Potentially semi-stable deformation rings for discrete series extended types
Journal de l’École polytechnique — Mathématiques, Volume 2 (2015), pp. 179-211.

We define deformation rings for potentially semi-stable deformations of fixed discrete series extended type in dimension 2. In the case of representations of the Galois group of p , we prove an analogue of the Breuil-Mézard conjecture for these rings. As an application, we give some results on the existence of congruences modulo p for newforms in S k (Γ 0 (p)).

Nous définissons des anneaux de déformations pour les déformations potentiellement semi-stables ayant un type étendu de la série discrète fixé en dimension 2. Dans le cas des représentations du groupe de Galois de p , nous prouvons un analogue de la conjecture de Breuil-Mézard pour ces anneaux. Nous donnons comme application de ceci des résultats sur l’existence de congruences modulo p pour les formes nouvelles dans S k (Γ 0 (p)).

Received:
Accepted:
DOI: 10.5802/jep.22
Classification: 11F80, 11F33
Keywords: Galois representations, deformation rings, Breuil-Mézard conjecture
Mot clés : Représentations galoisiennes, anneaux de déformations, conjecture de Breuil-Mézard

Sandra Rozensztajn 1

1 UMPA, ÉNS de Lyon, UMR 5669 du CNRS 46, allée d’Italie, 69364 Lyon Cedex 07, France
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2015__2__179_0,
     author = {Sandra Rozensztajn},
     title = {Potentially semi-stable deformation rings for discrete series extended types},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {179--211},
     publisher = {\'Ecole polytechnique},
     volume = {2},
     year = {2015},
     doi = {10.5802/jep.22},
     mrnumber = {3411395},
     zbl = {1330.11039},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.22/}
}
TY  - JOUR
AU  - Sandra Rozensztajn
TI  - Potentially semi-stable deformation rings for discrete series extended types
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2015
SP  - 179
EP  - 211
VL  - 2
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.22/
DO  - 10.5802/jep.22
LA  - en
ID  - JEP_2015__2__179_0
ER  - 
%0 Journal Article
%A Sandra Rozensztajn
%T Potentially semi-stable deformation rings for discrete series extended types
%J Journal de l’École polytechnique — Mathématiques
%D 2015
%P 179-211
%V 2
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.22/
%R 10.5802/jep.22
%G en
%F JEP_2015__2__179_0
Sandra Rozensztajn. Potentially semi-stable deformation rings for discrete series extended types. Journal de l’École polytechnique — Mathématiques, Volume 2 (2015), pp. 179-211. doi : 10.5802/jep.22. https://jep.centre-mersenne.org/articles/10.5802/jep.22/

[AB07] S. Ahlgren & M. Barcau - “Congruences for modular forms of weights two and four”, J. Number Theory 126 (2007) no. 2, p. 193-199 | DOI | MR | Zbl

[All14] P. Allen - “Deformations of polarized automorphic Galois representations and adjoint Selmer groups” (2014), arXiv:1411.7661

[BC08] L. Berger & P. Colmez - “Familles de représentations de de Rham et monodromie p-adique”, in Représentations p-adiques de groupes p-adiques. I. Représentations galoisiennes et (φ,Γ)-modules, Astérisque, vol. 319, Société Mathématique de France, Paris, 2008, p. 303-337 | Zbl

[BCDT01] C. Breuil, B. Conrad, F. Diamond & R. Taylor - “On the modularity of elliptic curves over : wild 3-adic exercises”, J. Amer. Math. Soc. 14 (2001) no. 4, p. 843-939 | DOI | MR | Zbl

[BD14] C. Breuil & F. Diamond - “Formes modulaires de Hilbert modulo p et valeurs d’extensions entre caractères galoisiens”, Ann. Sci. École Norm. Sup. (4) 47 (2014) no. 5, p. 905-974 | DOI | Zbl

[BH06] C. J. Bushnell & G. Henniart - The local Langlands conjecture for GL (2), Grundlehren der Mathematischen Wissenschaften, vol. 335, Springer-Verlag, Berlin, 2006 | DOI | MR

[BM02] C. Breuil & A. Mézard - “Multiplicités modulaires et représentations de GL 2 ( p ) et de Gal ( ¯ p / p ) en =p, Duke Math. J. 115 (2002) no. 2, p. 205-310, with an appendix by G. Henniart | DOI

[BP11] M. Barcau & V. Paşol - “mod p congruences for cusp forms of weight four for Γ 0 (pN), Int. J. Number Theory 7 (2011) no. 2, p. 341-350 | DOI

[CDT99] B. Conrad, F. Diamond & R. Taylor - “Modularity of certain potentially Barsotti-Tate Galois representations”, J. Amer. Math. Soc. 12 (1999) no. 2, p. 521-567 | DOI | MR | Zbl

