (u,,x) = (0,0,0) and Ky = 0 is reached at u = 0.

(¢) For every M >0, —oco < Ipy < Jyr < Ky <0.

(d) There exists a mass threshold My > 0 such that Iny = 0 for M € [0, Mp] and
Iy <0 for M > M.

(e) If Iny < O is reached at (u, v, ), then ||ul|2, = M and Jy = Ins is reached at
(u, 10, x). Moreover x = 0, 1 = T'ay * [u|? and u € 8(R?) is a solution of (19) for a
certain w > 0. In particular Ky = Jy is reached at u.

(f) If d = 2, then My > 0.

Before proving this lemma let us make several remarks:
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— Points (c¢) and (d) tell us that Kpy = Jy = Ipy = 0 when 0 < M < Mo;
moreover, when M > My, points (d), (e) together with Theorem 2.1(i) imply K =
Jy = Iy < 0. Hence, we have Ky = Jy = Iy for every M > 0.

— Points d) and e) coupled with Theorem 2.1(i) imply that Jy; is reached for
M > My and improve also point (a): Ipy = 0 for M € [0, Mp] and M +— I is
decreasing on (M, +oc). Indeed, if M < M’, we have {u € H} | ||ulj,= < M} C
{u € H} | ||ul|lz= < M’} so that Ip; > Inp: M+ I is non increasing. From d),
we infer that if M < M’ < My, then Iy = Ins = 0 holds and if My < M < M/,
then both Ip; and Iy are negative. In the latter case, by Theorem 2.1(i) and (e),
the constraint is saturated by minimizers. Suppose Ip; = Ip;s. By monotonicity, we
get Ing = Inp = I, < 0 for any M < p < M’. Hence, the minimum I, would be
reached by a minimizer with mass y < M’, contradicting e). Therefore M +— I is
decreasing on (My, +00).

— The proof of point (f) will give us the following additional information on My:

1
< MOa

34 0< ——=— <
(3 RO

with C' a constant related to Gagliardo-Nirenberg estimates.

My

Iy =Jy =Ky \\

\

Iicure 1. A possible graph representing Iy, Jyr, K as a function
of the mass M. Note that nothing ensures that these functions are
differentiable as the picture might indicate.

Proof. — Ttems (a) and (b) are direct consequences of the definition of Is, Jys and
Kjps. The non trivial parts of ¢) are to prove that E(u,1,x) is bounded from below
under the mass constraint ||u||%2 = M and that Kj; < 0. Since for every (u,, x),

1
(35) E(u,y,x) = 5||Vzu||%§ - ‘/ <01*/ agwdz> lul? dz

1 2 1 2
+ §|\Vz1/}|\L_ng + @HX“L%Lg

1 1 1
Z §||Vmu||%§ -M ||01||L§||U2||L§n/<n+2> WHLiLgn/(nf@ + §HVZ¢H%£L§ + 272”)(”%5@7
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the Sobolev inequality [|f|, 2n/-2) S [|V2fl[12, see e.g. [44, Th., p. 125] allows us to
conclude that Ip; > —oo. In order to prove Kj; < 0 we use the immediate estimate
H(u) < ||V4ul|2, /2. Then, for every u € H}, by setting uy(z) = A¥2u(\z) we get
luxllzz = [lul[zz and

A2 9
Huy) < ||V uAliz = 5 IVaullzz = 0.
z X=0

Item (d). For every (u,) such that the intersections supp(u) N supp(cy) and
supp(®) Nsupp(o1) X supp(oz) are non empty and for every a € R, we have

E(au, al|y],0)

1 1
= (§IVals —a [ (o [aalolas) P ao + GIVIwE ) <

and ||au|?. = a?||lu||2.. We conclude by using that Ip; < 0 and M + Ip is non
increasing. : :

Item (e). We argue by contradiction: we suppose that E(u,v,x) = Ip with
||u||L2 =m and 0 < m < M (note that In; < 0 implies m # 0). We first remark that

Iy < 0 implies
/ ((71 */agzp dz) lu|? dz < 0.

Then, by considering v = (M/m)"/?u, ¢ = (M/m)'/?¢) and ¢ = (M/m)/?x we have
[v]|32 = M so that Ip; < E(v,¢,() and we get

E,¢,() = < ||qu||L2 + \/>/ (01 * [ o9t dz) u)? dz

<0

+ sallizzs + 51920102

M M
< —E(u,v¥,x) = —In < In,
m m

a contradiction. Since (u,,x) is a minimizer of Jys, the Euler-Lagrange relations
imply the existence of a Lagrange multiplier X,y such that V4 E(u,,x) =
Ao Vg (0 = [[ul|32) = 2Xy, 4,5 (1,0,0)". The first two components of this vec-
torial relation imply that (u,1) is a solution of (18a)—(18b) with w = —A, 4, and
the third component implies that x = 0. Then 1 = I'o; x |u|? (which implies that
Ky = Jar is reached at u) and u is a solution of (19) with w = —\y 4 . Moreover,
by multiplying (19) by u and integrating over R? we get

1
SVl + wlully — ] 1P @S - i) dedy =0
It follows that
1 K
0> Jas = Ko = 5 Vuulltz = 5 [[ WP @)S(e = () dedy

K
= —ulull + 5[] P @)t ) dedy
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and thus w > 0. Eventually, thanks to the fact that w is a positive number, one can
prove by standard arguments that « is in the Schwartz class (we refer the reader to
[31, Th. 8] and its proof in [33, Rem. 1]).

Item (f). Let us denote by C' the optimal constant of the homogeneous Sobolev
embedding HfHLid/(d—Z) < O||Vafllzz (note that this estimate requires d > 3). Since
E(u,T oy % [u|?,0) = H(u) and by using the estimate

/ ul*(2)5(z — y)ul*(y) de dy < |2 % |uf?]| e [lul 72
BN ol ul? | pasca-= [l
= 1] ol o 32
< G2 para [ Vaullze lullie
we eventually obtain
B Doy xuf?,0) > 5 (1= sC8l| s 13, ) 1Vl

and K is non negative as soon as 1 — kC?|| || a2 M > 0. The case of the dimension
= 2 can be treated as follows:

/ 2 (2) Sz — y)|ul(y) de dy < |5 * full| 2 | [0l 22
< ISl l? o ez = Il og lllds < GRSl o [Vl 2 2,

where the last estimate is obtained thanks to the Gagliardo-Nirenberg inequality.
We deduce that Kj, is non negative provided 1 — H52||2||Ld/2M > 0. In any case
d > 2, we conclude that Kj; > 0 for small M’s; combinedz to ¢), it tells us that
K s = 0 is such situations. O

Thanks to the previous arguments, Theorem 2.1(iii) follows from Theorem 2.1(i): in
the proof we will construct a minimizer such that « is non negative, radially symmetric
and non increasing. We are thus left with the task of proving Theorem 2.1(i).

Proof of Theorem 2.1(i). — We fix M > 0 and we consider a minimizing sequence
(ty, ¥y, X )ven of Ins. We start by constructing from this sequence another minimizing
sequence with specific properties. Since E(u,,v,,0) < E(u,,%,,Xx,), we can take

» = 0 for every v. Moreover, owing to the diamagnetic inequality [32, Th.7.21],
we have E(|u,|,—|¢y],0) < E(uy,v,,0) and we can suppose u, > 0 and ¢, < 0.
Finally, the density of linear combinations of tensor product in LiH L allows us to
assume that every v, can be written as

N,

Gulx,2) = =Y fi (2)g} (2),

=0

where f/ € L2 and g¥ € H I are positive functions. Possibly at the price of decompos-
ing the g¥’s on a Hilbert basis of H!, we can suppose that for each v, (¢*)sen forms
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an orthogonal family and we obtain

1
E(uy,1,,0) = *HVzUuHQLg

S ([ esrwrea) (fl kot I )dzdy)

1=0
+Z 1A 131911,

From here we can apply the symmetric decreasing rearrangement theory in order to
obtain the inequalities, see [32, Chap. 3], |[u}|%. = |luu |22, [[Vaubl|2: < [[Vaus |2,

1272 = 177112, and
// fuy (2) 2 (2 — ) 2 (y) dardy < // (@) 2o (& — y) f2 (y) dardy,
R4 xR Rd xR

where -* stands for the symmetric decreasing rearrangement of a given function.
Since o; is assumed non negative, radially symmetric and non increasing, o = o1

N,
S U5 12 911, =
Z'_

we eventually obtain E(u?,1,,0) < E(u,,,, ) where 1, = ZZ = [ g7 and u, has
mass < M. From now on, we will use the abuse of notation u, = u} and P, = 1/}1,

and since

l/*y
)

L2H1

Having disposed of these preliminaries, we enter into the heart of the proof. Thanks
to (35) we know that (u,),en is bounded in H! and (¢,),ey is bounded in L2H.
Hence we can suppose, possibly at the price of extracting subsequences, that (u,),en
converges weakly to u in HZ, (¢,),en converges weakly to ¢ in L2HL. We have

lull?s < M, [ Vouly <lminf [Vowl3e, 612, ;, < lminf w2, ;.

In order to conclude the proof it only remains to prove that

(36) /Rd (01*/]1{” ooty dz> lu,, ()] dz e /]Rd <01 */Rn Ugwdz) |u(z)|* d.

Indeed, (36) now implies F(u,,0) < liminf, o E(uy,¥,,0) = Iy and we eventually
conclude that I/ is reached at (u,,0).

We turn to (36). On the one hand, in the case d > 2, we can use the symmetry
property of the functions u, € H},,, which are thus uniformly bounded in H HRY)
and radially symmetric, in order to justify the strong convergence of u, to w in L?
for 2 < p < p. (where p. = 2d/(d —2) if d > 3 and p. = +o0 if d = 2): see [34,
Prop. 1.1], [48, Radial Lem. 1] for such compactness statements based on symmetry
properties. On the other hand, in the case d = 1, the sequence (u,),en is bounded
in H'(R) and made of even functions, non increasing on (0,00). With the compact
embedding H*(R,) C LP((—=R, R)), for every 1 < p < +o0o and 0 < R < oo and
by using a diagonal argument, extracting subsequences if necessary, we know that
(uy)pen converges pointwise to u, and strongly in LP((—R, R)) for any finite R. Since
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for every v, u, is a non negative even function with a non increasing profile, for almost
every € R we get

|| M
2l Juy (2)]* < / lun (y)|* dy < M and then  |u, ()] < 3] S faf 712,
—|=|

Thanks to this uniform estimate with respect to v, we can justify that the sequence
(Juy |P)ven is tight for every 2 < p < +oo. It allows us to justify that the sequence
(uy)yen converges strongly to « in any L? with 2 < p < +00.

We can now conclude the proof as follows:

/Rd (0—1*/” 02¢udz) |uu|2dx:/Rd(01*|ul,|2) </ UWUdz) dz
[ Jorstul) o) ([ ovas)ars [ ety [ oaaz) o

where

/Rd [(o1 % [uy|?) = (o1 % [uf*)] </n - dz> de

< [lonx funf?) = (onx )| Il -

Note that the weak convergence of 1, to ¢ in LiH 1 implies the convergence of the
second term of the right hand side to [(o1 x [ 021 dz)|u|? dz. Indeed

/Rd(al*|“|2) (/ o2ty dz) dx

:ﬂ (mWM@%M“:ﬂ (o1 % 1uP)(@) 2 670 @ ¢) da dc
R4 xR" R4 xR"

1q
oy 02(0) = _ 2
- (o1 % [u]") () [Cle(z,¢) dadC = o1 % | oydz | ful”dz,
vt JJRd xRe <] Rd R"
where we used n > 3 in order to justify that ¢ — 72(¢)/|¢| is an element of Lg.
(Indeed, owing to the fast decay of { — 72(() as |¢| = oo induced by (H2), the only
point to be discussed is the integrability near the origin where we use

@201 wmw_<g fl
e e = ([ 200

which is integrable — resp. non integrable — over |¢| < R when n > 3 — resp. when
n =1 and n = 2.) Thus, it only remains to prove that o x |u,|?> converges strongly
to o1 % |[u|? in L2. To this end, we remark that

o1 x|uy|? — o1 [ul? = o1 x (Ju, — u+ul* = |ul?) = o1 % (|Juy — ul* + 2Re(u, — u)7).

