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STOCHASTIC HOMOGENIZATION OF DEGENERATE

INTEGRAL FUNCTIONALS AND

THEIR EULER-LAGRANGE EQUATIONS

by Matthias Ruf & Thomas Ruf

Abstract. — We prove stochastic homogenization for integral functionals defined on Sobolev
spaces, where the stationary, ergodic integrand satisfies a degenerate growth condition of the
form c|ξA(ω, x)|p ⩽ f(ω, x, ξ) ⩽ |ξA(ω, x)|p + Λ(ω, x) for some p ∈ (1,+∞) and with a sta-
tionary and ergodic diagonal matrix A such that its norm and the norm of its inverse satisfy
minimal integrability assumptions and Λ is a nonnegative, stationary function with finite first
moment. We also consider the convergence when Dirichlet boundary conditions or an obstacle
condition are imposed. Assuming the strict convexity and differentiability of f with respect
to its last variable, we further prove that the homogenized integrand is also strictly convex
and differentiable. These properties allow us to show homogenization of the associated Euler-
Lagrange equations.

Résumé (Homogénéisation stochastique des fonctionnelles intégrales dégénérées et leurs équa-
tions d’Euler-Lagrange)

Nous prouvons l’homogénéisation stochastique des fonctionnelles intégrales définies sur des
espaces de Sobolev, où l’intégrande stationnaire et ergodique satisfait à une condition de crois-
sance dégénérée de la forme c|ξA(ω, x)|p ⩽ f(ω, x, ξ) ⩽ |ξA(ω, x)|p + Λ(ω, x) où p ∈ (1,+∞),
A est une matrice diagonale stationnaire et ergodique dont la norme et celle de son inverse
satisfont aux hypothèses d’intégrabilité minimale et Λ est une fonction stationnaire et non né-
gative avec un moment d’ordre un fini. Nous considérons également la convergence lorsque des
conditions aux limites de Dirichlet ou une condition d’obstacle sont imposées. En supposant la
stricte convexité et la différentiabilité de f par rapport à sa dernière variable, nous prouvons
en outre que l’intégrande homogénéisée est également strictement convexe et différentiable. Ces
propriétés nous permettent de montrer l’homogénéisation des équations d’Euler-Lagrange as-
sociées.
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1. Introduction

In their pioneering papers [14, 15], Dal Maso and Modica have set the basic strategy
for the stochastic homogenization of integral functionals defined on Sobolev spaces.
They consider functionals of the type

(1.1) Fε(ω, u) =

∫
D

f(ω, x/ε,∇u(x)) dx,

where f is measurable in (ω, x) and convex in the last variable satisfying the p-growth
condition

(1.2) c|ξ|p ⩽ f(ω, x, ξ) ⩽ C(|ξ|p + 1)

for some p ∈ (1,+∞) and positive constants C > c. In this setting, the appropri-
ate tool to study the asymptotic behavior of minimizers as ε → 0 is Γ-convergence
(cf. [8, 12] for a general introduction to the topic). Randomness enters the problem
through the parameter ω, that is, the integrands are chosen at random in the above
class of integrands. A crucial assumption that allows to homogenize the functionals
to a simpler functional is stationarity, that is, for all z ∈ Rd (or all z ∈ Zd, depending
on the model) and for any finite point set {x1, . . . , xn} ⊂ Rd, the random vectors
(f(ω, x1, ξ), . . . , f(ω, xn, ξ)) and (f(ω, x1 + z, ξ), . . . , f(ω, xn + z, ξ)) have the same
distribution (this can be expressed conveniently with measure preserving group ac-
tions, cf. Section 2). Under those assumptions one can prove that the Γ-limit exists
almost surely and is given by an integral functional of the form

Fhom(ω, u) =

∫
D

fhom(ω,∇u(x)) dx.

Under the additional assumption of ergodicity, the limit is deterministic. The inte-
grand still satisfies p-growth conditions and is convex in the gradient variable. The
basic strategy can be summarized as follows: by deterministic arguments, one proves
that the given class of integral functionals is compact with respect to Γ-convergence,
which implies that (up to a subsequence) the Γ-limit of Fε(ω, ·) has the form

F0(ω, u) =

∫
D

f0(ω, x,∇u(x)) dx.

In a second step, by the blow-up formula for convex integrands in [13, Th. 1], the
convergence of minima yields that

f0(ω, x0, ξ) = lim
δ→0

inf

{
−
∫
Qδ(x0)

f0(ω, x, ξ +∇v(x)) dx : v ∈W 1,p
0 (Qδ(x0))

}
= lim

δ→0
lim
ε→0

inf

{
−
∫
Qδ(x0)

f(ω, x/ε, ξ +∇v(x)) dx : v ∈W 1,p
0 (Qδ(x0))

}
t=1/ε
= lim

δ→0
lim

t→+∞
inf

{
−
∫
Qδt(tx0)

f(ω, y, ξ +∇v(x)) dx : v ∈W 1,p
0 (Qδt(x0))

}
= lim

t→+∞
inf

{
−
∫
Qt(0)

f(ω, y, ξ +∇v(x)) dx : v ∈W 1,p
0 (Qt(0))

}
,
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Stochastic homogenization of degenerate integral functionals 255

where the last equality is a consequence of the subadditive ergodic theorem [1] in
the sense that the limit in t exists and is independent of x0 and therefore also of δ.
This proves the full Γ-convergence result and ergodicity implies that the integrand is
deterministic.
This approach has been extended to nonconvex integrands in [28] with the same
growth condition (1.2) and a quantitative continuity assumption in the gradient vari-
able compatible with the p-growth of f . The additional continuity assumption is no
major restriction since the relaxed functional has the same Γ-limit and by a general
theory has an integrand that is quasiconvex in the gradient variable. For quasiconvex
functions satisfying the p-growth condition (1.2) the additional continuity estimate
comes for free (see [22, Prop. 4.64]). To the best of our knowledge, the by now most
general stochastic homogenization result for integral functionals on Sobolev spaces
is [19], where the authors consider integrands f that are either convex with the lower
bound in (1.2) for p > d and such that supω,x f(ω, x, ·) has zero in the interior of
its domain, but with no other growth condition from above, or nonconvex integrands
with a convex lower and upper bound of the above type together with a technical
upper semicontinuity condition (see [19, Def. 2.5]) that covers the case of adding non-
convex perturbations satisfying the p-growth condition (1.2) to a possibly unbounded
convex integrand. In this setting, the approach by Dal Maso and Modica no longer
works since no integral representation theorem exists for such functionals and there-
fore there is little chance to prove that the class of functionals is compact with respect
to Γ-convergence.

