
Sandra Rozensztajn
Potentially semi-stable deformation rings for discrete series extended types
Tome 2 (2015), p. 179-211.

<http://jep.cedram.org/item?id=JEP_2015__2__179_0>

© Les auteurs, 2015.
Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence
CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE.
http://creativecommons.org/licenses/by-nd/3.0/fr/

L’accès aux articles de la revue « Journal de l’École polytechnique — Mathématiques »
(http://jep.cedram.org/), implique l’accord avec les conditions générales d’utilisation
(http://jep.cedram.org/legal/).

Publié avec le soutien
du Centre National de la Recherche Scientifique

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://jep.cedram.org/item?id=JEP_2015__2__179_0
http://creativecommons.org/licenses/by-nd/3.0/fr/
http://jep.cedram.org/
http://jep.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Tome 2, 2015, p. 179–211 DOI: 10.5802/jep.22

POTENTIALLY SEMI-STABLE DEFORMATION RINGS

FOR DISCRETE SERIES EXTENDED TYPES

by Sandra Rozensztajn

Abstract. — We define deformation rings for potentially semi-stable deformations of fixed
discrete series extended type in dimension 2. In the case of representations of the Galois group
of Qp, we prove an analogue of the Breuil-Mézard conjecture for these rings. As an application,
we give some results on the existence of congruences modulo p for newforms in Sk(Γ0(p)).

Résumé (Anneaux de déformations potentiellement semi-stables pour les types étendus de la
série discrète)

Nous définissons des anneaux de déformations pour les déformations potentiellement semi-
stables ayant un type étendu de la série discrète fixé en dimension 2. Dans le cas des représenta-
tions du groupe de Galois de Qp, nous prouvons un analogue de la conjecture de Breuil-Mézard
pour ces anneaux. Nous donnons comme application de ceci des résultats sur l’existence de
congruences modulo p pour les formes nouvelles dans Sk(Γ0(p)).
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1. Introduction

Let p > 2 be a prime number, K a finite extension of Qp with absolute Galois
group GK . Let ρ be a continuous representation of GK of dimension 2 with coef-
ficients in some finite field F of characteristic p. Let E be a finite extension of Qp
with residue field containing F. There exists an OE-algebra R�(ρ) parametrizing the
framed deformations of ρ to OE-algebras. Kisin ([Kis08]) has shown that this ring has
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180 S. Rozensztajn

quotients R�,ψ(w, t, ρ) that parametrize framed deformations ρ that are potentially
semi-stable of given determinant (encoded by ψ), fixed Hodge-Tate weights (encoded
by the Hodge-Tate type w) and fixed inertial type t (that is, the restriction to inertia
of the Weil-Deligne representation WD(ρ) associated to ρ is isomorphic to a fixed
smooth representation t). We are interested in a variant of this situation: instead of
considering deformations with a fixed inertial type t, we consider deformations with
a fixed extended type t′, that is, such that the restriction to the Weil group of WD(ρ)

is isomorphic to t′, in the case when t′ is a discrete series type (see the definition
in Section 2.1). This problem was first considered in [BCDT01], in order to isolate
some irreducible components of the deformation space parametrizing deformations
with fixed inertial type. For a discrete series inertial type t, we show that the ring
R�,ψ(w, t′, ρ) parametrizing deformations with fixed discrete series extended type t′
extending t is the maximal reduced quotient of R�,ψ(w, t, ρ) supported in some set of
irreducible components of SpecR�,ψ(w, t, ρ). More precisely, depending on t, adding
the extra data of a t′ either does not give any additional information, or divides the
set of irreducible components in two parts.

Some important information about the geometry of the rings R�,ψ(w, t, ρ) is given
by the Breuil-Mézard conjecture ([BM02], proved for K = Qp by Kisin [Kis09a] and
Paškūnas [Paš15]) that relates the Hilbert-Samuel multiplicity of the special fiber of
the ring to an automorphic multiplicity, computed in terms of smooth representations
modulo p of GL2(OK) attached to w and t. Our main result is that when K = Qp
there is a similar formula for the Hilbert-Samuel multiplicity of the special fiber of
R�,ψ(w, t′, ρ) for a discrete series extended type t′. More precisely, Gee and Geraghty
have shown in [GG15] that for discrete series inertial types t, the Breuil-Mézard
conjecture can be reformulated using an automorphic multiplicity expressed in terms
of representations not of GL2(OK), but of O×D , where OD is the ring of integers of the
non-split quaternion algebra D over K. The formula we give for the multiplicity of
the special fiber of R�,ψ(w, t′, ρ) is in terms of representations of a quotient G of D×
containing O×D as a subgroup of index 2. Using the local Langlands correspondence and
the Jacquet-Langlands correspondence, we construct for each discrete series inertial
type t a smooth representation σG (t) of G with coefficients in Qp (or a pair of
such representations, depending on the inertial type t). To a Hodge-Tate type w
we attach a representation σw of G coming from an algebraic representation of GL2

with highest weight given by w. The Hilbert-Samuel multiplicity is then given in
terms of the multiplicity of the irreducible constituents of the reduction modulo p of
σG (t)⊗ σw, seen as representations of a finite group Γ through which all semi-simple
representations modulo p of G factor. For K = Qp we have the following theorem (see
Theorem 3.5.1 for a more precise statement).

Theorem. — Let ρ be a continuous representation of GQp of dimension 2 with coef-
ficients in Fp. There exists a positive linear form µρ on the Grothendieck ring of
representations of Γ with values in Z satisfying the following property: for any discrete
series inertial type t, Hodge-Tate type w, character ψ lifting ω−1 det ρ, and extended
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Discrete series extended types 181

type t′ compatible with (t, ψ), there exists a choice of representation σG (t) of G such
that we have:

e(R�,ψ(w, t′, ρ)/π) = µρ([σG (t)⊗ σw]).

We deduce our result from the reformulation by [GG15] of the usual Breuil-Mézard
conjecture, making use of modularity lifting theorems for modular forms on a quater-
nion algebra ramified at infinity and at primes dividing p.

One consequence of this formula is Corollary 3.5.9: except when ρ has some very
specific form, then when the addition of the data of the extended types divides the
deformation ring in two parts, these parts have the same multiplicity. This is to be
expected when ρ is irreducible, as in this case it can easily be seen that the deformation
rings corresponding to the two extended types are in fact isomorphic (see Remark
2.3.5). But this is much more surprising when ρ is reducible, as in this case there does
not seem to be a natural way to relate the deformation rings corresponding to the
two extended types.

We give a concrete application of our result to the existence of congruences mod-
ulo p for some modular forms. When t is trivial, the ring R�,ψ(w, t, ρ) classifies
semi-stable representations, and the extra data given by the extended type is the
eigenvalues of the Frobenius of the associated filtered (φ,N)-module when the repre-
sentation is not crystalline (there are only two possibilities for these eigenvalues if the
determinant is fixed). If f ∈ Sk(Γ0(p)) is a newform, this means that the extended
type of ρf,p|GQp

gives the value of the coefficient ap(f) = ±pk/2−1. We give in The-
orem 6.2.1 a criterion for the existence of a newform in Sk(Γ0(p)) that is congruent
to f modulo p but with the opposite value for ap.

1.1. Plan of the article. — We define the deformation rings R�,ψ(w, t′, ρ) for dis-
crete series extended types in Section 2. In Section 3 we introduce the groups and
representations that play a role in the automorphic side for the formula for the Hilbert-
Samuel multiplicity of the special fiber of the rings R�,ψ(w, t′, ρ) and state our main
theorems. We give in Section 4 some results about modular forms for quaternion al-
gebras ramified at infinity and at primes dividing p that we need in Section 5, where
we prove the theorems. Section 6 is devoted to the application to modular forms.

1.2. Notation. — We fix a prime number p > 2. We denote by K a finite extension
of Qp, and by q the cardinality of its residue field. Let GK be the absolute Galois
group of K, IK its inertia subgroup andWK its Weil group. We denote by ε the p-adic
cyclotomic character and ω its reduction modulo p. We normalize the Artin map of
local class field theory ArtK : K× → W ab

K so that geometric Frobenius elements
correspond to uniformizers. We denote by unr(a) the unramified character of WK

(or GK) sending a geometric Frobenius to a, and also the unramified character of K×
sending a uniformizer to a. We denote by ‖ · ‖ the norm on WK , that is, the character
unr(q−1).
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2. Discrete series extended types and deformation rings

2.1. Extended types and Weil-Deligne representations. — An inertial type is a
smooth representation t of IK over Qp that extends to a representation of WK .
We define an extended type to be a smooth representation of WK over Qp.

We recall the following well-known classification for inertial types and extended
types in dimension 2 when p > 2 (see for example [Ima11, Lem. 2.1] for a proof).

Lemma 2.1.1. — Let t be an extended type of degree 2. Then we are in exactly one of
the following situations:

(scal) t|IK is scalar: there exist two smooth characters χ, χ′ ofWK such that χ|IK =

χ′|IK and t = χ⊕ χ′.
(char) There exist two smooth characters χ1, χ2 of WK with distinct restrictions

to IK such that t = χ1 ⊕ χ2.
(red) Let K ′ be the unramified quadratic extension of K. There exists a smooth

character χ of WK′ that does not extend to a character of WK such that such that
t = indWK

WK′
χ. In this case t|IK is reducible and is a sum of characters that do not

extend to WK .
(irr) There exist a ramified quadratic extension L of K and a smooth character χ

of WL that does not extend to a character of WK such that t = indWK

WL
χ. In this

case t|IK is irreducible.

We call the inertial types corresponding to situation (scal), (red) or (irr) discrete
series inertial types. We call the extended types corresponding to situation (red) or
(irr), or to situation (scal) with χ′ = χ⊗ ‖ · ‖±1 discrete series extended types.

The following Proposition is an immediate consequence of the classification.

Proposition 2.1.2. — Let t1 and t2 be two discrete series extended types with iso-
morphic restrictions to IK . Then they differ by a twist by an unramified character.

Let t be a discrete series extended type. If it is of the form (scal) or (irr) then t

is not isomorphic to t ⊗ unr(−1). If t is of the form (red) then t is isomorphic to
t⊗ unr(−1).

Let t be a discrete series extended type. We call conjugate type of t the type
t⊗unr(−1). Two types with isomorphic restriction to IK are conjugate if and only if
they have the same determinant. When t is of the form (scal) or (irr), two conjugate
extended types are distinct, but they are isomorphic when t is of the form (red).

Let (r,N) be a Weil-Deligne representation of dimension 2, that is, a two-
dimensional smooth representation r of the Weil group WK and a nilpotent endo-
morphism N such that Nr(x) = ‖x‖−1r(x)N for any x ∈ WK . Let t be an inertial
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Discrete series extended types 183

type; we say that (r,N) is of inertial type t if r|IK is isomorphic to t. Let t′ be an
extended type; we say that (r,N) is of extended type t′ if r is isomorphic to t′.

We say that (r,N) is a discrete series Weil-Deligne representation if either r|IK is
of the form (scal) and N 6= 0 or r|IK is of the form (red) or (irr) (note that we can
have N 6= 0 only when r|IK is of the form (scal) and r is a twist of 1 ⊕ ‖ · ‖). With
this definition, discrete series inertial (resp. extended) types are exactly the restriction
to IK (resp. WK) of discrete series Weil-Deligne representations. See Section 3.1 for
a justification of this terminology.

2.2. Potentially semi-stable representations and discrete series extended types

2.2.1. Filtered (φ,N)-modules with descent data. — Let F be a finite extension of Qp,
F0 the maximal unramified extension of Qp contained in F . Let E be a finite extension
of Qp (the coefficient field), that we suppose large enough.