By using Young’s inequalities [32, Th.4.2] we obtain for every 1 < p,q < +oo with
1/p+1/g=1+1/2

[[(o1 % [ [*) = (o1 [uf?)]

L2 < oz || Jww — u\Z + 2Re(u, — u)EHLg
<

HJIHLZ (”uu - uHigq +2[|u,, — u||L§‘I||uHL§‘1)~
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Then, since ¢ can be chosen arbitrarily in [1, 2], we can always pick ¢ such that 2¢ €
(2,pc) and the strong convergence of u, to u in L% for every ¢q € (2,p.) allows us to
conclude. Note that, by construction, the obtained minimizer u is radially symmetric.

O

A few comments about the solutions of the minimization problem J,; are worth-
while. As soon as Jjs is reached at (u,,x), we have x = 0, 1 = T'oy x |ul? and
Ky = Jur is reached at u. Hence, that Jy; admits a unique minimizer is equiva-
lent to the existence-uniqueness of a minimizer for K. In [31], E. Lieb fully answers
the question of the uniqueness of the minimizer of Kj,; for the Newtonian kernel
¥0(x) = 1/|z| in dimension d = 3. The argument proceeds into two steps. The former
justifies that minimizers of Kj; are positive, radially symmetric and decreasing, up
to a translation and a change of phase, by using that r — 1/r is decreasing, see [31,
Lem. 3 & Cor. 4]. The latter proves uniqueness in this class of functions [31, Th. 10],
and the proof relies crucially on the specific properties of the kernel X°(x) = 1/|x|.
Therefore, this analysis does not apply to the present context (note that here oy is
non increasing). Nevertheless, the recent result of L. Ma-L. Zhao [39, §5] answers pos-
itively to the first step, by showing that any non negative solution of (19) is strictly
positive, radially symmetric and decreasing. The idea in [39] consists in writing (19)
as a system

1
(w—iA)Q:QX, X = k3% Q.
By using the Bessel potential [47, Chap. V, §3]
1 [ 2 dt
- —mz? [t 7t/(4ﬂ")t7(d72)/27
Fla)= g [ e 3

@ appears as the solution of an integral equation

Q=7 »(QX), X = kY Q%

Using that ¢ (x) > 0 for any = € R?, since we already know that @ is non negative,
we deduce that actually () is positive. Moreover ¢ is decreasing, X is non increasing,
which allows us to adapt the moving plane strategy of [39, Th.2 & §3]: we conclude
that @ is radially symmetric, and monotone decreasing in the radial direction.

4. ORBITAL STABILITY: CONCENTRATION-COMPACTNESS APPROACH
Theorem 2.2 is a consequence of the following lemma.

Levva 4.1, — Let M > My. If (uy, ¥y, X0 )ven C HE x L2H! x L2L? is a sequence
such that
HUVH%Q — M and E(“Vad’vaXv) — Ju,

T v—+4o00 v—+o00
then there exists a sequence (z,),en of elements of RY and (@,\AI;) € Sy such that,
up to a sub-sequence,

s (- = 2) = Qs + [ (- =0, ) = q’”igﬁ; +Ix 72 e v V-
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Let us first explain how this lemma implies Theorem 2.2. We argue by contradic-
tion. Let us assume the existence of € > 0 and a sequence of initial data (ug, ¥, x§)ven
satisfying

2 2 2
I = QU3 + 19 = WI2, 1y + bRz = O,
and such that for any v € N, the unique solution (u”,¥", x"”) of (1la)—(1b) with initial
data (uf,vq, x§) satisfies for some ¢, > 0,

i () = QU I () = T2, g, + XNz ) >
(Q»W)ESM Ttz
The strong convergence of uf to Q in H} implies |[uf||7. — M while the continuity

of the energy functional E with respect to u € H}, 1 € Linl and x € L2L? implies

By using the property of mass and energy conservations, we check that the sequence
(u”(t,), ¥ (t,), x” (t,))ven fulfills the assumptions of Lemma 4.1 and we eventually
obtain the required contradiction.

The proof of Lemma 4.1 is based on the concentration compactness lemma. In order
to apply this lemma let us state and prove the following result on Jy,.

Leywva 4.2
(i) For every M > My and for every 6 > 1, Jopr < 0Jps.
(ii) For every M > My and for every o € (0,1),

(37) I < Jam + Ja—a)m-
Proof. — Ttem (i). The proof follows the strategy of proof of Lemma 3.1(e). Since
M > My there exists (u,v,x) such that [Ju||7, = M and Jy = E(u, v, x). Hence,
defining for 8 > 1, v = VOu, ¢ = V0 and ¢ = vy and following the proof of
Lemma 3.1(e) we are led to

JOM < E('UaSDvC) < 9E('U,,’¢,X) = QJM

Item (ii). Let us distinguish two cases. The first case is aM < My or (1 — a) M < M.
The case where these two conditions are satisfied is obvious:

I <0=Jam +Ja-a)m-
Hence let us assume, without loss of generality, that oM < My and (1 — )M > M.

Since M — Jps is strictly decreasing on (M, +00) (see the remarks after the state-
ment of Lemma 3.1) we obtain

Iu < Ja—aym = Jam + Ja—aym-

The second case is aM > My and (1 —«)M > My. In this case we apply the previous
item (with # =1/ and 6 = 1/(1 — «)) as follows:
Juy=aly+(1—a)Jy = O‘JéaM +(1- a)Jﬁ(lfa)M

1 1
< OZEJQM +(1- a)mj(l—a)M =Jam +J1—aym- O
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Proofof Lemma 4.1. — To start with, owing to (35), (u,),en is bounded in H! and
(¢, )ven is bounded in L2H?!. Without loss of generality, we can suppose that for
every v € N, ||u,||2, = M. Indeed, let us set

_m

U, =
T iz

Uy

since |Juy |3, — M implies ||u, — u,|[g1 — 0, if the conclusion of Lemma 4.1 holds
for the sequence (u,),en, then it equally holds with the sequence (u,),en. Since
Ju < E(uy,¥,,0) < E(uy, ¥y, xv) and E(uy, ¥y, xy) — Ju when v — 400 we
obtain

1
%HXVHingZE(UV71/JV,XV)—E(UV»¢V70) — 0.

v—+00

The concentration compactness lemma [35, 36] — here we use the version that can be
found in [6, Prop. 1.7.6] — ensures that there are only three different possible scenarios
for the behavior of the sequence (u,),en. We are going to exclude the first two —
evanescence and dichotomy — by contradiction, and the last option corresponds to
the asserted conclusion. By the way, this approach proves again the existence of
minimizers for Jy;.

Scenario 1: Evanescence. — Up to a sub-sequence, for every 2 < ¢ < 2%, (uy)yen
converges strongly to 0 in L2, where 2* = +o00 if d = 1 or 2 and 2* = 2d/(d — 2) if
d > 3. Let us assume d > 3; we have

/ <01*/ ngudz> |ul,|2d:z: <
Rd n

< lowll pza-vsasn loall pznsosn [Gull 1z pznso-2 S Mbull g g 1wl 20012

o1 * o9, dz
n Ld7

X | |Uu|2|\L§g—1)/<d—2>

Since (¢, ),en is bounded in L2H! and 2 < 2(d — 1)/(d — 2) < 2*, we eventually
obtain

/ (01*/ o21), dz) lu,|*dz — 0.

R4 Rn v—+00

Ja = lim By, 1,,0) = lim (f||v wl3a + 5 ||vz¢y||2LiLg) >0,

v—+00

Then

which contradicts Lemma 3.1: since M > My, we have Jy; = Iy < 0.

Scenario 2: Dichotomy. — Up to possible extraction, there exists two sequences
(v,)ven and (w,),en, bounded in H) and such that the following assertions hold

(i) Ja € (0,1) such that Hvl,||L2 e aM and |lw,|%. - (1—-a)M,
v—+00 T y—+400

(ii) Vg such that 2 < ¢ < 2%, ||ul,||ng — ||v,,||‘£g — ||w,,||‘£q — 0,

(

z p—-+00
i) lim inf (| Vo |2 — [ Vavy |32 = (Vo 3) > 0.

JIP — M., 2023, tome 10



476 T. Goupon & L. Viviox

With (ii), we infer

/d (01 */ o2ty dz) (|u,,|2 - |ful,|2 — |w,,|2) dx
R "

< ||01HL§,HUzHLin/(nM)||¢V||L%I§zl (/Rd HUV‘Q — ‘vy|2 _ |wy‘2| dl‘) — 0.

v——+00

(38)

Note that we can apply (ii) because in the proof of the concentration compactness
lemma [6, Prop.1.7.6, sp. (1.7.11) & (1.7.12)] [35, Proof of Lem.I.1 & Lem.IIIL.1],

v, and w, are built in such way that |u,|? — |v,|? — |w,|* > 0. Since

1
By, %0,0) = 5 (IVaw iz = 1Vav iz — 1Vawy s )

+/ <Ul */ o2y d2> (Jun|® = oo |* = Jw,|?) dz + E(vy,, %y, 0) + E(w,, ¥, 0),
R4 n
combining (38), (iii) and (i), yields

Jy = lim E(u,,,,0) > liminf (E(vy,¥y,0) + E(wy,1,,0))
V—T00

v——+0o0

> lylgigg E(”U,/, 1/11/, 0) + lylgigf E(ww 1)[}1/» 0) = JaM + J(l—a)Ma
which is a contradiction with (37), satisfied for M € (Mg, 2My).

Scenario 3: Compactness. — Up to a sub-sequence, there exists a sequence (z,),en
in R such that v, (z) = u, (r — z,) converges weakly to u in H and strongly to u in
L2 for any ¢ such that 2 < ¢ < 2*. The sequence ¢, (z, z) = ¥, (x — x,, z) is bounded

in L2H! (note that loull,ogr = 19wl ;2 1) and then, up to a subsequence, (¢, )ven
converges weakly to ¢ in LiH 1. Since (v,)yen converges strongly to u in L2 we have

||u||2L% = M and then E(u,,0) > Jy;. Moreover, reasoning as in (36) we get

(39) / (0’1*/ oggo,,dz) \7)1,|2dx — / <01*/ og/zdz) |u\2dm7
R4 Rn v—=+00 Jpd Rn

which allows us to justify that (u,) lies in Sys:

1
Juy = lim E(v,,9,,0)> lylgirolf(§||vzv,,||%i)

v——+o0o

1
. 2 L 2
tnint ([ (oe [ ovpdz) ol as) + it (G190 02 > B 0.0)
In order to conclude the proof it only remains to justify the strong convergence of

(vy, 0 )ven to (u, ) in HE x L2H!. We already know that this convergence holds
weakly. We combine

E(u,v,0)=Jy = lim E(v,,p,,0)

v——+oo

and (39) to deduce that
L IVatnl2s + 2 VepulBars — [ Vauls + 2 Va0 20,
2 : T 32 5 % 2 N 22
holds, which ends the proof. O
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5. STRENGTHENED ORBITAL STABILITY: APPROACH BY LINEARIZATION
In this Section, we explain how Lemma 2.4 and Lemma 2.7 imply Theorem 2.8.

