The diagonal of the multiplihedra and the tensor product of A -morphisms
[La diagonale des multiplièdres et le produit tensoriel de morphismes A-infini]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 405-446.

On définit une approximation cellulaire de la diagonale des réalisations de Forcey–Loday des multiplièdres, et on les munit d’une structure de bimodule opéradique topologique et cellulaire compatible sur les réalisations de Loday des associaèdres. On obtient ainsi un modèle algébrique et topologique pour les morphismes A-infini, de même qu’une formule universelle explicite pour leur produit tensoriel. On étudie la monoïdalité de ce nouveau produit tensoriel et on conclut en esquissant plusieurs applications en topologie algébrique et en topologie symplectique.

We define a cellular approximation for the diagonal of the Forcey–Loday realizations of the multiplihedra, and endow them with a compatible topological cellular operadic bimodule structure over the Loday realizations of the associahedra. This provides us with a model for topological and algebraic A -morphisms, as well as a universal and explicit formula for their tensor product. We study the monoidal properties of this newly defined tensor product and conclude by outlining several applications, notably in algebraic and symplectic topology.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.221
Classification : 52B11, 18M70
Keywords: Multiplihedra, approximation of the diagonal, associahedra, operads, tensor product, A-infinity algebras, A-infinity morphisms, A-infinity categories
Mot clés : Multiplièdres, approximation de la diagonale, associaèdres, opérades, produit tensoriel, algèbres A-infini, morphismes A-infini, catégories A-infini

Guillaume Laplante-Anfossi 1 ; Thibaut Mazuir 2

1 School of Mathematics and Statistics, University of Melbourne Parkville, VIC, 3010, Australia
2 Institut für Mathematik, Humboldt Universität zu Berlin Rudower Chaussee 25, 12489 Berlin, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__405_0,
     author = {Guillaume Laplante-Anfossi and Thibaut Mazuir},
     title = {The diagonal of the multiplihedra and the tensor product of $\mathrm{A}_\infty $-morphisms},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {405--446},
     publisher = {\'Ecole polytechnique},
     volume = {10},
     year = {2023},
     doi = {10.5802/jep.221},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.221/}
}
TY  - JOUR
AU  - Guillaume Laplante-Anfossi
AU  - Thibaut Mazuir
TI  - The diagonal of the multiplihedra and the tensor product of $\mathrm{A}_\infty $-morphisms
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 405
EP  - 446
VL  - 10
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.221/
DO  - 10.5802/jep.221
LA  - en
ID  - JEP_2023__10__405_0
ER  - 
%0 Journal Article
%A Guillaume Laplante-Anfossi
%A Thibaut Mazuir
%T The diagonal of the multiplihedra and the tensor product of $\mathrm{A}_\infty $-morphisms
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 405-446
%V 10
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.221/
%R 10.5802/jep.221
%G en
%F JEP_2023__10__405_0
Guillaume Laplante-Anfossi; Thibaut Mazuir. The diagonal of the multiplihedra and the tensor product of $\mathrm{A}_\infty $-morphisms. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 405-446. doi : 10.5802/jep.221. https://jep.centre-mersenne.org/articles/10.5802/jep.221/

[AACD11] C. Arias Abad, M. Crainic & B. Dherin - “Tensor products of representations up to homotopy”, J. Homotopy Relat. Struct. 6 (2011) no. 2, p. 239-288 | MR | Zbl

[AD13] F. Ardila & J. Doker - “Lifted generalized permutahedra and composition polynomials”, Adv. in Appl. Math. 50 (2013) no. 4, p. 607-633 | DOI | MR | Zbl

[Amo16] L. Amorim - “Tensor product of filtered A -algebras”, J. Pure Appl. Algebra 220 (2016) no. 12, p. 3984-4016 | DOI | MR | Zbl

[Amo17] L. Amorim - “The Künneth theorem for the Fukaya algebra of a product of Lagrangians”, Internat. J. Math. 28 (2017) no. 4, article ID 1750026, 38 pages | DOI | MR | Zbl

[Aur14] D. Auroux - “A beginner’s introduction to Fukaya categories”, in Contact and symplectic topology, Bolyai Soc. Math. Stud., vol. 26, János Bolyai Mathematical Society, Budapest, 2014, p. 85-136 | DOI | MR | Zbl

[Bro59] E. H. Brown - “Twisted tensor products. I”, Ann. of Math. (2) 69 (1959), p. 223-246 | DOI | MR | Zbl

