Spectral correspondences for rank one locally symmetric spaces: the case of exceptional parameters
[Correspondances spectrales pour les espaces localement symétriques de rang 1 : le cas des paramètres exceptionnels]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 335-403.

Dans cet article, nous complétons le programme sur la correspondance entre le spectre du laplacien des espaces localement symétriques compacts de rang 1 et la première bande de résonances de Ruelle-Pollicott de leur flot géodésique sur le fibré en sphères. Ce programme a débuté dans [FF03] par Flaminio et Forni pour les surfaces hyperboliques, poursuivi dans [DFG15] pour les espaces hyperboliques réels et dans [GHW21] pour les espaces généraux de rang 1. À l’exception du cas des surfaces hyperboliques (voir aussi [GHW18]), un ensemble dénombrable de paramètres spectraux exceptionnels n’a pas été traité, la raison étant que les transformées de Poisson correspondantes ne sont ni injectives ni surjectives. Nous utilisons des transformées de Poisson à valeurs vectorielles pour traiter ces paramètres spectraux exceptionnels. Pour les surfaces, les paramètres spectraux exceptionnels conduisent à des représentations en série discrète de SL(2,) (voir [FF03, GHW18]). En général, les représentations que l’on obtient s’avèrent être les représentations en série discrète relatives pour les espaces symétriques non riemanniens associés.

In this paper we complete the program of relating the Laplace spectrum for rank one compact locally symmetric spaces with the first band Ruelle-Pollicott resonances of the geodesic flow on its sphere bundle. This program was started in [FF03] by Flaminio and Forni for hyperbolic surfaces, continued in [DFG15] for real hyperbolic spaces and in [GHW21] for general rank one spaces. Except for the case of hyperbolic surfaces (see also [GHW18]) a countable set of exceptional spectral parameters always remained untreated since the corresponding Poisson transforms are neither injective nor surjective. We use vector valued Poisson transforms to treat also the exceptional spectral parameters. For surfaces the exceptional spectral parameters lead to discrete series representations of SL(2,) (see [FF03, GHW18]). In general, the resulting representations turn out to be the relative discrete series representations for associated non-Riemannian symmetric spaces.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.220
Classification : 22E46, 22E40, 37C30, 37C79, 37D40
Keywords: Ruelle resonances, Poisson transforms, locally symmetric spaces, principal series representations
Mot clés : Résonances de Ruelle, transformées de Poisson, espaces localement symétriques, représentations en série principale
Christian Arends 1 ; Joachim Hilgert 1

1 Institut für Mathematik, Universität Paderborn Warburger Str. 100, 33098 Paderborn, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__335_0,
     author = {Christian Arends and Joachim Hilgert},
     title = {Spectral correspondences for rank one locally symmetric spaces: the case of exceptional parameters},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {335--403},
     publisher = {\'Ecole polytechnique},
     volume = {10},
     year = {2023},
     doi = {10.5802/jep.220},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.220/}
}
TY  - JOUR
AU  - Christian Arends
AU  - Joachim Hilgert
TI  - Spectral correspondences for rank one locally symmetric spaces: the case of exceptional parameters
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 335
EP  - 403
VL  - 10
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.220/
DO  - 10.5802/jep.220
LA  - en
ID  - JEP_2023__10__335_0
ER  - 
%0 Journal Article
%A Christian Arends
%A Joachim Hilgert
%T Spectral correspondences for rank one locally symmetric spaces: the case of exceptional parameters
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 335-403
%V 10
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.220/
%R 10.5802/jep.220
%G en
%F JEP_2023__10__335_0
Christian Arends; Joachim Hilgert. Spectral correspondences for rank one locally symmetric spaces: the case of exceptional parameters. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 335-403. doi : 10.5802/jep.220. https://jep.centre-mersenne.org/articles/10.5802/jep.220/

[Bal79] M. W. Baldoni Silva - “Branching theorems for semisimple Lie groups of real rank one”, Rend. Sem. Mat. Univ. Padova 61 (1979), p. 229-250 | Numdam | MR | Zbl

[Bou02] N. Bourbaki - Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics, Springer-Verlag, Berlin, 2002 | DOI

[BÓØ96] T. Branson, G. Ólafsson & B. Ørsted - “Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup”, J. Funct. Anal. 135 (1996), p. 163-205 | DOI | MR | Zbl

[CHM00] W. Casselman, H. Hecht & D. Miličić - “Bruhat filtrations and Whittaker vectors for real groups”, in The mathematical legacy of Harish-Chandra (Baltimore, MD, 1998), Proc. Sympos. Pure Math., vol. 68, American Mathematical Society, Providence, RI, 2000, p. 151-190 | DOI | MR | Zbl