[CS04] F. Calegari & W. A. Stein - “Conjectures about discriminants of Hecke algebras of prime level”, in Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 3076, Springer, Berlin, 2004, p. 140-152 | DOI | MR | Zbl

[DDT97] H. Darmon, F. Diamond & R. Taylor - “Fermat’s last theorem”, in Elliptic curves, modular forms & Fermat’s last theorem (Hong Kong, 1993), Int. Press, Cambridge, MA, 1997, p. 2-140 | Zbl

[EG14] M. Emerton & T. Gee - “A geometric perspective on the Breuil-Mézard conjecture”, J. Inst. Math. Jussieu 13 (2014) no. 1, p. 183-223 | DOI | Zbl

[Fon94a] J.-M. Fontaine - “Représentations -adiques potentiellement semi-stables”, in Périodes p-adiques (Bures-sur-Yvette, 1988), Astérisque, vol. 223, Société Mathématique de France, Paris, 1994, p. 321-347 | Zbl

[Fon94b] J.-M. Fontaine - “Représentations p-adiques semi-stables”, in Périodes p-adiques (Bures-sur-Yvette, 1988), Astérisque, vol. 223, Société Mathématique de France, Paris, 1994, p. 113-184, with an appendix by P. Colmez | Zbl

[Gee11] T. Gee - “Automorphic lifts of prescribed types”, Math. Ann. 350 (2011) no. 1, p. 107-144 | DOI | MR | Zbl

[GG15] T. Gee & G. Geraghty - “The Breuil-Mézard conjecture for quaternion algebras”, Ann. Inst. Fourier (Grenoble) 65 (2015) no. 1, p. 1557-1575

[GK14] T. Gee & M. Kisin - “The Breuil-Mézard conjecture for potentially Barsotti-Tate representations”, Forum Math. Pi 2 (2014), e1, 56 pages | DOI | Numdam | Zbl

[GM09] E. Ghate & A. Mézard - “Filtered modules with coefficients”, Trans. Amer. Math. Soc. 361 (2009) no. 5, p. 2243-2261 | DOI | Zbl

[GS11] T. Gee & D. Savitt - “Serre weights for quaternion algebras”, Compositio Math. 147 (2011) no. 4, p. 1059-1086 | DOI | MR | Zbl

[Gér78] P. Gérardin - “Facteurs locaux des algèbres simples de rang 4. I”, in Reductive groups and automorphic forms, I (Paris, 1976/1977), Publ. Math. Univ. Paris VII, vol. 1, Univ. Paris VII, Paris, 1978, p. 37-77 | DOI | MR | Zbl

[HT01] M. Harris & R. Taylor - The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001, with an appendix by V. G. Berkovich | MR | Zbl

[HT15] Y. Hu & F. Tan - “The Breuil-Mézard conjecture for non-scalar split residual representations” (2015), to appear in Ann. Scient. de l’E.N.S. 48, no. 6, arXiv:1309.1658 | Zbl

[Ima11] N. Imai - “Filtered modules corresponding to potentially semi-stable representations”, J. Number Theory 131 (2011) no. 2, p. 239-259 | DOI | MR | Zbl

[Kha01] C. Khare - “A local analysis of congruences in the (p,p) case. II”, Invent. Math. 143 (2001) no. 1, p. 129-155 | DOI | MR | Zbl

[Kis08] M. Kisin - “Potentially semi-stable deformation rings”, J. Amer. Math. Soc. 21 (2008) no. 2, p. 513-546 | DOI | MR | Zbl

[Kis09a] M. Kisin - “The Fontaine-Mazur conjecture for GL 2 , J. Amer. Math. Soc. 22 (2009) no. 3, p. 641-690 | DOI | MR | Zbl

[Kis09b] M. Kisin - “Moduli of finite flat group schemes, and modularity”, Ann. of Math. (2) 170 (2009) no. 3, p. 1085-1180 | DOI | MR | Zbl

[Mat89] H. Matsumura - Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989 | MR

[Paš15] V. Paškūnas - “On the Breuil-Mézard conjecture”, Duke Math. J. 164 (2015) no. 2, p. 297-359 | DOI | MR | Zbl

[Sai09] T. Saito - “Hilbert modular forms and p-adic Hodge theory”, Compositio Math. 145 (2009) no. 5, p. 1081-1113 | DOI | MR | Zbl

[Tay89] R. Taylor - “On Galois representations associated to Hilbert modular forms”, Invent. Math. 98 (1989) no. 2, p. 265-280 | DOI | MR

[Tay06] R. Taylor - “On the meromorphic continuation of degree two L-functions”, Doc. Math. (2006), p. 729-779, Extra Vol. | DOI | MR | Zbl

[Tok15] K. Tokimoto - “On the reduction modulo p of representations of a quaternion division algebra over a p-adic field”, J. Number Theory 150 (2015), p. 136-167 | DOI | MR | Zbl

Cited by Sources: