Stochastic homogenization of degenerate integral functionals and their Euler-Lagrange equations
[Homogénéisation stochastique des fonctionnelles intégrales dégénérées et leurs équations d’Euler-Lagrange]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 253-303.

Nous prouvons l’homogénéisation stochastique des fonctionnelles intégrales définies sur des espaces de Sobolev, où l’intégrande stationnaire et ergodique satisfait à une condition de croissance dégénérée de la forme c|ξA(ω,x)| p f(ω,x,ξ)|ξA(ω,x)| p +Λ(ω,x)p(1,+), A est une matrice diagonale stationnaire et ergodique dont la norme et celle de son inverse satisfont aux hypothèses d’intégrabilité minimale et Λ est une fonction stationnaire et non négative avec un moment d’ordre un fini. Nous considérons également la convergence lorsque des conditions aux limites de Dirichlet ou une condition d’obstacle sont imposées. En supposant la stricte convexité et la différentiabilité de f par rapport à sa dernière variable, nous prouvons en outre que l’intégrande homogénéisée est également strictement convexe et différentiable. Ces propriétés nous permettent de montrer l’homogénéisation des équations d’Euler-Lagrange associées.

We prove stochastic homogenization for integral functionals defined on Sobolev spaces, where the stationary, ergodic integrand satisfies a degenerate growth condition of the form c|ξA(ω,x)| p f(ω,x,ξ)|ξA(ω,x)| p +Λ(ω,x) for some p(1,+) and with a stationary and ergodic diagonal matrix A such that its norm and the norm of its inverse satisfy minimal integrability assumptions and Λ is a nonnegative, stationary function with finite first moment. We also consider the convergence when Dirichlet boundary conditions or an obstacle condition are imposed. Assuming the strict convexity and differentiability of f with respect to its last variable, we further prove that the homogenized integrand is also strictly convex and differentiable. These properties allow us to show homogenization of the associated Euler-Lagrange equations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.218
Classification : 49J45, 49J55, 60G10, 35J70
Keywords: Stochastic homogenization, integral functionals, degenerate $p$-growth, homogenization of Euler-Lagrange equations
Mot clés : Homogénéisation stochastique, fonctionnelles intégrales, croissance d’ordre $p$ dégénérée, homogénéisation des équations d’Euler-Lagrange
Matthias Ruf 1 ; Thomas Ruf 2

1 Section de mathématiques, École Polytechnique Fédérale de Lausanne Station 8, 1015 Lausanne, Switzerland
2 Institut für Mathematik, Universität Augsburg 86159 Augsburg, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__253_0,
     author = {Matthias Ruf and Thomas Ruf},
     title = {Stochastic homogenization of degenerate integral functionals and {their~Euler-Lagrange} equations},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {253--303},
     publisher = {\'Ecole polytechnique},
     volume = {10},
     year = {2023},
     doi = {10.5802/jep.218},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.218/}
}
TY  - JOUR
AU  - Matthias Ruf
AU  - Thomas Ruf
TI  - Stochastic homogenization of degenerate integral functionals and their Euler-Lagrange equations
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 253
EP  - 303
VL  - 10
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.218/
DO  - 10.5802/jep.218
LA  - en
ID  - JEP_2023__10__253_0
ER  - 
%0 Journal Article
%A Matthias Ruf
%A Thomas Ruf
%T Stochastic homogenization of degenerate integral functionals and their Euler-Lagrange equations
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 253-303
%V 10
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.218/
%R 10.5802/jep.218
%G en
%F JEP_2023__10__253_0
Matthias Ruf; Thomas Ruf. Stochastic homogenization of degenerate integral functionals and their Euler-Lagrange equations. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 253-303. doi : 10.5802/jep.218. https://jep.centre-mersenne.org/articles/10.5802/jep.218/

[1] M. A. Akcoglu & U. Krengel - “Ergodic theorems for superadditive processes”, J. reine angew. Math. 323 (1981), p. 53-67 | DOI | Zbl

[2] R. Alicandro, M. Cicalese & A. Gloria - “Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity”, Arch. Rational Mech. Anal. 200 (2011) no. 3, p. 881-943 | DOI | Zbl

[3] N. Ansini, G. Dal Maso & C. I. Zeppieri - “New results on Γ-limits of integral functionals”, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014) no. 1, p. 185-202 | DOI | Numdam | Zbl

[4] S. N. Armstrong & J.-C. Mourrat - “Lipschitz regularity for elliptic equations with random coefficients”, Arch. Rational Mech. Anal. 219 (2016) no. 1, p. 255-348 | DOI | Zbl

[5] S. N. Armstrong & C. K. Smart - “Regularity and stochastic homogenization of fully nonlinear equations without uniform ellipticity”, Ann. Probab. 42 (2014) no. 6, p. 2558-2594 | DOI | Zbl