[Col85] D. H. Collingwood - Representations of rank one Lie groups, Research Notes in Math., vol. 137, Pitman, Boston, MA, 1985

[DFG15] S. Dyatlov, F. Faure & C. Guillarmou - “Power spectrum of the geodesic flow on hyperbolic manifolds”, Anal. PDE 8 (2015), p. 923-1000 | DOI | MR | Zbl

[DGK88] K. M. Davis, J. E. Gilbert & R. A. Kunze - “Invariant differential operators in harmonic analysis on real hyperbolic space”, in Miniconferences on harmonic analysis and operator algebras (Canberra, 1987), Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 16, Austral. Nat. Univ., Canberra, 1988, p. 79-91 | MR | Zbl

[DH05] A. Deitmar & J. Hilgert - “Cohomology of arithmetic groups with infinite dimensional coefficient spaces”, Doc. Math. 10 (2005), p. 199-216 | DOI | MR | Zbl

[Die70] J. Dieudonné - Treatise on analysis. Vol. II, Pure and Applied Math., vol. 10-II, Academic Press, New York-London, 1970

[Far79] J. Faraut - “Distributions sphériques sur les espaces hyperboliques”, J. Math. Pures Appl. (9) 58 (1979), p. 369-444 | Zbl

[FF03] L. Flaminio & G. Forni - “Invariant distributions and time averages for horocycle flows”, Duke Math. J. 119 (2003), p. 465-526 | DOI | MR | Zbl

[FS97] J. Fuchs & C. Schweigert - Symmetries, Lie algebras and representations, Cambridge Monographs on Math. Physics, Cambridge University Press, Cambridge, 1997

[Gai88] P.-Y. Gaillard - “Eigenforms of the Laplacian on real and complex hyperbolic spaces”, J. Funct. Anal. 78 (1988), p. 99-115 | DOI | MR | Zbl

[GBW22] Y. Guedes Bonthonneau & T. Weich - “Ruelle-Pollicott resonances for manifolds with hyperbolic cusps”, J. Eur. Math. Soc. (JEMS) 24 (2022), p. 851-923 | DOI | MR | Zbl

[GGPS69] I. M. Gelfand, M. I. Graev & I. I. Pyatetskii-Shapiro - Representation theory and automorphic functions, W. B. Saunders Co., Philadelphia, Pa.-London-Toronto, Ont., 1969

[GHW18] C. Guillarmou, J. Hilgert & T. Weich - “Classical and quantum resonances for hyperbolic surfaces”, Math. Ann. 370 (2018), p. 1231-1275 | DOI | MR | Zbl

[GHW21] C. Guillarmou, J. Hilgert & T. Weich - “High frequency limits for invariant Ruelle densities”, Ann. H. Lebesgue 4 (2021), p. 81-119 | DOI | Numdam | MR | Zbl

[Had20] C. Hadfield - “Ruelle and quantum resonances for open hyperbolic manifolds”, Internat. Math. Res. Notices (2020), p. 1445-1480 | DOI | MR | Zbl

[HC66] Harish-Chandra - “Discrete series for semisimple Lie groups. II. Explicit determination of the characters”, Acta Math. 116 (1966), p. 1-111 | DOI | MR | Zbl

[Hel70] S. Helgason - “A duality for symmetric spaces with applications to group representations”, Advances in Math. 5 (1970), p. 1-154 | DOI | MR | Zbl

[Hel94] S. Helgason - Geometric analysis on symmetric spaces, Math. Surveys and Monographs, vol. 39, American Mathematical Society, Providence, RI, 1994 | DOI

[Hel00] S. Helgason - Groups and geometric analysis, Math. Surveys and Monographs, vol. 83, American Mathematical Society, Providence, RI, 2000 | DOI

[HWW23] J. Hilgert, T. Weich & L. L. Wolf - “Higher rank quantum-classical correspondence”, Anal. PDE (2023), to appear

[Hör90] L. Hörmander - The analysis of linear partial differential operators I, Grundlehren Math. Wiss., vol. 256, Springer-Verlag, Berlin, 1990 | DOI

[Joh76] K. D. Johnson - “Composition series and intertwining operators for the spherical principal series. II”, Trans. Amer. Math. Soc. 215 (1976), p. 269-283 | DOI | MR | Zbl

[JW77] K. D. Johnson & N. R. Wallach - “Composition series and intertwining operators for the spherical principal series. I”, Trans. Amer. Math. Soc. 229 (1977), p. 137-173 | DOI | MR | Zbl