A filtered (φ,N, F,E)-module is a free F0 ⊗Qp E-module D of finite rank, en-
dowed with a F0-semi-linear, E-linear endomorphism φ and a F0 ⊗ E linear endo-
morphism N satisfying the commutation relation Nφ = pφN , with N nilpotent, φ
an automorphism, and a decreasing filtration of F ⊗F0

D by F ⊗Qp E-submodules
Fili(F ⊗F0 D) such that Fili(F ⊗F0 D) = F ⊗F0 D when i is small enough and
Fili(F ⊗F0 D) = 0 when i is large enough. We can define an admissibility condition
for filtered (φ,N, F,E)-modules, we refer to [Fon94b] for the definition.

Let ρ : GF → GL(V ) be a continuous representation, where V is a finite-
dimensional E-vector space. If ρ is semi-stable, we can attach to it an admissible
filtered (φ,N, F,E)-module by taking Dst(V ) = (Bst ⊗Qp V )GF . The functor
V 7→ Dst(V ) gives an equivalence of categories between the category of semi-stable
representations of GF and the category of admissible filtered (φ,N, F,E)-modules
which preserves dimension, and the Hodge-Tate weights of ρ are the indices i with
Fil−i(F ⊗F0 D) 6= Fil−i+1(F ⊗F0 D) (so that ε has its Hodge-Tate weights equal
to 1).

Suppose now that we have ρ : GK → GL(V ) a continuous representation such
that ρ becomes semi-stable on a finite Galois extension F of K. Then we can attach
to it an admissible filtered (φ,N, F/K,E)-module, that is, an admissible filtered
(φ,N, F,E)-module with descent data given by an action of Gal(F/K) which is
F0-semi-linear and E-linear and commutes with φ and N . The filtered (φ,N, F,E)-
module is DF

st(V ), that is, Dst(V |GF ). This gives an equivalence of categories between
the category of representations of GK that become semi-stable over F and the cate-
gory of admissible filtered (φ,N, F/K,E)-modules.

2.2.2. Weil-Deligne representation attached to a Galois representation

Let ρ : GK → GL(V ) be a continuous representation of GK , where V is a finite-
dimensional vector space over a finite extension E of Qp. If ρ is potentially semi-
stable, we attach to its filtered (φ,N, F/K,E)-module a Weil-Deligne representation
WD(ρ) as in [Fon94a] (see also [CDT99, App.B] for more detailed explanations of
the construction and its properties). It does not depend on the field F over which K
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184 S. Rozensztajn

becomes semi-stable, and moreover it does not depend on the filtration but only on
φ, N and the action of Gal(F/K).

We say that ρ is of inertial type t if WD(ρ) is of type t, and of extended type t′

if WD(ρ) is. Note that WD(ρ) is of scalar inertial type if and only if ρ is semi-stable
up to twist, and in this case N 6= 0 if and only if ρ is semi-stable but not crystalline
up to twist.

2.3. Deformation rings. — In this section we fix a discrete series inertial type t.
Note that the notions of this Section will be interesting only when t is of the form
(scal) or (irr) as we explain later.

Let ρ be a continuous representation of GK of dimension 2 over a finite field F of
characteristic p. Let E be a finite extension of Qp with residue field containing F. We
denote by R�(ρ) the universal framed deformation OE-algebra of ρ.

2.3.1. Deformation rings of fixed inertial type

Let w = (nτ ,mτ ) ∈ (Z>0 × Z)Hom(K,Qp) be a Hodge-Tate type, t be an inertial
type, and ψ a character of GK . We are interested in lifts ρ of ρ that are potentially
semi-stable, with determinant ψε, Hodge-Tate weights (mτ ,mτ + nτ + 1)τ (we then
say that ρ has Hodge-Tate type w), and inertial type t.

In [Kis08], Kisin shows that, after possibly enlarging E, there exists a quotient
R�,ψ(w, t, ρ) of R�(ρ) that has the following properties.

Theorem 2.3.1

(1) R�,ψ(w, t, ρ) is p-torsion free, R�,ψ(w, t, ρ)[1/p] is reduced and equidimen-
sional.

(2) for any finite extension E′/E, a map x : R�(ρ) → E′ factors through
R�,ψ(w, t, ρ) if and only if the representation ρx is of determinant ψε, potentially
semi-stable of Hodge-Tate type w, and of inertial type t.

Remark 2.3.2. — The ring R�,ψ(w, t, ρ) can be non-zero only if w, ψ and t satisfy
the equality: ψ|IK = (det t)

∏
τ ε

nτ+2mτ
τ , where ετ is the Lubin-Tate character cor-

responding to τ , so that ε =
∏
τ ετ . In this case we say that ψ is compatible with t

and w. Note that by [EG14, Lem. 4.3.1] the isomorphism class of R�,ψ(w, t, ρ) does
not depend on ψ as long as it is compatible with t and w.

2.3.2. Irreducible components and extended types. — Suppose that t is a discrete series
inertial type, and let t′ be an extended type such that t′|IK is isomorphic to t. We
define a subset of the set of irreducible components of SpecR�,ψ(w, t, ρ) by saying
that an irreducible component is of type t′ if:

(1) when t is of the form (red) or (irr), the irreducible component has an E′-point x
with ρx of extended type t′ for some finite extension E′/E;

(2) when t is of the form (scal), the irreducible component has an E′-point x
with ρx of extended type t′ that is not potentially crystalline.
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Discrete series extended types 185

There can exist a component of type t′ only if det t′ = WD(ψε), hence there are
at most two such extended types and then they are conjugate if t is of the form (scal)
or (irr), and at most one such extended type if t is of the form (red). We say that t′
is compatible with (t, ψ) if t′|IK is isomorphic to t and det t′ = WD(ψε). If t is
of the form (red) and t′ is compatible to (t, ψ) then all irreducible components of
SpecR�,ψ(w, t, ρ) are of type t′.

If a component is of type t′, then for all closed points x over a finite extension
E′/E, the representation ρx is of type t′. In particular a component is of at most one
extended type. This follows from the next proposition.

Proposition 2.3.3. — Let A be an affinoid algebra which is a domain. Let ρ : GK →
GL2(A ) be a continuous A -linear representation such that for any closed point x ∈
Max(A ), the representation ρx is potentially semi-stable, with the same discrete series
inertial type t, Hodge-Tate weights and determinant for all x. If t is scalar and at
least one representation in the family is not potentially crystalline, or if t is not
scalar, then the extended type is constant in the family.

Proof. — Let F be a finite extension of K such that ρx|GF is semi-stable for all x.
Such an F exists and is determined by t. Using the results of [BC08, §6.3] we can then
construct a free F0⊗A -module Dst(ρ) with a Frobenius φ, a monodromy operator N
and an action of Gal(F/K) that are A -linear and such that for all x, A /mx⊗A Dst(ρ)

is isomorphic to DF
st(ρx). We can apply the method of the construction of the Weil-

Deligne representation as given in [CDT99, App.B] to Dst(ρ). This gives a continuous
representation r : WK → GL2(A ) and N ∈M2(A ) such that for all x, (rx, Nx) is the
Weil-Deligne representation attached to ρx. By assumption all representations rx have
the same restriction to inertia and the same determinant. If t is of the form (red),
this implies that the isomorphism class of rx is constant and hence the extended type
is constant in the family.

Suppose now that t is of the form (irr), that is, t = (indIKIL χ)|IK for some ramified
quadratic extension L of K and some character χ of WL that does not extend to WK .
Then t|IL = χ⊕χ′ for characters χ, χ′ that do not extend to IK . Fix also an element
α ∈ IK r IL. We can choose a basis (e1, e2) of A 2 (after possibly replacing Max(A )

by some admissible covering) such that for all x, we have rx(β)e1 = χ(β)e1 and
rx(β)e2 = χ′(β)e2 for all β ∈ IL, and rx(α)e1 = e2. Let Frob be any Frobenius
element of WK . Then the matrix in this basis of rx(Frob2) and of rx(β) for any
β ∈ IK is constant, and the matrix of rx(Frob) can take only two possible values
that determine the isomorphism class of rx. As the matrix varies continuously with x
and A is integral, it is constant, hence the isomorphism class of rx is constant.

Suppose now that t is scalar. Let Frob be any Frobenius element of WK . Then the
isomorphism class of rx is determined by the characteristic polynomial of rx(Frob).
Let U be the Zariski open subset of Max(A ) defined by the condition N 6= 0. Then
on U the eigenvalues of rx(Frob) are of the form αx and qαx for some αx. As the
determinant of rx is constant, α2

x is constant, hence the characteristic polynomial
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of rx(Frob) can take only two possible values on U . As U is Zariski dense in Max(A )

(because A is a domain), it can only take two possible values on Max(A ), and in
fact only one by continuity. Hence the isomorphism class of rx is constant. �

2.3.3. Deformation rings of fixed discrete series extended type. — We define a quotient
R�,ψ(w, t′, ρ) of R�,ψ(w, t, ρ) by taking the maximal reduced quotient supported on
the set of irreducible components of SpecR�,ψ(w, t, ρ) that are of type t′. We also
define, following [GG15, §5], a ring R�,ψ(w, tds, ρ) corresponding to all the irreducible
components of some extended type t′.

If t is of the form (red), there is exactly one extended type t′ that is compatible
with (t, ψ), and we have

R�,ψ(w, t′, ρ) = R�,ψ(w, t, ρ) = R�,ψ(w, tds, ρ).

If t is of the form (irr), R�,ψ(w, t, ρ) = R�,ψ(w, tds, ρ), but there are two ex-
tended types that are compatible with (t, ψ) so R�,ψ(w, t′, ρ) can be different from
R�,ψ(w, tds, ρ).

If t is scalar, R�,ψ(w, tds, ρ) is a quotient of R�,ψ(w, t, ρ) supported only on
the components containing points corresponding to representations that are not po-
tentially crystalline and is generally different from R�,ψ(w, t, ρ) (see also [GG15,
Lem. 5.5] and the remarks preceding it). If t′ is an extended type compatible with
(t, ψ), then R�,ψ(w, t′, ρ) is a quotient of R�,ψ(w, tds, ρ), but it can be different from
it as there are two possibilities for t′.

Then we have the following properties.

Proposition 2.3.4
(1) R�,ψ(w, t′, ρ) is p-torsion free, R�,ψ(w, t′, ρ)[1/p] is reduced and equidimen-

sional.
(2) for all finite extensions E′/E, if a map x : R�(ρ) → E′ factors through

R�,ψ(w, t′, ρ) then the representation ρx is of determinant ψε, potentially semi-stable
of Hodge-Tate type w and of extended type t′.

(3) for all finite extensions E′/E, a map x : R�(ρ) → E′ such that the represen-
tation ρx is of determinant ψε, potentially semi-stable of Hodge-Tate type w and of
extended type t′ factors through R�,ψ(w, t′, ρ).

Proof. — Properties (1) and (2) follow from the analogous properties for the inertial
type t, and Proposition 2.3.3.

In the case not of the form (scal), property (3) follows from the fact that any ρx
of inertial type t is of some discrete series extended type t′.

Suppose now that t is scalar, we can suppose that t is trivial. Let x be as in (3): the
map x factors through R�,ψ(w, t, ρ) by Theorem 2.3.1 and it defines a representation
ρ : GK → GL2(OE′) lifting ρ for some finite extension E′ of E. If ρ is not crystalline,
then by definition x factors through R�,ψ(w, t′, ρ). Suppose now that ρ is crystalline.
Then WD(ρ) is of the form (r, 0) with r isomorphic to t′. As t′ is a discrete series
extended type with trivial restriction to inertia, this means that r = ψ⊗ (1⊕‖ · ‖) for
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some unramified character ψ of WK . In particular, we see that there exists a nonzero
map WD(ρ) → WD(ρ) ⊗ ‖ · ‖. By [All14, Th.D], this means that the point x defin-
ing the representation ρ is a non-smooth point on SpecR�,ψ(w, t, ρ)[1/p]. We know
from the proof of [Kis09a, Lem.A.3] that the union of the crystalline irreducible
components of SpecR�,ψ(w, t, ρ)[1/p] is smooth. So this means that x is a point of
SpecR�,ψ(w, t, ρ)[1/p] which is also on an irreducible component that contains non-
crystalline points, and so is a point on SpecR�,ψ(w, t′, ρ)[1/p], and x factors through
R�,ψ(w, t′, ρ). �

Remark 2.3.5. — Suppose that ρ is irreducible. Then as ρ is isomorphic to ρ⊗unr(−1),
the map ρ 7→ ρ ⊗ unr(−1) induces an involution of R�,ψ(w, tds, ρ) that exchanges
R�,ψ(w, t′, ρ) and R�,ψ(w, t′′, ρ), where t′ and t′′ are the conjugate extended types
compatible with (t, ψ). In particular R�,ψ(w, t′, ρ) and R�,ψ(w, t′′, ρ) are isomorphic.

Remark 2.3.6. — For an inertial type of the form (char), the extended type is not
constant on irreducible components. In fact it follows from [GM09, §3.2] that, in the
case K = Qp, for an inertial type of this form there exists only a finite number of
isomorphism classes of potentially semi-stable representations of given regular Hodge-
Tate weights and extended type.

3. Multiplicities

Let D be the non-split quaternion algebra over K. In this section we consider all
smooth representations as having coefficients in Qp, unless otherwise specified.

3.1. Local Langlands and Jacquet-Langlands. — We denote by JL the local
Jacquet-Langlands correspondence, that attaches to every irreducible smooth admis-
sible representation of D× a discrete series smooth representation of GL2(K) (that is,
supercuspidal or a twist of the Steinberg representation).

We denote by recp the local Langlands correspondence that attaches to each irre-
ducible smooth admissible representation of GL2(K) a Weil-Deligne representation of
degree 2 with the normalization of [HT01, Introd.].

We set LLD(π) = (recp ◦ JL(π))⊗ ‖ · ‖1/2, so that the image of LLD is exactly the
discrete series Weil-Deligne representations (r,N) (see Sections 3.5 and 4.5.1 for a
justification of the normalization). We give some properties of LLD: let ψ a character
of K×, and denote by ND the reduced norm D → K. For x ∈ Q×p , we denote
by unrD(x) the character of D× given by unr(x) ◦ ND, and more generally for ψ
a character of K× we denote by ψD the character ψ ◦ ND of D×. Then LLD(ψD) =

(ψ ⊕ ψ‖ · ‖, N) with N 6= 0.
Let $D be a uniformizer of D. If a > 1, we set UaD = 1 + $a

DOD. It is an open
compact subgroup of D×, which does not depend on the choice of $D. It follows from
the explicit description of smooth representations of D× (as can be found for example
in [BH06, Chap. 13]) that any irreducible smooth representation of D× that is not a
character has one of the following forms:

J.É.P. — M., 2015, tome 2



188 S. Rozensztajn

(1) πD = indD
×

L×UaD
ψ for some character ψ and some ramified quadratic extension L

of K.
(2) πD = indD

×

L×UaD
ρ for some irreducible representation ρ of L×UaD of dimension 1

or q and L the unramified quadratic extension of K.

Proposition 3.1.1. — Let r be a Weil-Deligne representation of dimension 2 that is of
the form (red) or (irr) of Lemma 2.1.1. Then the following conditions are equivalent:

(1) the type of r is of the form (red).
(2) LL−1

D (r) ' LL−1
D (r)⊗ unrD(−1).

(3) LL−1
D (r) = indD

×

L×UaD
ρ for L the unramified quadratic extension of K, some a

and some representation ρ of L×UaD.
(4) the restriction of LL−1

D (r) to O×D is the sum of two irreducible representations
that differ by conjugation by $D.
And the following conditions are equivalent:

(1) the type of r of the form (irr).
(2) LL−1

D (r) 6' LL−1
D (r)⊗ unrD(−1).

(3) LL−1
D (r) = indD

×

L×UaD
ψ for some ramified quadratic extension L of K, some a

and some character ψ of L×UaD.
(4) the restriction of LL−1

D (r) to O×D is irreducible.

Proof. — Note first that LLD is compatible with twists by characters, as this is the
case for recp and JL.

(1)⇔ (2) comes from Proposition 2.1.2.
(1)⇔ (3) comes from the explicit descriptions of the local Langlands and Jacquet-

Langlands correspondence (see [BH06]).
(3)⇔ (4) is [GG15, Prop. 3.8] (see also [Gér78, §§5&6]). �

3.2. Representations attached to a discrete series inertial type

3.2.1. Representations of D× and O×D . — Let t be some discrete series inertial type.
Let (r,N) be some discrete series Weil-Deligne representation with t = r|IK . Let
πt = LL−1

D (r,N), which depends on the choice of (r,N) only up to unramified twist.
If (r,N) is of the form (scal) then πt is a character of D×, so the restriction of πt
to O×D is irreducible. As we have seen in Proposition 3.1.1, if (r,N) is of the form
(irr) then πt is still irreducible after restriction to O×D , and if (r,N) is of the form
(red) then the restriction of πt to O×D is the sum of two irreducible constituents that
differ by conjugation by $D. Let σD(t) be one of the irreducible constituents of the
restriction of πt to O×D ; it depends only on t and not on the choice of (r,N) (this is
the same as the representation σD(t) of [GG15, §3.1]). We can recover πt from σD(t)

up to unramified twist. Hence we have the following property.

Proposition 3.2.1. — Let πD be a smooth irreducible representation of D×. Then
HomO×D

(σD(t), πD) 6= 0 if and only if LLD(πD)|IK ' t.
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Remark 3.2.2. — As was already noted in [GG15], contrary to the case of GL2, we see
that the type for D× is not unique, at least for representations of the form (red). On
the other hand, as there are only one or two irreducible constituents for the restriction
to O×D of a smooth irreducible representation of D×, it is much easier to find a type.

3.2.2. The group G$K . — Let $K be a uniformizer of K and $D a uniformizer of D
with $2

D = $K . Let G$K = D×/$Z
K . Then G$K is isomorphic to the semi-direct

product O×D o$D {1, ι}, where the action of ι on O×D is by conjugation by $D. As a
group, G$K depends on $K , but not on the choice of $D such that $2

D = $K . Let
ξ = unrD(−1), that is, the character of G$K that is trivial on O×D and sends ι to −1.

Let t be a discrete series inertial type. Using the representation πt of Section 3.2.1,
we can attach to t a smooth representation σG (t) of G$K , or equivalently a smooth
representation of D× that is trivial on $K : there is an unramified twist of πt that is
trivial on $K , as πt($K) is scalar.

The relation between σG (t) and σD(t) is then given by Proposition 3.1.1. If t is of
the form (scal) or (irr) then the representation σG (t) is defined only up to twist by ξ,
and the restriction of σG (t) to O×D is isomorphic to σD(t), which is irreducible. If t
is of the form (red), then there is only one possibility for σG (t) and the restriction of
σG (t) to O×D is isomorphic to the direct sum of σD(t) and the representation σD(t)$D

obtained from σD(t) by conjugation by a uniformizer.

Remark 3.2.3. — The representation σG (t) of G$K is the analogue in our situation
of the representation στ ′ of Ũ0(`) in [BCDT01, §1.2].

3.2.3. Realizations of G$K . — Let K ′ be the unramified quadratic extension of K.
By fixing an embedding of K ′ into D and a basis of D as a K ′-vector space, we can
define an embedding D× → GL2(K ′), hence, after choosing K ′ → Qp, an embedding
u : D× → GL2(Qp). All such embeddings are conjugate in GL2(Qp) by the Skolem-
Noether theorem.

Fix now a uniformizer $K of K, a square root $D of $K in D and a square
root √$K of $K in Qp. With these choices we can define an embedding ũ : G$K →
GL2(Qp) by setting ũ|O×D = u|O×D and ũ(ι) =

√
$K

−1u($D).
Note that for each choice of $K and √$K , all the possible ũ corresponding to the

various choices of u and $D are conjugate in GL2(Qp). Moreover, for varying choices
of $K all the ũ|O×D are conjugate.

3.3. Representations of ΓK

3.3.1. The group ΓK . — Let k be the residue field of K and ` its quadratic extension,
so that OD/$D ' `. We define the group ΓK = `×o {1, ι}, where ι acts on `× by the
non-trivial k-automorphism of `.

The quotient G$K/(1 +$DOD) is naturally isomorphic to the group ΓK , and the
map G$K → ΓK extends the natural morphism O×D → `×. As 1 + $DOD is a pro-
p-group, any semi-simple representation of G$K in characteristic p factors through ΓK .
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3.3.2. Irreducible representations of ΓK in characteristic p. — Let F be an algebraic
closure of k. Fix `→ F, and let q be the cardinality of k.

For an element a in Z/(q2 − 1)Z, we denote by χa the character of `× sending x
to xa.

For an element a in Z/(q − 1)Z, we denote by δa the character of ΓK such that δa
coincides with χa(q+1) = χa|k× ◦N`/k on `× and δa(ι) = 1.

Let ξ be the character of ΓK that is trivial on `× and ξ(ι) = −1.
Let ra = indΓK

`× χa for a ∈ Z/(q2 − 1)Z. Then ra is irreducible if and only if a is
not divisible by q + 1. If a = (q + 1)b then ra is isomorphic to δb ⊕ ξδb.

Proposition 3.3.1. — The irreducible representations of ΓK with coefficients in F are
exactly the following:

– The characters δa for a ∈ Z/(q − 1)Z.
– The characters ξδa for a ∈ Z/(q − 1)Z.
– The representations ra for a ∈ Z/(q2 − 1)Z not divisible by q + 1.
Moreover, these representations are all distinct, except for the relation ra = rqa.

Finally, ξra is isomorphic to ra, and ra|`× = χa ⊕ χqa.

The irreducible representations of ΓK are the analogue in our situation of the Serre
weights.

3.3.3. Reduction modulo p of representations of G$K attached to discrete series types

Let σG (t) be a representation of G$K attached to a discrete series inertial type t

as in Section 3.2.2. As G$K is compact, we can find an invariant lattice in σG (t), and
consider the semi-simplification of the reduction modulo p of this representation. We
denote by σG (t) the representation of ΓK that we obtain (it is semi-simple, indepen-
dent of the choice of the invariant lattice and its restriction to `× is independent of
any choice).

Proposition 3.3.2. — Each irreducible representation of ΓK over F has a lift in char-
acteristic 0 that is of the form σG (t) for some discrete series inertial type t.

Proof. — Let δ be an irreducible representation of ΓK of dimension 1. It is of the
form χ ◦ N`/k or ξχ ◦ N`/k for some character χ of k×. We define a scalar inertial
type tδ by tδ = (χ̃⊕ χ̃)|IK , where χ̃ denotes the image by local class field theory of
the Teichmüller lift of the character χ ◦ (K× → k×). Then we can choose σG (tδ) so
that σG (tδ) is isomorphic to δ (note that σG (tδ) depends on δ and not only on tδ).

Let r be an irreducible representation of ΓK of dimension 2. There exists
a ∈ Z/(q2 − 1)Z not divisible by q + 1 such that r|`× = χa ⊕ χqa. Let K ′ be the
unramified quadratic extension of K, and χ̃a : WK′ → Q×p the tame character given
by the Teichmüller lift of χa ◦ (K ′

× → `×). We define an inertial type tr of the
form (red) by tr = (indWK

WK′
χ̃a)|IK . Then σG (tr) is isomorphic to r, as follows from

the explicit constructions in [BH06, Chap. 13]. �
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We denote by R(ΓK) the Grothendieck ring of representations of ΓK with coeffi-
cients in F. We denote by [σ] the image in R(ΓK) of a representation σ of ΓK .

We now compute the reduction of some representations of G$K attached to dis-
crete series types. Let L be the ramified quadratic extension of K generated by the
square root of $K , and fix an embedding of L into D. Any semi-simple representation
of L×UaD in characteristic p is trivial on U1

D ∩ L×UaD as this is a pro-p-group (recall
that UaD was defined in Section 3.1). Any representation of L×UaD that is trivial on
the subgroup generated by $K factors through the image of L×UaD inside G$K . Hence
any semi-simple representation of L×UaD in characteristic p that is trivial on $K fac-
tors through the subgroup L×UaD/〈U1

D, $
Z
K〉 of ΓK . Let us call this subgroup ∆, it is

equal to k× × {1, ι} ⊂ `× o {1, ι}.

Proposition 3.3.3. — Let L be as above and let θ = indD
×

L×UaD
ψ for some smooth char-

acter ψ of L×UaD with ψ($K) = 1. Then θ factors through G$K . Denote by θ the semi-
simple representation of ΓK which is the reduction modulo p of θ. Let n ∈ Z/(q− 1)Z
and α ∈ {0, 1} be such that ψ = ξαχn|∆ as a representation of ∆. We denote by I(ψ)

the set of irreducible representations of ΓK with central character equal to ψ|k× . Then
we have in R(ΓK):

(1) if ψ(−1) = −1, that is, n is odd, then I(ψ) consists of (q+1)/2 representations
of dimension 2, and

[θ] = qa−1

( ∑
r∈I(ψ)

[r]

)
,

(2) if ψ(1) = 1, that is, n is even, then I(ψ) consists of (q − 1)/2 representations
of dimension 2 and 4 representations of dimension 1, and:

[θ] = qa−1

( ∑
r∈I(ψ)

dim(r)=2

[r]

)
+
qa−1 + 1

2
[ξα]([δn/2]

+ [δ(n+q−1)/2]) +
qa−1 − 1

2
[ξα+1]([δn/2] + [δ(n+q−1)/2]).

Proof. — We proceed as in [BD14, §4]. We have [L×U1
D : L×UaD] = qa−1 (note that

the essential conductor of θ is 2a + 1). The reduction modulo p of ind
L×U1

D

L×UaD
ψ is

the sum of (qa−1 + 1)/2 copies of ψ and of (qa−1 − 1)/2 copies of ξψ. Let µ be a
smooth character of L×U1

D in characteristic p with µ($K) = 1, then ind
G$K
L×U1

D
µ

factors through ΓK , and the representation of ΓK that we obtain is indΓK
∆ µ, which

can be computed via Brauer characters. �

It follows from Proposition 3.1.1 that Proposition 3.3.3 gives σG (t) when t is of
type (irr) under some compatibility condition between t and $K . As we will see in
Section 3.5 this compatibility condition is harmless. When t is scalar, σG (t) is easy
to compute as σG (t) is of dimension 1. The value of σG (t) when t is of the form
(red) could be immediately obtained from [BD14, Prop. 4.6]: as σG (t) = ξσG (t), it
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is entirely determined by its restriction to `×. We do not give details as they are
not really needed. Indeed, our goal in computing σG (t) is to allow us to compute the
multiplicity of some deformation rings as we shall see in Theorems 3.5.1 and 3.5.2, but
for t of the form (red) this multiplicity can be computed by the formula coming from
the Breuil-Mézard conjecture for GL2. Note that complete results and computations
can be found in [Tok15].

3.4. A reformulation of a result of Gee and Geraghty. — Let Γ = ΓK . We fix a
uniformizer $K of K. We denote by w0 the Hodge-Tate type (0, 0)τ∈Hom(K,Qp).

In the case K = Qp, let w = (n,m) be a Hodge-Tate type. We set |w| = n + 2m.
We define a representation σw = Symn⊗detm of GL2(Qp), hence of G = G$Qp

via
a realization of G as in Section 3.2.3. In particular σw0

is the trivial representation
of G . The isomorphism class of the restriction of σw to O×D does not depend on the
particular choice of a realization, as they are all conjugate in restriction to O×D . We can
see the reduction modulo p of σw as a representation of Γ by restriction. We denote
its image in R(Γ) by σw, it does not depend on any choices made (including $K):
indeed it is the restriction to Γ of the representation Symn⊗detm of GL2(F) via any
embedding of Γ into GL2(F), and all such embeddings are conjugate.

We denote by π a uniformizer of the field E of Section 2.3. For any noetherian local
ring A, we denote by e(A) the Hilbert-Samuel multiplicity e(A,A) (see [Mat89] for
the definition of the Hilbert-Samuel multiplicity, and also [Kis09a, §1.3] for properties
relevant to our situation).

Let ` = Fq2 , and let R(`×) be the Grothendieck ring of representations of `× with
coefficients in F.

For K = Qp, we recall the following result ([GG15, Cor. 5.7]), which is the conse-
quence of the main result of [GG15] and the usual formulation of the Breuil-Mézard
conjecture proved in [Kis09a], [Paš15] and [HT15]. Here σD(t) is, as in Section 3.2.1,
a choice of irreducible sub-representation of the restriction of πt to O×D .

Theorem 3.4.1. — Let ρ : GQp → GL2(F), and suppose that p > 5 if ρ is a twist of
an extension of the trivial representation by the cyclotomic character. There exists a
positive linear functional iD,ρ : R(`×)→ Z such that for each discrete series inertial
type t, and each choice of σD(t), we have

e(R�,ψ(w, tds, ρ)/π) = iD,ρ([σD(t)⊗ σw|`× ]).

We return to the case of a general K. We have the following well-known result (see
for example [GS11, Lem. 3.5]).

Proposition 3.4.2. — Let ρ be a continuous representation of GK of dimension 2

with coefficients in F. Suppose that ρ has a potentially semi-stable lift with scalar
type t = ψ ⊕ ψ and Hodge-Tate weights (0, 1)τ∈Hom(K,Qp) which is not potentially
crystalline. Then ρ is an unramified twist of ( ω ∗0 1 )⊗ ψ.
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We deduce from this that when ρ is not a twist of an extension of the trivial
character by the cyclotomic character, R�,ψ(w0, t

ds, ρ) = R�,ψcr (w0, t
ds, ρ) for any

discrete series type t, where the second ring parametrizes only representations that
are potentially crystalline. Hence we can deduce from the main result of [GG15] and
[GK14, Th.A] the following.

Theorem 3.4.3. — Let ρ : GK → GL2(F) a continuous representation that is not a
twist of an extension of the trivial representation by the cyclotomic character. There
exists a positive linear functional iD,ρ : R(`×)→ Z such that for each discrete series
inertial type t, and each choice of σD(t), we have

e(R�,ψ(w0, t
ds, ρ)/π) = iD,ρ([σD(t)]).

Let dt = 1 if t has the form (scal) or (irr), and dt = 2 if t has the form (red),
so that dt is the number of irreducible components of σG (t)|O×D . Then we can give a
reformulation of Theorems 3.4.1 and 3.4.3 in terms of representations of Γ.

Theorem 3.4.4. — Let ρ : GQp → GL2(F), and suppose that p > 5 if ρ is a twist of
an extension of the trivial representation by the cyclotomic character. There exists
a positive linear functional iρ : R(Γ) → Z such that for each discrete series inertial
type t and each choice of σG (t) we have

dte(R
�,ψ(w, tds, ρ)/π) = iρ([σG (t)⊗ σw]).

Theorem 3.4.5. — Let ρ : GK → GL2(F) a continuous representation that is not a
twist of an extension of the trivial representation by the cyclotomic character. There
exists a positive linear functional iρ : R(Γ) → Z such that for each discrete series
inertial type t and each choice of σG (t) we have

dte(R
�,ψ(w0, t

ds, ρ)/π) = iρ([σG (t)]).

Proof of Theorems 3.4.4 and 3.4.5. — It follows from Theorems 3.4.1 (resp. 3.4.3) and
the definition of σG (t) that we have the equality

dte(R
�,ψ(w, tds, ρ)/π) = iD,ρ([σG (t)⊗ σw|`× ]).

Set iρ([γ]) = iD,ρ([γ|`× ]) for all irreducible representations γ of Γ to get the result. �

In particular, we observe that

iρ([γ]) = iρ([ξγ]) = (dim γ)e(R�,ψ(w0, t
ds
γ , ρ)/π)

for any irreducible representation γ of Γ, where tγ is the inertial type defined in the
proof of Proposition 3.3.2.

We denote by WΓ(ρ) the set of γ such that iρ([γ]) 6= 0. This is the translation
in the setting of representations of Γ of the (predicted) quaternionic Serre weights
of [GS11]. Note in particular that, as in [GS11], the set WΓ(ρ) is determined by the
existence of certain lifts of ρ that have all their Hodge-Tate weights equal to (0, 1),
which makes the situation with quaternion algebras simpler than the situation of
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Serre weights for GL2, since, for GL2, one cannot in general lift a Serre weight as a
type in characteristic 0.

3.5. Multiplicity formulas. — We now state our main theorems for the multiplicity
of the special fiber of the discrete series extended type deformation rings, which we
prove in Section 5.

Theorem 3.5.1. — Let ρ be a continuous representation of GQp of dimension 2 with
coefficients in F. Suppose that p > 5 if ρ is a twist of an extension of the trivial
character by the cyclotomic character. Let ψ = ω−1 det ρ, $Qp a uniformizer of Qp
and α a square root of ψ($Qp)−1.

There exists a positive linear form µρ on R(Γ) with values in Z satisfying the fol-
lowing property: for any discrete series inertial type t, Hodge-Tate type w, character ψ
lifting ψ compatible with t and w, and t+ a discrete series extended type compatible
with (t, ψ) we have:

e(R�,ψ(w, t+, ρ)/π) = µρ([σG (t)⊗ σw])

for the choice of representation σG (t) of G$Qp
such that t+ = LLD(σG (t)) ⊗

unr(a$
|w|
Qp )−1 for some a ∈ Z×p lifting α.

Theorem 3.5.2. — Let ρ be a continuous representation of GK of dimension 2 with
coefficients in F that is not a twist of an extension of the trivial character by the
cyclotomic character. Let ψ = ω−1 det ρ, $K a uniformizer of K and α a square root
of ψ($K)−1.

There exists a positive linear form µρ on R(Γ) with values in Z satisfying the fol-
lowing property: for any discrete series inertial type t, character ψ lifting ψ compatible
with t and w0, and t+ a discrete series extended type compatible with (t, ψ) we have:

e(R�,ψ(w0, t
+, ρ)/π) = µρ([σG (t)])

for the choice of representation σG (t) of G$K such that t+ = LLD(σG (t))⊗unr(a)−1

for some a ∈ Z×p lifting α.

Remark 3.5.3. — It follows from the definition of the compatibility of t+ with
(t, ψ, w) that there exists indeed a choice of σG (t) satisfying the condition. If t− is
the extended type conjugate to t+, then the choices of σG (t) for t+ and t− differ by
multiplication by ξ.

In the case when t is of the form (red), recall that there is only one extended
type t+ compatible with (t, ψ), and

R�,ψ(w, tds, ρ) = R�,ψ(w, t+, ρ).

There is no choice to be made for σG (t) as it is isomorphic to ξσG (t).

We have the following proposition, which is a consequence of [Kis09a, Prop. 1.3.9].
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Proposition 3.5.4. — Let t+, t− be the two distinct conjugate extended types com-
patible with (t, ψ) with t of the form (scal) or (irr). Then

e(R�,ψ(w, t+, ρ)/π) + e(R�,ψ(w, t−, ρ)/π) = e(R�,ψ(w, tds, ρ)/π).