Step 1. — The first step of the proof consists in checking that, up to the invariants
of the equation, any v € H_} close enough to @ satisfies the orthogonality conditions
(31a)-(31b). For that purpose, let us introduce the function F : H! x R+l — Ra+L
defined by
Fj (’U, (y,&)) = <Re€7i9'l}(' + y)vaij>L§a J=1...,d,
Fip1 (v, (y,0)) = <Im e_wv(- +v), Q>H;'

Direct computations show that F'(Q,(0,0)) = 0 and D, ¢ F (@, (0,0)) is an invert-
ible diagonal matrix (indeed 8y, F; (@, (0,0)) = [0,,Q|2. and dpFyy1 (Q,(0,0)) =
—|Qll%1). The implicit function theorem provides the existence of g9 > 0 and a
C'-diffeomorphism G : Bp1(Q,220) = U, C R+ G(v) = (x,7) such that for every
v € By1(Q,2e0) and every (y,0) € Us,, F (v, (y,0)) = 0 if and only if (y,0) = G(v).
Moreover, since

(@) =160 - G@I<( s DGl = Qll:,

’UEBH% (Q,2€0)

for every € € (0,¢9) there exists n(e) > 0 such that

1
2
1o = Q.0 = D)l + ZIxlI72 2 < me)?

implies for (x,v) = G(v),
—i 2 1
[0 +2) — Qoo +2) — )y + 5 llare <2

Step 2. — In this second step we show that, if for a given time ¢y € [0, +00), there
exists (70,7) € R4! such that v = e~"0u(ty, - + z¢) satisfies the orthogonality
conditions (31a)—(31b) and the estimate

—1 2 1
(™ ulto, - + m0) — Q,¥(to, - +x0) — )|, + cj”X(%)”%ng <&’ <ep,

then there exists a time T* > to and two functions z(t) and ~(¢) continuous in time
such that (z(to),v(to)) = (z0,70) and, for every t € [to, T™*),

(1) (@(t) 0, 7(t) —70) € Uay:

(ii) v = e~ ®u(t, - + x(t)) satisfies the orthogonality conditions (31a)—(31b),

— 2 1

() (e Ou(t, -+ 2(0)) — @0t +2(0) ~ W% + IOlZaz2 < <

First, thanks to the time continuity of t + (e=0u(t,- + ), ¥(t,- + z0)) € H#,
there exists a time T > t¢ such that for every ¢ € [to, T™)

(e 0ut, - + 20) — Q, (1, - + 20) — W) ||°,, < 4e? < 422,
Next, for every t € [tg,T*) we can apply the first step to v = e~"0u(t, - + z¢) and

we obtain the existence of z:(¢) and «(¢) such that (z(t9),v(t0)) = (x0,70) and such
that (i) and (ii) hold. Moreover the continuity of ¢ — e~0u(t,- + x¢) implies the
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continuity of ¢ — x(t) and ¢ — ~(t). We notice also that we can extend by continuity
x(t) and y(t) at time T* and this extension is such that v = e=“(T )y(T*, - 4 2(T*))
still satisfies the orthogonality conditions (31a)—(31b).

We can now apply Lemma 2.4 and 2.7 as follows. Thanks to the conservation of
mass and energy and to the invariance by translation and phase of these quantities
we get

W (uo, Yo, Xo) = W (u(t) $(8): x(0)) = W (€77t +2(0), v (¢, + (8)), ()
= W(Q +us(t), T +¢=(t), x(1)),

where
uf(t) = e Oyt 4+ 2(t)) —Q  and  ¢(t) = p(t,- +x(t)) — .

We make use of the decomposition (25) combined with Lemma 2.4 and 2.7; we obtain

_ 1
Pll(Rews, %) 15 + pll Tmw 3y + 55 ()72 12

1 d
< W (o, o, x0) = W(Q W,0) + = (|(Rew, @)z " + D [(Rew, 04, Q) 2|
j=1

+ i ’(ImuE,Q>H;|2 — /Rd (01 */Rn oath®(t) dz) \u‘g(t)|2 dz.

Since e~ "Wyt - + x(t)) and Q satisfy the orthogonality conditions (31a)—(31b) we
know that u® also satisfies these conditions. Moreover ||Q||z2 = [[u(t)[|z2 = [lu*+Q L2
leads to

1
QU122 = Il 32 + QU3 +2(Rew, Q)ry and then (Rew, Q)rz = — w22,

which implies 1
|(Rew’, @)z | < g llullfs < 4e.

We also get

< lonllzz 2]l j2zns e 1 (u® (), 95 (@) 15 < 8llowlczlloall 2n/mez €.

< loullzzlloall 2o 19 @)1 3 g 16 (@)

Gathering these estimates leads eventually to (we recall that the inequality
W (uo, %o, X0) — W(Q, ¥, 0) < §(e) holds)

£ 1> 1 1
I (Rew?, )13 + 1 Tm w3y + — (832 12
1

4
g—(ae +-et+8 e 53).
min (7, 1,1/2) ©+3 lonllzz lloallpznscnea

By taking
2

€
2 min (P,,u, 1/2) ’

and possibly at the price of picking a smaller €y, we eventually obtain (iii) for every
t e [to, T*].

i(e)
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Conclusion. We apply the first step with v = ug, which ensures the existence of
x(0) and ~(0) such that we can apply the second step at time ¢ = 0. Thus, since
T* > 0 and since we took care to justify that the conclusions of second step is also
valid at time t = T*, a classical argument on connected space allows us to conclude
that T* = +o0. 0

6. Corercivity or L_: PROOF OF LEvMma 2.7
+

This section is dedicated to the proof of Lemma 2.7, which is a key ingredient of
the proof of Theorem 2.8. We assume that oy is admissible: the kernel of £ can be
identified by using the fact that the conclusions of Lemma 2.5 apply. Indeed, since
(f, )t € Ker(£L) implies

Ao (1% Qf) =0,

we can express 9 in term of f as follows: ¢ = 2T (o1 x Q f). Moreover the relation

(40) L+ (zr <Ulf*czf>) - <L3f>

allows us to identify the kernel of £, by using the knowledge of the kernel of L,:
we eventually get

Ker(£4) = Span{(0,,Q,0.,%)" | j =1,...,d}.
In order to prove the coercivity relations (30), we need the following two lemmas.

Lemwva 6.1, For every (f,v) €  such that (f,Q)r2 =0, we have

7 (f
(= (1) (¢>>LM3L; -

Moreover, since Ker(Ly) = {(9,,Q,0.,9)" | j = 1,...,d} and (0,,Q,Q)r2 = 0,
we know that this inequality cannot be strict.

Lemma 6.2, — Let (fu,%))ven be a bounded sequence of S which converges weakly
to (f,) in H. Then, up to a sub-sequence if needed, we have the following two
convergences:

(41) / (01*/ @\ydz) |fy?de — / <01*/ 02\11d2> |f)? dz
Rd Rn v—+00 Rd R™

and

(42) /Rd (01*/Rn o2, dz) Qf, dz VT /Rd <01 */n agwdz) Qf dx.

Proof of Lemma 6.1. — Let f be a real valued function of H} such that (f,Q)z> =0,
let ) be a function of L2H} and let u be the function defined on R by

uts) — 1z

=0t s @D
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One can check that u(s) is a real valued function of H, and |lu(s)| 2 = [|Q]|2 for
every s € R, u is smooth, u(0) = @ and
QI

Since (@, ¥,0) is a minimizer of Jy;, we know that for every s € R, W(Q,V,0) <
W (u(s), ¥ + s1b,0). Moreover (25) leads to

0 < W(u(s), ¥+ s,0) = W(Q,¥,0) = <L+ <u<82w_ Q) ’ (U(S;; Q) >L2 X L2L2

o o — Q| da.
+/]Rd< 1*/Rn gswdz> lu(s) — Q|* dz

Since u(s) — Q = u(s) — u(0) = sf + o(s) (when s goes to 0), we eventually obtain

o< ler () (),
L2xL2L2

which concludes the proof. O

Proofof Lemma 6.2. — The proof uses in several places a basic result of integration
theory, consequence of Egoroff’s theorem [50, Prop.3.9]: if a sequence (g,)ven C
LP(R?) converges weakly to some g in LP(R?) where 1 < p < +o00 and if this sequence
converges also a.e. to some g, then g = g.

Here, the sequence (f,),en is bounded in H'(R?) and the compact embedding
H' () — L?*(Q) which holds for any bounded open set 2 C R? implies that, up to a
sub-sequence, (f,),en converges strongly to f in L2(£2) and thus converges, up to a
further sub-sequence, a.e. in Q to f. A diagonal argument yields the a.e. convergence
of (f,)ven to f in R%. Moreover, by using the homogeneous Sobolev embedding in
dimension d = 3, the boundedness of (f,),en in H! implies its boundedness in L2
and LS and, by interpolation, in any L? with 2 < p < 6. Consequently, the sequence
(|f2]*)ven is bounded in L2 and, up to a sub-sequence, converges weakly in L3 to
some g. Since this sequence converges also a.e. to | f|?, we have indeed g = |f|?.

To prove (41) we proceed as follows. Since ¥ = T'oy x Q2 with @ lying in the
Schwartz class, the weak convergence of (|f,|?)nen to |f|? in L3 yields

/(Ul*/ag\lldz) |f, |2 do = —m/(z*cf) |f, |2 dz

. _"i/ (B*Q*) [fIPda = / (01 */02\11 dz> 7/ da.

We turn to (42). We split

/<01*/027/)de> nydx://ag (o1 *xQfy) ¢, dedz

2//02 (1% Q(f, = 1)) ¢ud$d2+//02 (01 %Qf) ¢ dz dz.
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The weak convergence of (,,),en to ¢ in L2H! (note that o5 smooth and n > 3 imply
oy € H ~1) directly implies that the second term of the right hand side converges to
(o1 % [ 020 dz)Qf dzx. It only remains to prove that the first term of the right hand
side converges to 0. To this end, we are going to show that (Qf,),en converges strongly
to QF in LY/?. Indeed, (|£,1?/?)ven is bounded in L2 and, up to a sub-sequence it
converges weakly to g = | f|?/? in L2. Since Q3/? € L2, we get 1Qf Nl sz — ”Q?”Li/?
as v — oo. Moreover the sequence (Qf,),en is also bounded in Li/ 2 and, up to
a further sub-sequence if needed, it converges weakly to Qf in Li/ %, Thus we get
the announced strong convergence. We combine this strong convergence with the
boundedness of (¥, )nen in L2H! and we conclude as follows:

‘//02 (01 *Q(fy — ?)) Yy drdz| < ||02||Lgn/<n+z) ||7/’V||L§ﬁ1;”‘71 *Q(fu *7)||L§

< ||Uz||L§n/(n+2>Hd’u”Lig;H01||Lg/5||ny - Qf”,;gm Vjoo 0. O
We are now able to prove the coercivity relation (30).

Proofof (30). — We argue by contradiction, assuming the existence of a sequence
of positive numbers (Vy)reny which converges to 0 and the existence of a sequence
(frs ¥r)ren in S such that for every k,

(43) <L+ (5;) ’ (£Z>>LngaL§

d
<l vl - 5 (e Qe + 301502, @02

Jj=1

)

We can assume that ||(fx,®¥r)||# = 1 and thus, that there exists f € Hl and ¢ €
Ligzl such .that (fr)ren converges weakly to f in H! and (15, )ren converges weakly
to ¢ in L2H}. On the one hand, thanks to the weak convergence of (fi)ren, we get

<fkaQ>L,2 — <?7 Q>L§ and <fka83:jQ>Li k—> <?a aaij>Lia

? k—+oo —+o00

while on the other hand (43) implies

2 _ o _ fk> <fk>>
<Ty—Up(L , — 0,
* k< ' <w’“ Uk) [ papare B

bearing in mind that (£4h,h) < K||h||%,. We eventually obtain (f,Q)z> = 0 and
{f, 0z;Q)r2 = 0. Knowing that f is orthogonal to @, we can apply Lemma 6.1 in

order to obtain
5 (%)
Lo = = > 0.
< ! (77[’ Y L2xL2L2 z

d
0 < (i Qzz |+ |(fir 00, Q)12
j=1
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On the other hand, the relation

Jr Tk
L
< " <¢k> ’ <wk>>L§xL§L§

1
— Il il + [ (orw [onwa) 1A as

1
2/ (m*/dzwkdz) Qfrdr + §||Vz1/}k||2L§L§,

coupled with Lemma 6.2 and (43) leads to

N [f o e i
L. L . <1 f (L
< " (d’) 7 (1/J>>L§><L§L§ s klgigo < i ( ) <’l/}k)>Lg><L§L§
< lim sup <L+ (fk) ; (ik)>
k—+o0 k/J I L2xr2re

1 d
< limsup {y (fr, Q >Lg|2 + Z ‘<fk73mQ>Li|2)

k——+oo j=1

Jr fr
" <L+ (wk) , (wk)>LixL%Lz}

< limsup 7y = 0.
k—+o00

We eventually deduce

. Tk Tk _ N (F _
(44) kgrfoo <£J+ (W) ’ (wk>>LixLiL§ B <L+ (ZD) 7 (w>>L§XL§L§ -0

and thus (f,) is a minimizer of

in / /
(45) (f»Q)Lfg:O <L+ <1/)) ’ <1/)) >L§><L§L§ .