[BS92] L. J. Billera & B. Sturmfels - “Fiber polytopes”, Ann. of Math. (2) 135 (1992) no. 3, p. 527-549 | DOI | MR | Zbl

[BV73] J. M. Boardman & R. M. Vogt - Homotopy invariant algebraic structures on topological spaces, Lect. Notes in Math., vol. 347, Springer-Verlag, Berlin, 1973 | DOI

[CP22] F. Chapoton & V. Pilaud - “Shuffles of deformed permutahedra, multiplihedra, constrainahedra, and biassociahedra”, 2022 | arXiv

[CZ12] C. Ceballos & G. M. Ziegler - “Realizing the associahedron: mysteries and questions”, in Associahedra, Tamari lattices and related structures, Progress in Math., vol. 299, Birkhäuser/Springer, Basel, 2012, p. 119-127 | DOI | MR | Zbl

[DF08] S. Devadoss & S. Forcey - “Marked tubes and the graph multiplihedron”, Algebraic Geom. Topol. 8 (2008) no. 4, p. 2081-2108 | DOI | MR | Zbl

[Dok11] J. S. Doker - Geometry of generalized permutohedra, Ph. D. Thesis, University of California, Berkeley, 2011

[DSV22] V. Dotsenko, S. Shadrin & B. Vallette - Maurer-Cartan methods in deformation theory: the twisting procedure, Cambridge University Press, 2022, to appear

[EML53] S. Eilenberg & S. Mac Lane - “On the groups of H(Π,n). I”, Ann. of Math. (2) 58 (1953), p. 55-106 | DOI

[FMMS21] G. Friedman, A. M. Medina-Mardones & D. Sinha - “Flowing from intersection product to cup product”, 2021 | arXiv

[FOOO09] K. Fukaya, Y.-G. Oh, H. Ohta & K. Ono - Lagrangian intersection Floer theory: anomaly and obstruction. Parts I & II, AMS/IP Studies in Advanced Math., vol. 46, American Mathematical Society, Providence, RI, 2009 | DOI

[For08] S. Forcey - “Convex hull realizations of the multiplihedra”, Topology Appl. 156 (2008) no. 2, p. 326-347 | DOI | MR | Zbl

[Fra07] M. Frankland - “Théorème de Künneth en homologie de Morse”, Ann. Sci. Math. Québec 31 (2007), p. 31-39 | MR | Zbl

[FS97] W. Fulton & B. Sturmfels - “Intersection theory on toric varieties”, Topology 36 (1997), p. 335-353 | DOI | MR | Zbl

[Fuk10] K. Fukaya - “Cyclic symmetry and adic convergence in Lagrangian Floer theory”, Kyoto J. Math. 50 (2010) no. 3, p. 521-590 | DOI | MR | Zbl

[Fuk17] K. Fukaya - “Unobstructed immersed Lagrangian correspondence and filtered A functor”, 2017 | arXiv

[HM12] J. Hirsh & J. Millès - “Curved Koszul duality theory”, Math. Ann. 354 (2012) no. 4, p. 1465-1520 | DOI | MR | Zbl

[LA22] G. Laplante-Anfossi - “The diagonal of the operahedra”, Adv. Math. 405 (2022), article ID 108494, 50 pages | DOI | MR | Zbl

[LH03] K. Lefèvre-Hasegawa - Sur les A -catégories, Ph. D. Thesis, Université Paris 7, UFR de Mathématiques, 2003

[Lod04] J.-L. Loday - “Realization of the Stasheff polytope”, Arch. Math. (Basel) 83 (2004) no. 3, p. 267-278 | DOI | MR | Zbl

[LOT20] R. Lipshitz, P. Ozsváth & D. P. Thurston - “Diagonals and A-infinity tensor products”, 2020 | arXiv

[LV12] J.-L. Loday & B. Vallette - Algebraic operads, Grundlehren Math. Wiss., vol. 346, Springer-Verlag, Berlin, 2012 | DOI

[May72] J. P. May - The geometry of iterated loop spaces, Lect. Notes in Math., vol. 271, Springer-Verlag, Berlin, 1972 | DOI

[Maz21a] T. Mazuir - “Higher algebra of A and ΩBAs-algebras in Morse theory. I”, 2021 | arXiv

[Maz21b] T. Mazuir - “Higher algebra of A and ΩBAs-algebras in Morse theory. II”, 2021 | arXiv