We have the following corollary (tr and tδ are the inertial types defined in the
proof of Proposition 3.3.2).

Corollary 3.5.5. — We have

µρ([r]) = e(R�,ψ(w0, t
ds
r , ρ)/π)

for any irreducible representation r of Γ of dimension 2, and

µρ([δ] + [ξδ]) = e(R�,ψ(w0, t
ds
δ , ρ)/π)

for any irreducible representation δ of Γ of dimension 1. In particular, for any irre-
ducible representation γ of Γ, we have

µρ([γ]) + µρ([ξγ]) = iρ([γ]).

Proof. — Let r be an irreducible representation of Γ of dimension 2. Then r = σG (tr)

for some inertial type tr of the form (red) by Proposition 3.3.2. Then as remarked in
Section 2.3.3, if t+

r is the extended type compatible with (tr, ψ), then

R�,ψ(w0, t
+
r , ρ) = R�,ψ(w0, t

ds
r , ρ),

hence the formula in this case. Let δ be an irreducible representation of Γ of dimen-
sion 1. Then

e(R�,ψ(w0, t
ds
δ , ρ)/π) = e(R�,ψ(w0, t

+
δ , ρ)/π) + e(R�,ψ(w0, t

−
δ , ρ)/π),

where t+
δ and t−δ are the two conjugate extended types compatible with (tδ, ψ). So

we deduce the formula from Remark 3.5.3. The formula with iρ then follows from
Theorems 3.4.4 and 3.4.5. �

It follows from this corollary that µρ([γ]) = 0 if γ 6∈WΓ(ρ). We begin the definition
of µρ by setting µρ([γ]) = 0 for any irreducible γ not in WΓ(ρ). With this definition,
the equalities of Theorem 3.5.1 and 3.5.2 hold for all t, ψ, w (with w = w0 if K 6= Qp)
such that R�,ψ(w, tds, ρ) = 0.

From Proposition 3.4.2 we deduce the next proposition.

Proposition 3.5.6. — If ρ is a representation such that WΓ(ρ) contains a representa-
tion δ of dimension 1 then ρ is a twist of an extension of the trivial character by the
cyclotomic character and there is at most one possible value for δ for which µρ(δ) 6= 0.

Remark 3.5.7. — When K = Qp, ρ is a twist of an extension of the trivial character
by the cyclotomic character if and only ifWΓ(ρ) contains a representation δ of dimen-
sion 1, and then iρ(δ) = 1. This follows from the explicit computations of deformation
rings that can be found in [BM02, §5.2].

Proposition 3.5.8. — If ρ is not a twist of an extension of the trivial character by the
cyclotomic character then for any representation γ of Γ we have µρ([γ]) = µρ([ξγ]).
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Proof. — It suffices to prove this for representations γ that are irreducible. If
dim γ = 2 then ξγ = γ so the statement holds. If dim γ = 1 then by Proposition 3.5.6
both sides of the equality are zero. �

Corollary 3.5.9. — Let ρ be a continuous representation of GK of dimension 2 with
coefficients in F which is not a twist of an extension of the trivial character by the
cyclotomic character. Then for any discrete series inertial type t, and any Hodge-Tate
type w if K = Qp, or for w = w0 if K 6= Qp, we have

e(R�,ψ(w, t+, ρ)/π) = e(R�,ψ(w, t−, ρ)/π) =
dt
2
e(R�,ψ(w, tds, ρ)/π).

Proof. — The first equality comes from Proposition 3.5.8 and Remark 3.5.3. The last
equality follows from Proposition 3.5.4. �

Remark 3.5.10. — If ρ is irreducible Corollary 3.5.9 holds even without Theorems
3.5.1 and 3.5.2, because of Remark 2.3.5.

Corollary 3.5.11. — Let K = Qp. Suppose that there exists a representation δ of
dimension 1 of Γ with iρ(δ) 6= 0 (that is, ρ is a twist of an extension of the trivial
character by the cyclotomic character, and then iρ(δ) = 1). Then for any discrete
series inertial type t, Hodge-Tate type w, character ψ and pair of conjugate extended
types (t+, t−) compatible with (t, ψ), we have

either e(R�,ψ(w, t+, ρ)/π) = e(R�,ψ(w, t−, ρ)/π),

or |e(R�,ψ(w, t+, ρ)/π)− e(R�,ψ(w, t−, ρ)/π)| = 1.

The former takes place in particular when R�,ψ(w, tds, ρ) = 0, or t is of the form
(red), or t is of the form (irr) with πt of the form indD

×

L×UaD
ψ for some ramified

quadratic extension L of K, some a and some character ψ of L×UaD with ψ(−1) = −1

(see Proposition 3.1.1 for the notations).

We see examples where we have |e(R�,ψ(w, t+, ρ)/π) − e(R�,ψ(w, t−, ρ)/π)| = 1

in Section 6.

Proof. — Note that we can choose $Qp as we wish to compute the multiplicities. Let
σG (t) be a choice of representation attached to t as in Section 3.2.2. We need to
compute

[σG (t)⊗ σw : δ]− [ξσG (t)⊗ σw : δ].

We do this using the results of Proposition 3.3.3 and the remarks that follow for
σG (t), and the Lemma below for σw. �

Lemma 3.5.12. — In R(ΓQp) we have that [detm] = [ξmδm] for all m and

[Sym2n F2] = [δn] +

n∑
i=1

[rn(p+1)+i(p−1)] and [Sym2n+1 F2] =

n∑
i=0

[rn(p+1)+p+i(p−1)]

for all n > 0. Moreover, rn(p+1)+i(p−1) is irreducible for

0 < i < (p+ 1)/2 and (p+ 1)/2 < i < p+ 1,
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and

rn(p+1)+(p−1)(p+1)/2 = δn+(p−1)/2 ⊕ ξδn+(p−1)/2 and rn(p+1) = δn ⊕ ξδn.

Our proof of Theorems 3.5.1 and 3.5.2 is by deducing them from the usual version
of the Breuil-Mézard conjecture, in the cases where it is already known. We can hope
that this method generalizes to the cases of the Breuil-Mézard conjecture that are
not yet known, which leads us to the following.

Conjecture 3.5.13. — Let ρ be a continuous representation of GK of dimension 2

with coefficients in F. There exists a positive linear form µρ on R(Γ) with values in Z
satisfying the following property: for any discrete series inertial type t, Hodge-Tate
type w, character ψ lifting ω−1 det ρ compatible with t and w, and extended type t+

compatible with (t, ψ), there exists a choice of representation σG (t) of G such that
we have:

e(R�,ψ(w, t+, ρ)/π) = µρ([σG (t)⊗ σw]).

When ρ is not a twist of an extension of the trivial character by the cyclotomic char-
acter, we have

e(R�,ψ(w, t+, ρ)/π) = e(R�,ψ(w, t−, ρ)/π),

where t− is the extended type that is conjugate to t+.

4. Quaternionic modular forms

4.1. Global setting. — Let F be a totally real number field such that for all
places v | p, Fv is isomorphic to K. We denote by Σp the set of places above p, and we
assume that the number of infinite places of F has the same parity as the cardinality
of Σp. Let B be the quaternion algebra with center F that is ramified exactly at the
infinite places of F and at Σp, which exists thanks to the parity condition.

For all v ∈ Σp, we fix an isomorphism between Bv and the quaternion algebra D of
Section 3. For any finite place v of F that is not in Σp, fix an isomorphism between Bv
and M2(Fv) so that O×Bv corresponds to GL2(OFv ). We fix v0 ∈ Σp and denote
Σp r {v0} by Σ′p.

Let $K be a uniformizer of K. We denote by G the group G$K of Section 3.2.2.
We fix a uniformizer $D of D with $2

D = $K .

4.2. Modular forms. — We recall the theory of quaternionic modular forms (see for
example [Tay06, §1], and also [Kha01, §4.1] and [GS11, §2] for the situation with a
quaternion algebra ramified at p).

Denote by AfF ⊂ AF the ring of finite adeles of F . Let U =
∏
v Uv be a compact

open subgroup of (B ⊗F AfF )× such that for all finite places v, Uv ⊂ O×Bv , and for all
v ∈ Σp, Uv = O×Bv .

Let A be a topological Zp-algebra. For all v | p, let (σv, Vv) be a representation
of Uv on a finite free A-module. We define a representation σ of U on V = ⊗v | pVv
by letting Uv act by σv for v | p and letting Uv act trivially for v - p. Let η be a
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continuous character (AfF )×/F× → A× such that for all v, the restriction of σ and
of η to Uv ∩ O×Fv coincide (such a character does not necessarily exist).

Let Sσ,η(U,A) be the set of continuous functions f : B×\(B ⊗F AfF )× → V such
that:

– for all g ∈ (B ⊗F AfF )× and u ∈ U , f(gu) = σ(u)−1f(g),
– for all g ∈ (B ⊗F AfF )× and z ∈ (AfF )×, f(gz) = η(z)−1f(g).
We can extend the action of U on (σ, V ) to an action of U(AfF )×: we let (AfF )×

act via η. We say that U is small enough (see for example [Kis09a, §2.1.1]) if

for all t ∈ (B ⊗F AfF )×, (U(AfF ) ∩ t−1D×t)/F× = 1.

In this case, the functor (σ, V ) 7→ Sσ,η(U,A) is exact in (σ, V ). In the following we
will always assume that U is small enough.

Let now (σ̃v0 , Vv0) be a representation of G with coefficients in A, and for v ∈ Σ′p,
let (σv, Vv) be a representation of Uv ' O×D as before. Let σ̃ be the representation
σ̃v0 ⊗ (⊗v∈Σ′p

σv) of G × (
∏
v∈Σ′p

Uv) on ⊗v∈ΣpVv. Let σv0 be the restriction of σ̃v0
to Uv0 = O×D , we define as before σ a representation of U on ⊗v∈ΣpVv, and we
suppose that the character η exists. We define a space of modular forms Sσ̃,η(U,A)

by setting Sσ̃,η(U,A) = Sσ,η(U,A). We will endow the space Sσ̃,η(U,A) with an
additional structure (a Hecke operator at v0) in Section 4.4.1.

4.3. Hecke algebra. — The group (B ⊗F AfF )× acts on the set of functions on
(B ⊗F AfF )× by g · f(z) = f(zg).

Let S be a finite set of places of F containing all places above p and all v such
that Uv is not O×Bv , and S′ ⊂ S the set of places w such that Uw is not O×Bw . Let
TS = Z[Tv, Sv, U$w ]v 6∈S,w∈S′ be a polynomial ring. We define an action of TS on
Sσ,η(U,A) by:

– Tv is the action of Uv
(
$v 0
0 1

)
Uv,

– Sv is the action of Uv
(
$v 0
0 $v

)
Uv,

– U$w is the action of Uw
(
$w 0
0 1

)
Uw,

where $v is a uniformizer of Fv. The actions of these operators commute, and the
definition of the Hecke operators Tv and Sv does not depend on the choice of $v.

Let Tσ,η(U,A) be the A-algebra generated by the image of TS in the ring of endo-
morphisms of Sσ,η(U,A).

4.4. Hecke operators at places above p

4.4.1. Hecke operators. — We fix a representation σ̃v0 of G , and representations σv
of Uv for v ∈ Σ′p as in Section 4.2. Consider the space of modular forms Sσ̃,η(U,A) of
Section 4.2.