More recently, also the discrete-to-continuum analysis of finite-difference models
on an ε-scaled lattice either with random weights or a random geometry attracted
attention. Under the same p-growth condition (1.2) and a decay assumption for long-
range interactions, general homogenization results for discrete energies defined on an
ε-scaled stationary stochastic lattice or on a fixed periodic lattice εZd with stationary,
ergodic interactions were obtained in [2]. The latter case was extended to degenerate
weights with a finite range of interaction in [29]. More precisely, the authors consider
energies of the type

Eε(ω, u) = εd
∑

z∈εZd∩D

∑
e∈E

fe(ω, z/ε,∇u(e)),

where E is a finite set of edges and ∇u(e) denotes the discrete gradient along the
edge e. Up to constants, the density fe satisfies the growth condition

(1.3) cλe(ω, x)|ξ|p ⩽ fe(ω, x, ξ) ⩽ λe(ω, x)(|ξ|p + 1),

but the weights λe are not required to be bounded uniformly from above and below
(in that case (1.3) and (1.2) would be equivalent). Instead, the following integrability
assumptions are taken into account (here and in what follows Ω denotes a probability
space):

– λe(·, 0) ∈ L1(Ω) and λ
−1/(p−1)
e (·, 0) ∈ L1(Ω) if u is scalar-valued;
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256 M. Ruf & Th. Ruf

– λe(·, 0) ∈ Lα(Ω) for some α > 1 and λ−β
e (·, 0) ∈ L1(Ω) for some β such that

(1.4) 1

α
+

1

β
⩽
p

d
,

if u is a vectorial function.
In the scalar case, the authors need an additional ’convexity at infinity’ assumption
to be satisfied by fe. Note that the moment condition in the vectorial case is strictly
stronger than in the scalar case.

In this paper we consider a continuum version of [29], that is, we consider integral
functionals of the type (1.1) with the integrand f satisfying the degenerate growth
condition
(1.5) c|ξA(ω, x)|p ⩽ f(ω, x, ξ) ⩽ |ξA(ω, x)|p + Λ(ω, x),

where A : Ω×Rd → Md is a diagonal matrix-valued function and Λ : Ω×Rd → (0,+∞)

a measurable function. The novelty of our result is that we only assume the mo-
ment conditions |A(·, 0)|p,Λ(·, 0) ∈ L1(Ω) and |A(·, 0)−1|p/(p−1) ∈ L1(Ω), both in
the scalar and the vectorial case, and we drop the convexity assumption at infinity.
These moment conditions are optimal in the sense that the multi-cell formula defin-
ing the homogenized integrand degenerates for some examples violating the above
integrability assumptions (see Remark 3.2 and Example 4.4). Note that the different
integrability exponents compared to [29] are due to the fact that the matrix A(ω, x)
occurs inside the pth power, while in (1.3) the edge weights λe correspond to the
pth power of the eigenvalues. The degeneracy via the matrix A allows us to consider
anisotropically degenerated integrands. However, the diagonal structure, that yields
a single weight for each partial derivative similar to (1.3), is crucial for our proof.
Besides joint measurability of f , the only further regularity assumption we make is
the lower semicontinuity in the gradient-variable, which we need for measurability
issues (cf. Lemma C.1).

Assuming the above degenerate growth condition together with the stationarity
and ergodicity of f,A and Λ (cf. Assumption 1), we show in Theorem 3.1 that u 7→
Fε(ω, u,D) Γ-converges in L1(D,Rm) to a deterministic functional Fhom that is finite
only on W 1,p(D,Rm), taking the form

Fhom(u) =

∫
D

fhom(∇u(x)) dx,

where the homogenized density is given by a standard multi-cell formula involving
minimizing the heterogeneous functional under affine Dirichlet boundary conditions.
Furthermore, the integrand fhom satisfies the standard p-growth condition (1.2).
In Theorem 3.3 we consider Lipschitz-continuous boundary conditions and an exter-
nal linear force, which both pass to the limit. In this case, compactness of minimizing
sequences (or, more general, energy-bounded sequences) holds with respect to weak
convergence in W 1,1(D,Rm) and strong convergence in Ld/(d−1)(D,Rm). In order to
obtain the strong convergence with exponent d/(d − 1), in Theorem B.1 we prove
the complete continuity of the non-compact Sobolev embedding W 1,1 ↪→ Ld/(d−1),
that means, it maps weakly converging sequences to norm-converging sequences
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(cf. Theorem B.1). Very recently, D’Onofrio and Zeppieri obtained a similar stochas-
tic homogenization result [18], assuming additionally that the weights further belong
to the Muckenhoupt class Ap (which ensures a slightly higher stochastic integrability
and gives more structure to the corresponding weighted Sobolev space) as well as
a local Lipschitz-continuity of f in the last variable. However, they also prove a
representation result for the Γ-limit in the non-homogenization regime generalizing
earlier works [10, 16] in the scalar and convex case. To this end, one needs to work
in weighted spaces even in the limit ε → 0, a setting for which our proof strategy is
not feasible.

In Theorem 3.6, we add an obstacle-type constraint of the form u ⩾ φε on D (to be
interpreted componentwise), where φε converges weakly∗ in W 1,∞(D,Rm) to some
function φ ∈ W 1,∞(D,Rm). In the limit ε → 0 we obtain an obstacle problem for
Fhom with the obstacle φ and boundary condition g.

As in [29], the subtle point in the proof of the Γ-convergence is the possibility
to locally modify a sequence on a small set with a controlled increase of energy
(this is the so-called fundamental estimate in the language of Γ-convergence of local
functionals). In the non-degenerate setting, this can be done if the sequence converges
strongly in Lp, where p is the growth-exponent of the integrand. However, in the
degenerate setting the corresponding term is weighted by |A(ω, x/ε)|p. Moreover, the
strong convergence in Lp might not be an appropriate topology for the Γ-convergence
since we can prove compactness of sublevel sets of the energy only in W 1,1. We
overcome this issue using two ingredients: via a vectorial truncation, we show that up
to a small error in energy, we can assume that the sequence is bounded in L∞. In order
to pass to the limit in the critical term, we further have to control the oscillating
weight function |A(ω, x/ε)|p. We prove a strengthened version of the ergodic theorem
in the sense that this family of oscillating functions converges weakly in L1(D) for
almost every realization. The ergodic theorem yields the convergence when integrating
over cubes or, more generally, sets with a decent boundary, which would show weak
convergence if |A|p possessed higher integrability. In our setting however, to show the
weak convergence one needs to establish the ergodic theorem for averages of the form

−
∫
E

|A(ω, x/ε)|p dx

for an arbitrary Borel set E ⊂ D. We show the L1-weak convergence by an abstract
approach identifying the biting limit of the sequence (cf. Lemma 4.1).

In a second part of the paper, we focus on the convergence of the associated Euler-
Lagrange equations. To this end, we consider a strengthened set of assumptions,
namely we assume that f is strictly convex and differentiable with respect to the last
variable. In Theorem 3.8 we show that when fε ⇀ f0 in Ld(D,Rm), the unique weak
solutions of the degenerate elliptic PDE

−div(∂ξf(ω, ·/ε,∇u)) = fε on D,

u = g on ∂D
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with finite energy converge almost surely to the unique weak solution of the PDE

−div(∇fhom(∇u)) = f0 on D,

u = g on ∂D.