We can now conclude as follows. First of all, the relation (44) coupled with Lemma 6.2
leads to the norm convergence

1 1 _ _
SIVaduls +wllfulls + S00nl2, 0 = SIVTIE +wl T + 511, 5

It implies the strong convergence of (fx, ¥r)ren to (f, %) in . In particular we know
that || (f, )]l = 1. Second of all, (f,) is a minimizer of (45) and the Euler-Lagrange
relation ensures the existence of a real number A such that

. ()-()

The second component of this vectorial relation leads to 1 = 2T (67 * Qf). From
this relation we obtain the contradiction as follows: owing to (40), the fact that oy is
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admissible, and since f is orthogonal to @ and 0,,Q, we get

o= (e (D), ) D),

_ . 1 - d _ B
=1
Thus (f,+) = (0,0), which contradicts ||(f, )]s = 1. 0

7. PERTURBATION ANALYSIS: PROOF OF ProrosiTion 2.13
In this section, since there is no ambiguity, we will use the following shorthand
notations, see Definition 2.12, H® = H> | K5, = K3, Ls =L (¥°,Q°), H = HZO,
K%, = Kf; and LY = L (X° Q). Before proving Proposition 2.13 let us check

that sup..<; (M§) < +00. We remind the reader that the sequence of ground states
(Q%)e>0 is well defined only if this supremum is finite.

Lemva 7.1. Let (H4) be fulfilled. For every M > 0 there exists g > 0 such that
for every € € (0,e0), M§ < M.

Proof. — We start by showing that for every u € H.,
He(u) — H(u).

e—0

Indeed, thanks to the Holder inequality we have
| HF(u) — H"(u)| = ‘/ Jul? x (2% = 2°)(2) |uf* () dz| < [[Jul? % (Z° = 2°)|| e [Jul 22

and thanks to the homogeneous Sobolev embedding in dimension d = 3 we get
uf? * (5 = 2°)||z5
< =20 1aicrll sl + 157 = )1 rlle | ul®loy
< ON(E° =) 1<rll o2 I Vaulzs + [1(2° = 201015 rll e lull7e-
Thus, assumption (H4) leads to the required convergence. We conclude as follows.
By using the results of E. Lieb in [31] we know that K9, < 0 is achieved at a unique
positive and radially symmetric function Q°. Then H®(Q%) — H°(Q°) = K9, < 0

implies K§5; < 0 as soon as ¢ is sufficiently small. Eventually Lemma 3.1-(d) and (e)
allows us to conclude. |

We turn to the proof of Proposition 2.13.

Proof'of (i) Convergence. Step 1. We prove that for every uw € H} and for every
6, R > 0, there exists €9 > 0 such that for every 0 < ¢ < &g,

1 kC K 1
(46)  H(w) > 5|Vaullly = 5 0+ eB) [ullf | Vaulfs — 5 (6 + ) luli,
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where C' denotes the best constant in the homogeneous Sobolev embedding in dimen-
sion d = 3 and ¢ > 0 is a constant. Since

1 K
() = 5Vl = 5 [ 10P @@ = )l dedy

1 K -
> 3Vl = 5 | [ 1P @ - P aray

we only have to estimate the last term of the right hand side. Again, we use the Holder
inequality and the homogeneous Sobolev embedding and we obtain

\ [ e = ) sy
< OIS el alluls IV eullZs + 150 mlise Julld
< OO — S el + 15wl o) ull2: V)2
I = ) s alls + 1500l o) s

The quantities H201|$|<RHL3/2 and ||Eol‘w‘>R||L;c can be evaluated explicitly. Com-
bined with the convergence (32), it allows us to obtain (46) for every ¢ > 0 provided
e > 0 is sufficiently small.

Step 2. — Estimate (46) has two consequences: firstly, the sequence (Q%)c>o is
bounded in H} and, secondly, the sequence (K§;)c>¢ is bounded from below (at least
for ¢ > 0 sufficiently small) by —x(§ + 1/R)M?/2. Indeed, we already know that
||Q€||%2 = M and for §+cR > 0 sufficiently small (that means € > 0 is also sufficiently

small), we have kC(6 + cR)M/2 < 1/4. Hence, (46) with u = Q¢ becomes

1 K 1
£ £ > - g 22 o — 2.
H(Q%) > 7IVa@llfz — 5 (0+ )M

Since He(Q°) = K§; < 0 is negative for every € > 0 we eventually deduce that
[V:Q%[|L2 is bounded. Moreover, it is clear that the sequence (Kj;)e>0 is bounded
from below by —k(§ + 1/R)M?/2, as soon as ¢ > 0 is sufficiently small.

Therefore, we know that (Q%).~¢ is bounded in H}, and we also know the existence
of two constant a, A > 0 such that for every € > 0 sufficiently small, —A < J5; < —a
(the existence of a comes from the proof of Lemma 7.1 where we proved that
K5, < H5(Q") — HY(Q") = K9, < 0). Moreover, since Q¢ is a solution of (19) with
Y = ¥° and w = w?, by multiplying this equation by Q¢ and integrating over R?
we get

1
WM =~ Vo3 + /-e/ Q2 (@) 2 (z — )| Q72 (y) dw dy.

In turn, the sequence (w®).>o is bounded:

a K¢ K
i O e /| —_— e12 “(x — €2
0< 37 <w VAR /\Q 1*(2)3° (z — )|Q°* (y) dz dy

A kC K 1
< €12, €12, il |14, .
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1

There exists @ € H! and @ > 0 such that, up to a subsequence, (Q).~o converges
weakly to @ in H! and (w®).~o converges to w. Since the functions Q¢ are positive
and radially symmetric, we also know that @ is positive and radially symmetric, and
(Q%)e>0 converges strongly to @ in LP for 2 < p < 6, see [34, 48] for such compactness
statements based on symmetry properties.

Step 3. We are going to prove that Q@ = Q° and & = w°. To this end, it is suf-
ficient to prove that @ is a solution of the Choquard equation (19) with ¥ = 39,
w=w and ||@\|%2 = M. Indeed, we know that the Choquard equation with ¥ = X0
admits a unique f)ositive, radially symmetric solution for w = 1 (see for instance [31]
or [30, App. A]). This result can extended by a scaling argument for every w > 0.
Hence, we can justify the following assertion: if two positive and radially symmetric
solutions @; and Qs of (19) with ¥ = ¥° w = w; and w = wy have the same mass,
then Q1 = Q2 and A\ = Ao
For every € > 0 and for every ¢ € C2°(R2), we have

3 [ Va0 Vapdo+ ot [@pde—x [[ Qola)= @ - p)IQ7 ) dedy —0.

It is obvious that the first two terms converge respectively to ([ VaoQ -V dz)/2 and
@ [ Qedz (note that for the second term we use the fact that [|Q°| .2 is bounded
with respect to €). Let us now show that the third term converges to

[ Qo=@ - 1)IQP W dz dy.
For that purpose we decompose the difference as follows
/ Q°p(2)E% (z — y)|Q°*(y) dz dy — / Qp(2)=°(z — )| QP (y) dw dy‘

< \ [ @ ot (- - 26 - ) 10 Pw) dxdy]

M ‘// (Qs(x) - Qﬁ)) ()20 (x — ) QP (y) da dy‘

+ ‘// @cp(z):;)(x —y) (1Q°F = 1Q"P) (v) dl’dy‘ ~

=III

The convergence of I follows from the boundedness of (Q%).~¢ in H} together with
the convergence (32):

I< Q%2 [(2° = 2%) % Q7| ge
<ll@lzzllellze (CII(EE = E0101<rll o2 I Vo @0l

15 = S0 1 rls 197132 ).
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The boundedness of (Q).>0 in L2 and the strong convergence of Q¢ to @ in LP for
2 < p < 6 with p =4 and p = 8/3 imply the convergence of II (we use that Eolng
lies in L2 for 1 < ¢ < 3 and X°1),5 g lies in LY for ¢ > 3):

<505 (Q° = Qllus 19713
< (1= i<l ez (Q = @)pllzz + 1501 oy rla Q7 = Q) s ) 1713
< (I paicrllzzlQF = @llrg lelles + 1200 mlles 1Q° = Qll o el o ) 1Q° 2.
For the last term we use almost the same strategy than for I1. We write
< |Qllrs 120 (1072 = Q1) e
<INz lielzz (1=t wr<rll o 111Q7F = 1G] 2
12005l 1Q7 — 1O 375)-
Since |Q°2 — |QJ2 = |Q° — Q? + 2(Q° — Q)Q we eventually obtain
HQ? = 1QF] 2 < [1Q° = QP +2/I(@° - Q] .
S HQE - QHQLg + QHQE - @HLgHéHLg
and
Q1 = Q1| ars < [[1Q° = Q| pass +2[/(@ = Q)Q| a7
<@ - Qllys +2]@ - Q)

ro 1@l 3o

These convergences allow us to obtain that @ is a solution of (19) with ¥ = X0 and
w = w. It only remains to prove that ||Q[|2, = M: the weak-L? convergence of Q°

already implies [|Q|2, < M.
We multiply by Q¢ the Choquard equation satisfied by Q¢ and we integrate over R3;
it yields

1
—w M = §I|VwQ5H%g - ,@/ Q% ()55 (x — y)|Q°[* (y) dz dy.
Taking liminf._,q leads to
- 1 ~ .
—wM > §||VxQI|2L§ - fihmsgp / Q[ ()27 (z — »)|Q°[*(y) dz dy.
e—

We justify as before that the last term converges to [[ 1QI2(2)2%(z — 1) |Q|2(y) da: dy.
Since @ is a solution of (19) with ¥ = ¥° and w = & we obtain

1~ - - s
~BM > 3IV.QlE; — x [[ 10P@)° - nIQF () dedy = 3@z,

Since @ > 0, we eventually obtain M < [|Q||7. and thus Q=Q%and & = w°.
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Step 4. In order to conclude the proof it only remains to justify that the weak con-
vergence of (a sub-sequence of) (Q%).>0 to Q° in H} actually holds strongly (then,
thanks to the uniqueness of Q°, one can extend this convergence to the entire se-
quence). We already know that [|Q°(|7. = M = [|Q°]|7., which implies the strong
convergence of (Q).~¢ in L2. We turn to the strong convérgence of (VzQ%)es0 in L2.
The end of the previous step tells us that

lim [|V,Q° 13 =2 (—wOMH [ 1@r@ e - nietw dxdy) = V.Q°I2,,
which finishes the proof. O

Proofof (ii) Coercivity. — We fix ¢ > 0 and we consider a positive and radially sym-
metric minimizer Q° of Kj,;. Proposition 2.5 gives

1 d
(ESL ) 2 VO = =5 (105 @0+ D 147,00, 2 [7).
j=1

Next, we compute (L% f, f) as follows:

(L3S £ = (L8 F F) e + (L5 = LD f) s

1 d
> O = =5 (10 Q0 e l” + Y 14£,0,Q% 2 ") = (L8 = L)F ) s
j=1

d
> 11— 5 (1.0 2P+ 3010800, 2 )
j=1

1
ai L ((Cep ANV P E
where
d
RE=[(£,Q° = Q%) pa|" + Y [(£,00,Q° — 0:,Q%) 12|
j=1 4
+2[(£,Q° — Q2| [(£,Q%) 12| + 23 |(f.02,Q° — 80, Q%) 2 | |(f. 00, Q%) 12 .

j=1
Then we infer the following estimate: R® <a(Q°)||f||%: where a(Q) >0 and a(Q)—0
when [|Q — Q°[|z2 — 0. Moreover

(L5 - L(J)r)fvf>Lg = (" = ") IflZ2 — "5/ (22 ]Q° 1> = 2% |Q°1?) | fI? dw
- 2”// (Q°f ()2 (z — y)Q° fy) — Q°F(2)X°(x — y)Q°f(y)) dady,

and from this expression we can obtain (thanks to a reasoning similar to the proof of
point (i)) the following estimate

(L5~ L), £ ] < B0, Q5 ) 1.
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where 5(2,Q,w) > 0 and §(3, Q,w) — 0 when
1S = S0 gerll o + 1S = S gl + 1Q = Qllis + | — w® — 0.