We define an operator Wv0 acting on Sσ̃,η(U,A) by (Wv0f)(g) = σ̃v0(ι)f(g$D,v0),
where $D,v0 is the element of (B⊗F AfF )× that is equal to $D at v0 and 1 everywhere
else. One easily checks that Wv0f is indeed an element of Sσ̃,η(U,A) if f is. Note

J.É.P. — M., 2015, tome 2



Discrete series extended types 199

that W 2
v0 is multiplication by η($K,v0)−1, where $K,v0 = $2

D,v0
. It is clear from the

definition that Wv0 commutes with the action of the Hecke algebra Tσ,η(U).
Suppose that A contains a square root α of η($K,v0)−1. Then we get a decompo-

sition
Sσ̃,η(U) = Sσ̃,η(U,A)+ ⊕ Sσ̃,η(U,A)−,

where Sσ̃,η(U,A)± denotes the subspace of Sσ̃,η(U,A), where Wv0 acts by ±α. If we
replace σv0 by ξσv0 without changing α, the space of modular forms Sσ̃,η(U,A) is
unchanged, Wv0 is replaced by −Wv0 and the + and − subspaces are exchanged.

4.4.2. The case of type (red). — Consider the following special case: let (σv0 , Vv0) be
a representation of Uv0 ' O×D over A, and σ′v0 the representation on Vv0 defined by
σ′v0(g) = σv0($Dg$

−1
D ). We can define a representation (σ̃v0 , Ṽv0) of G by Ṽv0 =

Vv0 ⊕ Vv0 , Uv0 acts by (σv0 , σ
′
v0) and ι acts by σ̃v0(x, y) = (y, x). Fix representations

at places v ∈ Σ′p, a character η and representations σ and σ̃ as in Section 4.2.
Let α be a square root of η($K,v0)−1. We have two embeddings

i+, i− : Sσ,η(U,A) −→ Sσ̃,η(U,A),

given by i±(f)(g) = (f(g),±α−1σ̃v0(ι)f(g$D,v0)). The image of i± is Sσ̃,η(U,A)±

and i+ + i− is a isomorphism from Sσ,η(U,A)2 to Sσ̃,η(U,A).
We will make use of this remark in the following situation: σ̃v0 is of the form

σG (t) ⊗ σalg for σalg the restriction to G of some algebraic representation of GL2

(by an embedding as in Section 3.2.3), t is an inertial type of the form (red) and
σG (t) is the G -representation attached to t in Section 3.2.2.

4.5. Galois representations attached to quaternionic modular forms

4.5.1. General results. — Suppose now that A is a p-adic field E containing the un-
ramified quadratic extension K ′ of K and a square root √$K of $K . Then there is
an embedding ũ of G into GL2(E) as in Section 3.2.3. Suppose that for all v | p, the
representation σv of Section 4.2 is of the form σv,alg ⊗ σv,sm, where σv,sm is a smooth
representation of Uv, and σv,alg is the restriction to Uv of an algebraic representation
of GL2 via ũ|O×D . We always assume that either K = Qp or σv,alg is trivial for all v.
If K = Qp, σv,alg is the restriction of a representation of the form Symnv E2 ⊗ detmv

and k = nv + 2mv + 1 does not depend on v.
We recall the construction and properties of Galois representations associated to

eigenforms in Sσ,η(U,E). See for example [Kis09b, §3.1.14] for the link between these
spaces of modular forms and the classical spaces of automorphic representations, from
which we deduce the properties of the Galois representations attached to them. Choose
embeddings ip, i∞ of E into Qp and C respectively.

Let σp,alg = ⊗vσv,alg and σp,sm = ⊗vσv,sm. Let σC,alg = σalg ⊗E C, σC,sm =

σsm⊗E C and σC = σC,alg⊗σC,sm, acting on the space WC. Then σC,alg can be viewed
as a representation of B×∞ = (B ⊗Q R)×, and σC,sm is a smooth representation of
Up = ⊗vUv. Let U ′p be a compact open subgroup of Up contained in kerσp,sm, and U ′
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the compact subgroup of (B ⊗F AF )× which is the same as U but with Up replaced
by U ′p.

Let C∞(B×\(B⊗F AF )×/U ′) the space of smooth functions with values in C. It is
endowed with a right action of B×∞.

We denote by (σ∨,W∨) the dual of a representation (σ,W ). Let

φ : Sσ,η(U,E) −→ HomB×∞
(W∨C , C

∞(B×\(B ⊗F AF )×/U ′))

be the map defined by

φ(f) = w 7−→
(
x 7→ w(σC,alg(x∞)−1σp,alg(xp)f(x∞))

)
,

where x = (x∞, x∞) ∈ (B ⊗F AfF )× ×B×∞. We denote by

φw(f) ∈ C∞(B×\(B ⊗F AF )×/U ′)

the element φ(f)(w) for w ∈W∨C .
Let π = ⊗vπv be the irreducible automorphic representation of B× generated by

some non-zero φw(f) for w ∈ W∨C and f ∈ Sσ,η(U,E) that is an eigenform for TS .
Then π∞ is isomorphic to W∨alg,C, and has central character

ηC(z) = NF/Q(z∞)1−kNF/Q(zp)
k−1η(zp)

−1.

Let ρf : GF → GL2(Qp) be the Galois representation attached to π, so that for
all v not in S, the characteristic polynomial ρf (Frobv) is X2 − tvX +N(v)sv, where
Frobv is an arithmetic Frobenius at v, and tv and sv are the eigenvalues of the Hecke
operators Tv and Sv acting on f . Then ρf has determinant εη and for all v | p, ρf |GFv
is potentially semi-stable with Hodge-Tate weights (mv,mv + nv + 1) if K = Qp and
(0, 1)τ∈Hom(K,Qp) otherwise, and WD(ρf |GFv )F−ss is isomorphic to LLD(π∨v ).

4.5.2. Structure at p. — Let v be in Σp. Let ϕ : σ∨C → π be given by w 7→ φw(f),
and ϕv : σ∨C → πv be the projection to πv. It is a non-zero Uv-equivariant morphism
(where Uv acts on σ∨C via its action by σv,sm), hence πv|Uv contains some irreducible
constituent of σ∨v,sm. In particular if σv,sm is a copy of representations σD(tv) attached
to some discrete series inertial type tv as in Section 3.2.1, ρf |GFv is of type tv by
Proposition 3.2.1.

Fix v0 ∈ Σp and suppose that σv0,sm is in fact a representation of G . By the
embedding ũ, the representation σv0,alg also extends to a representation of G . Suppose
that Wv0f = αf , where Wv0 is the Hecke operator defined in Section 4.4.1. Let µ
be the central character of σv0,alg. We extend the representation σ∨v0,sm of G to a
representation of B×v0 = D× by σ∨v0,sm ⊗ unr(αµ(

√
$K)) (here σv0,sm is seen as a

representation of D× via the canonical map D× → G ). Then ϕv0 is equivariant for
the action of the group D× so that πv0 is isomorphic to σ∨v0,sm ⊗ unr(αµ(

√
$K)) if

σv0,sm is irreducible. This gives the following.

Lemma 4.5.1. — If σv0,sm = σG (t) for some discrete series inertial type t,
σv0,alg has central character µ and if Wv0f = αf then ρf |GFv0 is of extended
type LLD(σG (t))⊗ unr(αµ(

√
$K))−1.
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5. Proof of the main theorems

5.1. Notation. — In this section we fix K and a continuous representation ρ : GK →
GL2(F).

When K = Qp, we assume that p > 5 when ρ is a twist of an extension of the
trivial character by the cyclotomic character (we need this condition to apply the
results of [Paš15] and [HT15]).

When K 6= Qp, we assume that ρ is not a twist of an extension of the trivial
character by the cyclotomic character, and whenever a Hodge-Tate type w appears
we always mean w = w0.

We fix a uniformizer $K of K.
Let ψ be the character ω−1 det ρ of GK , which we see also as a character K× via

local class field theory. We fix α ∈ Fp such that α2 = ψ($K)−1.
For any irreducible representation γ of Γ = ΓK , we fix an inertial type tγ and

a representation σG (tγ) as in the proof of Proposition 3.3.2, a lift ψγ of ψ that is
compatible with tγ and w0, and an extended type t+

γ such that t+
γ is compatible

with (tγ , ψγ) and t+
γ = LLD(σG (tγ))⊗ unr(aγ)−1 for an aγ lifting α.

5.2. Definition of µρ. — We are now able to define the linear form µρ: we define
it to be the linear form on R(Γ) such that µρ([γ]) = e(R�,ψγ (w0, t

+
γ , ρ)/π) for any

irreducible representation γ of Γ. It is clear that µρ(γ) = 0 if iρ(γ) = 0.
We must now prove that µρ satisfies the properties claimed in Theorems 3.5.1 and

3.5.2.
Let t be a discrete series inertial type, w a Hodge-Tate type (with w = w0 if

K 6= Qp), ψ a lift of ψ that is compatible with t and w, and t+ an extended type
compatible with (t, ψ).

If R�,ψ(w, tds, ρ) = 0 then we have µρ([σG (t) ⊗ σw]) = 0 by the results of Sec-
tion 3.4. So we need only prove the equalities of Theorems 3.5.1 and 3.5.2 when
R�,ψ(w, tds, ρ) 6= 0. This is the object of the rest of this section.

5.3. Global realization in characteristic p. — We start by realizing ρ in some
global Galois representation.

Proposition 5.3.1. — There exist a totally real field F and a continuous irreducible
representation r : GF → GL2(F), such that:

(1) the number of places of F above p has the same parity as the number of infinite
places of F ,

(2) for all v | p, Fv is isomorphic to K,
(3) for all v | p, r|GFv ' ρ,
(4) r is unramified outside p,
(5) r is totally odd,
(6) r is modular,
(7) the restriction of r to GF (ζp) is absolutely irreducible, and if p = 5, r does not

have projective image isomorphic to PGL2(F5).
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Proof. — All conditions except the first follow from [GK14, Cor.A.3]. We can ensure
that the first condition is satisfied by taking an F such that the number of places of F
above p and the number of infinite places of F are both even. Indeed, note that the
proof of [GK14, Cor.A.3] starts (in [GK14, Prop.A.1]) by considering an auxiliary
number field E which is totally real and such that for all v | p, Ev is isomorphic to K,
and the F we get is a finite extension of E. If we impose to E the additional condition
that 2[K : Qp] divides [E : Q], then the parity condition will be satisfied. �

5.4. Global realizations in characteristic 0

5.4.1. Global data. — From now on we fix a field F and a representation r satisfying
the conditions of Proposition 5.3.1.

Let Σp be the set of places of F above p. We fix a v0 ∈ Σp and denote Σp r {v0}
by Σ′p as before.

Let B be the quaternion algebra with center F that is ramified exactly at the
infinite places of F and at all places in Σp. Such a B exists thanks to condition (1)
of Proposition 5.3.1. Let D be the non-split quaternion algebra over K. Let OB be a
maximal order in B. For all v not dividing p, we fix an isomorphism O×Bv ' GL2(OFv ),
and for all v ∈ Σp, we fix an isomorphism O×Bv ' O×D .

Let $D be a uniformizer of D = Bv0 such that $2
D = $K , where $K is our fixed

uniformizer of K. We set G = G$K .
We choose an auxiliary place v1 - p such that Nv1 6= 1 (mod p), the ratio of the

eigenvalues of r(Frobv1) is not Nv±1
1 , and the characteristic of v1 is large enough

so that for any quadratic extension F ′ of F and any ζ a root of unity in F ′,
v1 - ζ + ζ−1 − 2. The existence of such a place v1 follows from [DDT97, Lem. 4.11]
and [Kis09a, Lem. 2.2.1].

We let U be the compact open subgroup of (B ⊗F AfF )× such that Uv = O×D for
v ∈ Σp, Uv = GL2(OFv ) for v 6∈ Σp and v 6= v1, and finally Uv1 is the set of elements
of GL2(OFv1 ) that are upper triangular unipotent modulo v1. The last condition we
imposed on v1 ensures that U is small enough in the sense of Section 4.2 (see [Kis09a,
§2.1.1].).

5.4.2. Modular lift. — We want know to show that the representation r can be lifted
to an appropriate modular Galois representation.