However, we emphasize that our result is naturally restricted to variational models,
that is, the monotone operator ∂fξ has to be the gradient of a potential. It would
be interesting to study non-variational degenerate PDEs with variational techniques
(see [4] for the approach in the uniformly elliptic setting). However, this is beyond the
scope of the present paper. To deduce the above convergence statement for the Euler-
Lagrange equations from our Γ-convergence result, two properties are of fundamental
importance: the strict convexity and the differentiability of fhom. To prove these two
properties, we establish a non-asymptotic formula for the homogenized integrand that
involves a single minimization problem on the probability space (cf. Lemma 4.13).
This formula is well-known in the non-degenerate case, but some care has to be taken
when extending it to our setting. From the single minimization problem it is quite
straightforward to show that strict convexity of the homogenized integrand is inherited
from the heterogeneous integrands. To prove differentiability we show directly that the
convex function fhom is upper semidifferentiable in the sense of [6]. Let us mention that
in the non-degenerate, deterministic, but non-periodic case the differentiability of the
integrand of the Γ-limit (which in that setting exists up to subsequences) was proved
under the assumption of convexity in ξ and a local equicontinuity of the derivative
of ∂ξfε in [23, Prop. 3.5], while the non-convex case was treated in [3, Th. 2.8] under
a global estimate on the modulus of continuity of ∂ξfε (for the sake of completeness,
we prove the differentiability of fhom in the non-convex case with a corresponding
degenerate modulus of continuity in Appendix A).

The paper is organized as follows: in Section 2 we introduce the precise framework
and recall some notions from probability theory. We then present the main results in
Section 3, while the proofs are contained in Section 4. In the appendix we show the
differentiability of fhom without convexity assumptions, a measurability result, and
prove the complete continuity of the Sobolev embedding W 1,1 ↪→ Ld/(d−1), the latter
being independent of the rest of the paper.

2. Preliminaries and notation

2.1. General notation. — We fix d ⩾ 2. Given a measurable set S ⊂ Rd, we denote
by |S| its d-dimensional Lebesgue measure. For x ∈ Rd we denote by |x| the Euclidean
norm and Bρ(x) denotes the open ball with radius ρ > 0 centered at x. Given x0 ∈ Rd

and ρ > 0 we set Qρ(x0) = x0+(−ρ/2, ρ/2)d. We let Md be the set of real-valued d×d-
matrices equipped with the operator-norm | · | induced by the Euclidean norm on Rd.
We further define Dd be the set of diagonal matrices in Md. For a measurable set
with positive measure, we define −

∫
S
= 1

|S|
∫
S

. We use standard notation for Lp-spaces
and Sobolev spaces W 1,p. In case of functions W 1,∞(D,Rm), we always choose the
Lipschitz-continuous representative (which exists since D is an extension domain).
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The Borel σ-algebra on Rd will be denoted by Bd, while we use Ld for the σ-algebra of
Lebesgue-measurable sets. Throughout the paper, we use the continuum parameter ε,
but statements like ε → 0 stands for an arbitrary sequence εn → 0. Finally, the
letter C stand for a generic positive constant that may change every time it appears.

2.2. Stationarity and ergodicity. — Let Ω = (Ω,F,P) be a complete probability
space. We recall the notion of measure-preserving group actions.

Definition 2.1 (Measure-preserving group action). — A measure-preserving additive
group action on (Ω,F,P) is a family {τz}z∈Rd of measurable mappings τz : Ω → Ω

satisfying the following properties:
(1) (joint measurability) the map (ω, z) 7→ τz(ω) is F ⊗ Ld − F-measurable;
(2) (invariance) P(τzF ) = P(F ), for every F ∈ F and every z ∈ Rd;
(3) (group property) τ0 = idΩ and τz1+z2 = τz2 ◦ τz1 for every z1, z2 ∈ Rd.

If, in addition, {τz}z∈Rd satisfies the implication

P(τzF∆F ) = 0 ∀ z ∈ Rd =⇒ P(F ) ∈ {0, 1},

then it is called ergodic.

We will use several times the additive ergodic theorem in the following form (see
[5, Prop. 2.1]):

Theorem 2.2 (Additive ergodic theorem). — Let g ∈ L1(Ω) and {τz}z∈Rd be a
measure-preserving, ergodic group action. Then a.s. for any bounded, open set
O ⊂ Rd with Lipschitz boundary it holds that

lim
t→+∞

−
∫
tO

g(τxω) dx = E[g].

2.3. Framework and assumptions. — Fix an open, bounded set D ⊂ Rd with
Lipschitz boundary and let (Ω,F,P) be a complete probability space. For ε > 0,
we consider integral functionals defined on L1(D,Rm) with domain contained in
W 1,1(D,Rm), taking the form

Fε(ω, u,D) =

∫
D

f(ω, x/ε,∇u(x)) dx ∈ [0,+∞]

with the integrand f satisfying the following assumptions:

Assumption 1. — The function f : Ω × Rd × Rm×d → [0,+∞) is F ⊗ Ld ⊗ Bm×d-
measurable and

(A1) for all ω ∈ Ω and all x ∈ Rd the map ξ 7→ f(ω, x, ξ) is lower semicontinuous;
(A2) let p ∈ (1,+∞). For all ω ∈ Ω, x ∈ Rd and ξ ∈ Rm×d it holds that

c |ξA(ω, x)|p ⩽ f(ω, x, ξ) ⩽ |ξA(ω, x)|p + Λ(ω, x),

with c > 0 and jointly measurable functions A : Ω × Rd → Dd and Λ : Ω × Rd →
[0,+∞) such that |A(·, 0)|p,Λ(·, 0) ∈ L1(Ω) and |A(·, 0)−1|p/(p−1) ∈ L1(Ω);
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(A3) there exists a measure-preserving, ergodic group action {τz}z∈Rd such that
f(τzω, x, ξ) = f(ω, x+ z, ξ),

A(τzω, x) = A(ω, x+ z),

Λ(τzω, x) = Λ(ω, x+ z),

for all (z, ω, x, ξ) ∈ Rd × Ω× Rd × Rm×d.

Remark 2.3
(a) It would be more natural to require the properties in (A1) and (A2) for almost

every ω ∈ Ω and almost every x ∈ Rd. Assumption (A3), however, can actually serve
as a definition given the random functions f(ω, 0, ξ), A(ω, 0) and Λ(ω, 0). If they
satisfy (A1) and (A2) almost surely for x = 0, then by [24, Lem. 7.1] properties (A1)
and (A2) hold for almost every ω ∈ Ω and for every x ∈ Rd ∖ Nω with a null set
Nω ⊂ Rd, while (A3) holds pointwise. Our results remain valid in this setting with
obvious modifications in the proofs.