This assertion applies for any R > 0; here R is fixed once for all (not necessarily small
as in the proof of convergence). Gathering these two estimates leads to

(Lt > (0 290 ) Il

d
- (@l 00, @),
j=1

The announced coercivity property holds for the ground state Q¢ provided a(Q¢)/v°+
B(2F, Q% w®) < 0. Since a(Q) and B(X, Q,w) converge to zero when we have

12 = E)Lai<rll sz + 1(E =1 rlle +1Q = Q%lm: + |w —w’| — 0,
there exists § > 0 such that
(5 = Sl o+ 12 = 2010 rllis +1Q = Qs + o — | < 5

implies a(Q)/v° + B(%,Q,w) < v°. Thanks to (H4) we can find £y > 0 such that for
every € € (0,%p),

)

12 =21 pi<rll sz + 1B = E0) g rllie < 5

Therefore, possibly by choosing a smaller gy if necessary, for every ¢ € (0,29) and
every positive and radially symmetric minimizer Q¢ of K3,;, we get

1)

19 = Qs + o — 0| < 5

by using (i). O

8. ADMISSIBLE FORM FUNCTIONS: PROOF OF ProrosiTioN 2.11

The general strategy relies on the application of Proposition 2.13; hence we have
to construct a sequence of potentials (3¢).~0, with the specific form 3¢ = o % 0§,
which converges to ¥ in the sense of (32). This requires some care beyond the classical
“regularization and truncation” approach. A similar difficulty arises, but in a different
manner, when justifying the asymptotic regime of the Vlasov-wave system (6a), (7)
towards the Vlasov-Poisson equation [10]. The following simple examples are quite
illuminating on the strategy.

Toy example 1. — Let x : R® — [0,1] be a C2° function which satisfies x(z) = 1 for
|z] <1 and x(z) =0 for |z| > 2. Let

The analysis of this kernel is simple: due to the scale invariance of 1/|z|, we have

Y (x)=¢ Xi_j) = eXl(ex).
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As a matter of fact, we have
(i) H™ (u) = 3H>" (u°) where uf(z) = 5‘2u(5_1x),
(ii) Q¢ is a mlmmlzer of K3, < Q(z) = e72Q°(¢'z) is a minimizer of Kg,lM7
(iil) K3 = S3K> i
(iv) if Q% is a minimizer of K}, , then w(¥X%, Q%) = 2w (X}, Q), where Q(z) =
e72Q (e 1),

(V) (L (2%, Q) f%, f) 2 = ¥ (Ls (B, Q)f, f) o, where f(z) = e7?f*(c ') and
still Q(z) = e—2Q° (e~ 'x). ’

These relations provide several useful information. For example, since for any fixed
e >0, 3¢ lies in Li/ 2, Lemma 3.1 applies and justifies the existence of the mass thresh-
old MOZE, which, in turn, can be expressed by means of Mozls M; T = sMozl — 0.
Furthermore, ¥¢ converges to %0 in the sense of (32), and the conclusions of Propo-
sition 2.13 hold. Then, relation (v) allows us to extend the coercivity estimate to
any radially symmetric minimizer of KELI associated to a mass m larger than M /2,
as illustrated by Figure 2. Indeed (ii), (v) and Proposition 2.13(ii) yield

<L+(Ela Q)fa f>Li = 673 <L+(267 QE)fE’ f€>Li

3
Y1 0.,@) )
j=1

> = 8 — S (10,09

1 3
=V Vafl7: + 2%\ 72 - E(E_Q [(f, Q)Li‘Q +e! Z |(f°,02,Q%) 12
j=1

)
which implies the announced coercivity property.
This example can be compared to the case of the Yukawa potential seen as a
perturbation of the Newtonian potential in [25].

A
————————— ’
1 ‘ /( A P ~
[ s
: e
: /s P _
! / 14 e _ -
| s - -
o/ L0 - —~
| : -
AV -
[, R {7 - 7
o
~ —
-
P
-
- >
M M/gy Mass

Ficure 2. Tlustration of the strategy: for the given mass M, the
stability of the ground states is proved for the potentials 3¢, with
0 < £ < &y. By rescaling, we can go back to the potentials X!, and
ground states with a mass larger that M /g, are stable.
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Toy example 2. Let a : R% — [0,00) be a C* function such that [adz = 1.
We consider
5 73/
|z — y\

Now, we have the scaling relation: ¢ (z) = 5_121( L), where

Ifc - yl
We deduce that
Q° is a minimizer of Ky; <= Q(z) = £Q°(ex) is a minimizer of KEA}

Reasoning as in the previous example, we obtain that, for M sufficiently small, every
positive and radially symmetric minimizer of K Jﬁl satisfies the coercivity relation (29).
In particular there is no mass threshold: MOZl = 0. Since X! ¢ Li/z, this is not a
contradiction with Lemma 3.1.

Toy example 3. — We go back to the case of the dimension d = 1. In this case for any
o1 satisfying (H2)—(H3) we consider the sequence of potential (%°) defined by

Yo(z)=e'2(e2), X =o01%x01.
Hence we obtain the equivalence
QF is a minimizer of Ky; <= Q(z) = eQ(ex) is a minimizer of KEEJ\}

Reasoning as above, we justify the existence of some M* > 0 such that for every M €
(0, M*), every positive and even minimizer of K ]\2/11 satisfies the coercivity relation (29).

Main strategy. The toy examples 1 and 2 do not fit with our framework, where
we are dealing with smooth and compactly supported potentials 3. Then, in order
to handle such a potential, the idea is (as usual) to combine the truncation and the
regularization by setting (mind that d = 3)

¥(e) = / \x*yl

However, the scaling for the truncation and for the regularization are not the same,
and the properties deduced from the scale invariance of 1/|z| break down. Instead,
we consider a doubly indexed sequence of potentials

Aly)
E}\,ll« ) = )\73X iz /0&( d
(@) = A x(u) [ G
with A, 4 > 0. We also introduce

¥ (z) = 53)((:0)/'5;_ yy) d

We have the scaling relation $2#(z) = uS* (pa) which leads to the following lemma.

Lemva 8.1. — The following assertions hold:
(i) HEML(U) = B H> (ut), where ut(z) = p2u(p'z) and e = A\,
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(ii) QM is a minimizer of KI%IM' & Q(r) = pu2QM(u1z) s a minimizer of
KE:M with € = A\, )

(iii) KJ\EZ’” = MBKE:M with € = A,

(iv) if QM* is a minimizer of K]\E/[A’“, then w(XMH QM) = /ﬂw(is,Q), where
Q(x) = p2 QM (p ') and e = A, B

(v) (L (S, Qo) pron, prmy = (Lo (S2,Q)f, f) 0, where we have set
Q@) = p2 QM (1), f(x) = j 2 (u ) and = = M.

Let us suppose for a while that the sequence (E)"“)MDO converges to XV in the
sense of (32) as A and p tend to 0. Then there exists Ag > 0 and pp > 0 such that
for any (A, ) € (0, o) x (0, f10), the conclusions of Proposition 2.13 hold. Based on
Lemma 8.1, we infer the following statement.

Prorosirion 8.2
(i) For every (A, p) € (0, X0) x (0, o) and for every positive and radially symmetric
minimizer Q of KE:M with € = A, the operator L+(§JE, Q) satisfies Lemma 2.5.
(ii) In particular, fore € (0, Aopo) fized, applying (i) to any (A, 1) € (0, Ao) x (0, wo)
such that Ay = € implies that for any m € (ualM, Xoe M) and any positive and
radially symmetric minimizer Q) of K;:, the operator L (is, Q) satisfies Lemma 2.5.

Item (i) implies, up to the fact that 3¢ can be cast under the form ¢ = 57° xa71°,
that the set of admissible form function &7 is non empty. Then, to conclude the proof it
only remains to slightly adapt the previous construction in order to obtain a sequence
YM# satisfying (H4). We proceed as follows. Let o, x be two C2°(R?), non negative,
radially symmetric, compactly supported and non increasing functions, with y(z) =1
in a neighborhood of the origin. Let us set

— u
Jf"”(a:) = )\*3/ a(A1y) 7){(#[% g]) dy = a)‘*(ix 2)(:17) and M = gi"“*df"“,
RS |z -yl |-
where
oMz) = ABa(A ) and M (x) = x(uz).
Then each o} satisfies (H2)—(H3). Moreover we can check that
A, —~A ; — 3
oy t(x) = pPor M (ux),  TM(x) = pEo (ux),

where

5t (@) = /of(w —y) X(fﬁ dy, =G xor.
Yy
Then Lemma 8.1 applies to this new sequence as well and Proposition 8.2 holds

provided we can show that it converges to X9 in the sense of (32). Such a form function
appeared in [10]. The construction is based on the following two observations:

1 1 C dy

—— % ——=(T) = — - g
TR T . T9Pler =9

=Cx%x), where C = /
R
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(e1 being the first vector of the canonical basis), and

m "
YA = (a)‘ *of‘) * <|X? * ﬁ)

Then, at least formally,

at xat — (/a*adx)&) when A — 0,
O/ Py > /1 12) — (1] P) = (1/]- ) = CE° when u — 0,

and we can expect that YM* looks like £° when \, u — 0 provided [adr = 1/\FC’
The intuition is confirmed by the following claim.

Lemma 8.3. If [adz = 1/V/C, then the sequence (SMF)y =0 converges to X° in
the sense of (32) when (A, u) — (0,0).

This approach allows us to construct a large class of admissible form functions, not
necessarily close de X0 in the sense of (32), by using suitable rescalings that preserve
the coercivity estimate as we did with the toy example 1. Indeed, for any « and x
defined as before, if the form function o1 = a* (x/|-|?) is not in &7 we know, at least
up to rescaling v into af(z) = e 3a(e1z), that the form functions 01" = a**(x/|-|?)
belong to &7 provided ¢ is sufficiently small. With the previous notation the non empty
mass interval I associated to the form function o7° is given by I = (ug M, Noe™ ' M ).
It is also possible to rescale x into x°(z) = x(ex) and obtain that form functions 5§ =
ax(x%/|-|?) equally belong to o provided e is sufficiently small (this second example
uses the scaling relation o7 (z) = A~267*(A~1z)). Moreover given an admissible
function a1, we observe that o7 (z) = Aoy () is admissible too. We obtain this way
form functions with arbitrary support size and LJ°-norm, which are non negative,
non increasing, radially symmetric and concentrated around the origin. Such form
functions are physically meaningful in the framework defined in [4]. Since they are
simply derived by rescaling, we can check that the necessary coercivity estimate still
holds, with constants that keep track of the rescaling, and they also provide stable
ground states.

Proofof Lemma 8.3. — Let 0 < R < oo be fixed once for all. We decompose the
difference X*# — 30 as follows

» _ x* x* 1 1
M (z) = 2%z) = (o * ) * (W*W - W*w)@)

+ C/ (0/‘ *a)‘) (y) (Eo(x —y) — Eo(a:)) dy = I1(z) + Ix(x).

Bearing in mind that a* xa* () = A" 3axa(A~1x), we readily obtain the convergence
of Io1,<r to 0 in the Li/Q-norm. Moreover, since the support of a* * a* shrinks
to {0} when A — 0 and since the function x + 1/|z| is a Lipschitz function on every
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set of the form CB(0, R) (with a Lipschitz constant L(R) which blows up when R — 0)
we get

1211415 rllLee < meas (supp (o/\*a)‘)) s 0.