[6] J. M. Ball, B. Kirchheim & J. Kristensen - “Regularity of quasiconvex envelopes”, Calc. Var. Partial Differential Equations 11 (2000) no. 4, p. 333-359 | DOI | Zbl

[7] J. M. Ball & F. Murat - “Remarks on Chacon’s biting lemma”, Proc. Amer. Math. Soc. 107 (1989) no. 3, p. 655-663 | DOI | Zbl

[8] A. Braides - Γ-convergence for beginners, Oxford Lecture Series in Math. and its Applications, vol. 22, Oxford University Press, Oxford, 2002 | DOI

[9] F. Cagnetti, G. Dal Maso, L. Scardia & C. I. Zeppieri - “Γ-convergence of free-discontinuity problems”, Ann. Inst. H. Poincaré Anal. Non Linéaire 36 (2019) no. 4, p. 1035-1079 | DOI | Zbl

[10] L. Carbone & C. Sbordone - “Some properties of Γ-limits of integral functionals”, Ann. Mat. Pura Appl. (4) 122 (1979), p. 1-60 | DOI | Zbl

[11] B. Dacorogna - Direct methods in the calculus of variations, Applied Mathematical Sciences, vol. 78, Springer, New York, 2008

[12] G. Dal Maso - An introduction to Γ-convergence, Progr. in Nonlinear Differential Equations and their Appl., vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1993 | DOI

[13] G. Dal Maso & L. Modica - “Integral functionals determined by their minima”, Rend. Sem. Mat. Univ. Padova 76 (1986), p. 255-267 | Numdam | Zbl

[14] G. Dal Maso & L. Modica - “Nonlinear stochastic homogenization”, Ann. Mat. Pura Appl. (4) 144 (1986), p. 347-389 | DOI | Zbl

[15] G. Dal Maso & L. Modica - “Nonlinear stochastic homogenization and ergodic theory”, J. reine angew. Math. 368 (1986), p. 28-42 | Zbl

[16] R. De Arcangelis - “Compactness and convergence of minimum points for a class of nonlinear nonequicoercive functionals”, Nonlinear Anal. 15 (1990) no. 4, p. 363-380 | DOI | Zbl

[17] C. De Lellis, M. Focardi & E. N. Spadaro - “Lower semicontinuous functionals for Almgren’s multiple valued functions”, Ann. Acad. Sci. Fenn. Math. 36 (2011) no. 2, p. 393-410 | DOI | Zbl

[18] C. D’Onofrio & C. I. Zeppieri - “Γ-convergence and stochastic homogenization of degenerate integral functionals in weighted Sobolev spaces”, Proc. Roy. Soc. Edinburgh Sect. A (2022), online first | DOI

[19] M. Duerinckx & A. Gloria - “Stochastic homogenization of nonconvex unbounded integral functionals with convex growth”, Arch. Rational Mech. Anal. 221 (2016) no. 3, p. 1511-1584 | DOI | Zbl

[20] N. Dunford & J. T. Schwartz - Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988

[21] L. C. Evans & R. F. Gariepy - Measure theory and fine properties of functions, Studies in Advanced Math., CRC Press, Boca Raton, FL, 1992

[22] I. Fonseca & G. Leoni - Modern methods in the calculus of variations: L p spaces, Springer Monographs in Math., Springer, New York, 2007

[23] A. Giacomini & M. Ponsiglione - “A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications”, Arch. Rational Mech. Anal. 180 (2006) no. 3, p. 399-447 | DOI | Zbl

[24] V. V. Jikov, S. M. Kozlov & O. A. Oleĭnik - Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994 | DOI

[25] U. Krengel - Ergodic theorems, De Gruyter Studies in Math., vol. 6, Walter de Gruyter & Co., Berlin, 1985 | DOI

[26] J. Kristensen - “Lower semicontinuity in spaces of weakly differentiable functions”, Math. Ann. 313 (1999) no. 4, p. 653-710 | DOI | Zbl

[27] M. Marcus & V. J. Mizel - “Every superposition operator mapping one Sobolev space into another is continuous”, J. Functional Analysis 33 (1979) no. 2, p. 217-229 | DOI | Zbl

[28] K. Messaoudi & G. Michaille - “Stochastic homogenization of nonconvex integral functionals”, RAIRO Modél. Math. Anal. Numér. 28 (1994) no. 3, p. 329-356 | DOI | Numdam | Zbl

[29] S. Neukamm, M. Schäffner & A. Schlömerkemper - “Stochastic homogenization of nonconvex discrete energies with degenerate growth”, SIAM J. Math. Anal. 49 (2017) no. 3, p. 1761-1809 | DOI | Zbl

[30] R. T. Rockafellar & R. J.-B. Wets - Variational analysis, Grundlehren Math. Wiss., vol. 317, Springer-Verlag, Berlin, 1998 | DOI

[31] R. T. Smythe - “Multiparameter subadditive processes”, Ann. Probab. 4 (1976) no. 5, p. 772-782 | DOI | Zbl

Cité par Sources :