(b) Assumption (A1) will be only used to prove measurability of the stochastic
process whose limit defines the homogenized integrand. One can replace (A1) by
upper semicontinuity, which simplifies the proof of measurability since in this case an
infimum can be taken over a countable dense set.

(c) The a priori weaker growth condition

c|ξA(ω, x)|p − Λ(ω, x) ⩽ f(ω, x, ξ) ⩽ |ξA(ω, x)|p + Λ(ω, x)

can be treated by considering the new integrand f̃(ω, x, ξ) = f(ω, x, ξ) + Λ(ω, x),
which satisfies Assumption 1 with the weight Λ̃ = 2Λ, and which yields the same
Γ-limit except an additive constant given by E[Λ(·, 0)]|D| (this is a consequence of
Theorem 2.2). The growth condition (A2) simplifies some estimates.

(d) Stationarity (A3) and the stochastic integrability assumptions in (A2) together
with Fubini’s theorem show that |A(ω, ·)|p,Λ(ω, ·), |A(ω, ·)−1|p/(p−1) ∈ L1

loc(Rd) for
a.e. ω ∈ Ω.

As explained in the introduction, we also consider a set of strengthened assumptions
to obtain further results on the stochastic homogenization of degenerate nonlinear
elliptic PDEs in divergence form.

Assumption 2. — In addition to Assumption 1, for all ω ∈ Ω and all x ∈ Rd, the
function ξ 7→ f(ω, x, ξ) is differentiable and strictly convex.

3. Main results

In this section we state the results of this paper. We first state the Γ-convergence
result without boundary conditions and external forces. For reader’s convenience we
recall that

Fε(ω, u,D) =


∫
D

f(ω, x/ε,∇u(x)) dx if u ∈W 1,1(D,Rm),

+∞ otherwise on L1(D,Rm).
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Theorem 3.1. — Under Assumption 1, almost surely as ε → 0, the random integral
functionals u 7→ Fε(ω, u,D) Γ-converge in L1(D,Rm) to the deterministic integral
functional Fhom : L1(D;Rm) → [0,+∞] given by

Fhom(u) =

∫
D

fhom(∇u(x)) dx if u ∈W 1,p(D,Rm)

and +∞ otherwise. The integrand is given by the asymptotic cell-formula

fhom(ξ) = lim
t→+∞

1

td
inf{F1(ω, u, (0, t)

d) : u ∈ ξx+W 1,1
0 ((0, t)d,Rm)}.

Moreover, the function ξ 7→ fhom(ξ) is continuous and satisfies the p-growth and
coercivity conditions

c0|ξ|p ⩽ fhom(ξ) ⩽ C0|ξ|p + C1

with c0 = cE[|A(·, 0)−1|p/(p−1)]1−p, C0 = sup|η|=1 E[|ηA(·, 0)|p] and C1 = E[Λ(·, 0)].
Here c is given by Assumption 1 and the supremum with respect to η runs over Rm×d.

Remark 3.2 (On the optimality of the integrability assumptions)
In [29, Rem. 2.3] the optimality of the integrability assumption |A(·, 0)|p ∈ L1(Ω)

and |A(·, 0)−1|p/(p−1) ∈ L1(Ω) was discussed for the discrete setting in the following
form (stated for simplicity in the continuum): given k ∈ N and Q = (0, 1)d, the
formula

fper(ξ) := lim
k→+∞

E
[
inf

{
−
∫
kQ

f(ω, x, ξ +∇u(x)) dx : u ∈W 1,1
per(kQ,Rm)

}]
with periodic boundary conditions can degenerate in the sense that fper(ξ) = +∞ or
fper(ξ) = 0 occurs for some examples and some ξ when one of the two integrability
conditions is violated. However, strictly speaking the equality fhom = fper is usually
proved under the assumption that Γ-convergence holds (see, for instance, [29, §4.7])
and in general one expects only the inequality fper ⩽ fhom, so just the degeneracy
fper(ξ) = +∞ transfers to fhom(ξ). In Example 4.4 we slightly refine the argument
of [29] to obtain a stationary, ergodic integrand of the form f(ω, x, ξ) = |ξA(ω, x)|p
such that almost surely

lim
k→+∞

inf

{
−
∫
kQ

f(ω, x, ξ +∇u(x)) dx : u ∈W 1,1
0 (kQ)

}

=

{
+∞ if ξ /∈ Re1 and |A(·, 0)|p /∈ L1(Ω),
0 if ξ ∈ Re1 and |A(·, 0)−1|p/(p−1) /∈ L1(Ω), but |A(·, 0)|p ∈ L1(Ω).

If both integrability conditions are violated, we are not able to to pass from periodic
boundary conditions to Dirichlet boundary conditions in the case ξ ∈ Re1. Neverthe-
less, this example shows that our integrability assumptions are optimal for stationary,
ergodic media in the sense that in general the multi-cell formula with affine boundary
conditions degenerates when one of the two assumptions is violated.
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We next focus on Dirichlet boundary conditions. We also include a linear forcing
term. Given g ∈ W 1,∞

loc (Rd,Rm) and fε ∈ Ld(D,Rm), we define the constrained
functional

(3.1) Fε,fε,g(ω, u,D) =

{
Fε(ω, u,D)−

∫
D
fε(x) · u(x) dx if u ∈ g +W 1,1

0 (D,Rm),
+∞ otherwise on L1(D,Rm).

Note that the integral involving fε is finite for u ∈ W 1,1(D,Rm) due to the Sobolev
embedding.

Theorem 3.3. — Let g ∈W 1,∞
loc (Rd,Rm) and fε, f0 ∈ Ld(D,Rm) be such that fε ⇀ f0

in Ld(D,Rm). Under Assumption 1, almost surely as ε → 0, the random functionals
u 7→ Fε,fε,g(ω, u,D) Γ-converge in L1(D,Rm) to the deterministic integral functional
Fhom,f0,g : L1(D;Rm) → [0,+∞] given by∫

D

fhom(∇u(x)) dx−
∫
D

f0(x) · u(x) dx if u ∈ g +W 1,p
0 (D,Rm)

and +∞ otherwise. The integrand fhom is given by Theorem 3.1. Moreover, any se-
quence uε such that

lim sup
ε→0

Fε,fε,g(ω, uε, D) < +∞

is weakly compact in W 1,1(D,Rm) and hence strongly compact in Ld/(d−1)(D,Rm).

Remark 3.4. — The assumption g ∈W 1,∞
loc (Rd,Rm) ensures that u = g is admissible

in the infimum problem. Since |A(ω, ·)|p only belongs to L1
loc(Rd), the energy of g

is guaranteed to be finite only if ∇g ∈ L∞(D,Rm×d). The integrability imposed on
the external force fε is the most general that still guarantees coercivity of the tilted
functional under Dirichlet-boundary conditions. We could instead consider a fixed
element f0 in the dual space W 1,1(D,Rm)′. Taking an ε-dependent family in this dual
space would lead to a technical notion of convergence, that we do not discuss here.