Lemma 5.4.1. — For all v ∈ Σp, let tv be an inertial type such that γv = σD(tv) is
an irreducible representation of `×, and ψv be a character of GFv . Suppose that the
ring

Rp = ⊗̂v∈ΣpR
�,ψv (w0, t

ds
v , ρ)

is not zero. Let σ = ⊗v∈ΣpσD(tv). Then there exists η satisfying the compatibility
conditions with σ of Section 4.2, and which restricts to ψv on F×v for all v ∈ Σp,
and the space of modular forms Sσ,η(U,O) contains an eigenform f whose associated
Galois representation has its reduction modulo p isomorphic to r.
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Proof. — For the existence and construction of η, see [GK14, §5.4.1].
We now prove the existence of the eigenform f .
Suppose first that none of the tv is scalar. Then each R�,ψv (w0, t

ds
v , ρ) parametrizes

only potentially crystalline representations. Corollary 3.1.7 of [Gee11] applied to our
situation gives that for each irreducible component of SpecRp[1/p], there exists a
lift r of r that is modular, unramified outside p, with determinant ηε, potentially
crystalline with Hodge-Tate weights (0, 1) at each v ∈ Σp and for each Fv → Qp
and defining a point on the given irreducible component. The representation r comes
from some automorphic form on a quaternion algebra over F . Thanks to the local
conditions on r, we can suppose that r comes from a modular form f on B, and that
f ∈ Sσ,η(U,O). This proves the claim in this case, and in particular whenever ρ is not
isomorphic to a twist of ( ω ∗0 1 ) by Proposition 3.5.6.

When ρ is isomorphic to a twist of ( ω ∗0 1 ) (in the case K = Qp), Corollary 3.1.7 of
[Gee11] is not enough: for dim γv = 1, we need points on SpecR�,ψv (w0, t

ds
v , ρ)[1/p]

corresponding to potentially semi-stable representations that are not potentially crys-
talline. We make use of [BD14, Th. 3.2.2] instead: it allows us to choose r such that
each r|GFv is not potentially crystalline when dim γv = 1. Note that in this situation,
each R�,ψv (w0, t

ds
γv , ρ) is irreducible. �

Let t be a discrete series inertial type and w be a Hodge-Tate type, and let ψ be
the character defined in Section 5.1.

Proposition 5.4.2. — Suppose that R�,ψ(w, tds, ρ) 6= 0. There exists a charac-
ter η of (AfF )×/F× which restricts to ψ on F×v for all v ∈ Σp such that, for
σ = ⊗v∈Σp(σD(t) ⊗ σw), the space of modular forms Sσ,η(U,O) contains an eigen-
form f whose associated Galois representation has its reduction modulo p isomorphic
to r.

Proof. — As before, the existence of η satisfying the compatibility conditions with
σ of Section 4.2 and whose restriction to F×v coincides ψ for all v ∈ Σp, comes from
[GK14, 5.4.1].

If R�,ψ(w, tds, ρ) 6= 0, by Theorems 3.4.1 and 3.4.3 there exist an irreducible
representation γ of

∏
v∈Σp

`×, γ = ⊗v∈Σpγv appearing as an irreducible constituent
of ⊗v∈Σp(σD(t) ⊗ σw) and characters ψv that are equal to a finite order character
times the cyclotomic character such that ⊗̂v∈ΣpR

�,ψv (w0, t
ds
v , ρ) 6= 0, where tv is the

inertial type attached to the representation γv as in the proof of Proposition 3.3.2.
We can apply Lemma 5.4.1 to the family of types (tv), as by construction

σD(tv) = γv is an irreducible representation of `×. Then the result follows from
[GS11, Lem. 2.1]. �

In particular in the conditions of Proposition 5.4.2, rf |GFv0 has determinant εψ,
inertial type t and Hodge-Tate type w, where rf is the Galois representation attached
to f as in Section 4.5.1.
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5.5. Patching. — Let (tv, wv)v∈Σp be a family of discrete series inertial types and
Hodge-Tate types, with tv0 = t and wv0 = w. Let also (ψv)v∈Σp be a family of
characters of GK = GFv .

We suppose in this paragraph that there exists a character η of (AfF )×/F× that
restricts to ψv on F×v for all v ∈ Σp and such that for σ = ⊗v∈Σp(σD(tv)⊗ σwv ), the
space of modular forms Sσ,η(U,O) contains an eigenform f whose associated Galois
representation has its reduction modulo p isomorphic to r.

Consider now

σ̃ = (σG (t))⊗ σw)⊗ (⊗v∈Σ′p
(σD(tv)⊗ σwv ).

It is a representation of G ×
∏
v∈Σ′p

Uv, where Uv = O×D . The space of modular forms
Sσ̃,η(U,O) is either the same as Sσ,η(U,O) as an O-module and a TS-algebra (if t is
of the form (scal) or (irr), as in this case σG (t) acts on the same space as σD(t)) or
is two copies of Sσ,η(U,O) (if t is of the form (red), as in this case σG (t) acts on a
space which is two copies σD(t), see Section 4.4.2). In any case, it contains a copy of
the form f given by Proposition 5.4.2. Let m be a maximal ideal of TS containing p
such that f is in Sσ̃,η(U,O)m.

Let Tσ̃,η(U,O)m be the image of TS,m in the endomorphism ring of Sσ̃,η(U,O)m.
Any eigenform in Sσ̃,η(U,O)m has an associated Galois representation with residual
representation isomorphic to r, which is absolutely irreducible. By the main result of
[Tay89] and the Jacquet-Langlands correspondence (see [Tay06, Lem. 1.3]) we deduce
that we have a Galois representation

rm : GF −→ GL2(Tσ̃,η(U,O)m)

coming from all the eigenforms in Sσ̃,η(U,O)m. In particular, rm is unramified out-
side p.

Let R be the universal deformation ring for deformations of r that are unramified
outside Σp and R� the framed analogue. Then we have a map R → Tσ̃,η(U,O)m
coming from rm, so R acts on Sσ̃,η(U,O)m via the Hecke operators.

Let R�(ρ) the ring classifying lifts of ρ, and R�p = ⊗̂v∈ΣpR
�(ρ). Let Rp be

⊗̂v∈ΣpR
�,ψv (wv, t

ds
v , ρ)

seen as a quotient of R�p , and R′ = R�⊗R�
p
Rp. The ring R′ is the universal ring for

lifts of r that are unramified outside p and potentially semi-stable of inertial type tv,
of some discrete series extended type, of Hodge-Tate type wv and determinant εψ at
each place v ∈ Σp. Let M0 = R� ⊗R Sσ̃,η(U,O)m. Then the action of R� on M0

factors through R′ by the results recalled in Section 4.5.2.
We decompose the reduction σ of σ̃ modulo p as a direct sum σ = ⊕γγ⊕nγ , with

γ = γv0 ⊗ (⊗v∈Σ′p
γv), of representations of Γ×

∏
v∈Σ′p

`×. This gives a decomposition
σ = ⊕γγnγ as a representation of G ×

∏
v∈Σ′p

Uv.
Using the techniques of [Kis09a, §(2.2)] we construct the following objects:
(1) a ring R∞ which is a power series ring on Rp (this is R∞ of [Kis09a]),
(2) a ring S∞ which is a power series ring on O (this is O[[∆∞]] of [Kis09a]),
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(3) an (S∞, R∞)-module M∞ that is free as an S∞-module, and such that M0 is
a quotient of M∞,

(4) a (S∞, R∞)-linear operator Wv0 on M∞ compatible with the Hecke opera-
tor Wv0 on M0 defined in Section 4.4.1, with W 2

v0 = ψv0($K)−1,
(5) a decomposition M∞ ⊗ F = ⊕γM

⊕nγ
∞,γ as (S∞, R∞)-module, such that each

M∞,γ is a finite free S∞⊗F-module, and such that moreover M∞,γ does not depend
on (tv0 , wv0) or the (tv, wv), in a sense that is explained below.

The only part which is not a copy of the arguments of [Kis09a] is (4). The mod-
ule M∞ is built by patching modules Mn = R� ⊗R Sσ̃,η(Un,O)mn for some choice
of compact open subgroup Un which is maximal at v for all v | p, and for some choice
of maximal ideal mn (with U0 = U and m0 = m). In particular, for each n there is a
Hecke operator Wv0 on Mn as in Section 4.4.1 with W 2

v0 = η($K,v0)−1 = ψv0($K)−1

which is compatible with the surjective map Mn →M0. Moreover, the action of Wv0

commutes with the right action of the subgroup of (B ⊗F AfF )× of elements that are
trivial at v0, hence Wv0 is R∞- and S∞-linear. Once a square root of η($K,v0)−1 is
fixed, then for each n we have a decomposition Mn = M+

n ⊕M−n in sub-(S∞, R∞)-
modules according to the eigenvalues of Wv0 , and this decomposition is compatible
to the decomposition M+

0 ⊕M
−
0 . We apply the patching argument not only to Mn,

but to the decomposition M+
n ⊕M−n , which gives a decomposition M∞ = M+

∞⊕M−∞
and an operator Wv0 on M∞ with the required properties. Note that M+

∞ and M−∞
are also free as S∞-modules.

Let γ be an irreducible smooth representation of G ×
∏
v∈Σ′p

Uv in characteristic p,
and γ̃ a smooth lift of γ (as in Proposition 3.3.2 for the part which is a representation
of G and by Teichmüller lift for the parts which are representations of Uv = O×D).
By Lemma 5.4.1, there exists a character ηγ of (AfF )×/F× lifting η and characters
(ψγ,v)v∈Σp satisfying the conditions at the beginning of this Paragraph, so we can
make the constructions with the space of modular forms Sγ̃,ηγ (U,O)m. We denote by
M∞,γ the patched module we obtain (although it depends not only on γ but also
on other data). Then (5) means that M∞,γ is isomorphic to the reduction modulo p
of M∞,γ . We also have a Hecke operator Wv0 on M∞,γ and a decomposition M∞,γ =

M+
∞,γ ⊕M−∞,γ that reduces to M∞,γ = M

+

∞,γ ⊕M
−
∞,γ .

5.6. Equality of multiplicities. — Recall that dt = 2 if t is of the form (red) and
dt = 1 otherwise. As in [Kis09a, Lem. (2.2.11)], M∞ has rank 0 or dt at each generic
point of R∞ and

e(M∞/πM∞, R∞/πR∞) 6 dte(R∞/πR∞),

with equality if and only if the support of M∞ is all of SpecR∞ (we already know
that it is a union of irreducible components of SpecR∞).

Our main ingredient is the following Proposition, which we prove using the results
of Section 3.4 and the methods of [Kis09a, §(2.2)].

Proposition 5.6.1. — We have e(M∞/πM∞, R∞/πR∞) = dte(R∞/πR∞).
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Proof. — Suppose first that wv = w0 for all v ∈ Σp. By reasoning as in the proof
of Proposition 5.4.2, we see that the support of the module M0 meets each irre-
ducible component of SpecR∞[1/p]. The irreducible components of SpecR∞[1/p] are
connected components, hence we can apply the criterion of [GK14, Lem. 4.3.8]: the
equality of Proposition 5.6.1 holds if and only if the support of M0 meets every irre-
ducible component of SpecR∞[1/p].

Let us now return to the case without conditions on the wv (in the case K = Qp).
It follows from the decomposition M∞ ⊗ F = ⊕γM

⊕nγ
∞,γ that

e(M∞/π,R∞/π) =
∑
γ

nγe(M∞,γ , R∞/π).

Moreover,
e(R∞/πR∞) =

∏
v∈Σp

e(R�,ψv (wv, t
ds
γv , ρ)/π).

As K = Qp, it follows from the theorems of Section 3.4 that we have

dte(R∞/πR∞) =
∑
γ

nγ(dim γv0)
∏
v∈Σp

e(R�,ψ(w0, t
ds
γv , ρ)/π).