Next, for y € supp(a® x @) with \ sufficiently small, |z| > R implies |z — y| > R/2;
it follows that

x* x* 1 1
[ 11 1jz>rllLe < H(| NE * TE TR * W)lmpmzHL?@
Xt —y)x"(y) —1
= sup / ( ) 5 ( 2) dy
|z|>R/2 lz —y[2|y]
(g H -1 B -1
< sup /X (x y)(x2 (yg) )dy’ v osup x2(2) : dz’.
2|>R/2 [z — y|?ly] lzl>Rr/2 1) 1212z + 2]
ince 0 < x <1 and x#(x) =1 when |z| < u~° this estimate yields
Since 0 <1 and x* 1 wh < p ! thi i ield
1
1111125 rllze <4 sup / T dy — 0.
|z|>R/2 JCB(O,n—1) lz — |2yl p—0

It remains to prove that I;11),<g converges to 0 in Li/z—norm as A\, u — 0. For
r € (0, R) we split this quantity as follows

11 L10<rll g3z < 1M Ljeisell a2 + 111z rll o2
We have

1 1 1 1
‘(a)‘*a’\)* (X—*X— - —*—)lm@

T2 T TR TP <2C(O‘)\*a/\)*201|xl<r

and we have already seen that C(a)‘ * a>‘) * Eolmgr converges to Eolmgr in the

L¥? norm for any 0 < r < 0o. Let 1 > 0. We can choose r = r(n) > 0 small enough
and, next, find A(n) small enough so that for any 0 < A < A(n), we get

1111z <rll o2 < 20(C0* xa?) % 20 = )1yl a2 + 20200y <pll 2 < 1

Finally, the Li/Q-norm of I11, |4 )<r can be estimated as we did for the L°-norm of
11,5 g. Possibly at the price of taking A(n) smaller, if [z| > r we have |z —y[ > r/2
for any y € supp(a* x a). It follows that

1
118 <picnl e < meas (BO.RDY® sup [ SN
” r/2<|z|<R JCB(O,u—1) lz — y|?[yl

which can be made < n for 0 < p < p(n), with u(n) small enough. This ends the
proof. O
AprpENDIX A. CAUCHY THEORY

From an energetic point of view, the natural functional spaces for the Cauchy theory
of the Schrédinger-Wave equation are C°([0,7]; H!(R2)) for the wave function u and

er = C° (10,7} 22 (R M (RY) ) ) 0 € (10,7 L2 (RS LA(RY)))
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for the vibrational environment . We are going to prove the global existence of solu-
tions to (1la)—(1b), with Cauchy data (2), in these spaces, see Theorem 1.1. Through-
out this appendix, we work, without loss of generality, with ¢ = 1.

The proof of this theorem is quite classical: the most important part consists in
applying Strichartz’ estimates to the Schrodinger and the wave equation. In fact the
main difficulty comes from the fact that Strichartz’ estimates for (1a) lead to estimates
of uw in L{L" norms whereas Strichartz’ estimates for (1b) lead to estimates of ¢ in
L" L1LP norms. In order to combine these two estimates of different type, we need to
permute Lebesgue-norms in time and space. For that purpose we will use Holder and
Young inequalities (and the fact that o1 and o9 are in any LP space for 1 < p < +00)
in order to work with L{ L% norms.

Let us introduce some notation that we will use until the end of this section. First
we denote by S the linear Schrodinger’s group and by (W, W) the free wave group:
for any ug € L2(R%), S(t)ug is the unique solution at time ¢ of

10iu + Agzu =0,
(0, x) = up(x),
and for any (o, 1) € L*(R; HY(R?)) x L2(RE; L2(RD)), W(t)vo + W (t)¢r is the
unique solution at time ¢ of
8?#/} - Az¢ = 07
(¢(Oa z, Z)7 at¢(07 z, Z)) = (1/)0(377 Z)» 1/11 ("E, Z))
With these notation we can now define (at least formally) the functions £, K and ® by

L)t — S(Euo + /0 "S- s) Kal . / e dz) u(s)} ds,

(s ) : £ —s Wt + W (£)hr +/O Wt — ) [—0a0m %0 [u(s)[2] ds,
o = (L,ZK),

where ug € H'(R?) and (¢, ¢1) € L2(R%; HY(R?)) x L2(R%; L2(R?)) are now fixed
until the end of this section. From here it is obvious that any fixed point (u,1)) of ®
defines a solution of (la)—(1b) and (2). In order to apply the Banach-Picard fixed
point theorem we have to specify on which space we define the function ®. As already
mentioned, since we wish to apply Strichartz estimates, we need that ® is defined
on a well adapted space for this approach. We introduce the following notations and
spaces for that purpose. First let us define the Lebesgue exponent pg by

2n
n—2

Then, for any final time T' > 0 we introduce the following Banach spaces:

(47) po =

Xp=L1>0,T; H'(R?)), Yy = L*R%; L>®(0,T;LP°(R?))) and Zp = X7 x Yp,

endowed with the norm |ju, ¥z, = ||ullx, + [|¥]ve-
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We introduce these spaces because (00,2) is a Schrodinger-admissible pair and
(00, pp) is a wave-admissible pair for n > 3. Let us briefly recall what are the defi-
nition of Schrédinger and wave-admissible pairs and what are Strichartz’ estimates
(we follow [24] and the interested reader can find further information about Strichartz’
estimates in [14] and the references therein).

Derinttion ALl
(i) We say that the exponent pair (g, ) is Schrodinger-admissible if d > 1, q,r > 2,
(¢,7,d) # (2,00,2) and
1 d d
6 + % = 1
(ii) We say that the exponent pair (g,p) is wave-admissible if n > 2, ¢,p > 2,
(¢,p,n) # (2,00,3) and

1+n—1<n—1
g 2 = 4

From now on for any exponent a > 1, ' will denote its conjugate exponent: 1/a +
1/a’ =1.

Prorosition A.2 (Strichartz estimates)

(i) Let (g,7) and (q,T) be Schrédinger-admissible pairs, ug € L*(R%), F €
L7 (0,T; L™ (R%)) and let us denoted by u the unique solution of idyu + Agu = F
with initial data ug. Then there exists a constant C > 0 independent of T such that

(48) lullzgr; < Cllluollez + I1F1 Lz ) -

(ii) Let (q,p) and (g,p) be wave-admissible pairs with p,p < o0, (Yo,¥1) €
H(R?) x H*"Y(R?), G € L7 (0,T; L7 (R?)) and let us denoted by 3 the unique
solution of 03¢ — A = G with initial data (1o,%1). Then, under the additional

condition

1 n n 1 n
49 7—|——:——S:j+j_27
( ) q p 2 q/ pl

there exists a constant K > 0 independent of T such that
(50) [6lzgze + 160 e + 100l e o s < K (IWoll e + 0l o + G )-

Remark A.3. — We will apply (50) with the Sobolev regularity s = 1. With this
regularity the exponent pairs (¢,p) = (o0, pg) and (00,2) are wave-admissible and
satisfies the additional condition (49).

The following two Lemma justify that the application ® is well defined on Zp,
sends Zr into itself and admits a fixed point on it.
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Lemma A4, There exists a constant C' > 0 independent of T such that
(51a)  [[L(u, ¥)llpgerz < C(lluollcz + T llve lull Ly r2),
(51b)  [IVaL(u, )l rerz < C(IIVauollrz + [THYllve [ullierz + I VaullLerz]),
(51) K0 )l + 1l s + 10020022
< C(Ioll gy + I¥nllza e + | T1ulf L2),

and
(52a)  [|£(u,¥) = £(v,9)l|Lgor2

< CIT] ([l llw = vl pgerz + 19U = @llyrllvllzerz)
(52b) V() = £, @Dz < CITI(IWllve [llu = vl 2

+ IValu =)z | + I = @l [loll ez + [ Vallzers])
(52¢) [|K(u,¥) = K(v,9)llve < CIT| (lull oz + lvllngere) lu — vllLzere-

Lemva A5, — There exists a universal constant C1 > 0 such that for any final time
T > 0 small enough, ® : By — By, where

Br = {(w,9) € Zr | |uw,vllzr < Ci(lluollms + ol 2 s + Wallzzz2) } -
Moreover, considering smaller T if necessary, ® is indeed a contraction on Br.

We postpone the proof of Lemma A.4 to the end of this section and we start by
proving Lemma A.5 and Theorem 1.1.

Proofof Lemma A.5. — We can summarize the estimates (51a)—(51c) as follows:

18w, )|z < C[lluolli + 190l 3 s + orll 2z + 171 s 91, ]

Next, let C; = 2C; we thus obtain that for any (u, ) € Br,

1)1z < C [1+C3 T (uolls + ol o gy + oo lz22) |
X (luoll ez + 1Yol 12 g + [¢1]lL2L2)-
Since for T small enough,
CHIT| (luollzr + ||1/J0||L5ﬁ121 + lnllp2r2) <1,

we obtain that ® sends By into Br for T small enough. As previously, we can recast
(52a)—(52c) as follows:

1@(u,v) = (v, d)| zr < CIT| ([[(w, )| 22 + v, @l z2) | (w, ¥) = (v, )| 27.-
Therefore, for any (u, ), (v,$) € Br,
[@(u,¥) = @(v, @)z,
<20 C(lluollmy + 1Yol 1 s + Ionllzzzz) 1T (w, ¥) = (v, )l ze

holds and @ is a contraction as soon as 7' is small enough. O
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Proof'of Theorem 1.1. Step 1: Local existence. — For T small enough @ is a contraction
on Brp, we thus know that (la)—(1b) has a solution in Zp. Then it is clear that for
any solution (u,) € Zp of (1a)—(1b),

u€ L0, T H'(RF)), o € L*(RY; L(0,T5 H'(RY))),
and O € L*(R%; L*°(0,T; L*(RY)))
(for ¢ it comes from the Strichartz estimate (51c)). Moreover, using the fact that

(u,) is a fixed point of ® and the expressions of £ and X in terms of S and (W, VV)7
one can prove that indeed u € C° ([0, T]; H'(RY)), for almost every z € R,

(t,2) — Y(t,x,2) € C’O([O,T}; Hl(Rg))
and (t,2) — Opb(t,z, 2) € C°([0,T]; L*(RY)).
We finish the proof by applying the following lemma (proved at the end of this section)
to ¢ and 9y in order to obtain that ¢ € Ep.

Lemva A.6. — If f € L2L° and for almost every x € R, t — f(t,z) € C°([0,TY)),
then f € C° ([0, T]; L*(RY)).

Step 2: Uniqueness. — The uniqueness in By comes from the fixed point theorem and
we can extend this uniqueness statement to the entire space Zr. Then the uniqueness
in CPH} x &1 comes from the fact that any fixed point (u,v) € CPH! x Er of @ is
also an element of Zp (thanks to the estimate (51c), we get that 1 is in Y7r).

Step 3: Global existence. Since the time 7" in Lemma A.5 depends only on universal
constants and on
lollzzy + ol g, + bz,

the first two steps of this proof allow us to obtain the following proposition.

Prorosition A.7. — Let n > 3. Then, for any ug € H'(RY) and any (o,v1) €
L2(RE; HY(R?)) x L2(R%; L2(R?)), there exists T* > 0 such that for any T
with 0 < T < T*, the problem (1la)—(1b) and (2) admits a unique solution
(u,) € C°([0,T}; HY(RZ)) x €1 on [0,T]. Moreover, if for some 0 < T < T*,

1im/s%1p [l ar + 1@ L2 g1+ [0 ()22 < +00,
. ZH]
then, actually, T < T*.
Then in order to obtain the global existence we have to justify that the quantity

[u(@)l a2 + 1O 2 g + 10Ol 22 2

does not blow up in finite time. Thanks to the mass conservation of the wave function
u (M = |lu(t)||z2 is constant in time) and thanks to (51c) we get

)23 HI ) 100 L2 2 S MV ga(e) Lz Hiboll gy ol a1,
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and it only remains to control ||V, u(t)||z2. For that purpose we use the energy con-
servation (14) in order to obtain

%\|ku(t)||Li —|—/ (01 */021/)(75) dz) lu(t)|* dz < Esenr(t) = Esenc(0).

Then if | Vu(t)| L2 blows up in finite time, | [ (o1 [ 029(t) dz)|u(t)|? dz| has to blows
up in finite time too. But

’ /(01 */aw dz)|uf? dz

(53) — A2

2
<M
Ly

o */agw dz

<Ml

o1 */Ugw dz

LLe

|0-1 * ||w||L§° |Lch;>o

< M2||02||Lpg
L Lge *

01 % ||¢||L50L’;U ‘Lgo < M2||U2||Lpg ||Ul||L§ ||1/JHL§,L;>°L§07

and eventually estimate (51c) tells us that | [(o7 * [ o21)(t) dz)|u(t)|? dz| grows at
most linearly in time. O

Remark A.8. In fact the proof of the global existence gives us the additional
information that the quantities

9@l Oy + 10O lzaze and | [ (s [0 )ucoPas

grow at most linearly in time.