Remark 3.5 (Existence and convergence of minimizers). — By the general theory of
Γ-convergence, Theorem 3.3 implies the convergence of (almost) minimizers to mini-
mizers of the Γ-limit. To ensure existence of minimizers of u 7→ Fε,fε,g(ω, u,D) it suf-
fices to assume that the map ξ 7→ f(ω, x, ξ) is quasiconvex. Indeed, then the functional
is lower semicontinuous with respect to weak convergence in W 1,1(D,Rm) as can be
seen as follows: for fixed (ω, x) ∈ Ω×Rd and given j ∈ N, consider the quasiconvex en-
velope fj(ω, x, ξ) of ξ 7→ min{j(1+ |ξ|), f(ω, x, ξ)}. Clearly 0 ⩽ fj(ω, x, ξ) ⩽ j(1+ |ξ|),
so that by [11, Prop. 9.5] the function fj(ω, ·, ·) is a Carathéodory-function and by [11,
Th. 8.11] the corresponding integral functional is lower semicontinuous with respect to
weak convergence in W 1,1(D,Rm). As shown in the proof of [26, Lem. 4.1] it holds that
fj(ω, x, ξ) ↑ f(ω, x, ξ) as j → +∞, so that Fε(ω, ·) can be written as the supremum of
weakly lower semicontinuous functions and is therefore weakly lower semicontinuous
itself. The existence of minimizers can then be proved as in Lemma 4.16.
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Our third theorem covers the case of an ε-dependent obstacle constraint on D.
In what follows, vector-valued inequalities are understood componentwise. Given φε ∈
W 1,∞(D,Rm) such that g ⩾ φε on ∂D, we define

Fφε

ε,fε,g
(ω, u,D) =

{
Fε,fε,g(ω, u,D) if u ⩾ φε a.e. in D,
+∞ otherwise,

where Fε,fε,g is defined in (3.1).

Theorem 3.6. — Let g and fε, f0 be as in Theorem 3.3 and let φε, φ ∈W 1,∞(D,Rm)

be such that φε
∗−⇀ φ in W 1,∞(D,Rm). Assume moreover that g ⩾ φε on ∂D for

all ε > 0. Under Assumption 1, almost surely as ε → 0, the random functionals
u 7→ Fφε

ε,fε,g
(ω, u,D) Γ-converge in L1(D,Rm) to the deterministic integral functional

Fφ
hom,f0,g

: L1(D;Rm) → [0,+∞] given by∫
D

fhom(∇u(x)) dx−
∫
D

f0(x)·u(x) dx if u ∈ g+W 1,p
0 (D,Rm) and u ⩾ φ a.e. in D

and +∞ otherwise. The integrand fhom is given by Theorem 3.1. Moreover, any se-
quence uε such that

lim sup
ε→0

Fφε

ε,fε,g
(ω, uε, D) < +∞

is weakly relatively compact in W 1,1(D,Rm) and hence strongly relatively compact in
Ld/(d−1)(D,Rm).

Remark 3.7. — Similar to Remark 3.5, the existence of minimizers for fixed ε > 0 is
guaranteed by the quasiconvexity of f in the last variable. Indeed, it suffices to note
that the constraint u ⩾ φε is closed under L1-convergence. Moreover, by the Sobolev
embedding we also have that g ⩾ φ on ∂D, so that the limit functional is non-trivial.

Our last result concerns the stochastic homogenization of the Euler-Lagrange equa-
tions associated to Fε(ω, ·, D). This is the only result where we consider the stronger
Assumption 2. For notational convenience, given g ∈ W 1,∞

loc (Rd,Rm), we introduce
the affine energy space

Ag,ε(ω) :=

{
u ∈ g +W 1,1

0 (D,Rm) :

∫
D

|∇u(x)A(ω, x/ε)|p dx < +∞
}
.

Theorem 3.8. — Under Assumption 2 the function fhom given by Theorem 3.1 is
strictly convex and continuously differentiable. The derivative satisfies the estimate

|∇fhom(ξ)| ⩽ C(1 + |ξ|p−1).

Moreover, let g and fε, f0 be as in Theorem 3.3. Then for almost every ω ∈ Ω there
exists a unique weak solution uε,ω ∈ Ag,ε(ω) of the PDE

−div(∂ξf(ω, ·/ε,∇u)) = fε on D,

u = g on ∂D.
(3.2)
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As ε→ 0, uε,ω converges weakly in W 1,1(D,Rm) and strongly in Ld/(d−1)(D,Rm) to
the unique weak solution u ∈ g +W 1,p

0 (D,Rm) of the PDE

−div(∇fhom(∇u)) = f0 on D,

u = g on ∂D.

Remark 3.9
(a) The weak formulation of (3.2) has to be understood in the following sense: for

every φ ∈ A0,ε it holds that∫
D

∂ξf(ω, x/ε,∇u(x))∇φ(x) dx =

∫
D

fε(x) · φ(x) dx.

In particular, the equality is valid for all φ ∈W 1,∞
0 (D,Rm). The homogenized equa-

tion can be tested against all functions φ ∈W 1,p
0 (D,Rm).

(b) The differentiability of fhom can be proved without convexity assumptions.
In this case, the non-asymptotic formula for fhom in Lemma 4.13 is not available
and differentiability has to be proved starting with the multi-cell formula. For this
reason, we need a more quantitative C1-assumption on the map ξ 7→ f(ω, x, ξ). More
precisely, if we assume that for some c0 > 0 and 0 < α ⩽ min{1, p− 1} the estimates

(3.3) |∂ξf(·, x, ξ1)− ∂ξf(·, x, ξ0)|

⩽ c1|A(·, x)|
(
Λ(·, x)1/p + |ξ1A(·, x)|+ |ξ0A(·, x)|

)p−1−α · |(ξ1 − ξ0)A(·, x)|α

and

(3.4) |∂ξf(·, x, 0)| ⩽ Λ(·, x)

hold true, then fhom is also continuously differentiable with

|∇fhom(ξ)| ⩽ C(1 + |ξ|p−1).

Since this might be of interest in the quasiconvex case (where the bound (3.4) is auto-
matically satisfied), we provide a proof of this fact in the appendix (cf. Lemma A.1).
Note that by the chain rule (3.3) is satisfied by functions of the form f(ω, x, ξ) =

g(ξA(ω, x)) with g a homogeneous and deterministic function satisfying the non-
degenerate version of (3.3).