[MS06] M. Markl & S. Shnider - “Associahedra, cellular W-construction and products of A -algebras”, Trans. Amer. Math. Soc. 358 (2006) no. 6, p. 2353-2372 | DOI | MR | Zbl

[MSS02] M. Markl, S. Shnider & J. D. Stasheff - Operads in algebra, topology and physics, Math. Surveys and Monographs, vol. 96, American Mathematical Society, Providence, RI, 2002 | DOI

[MT14] F. Muro & A. Tonks - “Unital associahedra”, Forum Math. 26 (2014) no. 2, p. 593-620 | DOI | MR | Zbl

[MTTV21] N. Masuda, H. Thomas, A. Tonks & B. Vallette - “The diagonal of the associahedra”, J. Éc. polytech. Math. 8 (2021), p. 121-146 | DOI | Numdam | MR | Zbl

[MW10] S. Ma’u & C. Woodward - “Geometric realizations of the multiplihedra”, Compositio Math. 146 (2010) no. 4, p. 1002-1028 | DOI | MR | Zbl

[MWW18] S. Ma’u, K. Wehrheim & C. Woodward - “A functors for Lagrangian correspondences”, Selecta Math. (N.S.) 24 (2018) no. 3, p. 1913-2002 | DOI | MR | Zbl

[OEI22] OEIS - “The on-line encyclopedia of integer sequences”, 2022, http://oeis.org

[Pol20] D. Poliakova - “Cellular chains on freehedra and operadic pairs”, 2020 | arXiv

[Pos09] A. Postnikov - “Permutohedra, associahedra, and beyond”, Internat. Math. Res. Notices (2009) no. 6, p. 1026-1106 | DOI | MR | Zbl

[Pro86] A. Prouté - A -structures, modèle minimal de Baues-Lemaire et homologie des fibrations, Ph. D. Thesis, Université Paris 7, UFR de Mathématiques, 1986

[RNW19a] D. Robert-Nicoud & F. Wierstra - “Convolution algebras and the deformation theory of infinity-morphisms”, Homology Homotopy Appl. 21 (2019), p. 351-373 | DOI | MR

[RNW19b] D. Robert-Nicoud & F. Wierstra - “Homotopy morphisms between convolution homotopy Lie algebras”, J. Noncommut. Geom. 13 (2019), p. 1435-1462 | DOI | MR | Zbl

[Sei08] P. Seidel - Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Math., European Mathematical Society, Zürich, 2008 | DOI

[Ser51] J.-P. Serre - “Homologie singulière des espaces fibrés. Applications”, Ann. of Math. (2) 54 (1951), p. 425-505 | DOI | Zbl

[Smi15] I. Smith - “A symplectic prolegomenon”, Bull. Amer. Math. Soc. (N.S.) 52 (2015) no. 3, p. 415-464 | DOI | MR | Zbl

[Sta63] J. D. Stasheff - “Homotopy associativity of H-spaces. I, II”, Trans. Amer. Math. Soc. 108 (1963), p. 275-292 & 293–312 | DOI | MR | Zbl

[Sta70] J. D. Stasheff - H-spaces from a homotopy point of view, Lect. Notes in Math., vol. 161, Springer-Verlag, Berlin, 1970 | DOI

[SU04] S. Saneblidze & R. Umble - “Diagonals on the permutahedra, multiplihedra and associahedra”, Homology Homotopy Appl. 6 (2004) no. 1, p. 363-411 | DOI | MR | Zbl

[SU22] S. Saneblidze & R. Umble - “Comparing diagonals on the associahedra”, 2022 | arXiv

[Tho18] R. G. Thorngren - Combinatorial topology and applications to quantum field theory, Ph. D. Thesis, UC Berkeley, 2018, Available online at https://escholarship.org/uc/item/7r44w49f

[Val20] B. Vallette - “Homotopy theory of homotopy algebras”, Ann. Inst. Fourier (Grenoble) 70 (2020) no. 2, p. 683-738 | DOI | Numdam | MR | Zbl

[Yau16] D. Yau - Colored operads, Graduate Studies in Math., vol. 170, American Mathematical Society, Providence, RI, 2016 | DOI

[Zie95] G. M. Ziegler - Lectures on polytopes, Graduate Texts in Math., vol. 152, Springer-Verlag, New York, 1995 | DOI

Cité par Sources :