We finish this section with the proofs of Lemma A.4 and Lemma A.6.

Proof of Lemma A.4. Fstimate (51a). — We apply apply the Strichartz estimate (48)
to L(u, 1) with the Schrédinger-admissible pair (co,2) on both side to obtain

(01 *g /Ugw dz) U
Then, thanks to the following estimate

(01 *g /021/) dz> U < T H <01 sy /021/) dz) U
LlL2

01 *g /O’Qd)dz

1£(u, Y)|Leer2 S lluollzz +

LyL3

L L2

<

X

||u||L;>°L§,

L¥Leg

and thanks to (53), we eventually obtain
1€ (u, )llzgerz S Nluollez + 1 THIGlvz lullpgerz -
Lstimate (51b). — Since
V. L(u, ) (t) = S(t)Vuo

+ /0 t S(t—s) Kvxal* / o21(s) dz> u(s) + (al* / o21)(s) dz) qu(s)} ds,

we just apply the same estimates as before.
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Fstimate (51c). We apply for almost every = € R the Strichartz estimate (50) to

K(u,v)(x) with the wave-admissible pair (0o, pg) on the left hand side and (o0, 2) on
the right hand side

13 ) (@) | oo 2o + [19(@) ] e g1 + 1080 (@) | Lo 22
S o@)ll gy + 1r (@) 22 + [|o2 o1 % [ul* @) 1 2 -
Then, since
oz o5 [ul* (@) 1 2 = llo2llzz lon * Jul @)y < loallee loa]* [Jull; (2),

we can pass in L2-norm to obtain

HU2 01 % ‘ulQHLiL%Lg < ||02||L§ |01| * Hu||2LfHL§C

Here, thanks to the Young inequality we have

lloral o aliZe o < Holizg [lele 1y = o llas leliZ e < loulles 171 el o pe

and we eventually obtain
”J{(ua¢)”LiL;”LZO+||w”L§Ltoof{zl+||atw”L§Lt°°L§ S HwOHLifle+||¢1HL§L§+|T| ||u||2L;f°L§~
FEstimates (52a), (52b) and (52¢). — Since

Sl v)(0) - £p)0) = [ () [(a o [ a20(s) ) (ute) = o(5)
+ <01 %o / o (w(s) — gp(s))dz) U(s)] ds

and

K(u, )(t) = K(v, 9)(t)
= [ W= 3) s ([uls) = o)+ o(s)a(s) ~ ()] d.
we just follow closely the proof of (51a), (51b) and (51c). O

Proofof Lemma A.6. — Let us fix ¢ > 0 and t € [0,T]. We know that for all z € R?
and for all n > 0, there exists d(n,t,z) > 0 such that if |t — s| < 0(n,t,z), then
|f(t,z) — f(s,2)| < n. Note that in fact 5(n,t, ) is positive for almost every = € R,
Moreover, since f € L2L{° we now that

[ el i@l dr o
R4 R—o0
Let 6 > 0. Let us also introduce the following subset of R
Bfé” ={z e R?||z| < R and 6(n,t,x) < 8}.

Note that meas(Bfg") — 0 when § — 0. Then for all R,n,6 > 0 and for all s such
that |t — s| < 0,

1F &) = F)z < zr(FE) — F6) iz + 1 L<r(FE) — F(5))]l2
<21z rfllrzre + nmeas (B(0, R))? + 2meas(B5")| £l p2 15 -
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We can pick R large enough to obtain 2|[1>rfllr21 < /3, then we fix 7 small

enough to get nmeas (B(0, R))l/2 < ¢/3, and we eventually fix § small enough to get
€
2mens(B") |z < <. 0

APPENDIX B. SEMI-CLASSICAL ANALYSTS

In this section we rescale the Schrédinger-Wave system as follows

h2
(54a) ihOpup, + EAIuh = (01 K /ogwh(t) dz) U, teR, zeR?,
(54b) Osbn = Xn, teR, z e Ry 2R,
(54c) Opxn = Ay — Poa(z) (01 %4 [un()?) (), teR, z e R 2z eR",

where h > 0 denotes (a dimensionless version of) the Planck constant. We wish to
investigate the behavior of this rescaled system when h — 0. This is expected to
establish a connection between the classical and quantum models, see [38]. More
precisely for every h > 0 we consider the Wigner transform of uy,

1 e ho_ h
Wh(t’x’f):W/Rde fyuh(t7$+§y)uh(tax_§y)dy

and we address the question of the asymptotic behavior of (W}, ¥p, x5) when h goes
to 0. Our goal is to prove that (W, ¥, x1) admits a limit and this limit is a solution of
the Vlasov-wave system (6a)—(6b). For that purpose let us introduce some notations
and assumptions.

We consider a sequence of initial data (u§)pso C H2, (¥§)nso C L2H! and
(xM)n>0 C L2L? such that

(H5) the quantities [lup[|z2 and

2
é"oh+:h7/ |Vu dx—l—/ (01*/ 021/) ) |uh2dx
’ 2 Rd n
2// IXb2dedz + = // Vb2 dedz
20 R xR R xR®

are uniformly bounded with respect to h.

Remark B.1

(i) Assumption (H5) guarantees us that the sequences (¥{) and (x?) are uniformly
bounded with respect to h respectively in LiH Land L2L2. Hence, there exist 1y €
L2H! and xo € L2L? such that sub-sequences still labeled (¢{)s>0 and (x2)nso
converge respectively to g in L2 H L weakly and xq in L2 L2-weakly.

(ii) Moreover, since the rescaled Hamiltonian

0= [ WanoPars [ (s [ ot az) ol ar

1 1
53 // |Xh(t)|2dxd2+*// |Vz¢h(t)|2dmdz
2¢% JJraxRrn 2 JJpdxgrn
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is preserved by the system (54a)—(54c), we have
h? 9 1 9 1 9

0< — [Voun ()" de + 5 Ixn ()] dzdz + = |V 4 (t))” dedz
2 Rd 2c Rd xR” 2 Rd xR™

0 [ (ove [ oot a:) o a
<&y - /R (m */n oot () dz) up (t)[? d.

Then thanks to (53) coupled with the mass conservation of the wave function u;, and
(51c) we have

’/R <al*/n Ugwh(t)dz> fun ()2 da N

S (161l + X612 L2 + Tl z2) llug 72

that means h?||Vaun(t)[Z2, [xn(t)llzzz2 and [lvn(t)
with respect to h and ¢ € [0, T].

Il ;5 2. are uniformly bounded
LmHZ

One can easily check that the Wigner transform W}, associated to a solution uy, of
(54a) satisfies the following equation

(55) OWhy + & -V Wiy + Kjp x¢ Wi =0,

where

(56) Ky(t,x, &) = ﬁ /Rd eﬂf'y%(@h(t,x—k gy> — @h(t,x — gy)) dy.

This follows by direct inspection when uy, is a strong solution of (54a), which is the case
if ul! is regular enough; dealing with weak solutions requires a step by regularization
and approximation.

According to [38], we introduce the separable Banach space

A= {p € CORY x RY) | Fep(z,y) € L' (Ry; CO(RY)) }
equipped with the norm
lplla = 1 Fewl o = / sup |Te(,0)| dy,
and notice that the space
B={pe8|TepcCR] xRY)}

is dense in A. We also denote by M = M(RZ x Rg) the space of bounded measures
on RY x Rg, and M, its positive cone.

Tueorem B.2. — Let (H1)-(H2) and (H5) be fulfilled. Up to a sub-sequence, the fam-
ilies (Wr)n>0, (Un)nso and (Xn)n>o converge respectively to u € CO([0,T]; M — w+),
Y € C°%0,T); L2H! — w) and x € C°([0,T); L2L? — w) respectively in the spaces
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CO([0, T]; A —wx), C°([0, T); L2H} —w) and C°([0, T); L2L2 —w). Moreover (1,4, x)
is a solution of the Vlasov-wave system

Oppt + divy (§p) — dive (Vm [01 *op /agw(t) dz} ,u> =0, in D'((0,T); B'),
o) = ¥, in D'((0,T) x RY x RZ),
O x = ALY — oa(2 (01 *g / du(¢ ) in D'((0,T) x RY x RY).

The proof follows closely the analysis of [38]; the main difference being that here
we have to control also what happens as h — 0 for the wave part of the system
(54a)—(54c). Note that if the sequence of initial data is supposed to converge, then,
by uniqueness of the solution of the limit equation [10, Th.4], the entire sequence
(Wh,¥n, Xn)n>0 converges.

Proof: Step 1: Convergence of (¥1,)n>0. — Thanks to Remark B.1 we already know
that the sequence (15)ps0 is bounded in L*(0,T; L2H1). Since any closed ball of
L2H! is metrizable and compact for the weak topology, we are going to apply the
Ascoli-Arzela theorem in order to justify that (¢p)p>0 admits a converging sub-
sequence in C(L2H! — w). For that purpose it only remains to show that (¢5)ns0
is equi-continuous in CO(LiI.{ 1 — w). In fact, it is sufficient to prove that the fam-
ily {t = (Yn(t),q) L2 Hl} is equi-continuous for every g in a dense countable sub-

set of LiH; Details on this argument can be found e.g. in [37, App.C]. For any
ge C§° (RE x R7),

<wh( ) L2 Hl

] L, Rk OPTR akdd] < I Olzzszlolszme
]Rde"

is uniformly bounded in h and ¢t € [0, T] (see Remark B.1) and the Ascoli-Arzela theo-
rem insures us that, up to a sub-sequence, (¥5,)n>0 converges in C°([0,T]; L2H} — w)
to € CO([0,T); L2H} — w).

Step 2: Convergence of (xn)h>0- As in the previous step Remark B.1 insures us
that the sequence (xn)n>o is bounded in L*°(0,T; L2L?%). Moreover, for any g €
C(Rg x RY),

d

a@(h(t) L212 V. r(t) - Vygdedz

// o2(2)o1 * [un () (z) g(z, 2) dz dz
R xR

<Mnll 2 g lgllzzms + loallzzlloallzs lun®)lI7z gl 2 22

\

Re xR™

+ 2

is uniformly bounded in h and ¢ € [0,7] (see Remark B.1). Eventually the
Ascoli-Arzela theorem insures us that, up to a sub-sequence, (xp) converges in
CO((0,T); L2L2 — w) to x € CO([0, T}; L2L? — w).
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Step 3: Equation on 1. Since x;, converges to x in C°([0,T]; L2L? — w) we obtain

directly that for any g € C°(R% x R?),

d
G000 =[] uBsdeds = K000

the convergence being uniform on [0, T']. Note that here, since the duality product on
L2H! is not compatible with the duality product in D’, we have to say something in

order to justify the following convergence
d d

— , — , in D’ .

dt <¢h(t)7g>j) ,D }j) dt <w(t)1g>’D D m (OaT)

Since for any f € C°(0,T),

<%<’/’”’9>D"f> = —/OT<wh(t)7g>D/f’(t) dt,

D(0,T)

we have to justify the uniform convergence in time of (¥ (¢), g)ns to (¥(t), g)n:. For
any g € C°(RE x R?), we have

~ g(k
(¥n(t), g)or ://Rd . ICIwh(t,k,c)|<|g(|Cif) dk d¢.

The condition n > 3 implies that F~1(G(k, ¢)/|¢|2) lies in L2H?, and the convergence
of 9y, to ¥ in C°([0,T); L2H! — w) allows us to conclude. Eventually we have proved
that 910 = x in D’.