The existence of solutions to (3.2) can be shown replacing the strict convexity in
Assumption 2 by the quasiconvexity of the map ξ 7→ f(ω, x, ξ). Indeed, a close in-
spection of the proof of Lemma 4.16 reveals that, regarding existence, the convexity is
only used to show that Fε(ω, ·) is lower semicontinuous with respect to weak conver-
gence in W 1,1(D,Rm) and to have (4.38) available. As explained in Remark 3.5, the
quasiconvexity already implies the weak lower semicontinuity, while we prove (4.38)
for separately convex functions. We could formulate an analogue of Theorem 3.8 with-
out strict convexity, but assuming quasiconvexity and (3.3)–(3.4). However, solutions
might be non-unique and therefore convergence only holds up to subsequences.
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(c) Theorems 3.1, 3.3 and 3.6 hold with a slight adaption without assuming ergod-
icity. In that setting the Γ-limit can still be random and in the proofs one has to
replace the expectation by the conditional expectation with respect to the σ-algebra
of (τz)z∈Rd -invariant sets whenever applying the additive ergodic theorem. However,
for Theorem 3.8 the ergodicity assumption is crucial to ensure that the deterministic
formula for fhom in Lemma 4.13 makes sense.

4. Proofs

In this section we occasionally apply the (sub)additive ergodic theorem. In such a
situation we have to exclude a null set of Ω. We stress that we apply the ergodic theo-
rem only countably many times (some care has to be taken when proving Lemma 4.3
below). For this reason, we do not always mention this step in the proofs, but assume
tacitly that the element ω ∈ Ω is chosen from a suitable set of full probability. In
particular, we can always apply Theorem 2.2 or the strengthened version in Lemma
4.1 below to Λ(ω, ·/ε), |A(ω, ·/ε)|p and |A−1(ω, ·/ε)|p/(p−1).

4.1. The ergodic theorem as weak convergence in L1. — In this section we show a
strengthened version of the additive ergodic theorem in the sense of weak convergence
in L1(D).

Lemma 4.1. — Let g ∈ L1(Ω) and {τz}z∈Rd be a measure-preserving, ergodic group
action. Then for a.e. ω ∈ Ω the sequence of functions x 7→ g(τx/εω) converges weakly
in L1(D) as ε → 0 to the constant function E[g]. In particular, for a.e. ω ∈ Ω

the sequences of functions |A(ω, ·/ε)|p, |A(ω, ·/ε)−1|p/(p−1) and Λ(ω, x/ε) converge
weakly in L1(D) as ε→ 0 to the constant functions E[|A(·, 0)|p], E[|A(·, 0)−1|p/(p−1)]

and E[Λ(·, 0)], respectively.

Proof. — Splitting g into its positive and negative part, we can assume without loss
of generality that g ⩾ 0. Due to the Theorem 2.2, for a.e. ω ∈ Ω it holds that

(4.1) lim
ε→0

−
∫
D

g(τx/εω) dx = lim
ε→0

−
∫
D/ε

g(τyω) dy = E[g].

Hence for such ω the sequence g(τ·/εω) is bounded in L1(D) and due to the bit-
ing lemma (see [7]) we find a function σω ∈ L1(D), a subsequence εn → 0 and a
decreasing sequence of measurable sets (Ej)j∈N with limj→+∞ |Ej | = 0 such that
g(τ·/εnω) ⇀ σω in L1(D ∖ Ej) as n → +∞ for every j ∈ N. In order to identify
the function σω, we follow [7, §3] and consider the truncation of g(τ·/εω) defined for
k ∈ N by gε,k(ω, x) := min{g(τx/εω), k}. For fixed k ∈ N, the sequence gε,k(ω, ·) is
bounded in L∞(D). Applying Theorem 2.2 to gε,k, up to excluding another null set
in Ω, we deduce that

gε,k(ω, ·)
∗−⇀ E[min{g, k}] in L∞(D) as ε −→ 0.

By the monotone convergence theorem it holds that

lim
k→+∞

E[min{g, k}] = E[g],
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which according to [7, Prop. on p. 659] yields that σω = E[g]. Since we assume g to be
nonnegative, [22, Prop. 2.67] and (4.1) allow us to upgrade the biting convergence to
weak convergence in L1(D). Since the limit does not depend on the subsequence εn,
this shows the claim. The second part of the lemma follows from Assumption 1. □

4.2. Compactness for energy-bounded sequences. — We derive a compactness
property for the gradients of sequences uε with equibounded energy. Note that, in the
domain of the Γ-limit, gradients have better integrability than in the compactness
statement. Finally, compactness for the sequence uε itself can only hold with further
assumptions that allow us to apply a Poincaré inequality.

Lemma 4.2. — For ε > 0 let uε ∈W 1,1(D,Rm) be a function such that

sup
ε∈(0,1)

Fε(ω, uε, D) < +∞.

Then, as ε → 0, the gradients ∇uε are relatively weakly compact in L1(D,Rm×d).
If moreover uε is bounded in L1(D), then, up to subsequences, there exists u ∈
W 1,p(D,Rm) such that uε ⇀ u weakly in W 1,1(D,Rm).

Proof. — We first show that |∇uε| is bounded in L1(D). Hölder’s inequality and the
lower bound in Assumption 1 yield that

(4.2)
∫
D

|∇uε(x)|dx ⩽
∫
D

|∇uε(x)A(ω, x/ε)| |A(ω, x/ε)−1|dx

⩽

(∫
D

|∇uε(x)A(ω, x/ε)|p dx︸ ︷︷ ︸
⩽c−1Fε(ω,uε,D)⩽C

)1/p (∫
D

|A(ω, x/ε)−1|p/(p−1) dx

)(p−1)/p

and due to Lemma 4.1 the right-hand side is bounded when ε → 0. This proves the
boundedness of |∇uε| in L1(D). Since D has finite measure, it remains to show that
∇uεn is equi-integrable along any sequence εn → 0. We are going to show that

(4.3) lim sup
k→+∞

lim sup
ε→0

∫
D∩{|∇uε|⩾k}

|∇uε(x)|dx = 0,

which implies the equi-integrability along sequences εn → 0. Again Hölder’s inequality
implies that∫

D∩{|∇uε|⩾k}
|∇uε(x)|dx ⩽ C1/p

(∫
D∩{|∇uε|⩾k}

|A(ω, x/ε)−1|p/(p−1) dx

)(p−1)/p

.

Since |∇uε| is bounded in L1(D), it follows from Markov’s inequality that

|D ∩ {|∇uε| ⩾ k}| ⩽ k−1∥∇uε∥L1(D) ⩽ Ck−1.