We denote by R∞,γ the ring that is the analogue of R∞ but with (w0, tγv ) instead
of (wv, tv) for all v ∈ Σp, and the characters (ψγ,v)v∈Σp defined at the end of Section
5.5 instead of (ψv). Let also Rp,γ be the analogue of Rp.

Then the image of R∞ and R∞,γ in the endomorphisms of M∞,γ is the same, as
follows from (4) of the properties of patching, hence

e(M∞,γ , R∞/π) = e(M∞,γ , R∞,γ/π).

Moreover,
e(R∞,γ/π) =

∏
v∈Σp

e(R�,ψγ,v (w0, t
ds
γv , ρ)/π),

and we have e(M∞,γ , R∞,γ/π) = (dim γv0)e(R∞,γ/π) by applying the part of Propo-
sition 5.6.1 that we have already proved to M∞,γ and R∞,γ , which concludes the
proof of Proposition 5.6.1 in the general case. �

5.7. Action of the Hecke operator at p. — We apply the results of the preceding
paragraphs in the situation coming from Proposition 5.4.2, so in particular wv = w

and tv = t and ψv = ψ for all v ∈ Σp. Recall that we have chosen a square root α of
η($K,v0)−1 = ψ($K)−1.

Let (t+, t−) = (t+
v0 , t

−
v0) be a pair of conjugate extended types compatible to

(t, ψ). We set

R+
∞ = R�,ψ(wv0 , t

+
v0 , ρ)⊗R�,ψ(wv0 ,t

ds
v0
,ρ) R∞,

R−∞ = R�,ψ(wv0 , t
−
v0 , ρ)⊗R�,ψ(wv0 ,t

ds
v0
,ρ) R∞

(so that R∞ = R+
∞ = R−∞ when t is of the form (red), and these rings differ only

when t is of the form (scal) or (irr)).
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We make a choice for σG (t) so that

t+ = LLD(σG (t))⊗ unr(a
√
$K

|w|
)−1

for a lift a of α with a2 = ψ($K)−1 (recall that |w| = n + 2m if K = Qp and
w = (n,m), and set |w0| = 0 for any K).

We can consider the Hecke operator Wv0 acting on all the spaces of modular forms
that we have defined. This gives a decomposition M∞ = M+

∞⊕M−∞ as in Section 5.5,
where M+

∞ is the submodule on which Wv0 acts by a lift of α, and decompositions
Mn = M+

n ⊕M−n for the modules Mn.
The action of R∞ on M+

∞ factors through R+
∞, and similarly for R−∞. Indeed this

is true for each Mn = M+
n ⊕M−n by Lemma 4.5.1.

We can do the same thing for each irreducible representation γ of Γ: recall that
for each γ we made a choice in Section 5.1 of an inertial type tγ and a representation
σG (tγ) of G such that σG (tγ) is isomorphic to γ and an extended type

t+
γ = LLD(σG (tγ))⊗ unr(aγ)−1

for an aγ lifting α with W 2
v0 = a2

γ on M∞,γ . Let

t−γ = LLD(ξσG (tγ))⊗ unr(aγ)−1

= LLD(σG (tξγ))⊗ unr(aγ)−1

= LLD(σG (tγ))⊗ unr(−aγ)−1.

For γ of dimension 2 we set R+
∞,γ = R−∞,γ = R∞,γ and for γ of dimension 1 we set

R+
∞,γ = R�,ψ(w0, t

+
γ , ρ)⊗R�,ψ(w0,tdsγ ,ρ)

R∞,γ ,

R−∞,γ = R�,ψ(w0, t
−
γ , ρ)⊗R�,ψ(w0,tdsγ ,ρ)

R∞,γ .

Then for all γ the action of R∞,γ onM±∞,γ factors through R±∞,γ as before. Note that
t−γ = t+

ξγ and R−∞,γ = R+
∞,ξγ .

Note that the decompositions M∞ = M+
∞ ⊕M−∞ and M∞,γ = M

+

∞,γ ⊕M
−
∞,γ for

all γ are compatible, that is,

M
±
∞ ⊗ F = ⊕γ(M

±
∞,γ)nγ .

In particular, we have e(M±∞/π,R±∞/π) = e(M±∞/π,R∞/π), hence

e(M+
∞/π,R

+
∞/π) + e(M−∞/π,R

−
∞/π) = e(M∞/π,R∞/π).

We also have that e(M±∞/π,R±∞/π) 6 e(R±∞/π) by the same argument as in [Kis09a,
Lem. (2.2.11)]. Moreover,

dte(R∞/π) = e(R+
∞/π) + e(R−∞/π)

(see Proposition 3.5.4). Hence we deduce from Proposition 5.6.1 that

e(M±∞/π,R
±
∞/π) = e(R±∞/π) and e(M

±
∞,γ , R

±
∞,γ/π) = e(R±∞,γ/π) for all γ.
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Finally we get that

e(R�,ψ(w, t+, ρ)/π) =
∑
γ

[σG (t)⊗ σw : γ]e(R�,ψ(w0, t
+
γ , ρ)/π),

as e(R∞/π) 6= 0. As the right-hand side is µρ([σG (t)⊗ σw]) by the definition of µρ in
Section 5.2, we get that

e(R�,ψ(w, t+, ρ)/π) = µρ([σG (t)⊗ σw]),

which finishes the proof of Theorems 3.5.1 and 3.5.2.

6. Application

6.1. Computation of weights. — In this section we suppose p > 5.
Let ρ be a continuous representation GQp → GL2(F) such that ρ|Ip = ( ω ∗0 1 )⊗ ωn.

We compute µρ in this case for the choice $Qp = p.
For a representation of the form

ρ =

(
ω ∗
0 1

)
⊗ ωn ⊗ unr(x)

then ψ(p) = x2. In order to apply Theorem 3.5.1 we need to make a choice of a square
root of ψ(p)−1, and we take this square root to be α = x−1.

Lemma 6.1.1. — Let ρ|Ip = ( ω ∗0 1 ) ⊗ ωn for some n with ∗ “très ramifié” (and non-
zero), then µρ(ξnδn) = 1 and all other µρ(γ) are 0.

Let ρ|Ip = ( ω ∗0 1 ) ⊗ ωn for some n with ∗ “peu ramifié” but non-zero, then
µρ(ξ

nδn) = 1 and µρ(rn(p+1)+p−1) = 2 and all other µρ(γ) are 0.
Let ρ|Ip = ( ω 0

0 1 )⊗ωn for some n, then µρ(ξnδn) = 1 and µρ(rn(p+1)+p−1) = 4 and
all other µρ(γ) are 0.

Proof. — We can compute e(R�,ψ(w, trivds, ρ)/π) for any Hodge-Tate type w using
the formula coming from the Breuil-Mézard conjecture for GL2 and the list of the
Serre weights with their multiplicities given in [BM02, §2.1.2]. Then we compare this
to the formula for this multiplicity given by Theorem 3.5.1, using also the formula
given by Lemma 3.5.12.

We compute first e(R�,ψ(w, trivds, ρ)/π) for Hodge-Tate types of the form w =

(0,m). We get that µρ(ξαδm) = 0 for α = 0, 1 if m is not equal to n modulo p − 1,
and µρ(δn) + µρ(ξδn) = 1. Using the computations in [BM02, §5.2.1] we see that in
fact µρ(ξnδn) = 1.

By computing e(R�,ψ(w, trivds, ρ)/π) for Hodge-Tate types w of the form (a, b) for
a > 0 we can find the value of µρ(r) for representations r of dimension 2. �

6.2. An application to congruences modulo p in Sk(Γ0(p)). — Let f be a newform in
Sk(Γ0(p)). Then ap(f) = ±pk/2−1. We denote by ρf the p-adic Galois representation
associated to f , rf its reduction modulo p, and rf,p its restriction to a decomposition
group GQp at p.
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Theorem 6.2.1. — Let k > 2 be an even integer, f a newform in Sk(Γ0(p)).
(1) Suppose that rf,p is of the form(

ω ∗
0 1

)
⊗ ωk/2−1 ⊗ unr(x)

for some x and ∗ “très ramifié” (and non-zero) and k 6 2p+ 2. Then

x−1 = (−1)k/2−1(ap(f)/pk/2−1).

In particular, there does not exist a newform g in Sk(Γ0(p)) congruent to f modulo p
such that ap(g) = −ap(f).

(2) Suppose that either rf,p|Ip is not of the form ( ω ∗0 1 )⊗ωk/2−1 with ∗ “très ramifié”
or that k > 2p + 2. If rf |GQ(ζp)

is absolutely irreducible then there exists a newform
g ∈ Sk(Γ0(p)) congruent to f modulo p such that ap(g) = −ap(f).

Proof. — Let up(f) = ap(f)p1−k/2. By the results of [Sai09], ρf is a semi-stable,
non-crystalline representation with extended type

tf = (‖ · ‖k/2−1 ⊕ ‖ · ‖k/2)⊗ unr(up(f)−1) = (1⊕ ‖ · ‖)⊗ unr(up(f)−1p1−k/2).

Let wk be the Hodge-Tate type (k − 2, 0) and ψk = εk−2.
Suppose first that rf,p is of the form(

ω ∗
0 1

)
⊗ ωk/2−1 ⊗ unr(x),

with ∗ “très ramifié”. By the existence of f , R�,ψk(wk, tf , rf,p) is non-zero. With the
normalization $Qp = p as before, there is a choice of i ∈ Z/2Z with σG (triv) = ξi

such that
tf = (1⊕ ‖ · ‖)⊗ unr((−1)i)⊗ unr(y−1p1−k/2)

for some y lifting x−1, and then

e(R�,ψk(wk, tf , rf,p)/π) = µrf,p([ξiσwk ]).

As k 6 2p + 2, by Lemma 3.5.12 and Lemma 6.1.1 this can be non-zero only if
i = k/2− 1, that is, y = (−1)k/2−1up(f), which gives the result (note that we could
apply the same method for f ∈ Sk(Γ0(Np)) new at p for any N such that p - N).

Suppose now that either rf,p|Ip is not of the form ( ω ∗0 1 ) ⊗ ωk/2−1 with ∗ “très
ramifié” or that k > 2p + 2. By the existence of f , R�,ψk(wk, tf , rf,p) is non-
zero and then Corollary 3.5.9 or the computations of Lemma 6.1.1 show that both
R�,ψk(wk, tf , rf,p) and R�,ψk(wk, t

′
f , rf,p) are non-zero when k > 2, where t′f is the

extended type conjugate to tf .
Suppose now that moreover rf |GQ(ζp)

is absolutely irreducible. Let B be the quater-
nion algebra overQ that is ramified exactly at p and∞. There exists a modular form f ′

on B such that the automorphic representations attached to f and f ′ correspond to
each other via Jacquet-Langlands, and more precisely we can take for f ′ an eigen-
form in Sσ,η(U,O) for σ = σalg = Symk−2 O2 and some character η that restricts
to ψk at p, and U as in Section 5.3. Then we are in the situation of Section 5.5, from
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which we retain the notations. In particular Proposition 5.6.1 holds, hence the mod-
ule M0[1/p] meets each irreducible component of SpecRp[1/p]. As SpecRp[1/p] has
irreducible components of both possible extended types, there exists an eigenform g′

in Sσ,η(U,O) such that the Galois representation attached to g′ has an extended type
at p which is conjugate to that of rf . Let g ∈ Sk(Γ0(p)) be an eigenform such that the
automorphic representations attached to g and g′ correspond via Jacquet-Langlands,
then g is the form we were looking for. �

The first part of Theorem 6.2.1 can be seen as a generalization of Conjecture 4 of
[CS04] which was proved in [AB07] (see also [BP11]).
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