[Kna86] A. W. Knapp - Representation theory of semisimple groups, An overview based on examples, Princeton Math. Series, vol. 36, Princeton University Press, Princeton, NJ, 1986 | DOI

[Kna02] A. W. Knapp - Lie groups beyond an introduction, Progress in Math., vol. 140, Birkhäuser Boston, Inc., Boston, MA, 2002

[Kos83] M. T. Kosters - Spherical distributions on rank one symmetric spaces, Ph. D. Thesis, University of Leiden, 1983

[Kra78] H. Kraljević - “A note on nonunitary principal series representations”, Proc. Amer. Math. Soc. 70 (1978), p. 213-216 | DOI | MR | Zbl

[KV95] A. W. Knapp & D. A. Vogan - Cohomological induction and unitary representations, Princeton Math. Series, vol. 45, Princeton University Press, Princeton, NJ, 1995 | DOI

[KW20] B. Küster & T. Weich - “Pollicott-Ruelle resonant states and Betti numbers”, Comm. Math. Phys. 378 (2020), p. 917-941 | DOI | MR | Zbl

[KW21] B. Küster & T. Weich - “Quantum-classical correspondence on associated vector bundles over locally symmetric spaces”, Internat. Math. Res. Notices (2021), p. 8225-8296 | DOI | Zbl

[KZ82] A. W. Knapp & G. J. Zuckerman - “Classification of irreducible tempered representations of semisimple groups”, Ann. of Math. (2) 116 (1982) no. 3, p. 457-501, Correction: Ibid. 119 (1984), no. 3, p. 639 | DOI | MR

[LZ01] J. Lewis & D. Zagier - “Period functions for Maass wave forms I”, Ann. of Math. (2) 153 (2001), p. 191-258 | DOI | MR | Zbl

[Mea89] C. Meaney - “Cauchy-Szegő maps, invariant differential operators and some representations of SU(n+1,1), Trans. Amer. Math. Soc. 313 (1989), p. 161-186 | DOI | Zbl

[Min92] K. Minemura - “Invariant differential operators and spherical sections on a homogeneous vector bundle”, Tokyo J. Math. 15 (1992) no. 1, p. 231-245 | DOI | MR | Zbl

[Müh06] T. Mühlenbruch - “Hecke operators on period functions for Γ 0 (n), J. Number Theory 118 (2006), p. 208-235 | DOI | MR | Zbl

[Olb94] M. Olbrich - Die Poisson-Transformation für homogene Vektorbündel, Ph. D. Thesis, HU Berlin, 1994

[Poh12] A. D. Pohl - “A dynamical approach to Maass cusp forms”, J. Modern Dyn. 6 (2012), p. 563-596 | DOI | MR | Zbl

[Sch84] H. Schlichtkrull - Hyperfunctions and harmonic analysis on symmetric spaces, Progress in Math., vol. 49, Birkhäuser Boston, Inc., Boston, MA, 1984 | DOI

[TW89] Y. L. Tong & S. P. Wang - “Geometric realization of discrete series for semisimple symmetric spaces”, Invent. Math. 96 (1989), p. 425-458 | DOI | MR | Zbl

[vdBS87] E. P. van den Ban & H. Schlichtkrull - “Asymptotic expansions and boundary values of eigenfunctions on Riemannian symmetric spaces”, J. reine angew. Math. 380 (1987), p. 108-165 | MR | Zbl

[Vog79] D. A. Vogan - “The algebraic structure of the representation of semisimple Lie groups. I”, Ann. of Math. (2) 109 (1979), p. 1-60 | DOI | MR | Zbl

[Vog08] D. A. Vogan - “Unitary representations and complex analysis”, in Representation theory and complex analysis, Lect. Notes in Math., vol. 1931, Springer, Berlin, 2008, p. 259-344 | DOI | MR | Zbl

[Wal88] N. R. Wallach - Real reductive groups. I, Pure and Applied Math., vol. 132, Academic Press, Inc., Boston, MA, 1988

[Wal92] N. R. Wallach - Real reductive groups. II, Pure and Applied Math., vol. 132, Academic Press, Inc., Boston, MA, 1992

[War72] G. Warner - Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York-Heidelberg, 1972

[Zuc78] G. J. Zuckerman - “Continuous cohomology and unitary representations of real reductive groups”, Ann. of Math. (2) 107 (1978), p. 495-516 | DOI | MR | Zbl

[Ørs00] B. Ørsted - “Generalized gradients and Poisson transforms”, in Global analysis and harmonic analysis (Marseille-Luminy, 1999), Sémin. Congr., vol. 4, Société Mathématique de France, Paris, 2000, p. 235-249 | MR | Zbl

Cité par Sources :