Using the equi-integrability of x 7→ |A(ω, x/ε)−1|p/(p−1) as ε → 0 (see Lemma 4.1),
we obtain (4.3) due to

lim
k→+∞

lim sup
ε→0

∫
D∩{|∇uε|⩾k}

|A(ω, x/ε)−1|p/(p−1) dx = 0.
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Finally, we treat the case when uε is also bounded in L1(D,Rm). Then by standard
embedding theorems and the first part, we obtain that there exists u ∈W 1,1(D,Rm)

and a subsequence (not relabeled) such that uε ⇀ u in W 1,1(D,Rm). It remains to
show that u ∈ W 1,p(D,Rm). Invoking Poincaré’s inequality, it suffices to show that
∇u ∈ Lp(D,Rm×d). As in [29], this will follow from duality. For any φ ∈ L∞(D,Rm×d)

we have by weak convergence and Hölder’s inequality that∫
D

|∇u(x) · φ(x)|dx ⩽ lim inf
ε→0

∫
D

|∇uε(x) · φ(x)|dx

⩽ lim sup
ε→0

(∫
D

|∇uε(x)A(ω, x/ε)|p dx
)1/p

×
(∫

D

|A(ω, x/ε)−1|p/(p−1)|φ(x)|p/(p−1) dx

)(p−1)/p

⩽ C1/p lim sup
ε→0

(∫
D

|A(ω, x/ε)−1|p/(p−1)|φ(x)|p/(p−1) dx

)(p−1)/p

.

Using Lemma 4.1, we know that the integrand in the last line converges weakly in
L1(D) to the function x 7→ E[|A(·, 0)−1|p/(p−1)]|φ(x)|p/(p−1), from which we infer that∫

D

|∇u(x) · φ(x)|dx ⩽ C E[|A(·, 0)−1|p/(p−1)](p−1)/p∥φ∥Lp/(p−1)(D).

By density this estimate extends to the dual space of Lp(D,Rm×d), so that indeed
∇u ∈ Lp(D,Rm×d). □

4.3. Existence of the homogenized integrand. — Here we prove the existence of
the limit defining fhom(ξ). To this end, we introduce a suitable stochastic process to
which we can apply the subadditive ergodic theorem. Some care has to be taken when
dealing with different macroscopic gradients ξ since the exceptional sets of ω, where
convergence fails, should be independent of ξ. To this end, we establish a continuity
property that allows to extend the convergence from rational matrices ξ ∈ Qm×d to
all matrices by deterministic arguments. Moreover, the continuity property implies
the continuity of ξ 7→ fhom(ξ), which will be crucial for proving the upper bound for
the Γ-convergence by density arguments.

Lemma 4.3. — Given f satisfying Assumption 1, a bounded open set A ⊂ Rd and
ξ ∈ Rm×d, we define

µξ(ω,O) = inf
{
F1(ω, u,O) : u− ξx ∈W 1,1

0 (O,Rm)
}
.

Then a.s. for every cube Q = x + (−η, η)d ⊂ Rd and all ξ ∈ Rm×d there exists the
deterministic limit

fhom(ξ) = lim
t→+∞

1

|tQ|
µξ(ω, tQ),

which is independent of the cube Q. Moreover, we have the estimate

c0|ξ|p ⩽ fhom(ξ) ⩽ C0|ξ|p + C1
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with c0 = cE[|A(·, 0)−1|p/(p−1)]1−p (c as in Assumption 1), C0=sup|η|=1 E[|ηA(·, 0)|p]
and C1 = E[Λ(·, 0)], and the function ξ 7→ fhom(ξ) is continuous.

Proof. — In order to apply the subadditive ergodic theorem, we first need to establish
the integrability of the function ω 7→ µξ(ω,O). Measurability is proved in Lemma C.1
in the appendix. In order to show the integrability, we use the affine function u(x) = ξx

as a candidate in the infimum problem. Since F1 is nonnegative, the upper bound in
Assumption 1 implies that

(4.4) 0 ⩽ µξ(ω,O) ⩽
∫
O

f(ω, x, ξ) dx ⩽
∫
O

|ξA(ω, x)|p + Λ(ω, x) dx.

From Tonelli’s theorem we infer that

E [µξ(·, O)] ⩽
∫
O

E[|ξA(·, x)|p] + E[Λ(·, x)] dx = (E[|ξA(·, 0)|p]|+ E[Λ(·, 0)])|O|

⩽
(
sup
|η|=1

E[|ηA(·, 0)|p]|ξ|p + E[Λ(·, 0)]
)
|O|.

(4.5)

where the equality follows from stationarity and a change of variables in Ω. Hence
µξ(·, O) ∈ L1(Ω). We claim that µξ is τ -stationary in the sense that

(4.6) µξ(τzω,O) = µξ(ω,O + z) for all ω ∈ Ω.

Indeed, given v ∈ ξx + W 1,1
0 (O,Rm), the map ṽ(x) = v(x − z) + ξz belongs to

ξx+W 1,1
0 (O + z,Rm) and by stationarity of the energy density f we have∫

O+z

f(ω, x,∇ṽ(x)) dx =

∫
O

f(ω, x+ z,∇v(x)) dx =

∫
O

f(τzω, x,∇v(x)) dx,

which implies (4.6) by minimizing both sides. Finally, if (Uj)
n
j=1 ⊂ Rd are bounded

open sets with
n⋃

j=1

Uj ⊂ O, Uj ∩ Uk = ∅ for all 1 ⩽ j < k ⩽ n,
∣∣∣O ∖

n⋃
j=1

Uj

∣∣∣ = 0,

and for every 1 ⩽ j ⩽ n we are given a function vj ∈ ξx +W 1,1
0 (Uj ,Rm), then the

function v =
∑n

j=1 vjχUj
belongs to ξx+W 1,1

0 (O,Rm) and therefore

µξ(ω,O) ⩽ F1(ω, v,O) =

n∑
j=1

F1(ω, vj , Uj).

Minimizing the right-hand side with respect to the variables vj , we deduce subaddi-
tivity in the form of

(4.7) µξ(ω,O) ⩽
n∑

j=1

µξ(ω,Uj).

It follows from the subadditive ergodic theorem (see [1, Th. 2.7]) that for a set of full
probability there exists the a priori random limit

(4.8) f0(ω, ξ) := lim
n→+∞
n∈N

1

|nQ|
µξ(ω, nQ)
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for all cubes of the form Q = z + (−k, k)d with integer vertices k ∈ N and z ∈ Zd.
To extend the convergence to arbitrary sequences t → +∞ and general cubes Q =

x + (−η, η)d with x ∈ Rd and η > 0, we argue by approximation following the
standard method in the non-degenerate case. Given δ > 0, we choose x±δ ∈ Qd and
η±δ ∈ Q ∩ (0,+∞) such that, setting Q±

δ = x±δ + (−η±δ , η
±
δ )

d, it holds that

Q−
δ ⊂ Q ⊂ Q+

δ ,

dist(∂Q±
δ , ∂Q) > 0,

|Q−
δ | ⩾ (1− δ)|Q+

δ |.
(4.9)

Then there exists R = Rδ ∈ Z such that the cubes RQ±
δ have an integer center and

integer vertices. Set t− = ⌊t⌋ as the integer part of t and write

tRQ = (tRQ ∩ t−RQ−
δ ) ∪ (tRQ∖ t−RQ

−
δ ).