Step 4: Equation on x. — Let us temporarily assume that |uy(t)|? converges to a

certain p € CY([0, T]; M — wx) (see Step 7). For any g € C°(RY x R?), we have

d
(58) = (X)) :_02// Von(t) - Vogdedz
R xR™

—62// oy 01 % |up(t)|? gdz dz.
R4 xR"™

The weak convergence of (1p),>0 insures us that

—02// V. Yn(t) - V.gdrdz — —02// V.(t) - V.gdzdz
Rd xR™ h—0 R xR™

and, if we rewrite the second term of the right hand side of (58) as follows

c? // oy * lup(t)? gdadz = 02/ lup (t, y)|? (/ oa01%x9(y) dz) dy,
R4 XR™ R4 n

the weak convergence of |uy,|? leads to

02// o901 % [up (b)) gdedz — 02// o901 % p(t) gdzdz.
Rd xR™ h—0 Rd xR™

These two convergences hold uniformly in time and we eventually obtain

Ohx = A — Fororxp(t) in D'((0,T) x RE x RY).

JIP — M., 2023, tome 10



504 T. Goupon & L. Viviox

Step 5: Convergence of (Wh)r>o. We first prove that the sequence (Wp)p>o is
bounded in L* (0,7;A’). Since

I Wit el dud
R4 xR4
= i [t St~ 5 Sy drd
@0 Y e+ 5 )T = 5 y)Tep(r,y) drdy,

we obtain directly

‘//Rdw W (2, ) zgdxdg'

< W (sgp /Rd un(t, @+ 5 y)Uh( Zy)‘ dx) (St;p /Rd Iﬁ"gw(w,y)ldy>

1
which insures us that

< WH%(@H%@H‘PHA,

1
Wa ()]l < WIIM@)H%@

is bounded with respect to h and t. Since any closed ball of A’ is metrizable and
compact for the weak-x topology, we will apply again the Ascoli-Arzela theorem in
order to justify that (W)n~o admits a converging sub-sequence in C? (A’ — w). For
that purpose we will prove that for any ¢ € B, the functions ¢ — (W}, (t), o) 4 are
equi-continuous. Direct computations yield

d
59 W , .= — Wi (t, z, V., &) dxd
69 5 o= [ Whtn ¢ Voplw o dode
W [ K sy S T ) d d d,
+//]Rd><Rd h(txn)</Rd n(t,x, & —n)p(x,§) g) zdn
with
Lh(t,ﬁ?,n) = Rd Kh(tan?g_n)@(xvg) df
= (Qﬂ)d/Rde E<(I)h<t £L'+2y)—@h<t,$7§y)>ff§<p(x,y)dy
and

i h h
From (59) we get for any ¢ € B,
d
| WA @) r.a] < IV (0 (1€ - Taiella + ILa()]ln)

and it only remains to prove that F, Ly (t) is bounded in L, CY, uniformly with respect
to t € [0,T] and h. Since ®;, = o1 * [ 021y, dz,
h/2

%(¢h<t7m+gy) —<I>h<t,x—gy)> :%~ _h/2V01*</n 02¢h(t)dz) (z 4+ sy)ds
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and we can estimate F, Ly (t) as follows
h/2

[ Vo ( / st dz) (@ + sy) ds

Vo % </n ootp (t) dz)

The following estimate coupled with (51c) and Remark B.1 allows us to conclude

Vo + ( / oabnlt) dz>

Step 0: Equation on p. — For any ¢ € B, we have

1
1FnLu@llzsece < lyFepllzyos||
Ly

< ||y3r§<P\|L;,cg

Ly

< IVoullzzlloall o 1¥nll Lz Lo Lro-

Lg

dt<Wh( ), @)mrs = —(Wi(t),§ - Vep)s s + (Wi(t), Ln(t))s: 5.

The weak convergence of (W4)r>0 allows us to obtain
d d

- ’ ] !
dt<Wh( ) @) BB AT (u(t),¢)s3z  in D'(0,T),

and
(Wh(t),€ - Vep)sr s — (u(t),€ - Vo) B uniformly in time (¢ € [0,7]),
—
and it only remains to prove that Ly (t) converges strongly in A (uniformly with
respect to t € [0,7]) to V, (O’l * f aat)(t) dz) - Ve, which is equivalent to prove the

strong convergence of F¢ L, (t) to iy- (Vo [ 029(t) dz)Fe in L, CY. For that purpose
we decompose the difference of these two terms as follows

FeLn(t,z,y) — iy - ( /R Vouz-7) { / o3 ()0t 7, 2) dz] dx) Feo(z,y)
—iy- ( [ Vi@ [/ag(z)(w(t,x, 2) —wh(t,x,z))dz} dx) Fep(z,y)

Ly (/R ! [ Y o T) - Vor(w sy ) ds} U@(z)zph(t,x,z)dz] dx)

—h)2
x Fep(z,y)
=1I(t,z,y) + II(¢, x, ).

We estimate the first term as follows (where the support of J¢y is supposed to be
included in the compact Ky x K5)

IKOlles < Feellen sup [Vouw (02060 ~ vn(0) ()

and the weak convergence of (15)aso insures us that for every z € K;
2(0(0) ~ (1)) (2)
// IVore -7 72 1¢] (940,70~ ult,7.0)) amdc — .

[<|2 h—0

Vo * (o2(¢

JIP — M., 2023, tome 10



506 T. Goupon & L.. Vivion

This convergence is not a priori uniform in x € K;. Nevertheless, we can combine the
fact that 1 (¢) — 15 (t) is uniformly bounded with respect to t and h in L2H}, K; is
compact and the application

v e R ((@2) = Voulo - 09 @(O/ICP)E)) € L2

is continuous, to prove that the convergence is indeed uniform in x. For the second
term, the estimate

Il zyeo < llyTeelizyen lloall o 1¥nllzz e pro

h/2 2\ 1/2
X sup ( ‘/ Voi(zx —%) — Voi(z + sy — T)ds )
26K1 Rd h/2

yeK>2
= lyTeeliryco ozl o 1¥nll 2 Lo pro

2 1/2
dx)

coupled with the regularity and the compactness of the support of Vo; and the
uniform boundedness with respect to h of |[thn|| 2 e 2o, allows us to conclude that
ITI()[|Lrco — 0 when h — 0.

h/2
X sup ( ’/ Voi(z) — Voi(x + sy) ds
yeEK2 Rd h/2

Step 7: Final details. — To conclude the proof it remains to justify that in fact the
limit p of the sequence (Wj)no defines an element of C°([0, 7], M4 — w*) and that
the sequence (|up|?)n>0 converges in C°([0, 7], M(RZ) —wx) to p = [ du(&). The first
point comes from the study of the Husimi transform of wy:

e~z +El*) /R

Wh (t) = Wh(t) * (ﬂ_h)d

One can prove that, for every time t € [0, T, Wi (t) is non negative and the sequence
(Wh(t))n>o is bounded in L;Lé. This allows us to conclude that, up to a sub-

sequence, Wy (t) converges weakly in the sense of measures to a certain fi(t) € My
and it is then possible to prove that indeed u(t) = pu(t). We refer the reader to [38,
§I11] for details. However it is not possible yet to conclude that p is an element of
C°([0,T], M — wx). In the previous argument each sub-sequence depends on ¢ (then
it is not possible to apply a diagonal argument) and we have no information about
the time continuity. The missing step can be obtained by slightly modifying the com-
pactness argument in Step 5, in order to obtain the compactness of the sequence
(Wi)nso in CO([0,T], M — w), and conclude that, up to a sub-sequence, (Ws)nso
converges in C°([0, 7], M — wx) to i € C°([0, T, M — w*). We eventually obtain that
pw=rp € C°0,T], M — wx).

Finally, we make use of the results in the [38, §III | which tell us that if the sequence
(h=an (t, h=1€)|*) >0 is tightly relatively compact, then (|uy(t)|?) converges weakly
in the sense of measures to p(t) = [ dpu(t, &) = [ du(t,§). Moreover, we already know
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that (W,)pso converges in CO([0,T], M — w+) to 7, so that if (h=%|ay(t, h~2E)|?)ns0
is tightly relatively compact, uniformly in time, then the proof [38, Th.III.1(3)] can
be revisited in order to obtain that (|up|?)n=0 converges in C°([0, T, M(RY) — wx) to
p= [ di(€) = [ du(€) € CO(0, T}, M(RY) — ws).

Let us conclude the proof by proving that the sequence (A%t (t, h~2¢|?)p>0 is
tightly relatively compact uniformly in time, which can be cast as

1
sup sup —/ |ﬂh(t,h*1§)|2 d¢ — 0.
[€IZR

>0 h>0 h? R—00
Remark B.1 insures the existence of a constant C > 0, independent of A~ > 0 and
t € [0,T], such that h?||V,us(t)[|7. < C. Then a direct computation shows that

i [ Vet ds =2 [ 6P o ae

1 ~ 12 1 . 12
= e menof agz o [ R nelf e
R4 |€IZR

and we eventually obtain

1 2 C
sup sup — an(t,h ! dé < —=. O
t>g h>% hd /g;R 2 O d¢ R?

AI’I’ENI)IX C SC/\LING OF THE MODEL

Let us provide some details about the scaling of the equations explaining the mean-
ing of the parameters we are dealing with in this paper. Working with physical units,
the system reads

(60a) (ih@tu + %Azu) (t,z) = </]Rd><]R" o1(x —y)o2(2)Y(t,y, z)dy dz) u(t, ),

(600) (O~ 280 (05,5) = ~a(2)( [ onte = plutt )Py ).

In order to bring out the parameters of the model we need to introduce relevant units
of observations: M, L and T stand for these mass, length and time units, respectively.
Here h is the Planck constant; its homogeneity is Mass x Length?/Time (and its value
is 1,055 x 10734 Js); m is the inertial mass of the considered particle and 1) is the
wave function, such that fQ ||? dz is the probability of presence of the quantum
particle in 2 C R? (dimensionless). It helps the intuition to think of the z directions
as homogeneous to a length, but in fact this is not necessarily the case: we denote by ¥
and Z the (unspecified) units for ¢ and the z;’s. Accordingly, s has the same dimension
as Z/T. Finally, we remark that what really matters to make the coupling consistent
is the unit of the product of the form functions o052, that will be denoted X. It turns
out that X has the same homogeneity as /TWLZ" from (60a) and as ¥/LIT? from
(60b), both are thus measured with the same units.
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Besides, system (60a)—(60b) preserves the total energy &y which is the given by
the sum of

hZ
— |V u|? dz, which has the homogeneity of 1%/mL?,

- // (10e|* + 3*|V .0|?) dz dz which has the homogeneity of W2L4Z" /T2,

- // lu|?901 * 1 dz do which has the homogeneity of SWLIZ".
R xR™

All these quantities thus scale like ML?/ T2. From now on, we assume that the total
amount of energy & is given, so that, given the time and length units T, L, it defines
the mass unit
T2
L2,

which has to be compared to the particle’s mass m.

Based on this discussion, we introduce dimensionless quantities defined as follows

ey !/ / / d m 14! / / 1 / / /
u'(t', ") =u('T, 2'L) LM, w(t,x,z)ZEw(tT,xL,zZ),
1
o1(x)os(2) = 5 o1(2'L)os(2'Z).

Note that with these definitions, we have

u'(t', 2! 2qp = 2
| W = &

To reduce the amount of notation, we drop the primes and we rewrite the system in
the following dimensionless form

(61a) (z@tu—&— hg2;A u) (t,x)
- &;ZT ([, o= vt ayas) utt.a)
o10) (0= 8.0 tn2) = =g Sn(a) ([ el —late ) ).

The energy conservation takes the form

R M1 9 w2L47m 1 2T
afary LLT (100
mLQmQ/ Voul” dz + T2 2 //Rden Ol +

2) dzdx

M ML?
+ XULAZ" — // lu|?co0y *xhdzde = & = —.
m Rd xR™ T2
The coefficients of this system are dimensionless; we obtain (1a)—(1b) by assuming
T | WSLiZ'T , 2T YT2M
e T A~
By using the identities
( BT )2_1 SULIZ'T? KT SWLYZT W om BT
mL2/) h mL2 7 h T2 M ° mL2 2’
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we check that the energy recasts as announced in (14). Of course, they are multiple
ways to rephrase this setting. As a matter of fact, the choice of units and the param-
eters ¢ and m/M can be reinterpreted by means of ratio of the energies involved in
the model

— quantum energy to total energy h%/mL? = (m/M)&,
— vibrational energy to total energy W2L4Z" /T? = (1/c?)é,
— coupling energy to the total energy SWLIZ" = (m/M)&.
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