From subadditivity (4.7), the nonnegativity of f and the bound (4.4) we deduce that

(4.10) 1

|tRQ|
µξ(ω, tRQ) ⩽

1

|t−RQ−
δ |
µξ(ω, t−RQ

−
δ )

+
(|ξ|p + 1)

|tRQ|

∫
tRQ∖t−RQ−

δ

|A(ω, x)|p + Λ(ω, x)︸ ︷︷ ︸
=:κ(ω,x)

dx.

Due to (4.8), the first term on the right-hand side converges to f0(ω, ξ) as t → +∞.
We want to write the last integral as a difference of integrals over cubes. To this end,
note that the second condition in (4.9) implies that for t large enough the inclusion
t−RQ

−
δ ⊂ tRQ holds true. Indeed, given x ∈ Q−

δ we know that tRx ∈ tRQ and
|tRx− t−Rx| ⩽ R|x|, but

dist(tRx, ∂tRQ) = tR dist(x, ∂Q) ⩾ tR dist(∂Q−
δ , ∂Q).

Hence indeed
1

|tRQ|

∫
tRQ∖t−RQ−

δ

κ(ω, x) dx = −
∫
tRQ

κ(ω, x) dx−
( t−
t

)d |Qδ|
|Q|

−
∫
t−RQ−

δ

κ(ω, x) dx.

Theorem 2.2 applied to κ, (4.10) and the third condition in (4.9) yield that

lim sup
t→+∞

1

|tRQ|
µξ(ω, tRQ) ⩽ f0(ω, ξ) + (|ξ|p + 1)E[κ(·, 0)]δ.

Since this estimate holds for all diverging sequences t → +∞, it follows from the
arbitrariness of δ that

lim sup
t→+∞

1

|tQ|
µξ(ω, tQ) ⩽ f0(ω, ξ).

A similar argument using the cubes tRQ and (t− + 1)RQ+
δ instead yields the reverse

inequality

f0(ω, ξ) ⩽ lim inf
t→+∞

1

|tQ|
µξ(ω, tQ).
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We still need to prove that f0 is deterministic(1). To this end, it suffices to show that f0
is invariant under the group action τz. Take any two cubes Q1 ⋐ Q ⋐ Q2. Then for t
large enough it holds that

tQ1 ⊂ t(Q+ z/t) ⊂ tQ2.

Using stationarity and subadditivity of µξ, as well as (4.4), we obtain that for z ∈ Rd

and κ = |A|p + Λ

1

|tQ|
µξ(τzω, tQ) =

1

|tQ|
µξ(ω, t(Q+ z/t))

⩽
1

|tQ1|
µξ(ω, tQ1) +

(|ξ|p + 1)

|tQ|

∫
t(Q+z/t)∖tQ1

κ(ω, x) dx

⩽
1

|tQ1|
µξ(ω, tQ1) +

(|ξ|p + 1)

|tQ|

∫
tQ2∖tQ1

κ(ω, x) dx.

Applying Theorem 2.2 to the last integral we infer that

lim sup
t→+∞

1

|tQ|
µξ(τzω, tQ) ⩽ f0(ω, ξ) + (|ξ|p + 1)E[κ(·, 0)] |Q2| − |Q1|

|Q|
.

Since Q1 ⋐ Q ⋐ Q2 were arbitrary, we conclude that

lim sup
t→+∞

1

|tQ|
µξ(τzω, tQ) ⩽ f0(ω, ξ).

By a similar argument one proves the reverse inequality for the limit inferior, so that
τzω belongs to the set where the limit exists. Consequently f0(ω, ξ) = f0(τzω, ξ) for
almost every ω ∈ Ω and every z ∈ Rd. Ergodicity then yields that f0 is deterministic
and we call this value fhom(ξ).

It remains to prove the bounds for fhom. Let Q be a fixed cube. Since fhom is
deterministic, an application of Fatou’s lemma yields that

fhom(ξ) = E[fhom(ξ)] ⩽ lim inf
t→+∞

1

|tQ|
E[µξ(·, tQ)] ⩽ sup

|η|=1

E[|ηA(·, 0)|p] |ξ|p + E[Λ(·, 0)],

where we used the bound (4.5) in the last inequality. In order to prove the lower
bound, note that for any v ∈ ξx+W 1,1

0 (Q,Rm) Hölder’s inequality yields

|ξ| =
∣∣∣∣−∫

Q

∇v(x) dx
∣∣∣∣ ⩽ −

∫
Q

|∇v(x)|dx

⩽

(
−
∫
Q

|∇v(x)A(ω, x)|p dx
)1/p(

−
∫
Q

|A(ω, x)−1|p/(p−1) dx

)(p−1)/p

.

Taking pth powers and using Assumption 1 we infer that

|ξ|p ⩽
1

c|Q|
F1(ω, v,Q)

(
−
∫
Q

|A(ω, x)−1|p/(p−1) dx

)p−1

.

(1)This is well-known to experts, but we could not find a reference for Rd- stationary, subadditive
processes.
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Rearranging terms we obtain by the arbitrariness of v that

(4.11) c

(
−
∫
Q

|A(ω, x)−1|p/(p−1) dx

)1−p

|ξ|p ⩽
1

|Q|
µξ(ω,Q).

Replacing Q by tQ and letting t→ +∞, Theorem 2.2 yields that

c E
[
|A(·, 0)−1|p/(p−1)

]1−p

|ξ|p ⩽ fhom(ξ).

So far we have proved the almost sure existence with an exceptional set depending
on ξ. In what follows, we remove this constraint. Fix ξ0, ξ ∈ Rm×d. In order to
compare µξ and µξ0 , we use cubes of different size. For a cube Q = x+ (−η, η)d and
s > 0 set Q(s) = x + (−sη, sη)d and fix δ > 0. Then there exists a smooth cut-off
function φ = φδ,t ∈ C∞

c (Rd, [0, 1]) such that

φ ≡ 1 on tQ, φ ≡ 0 on Rd ∖ tQ(1 + δ/2), ∥∇φ∥L∞(Rd) ⩽
CQ

δt
.

We first extend a given v ∈ ξx +W 1,1
0 (tQ,Rm) to Rd setting v(x) = ξx on Rd ∖ tQ

and then define ṽ ∈ ξ0x+W 1,1
0 (tQ(1 + δ),Rm) by

ṽ(x) = φ(x)v(x) + (1− φ(x))ξ0x.

By the properties of φ, the product rule, and Assumption 1, we can estimate

µξ0(ω, tQ(1 + δ)) ⩽ F1(ω, ṽ, tQ(1 + δ))

⩽
∫
tQ

f(ω, x,∇v(x)) dx+

∫
tQ(1+δ)∖tQ

|∇ṽ(x)|p|A(ω, x)|p + Λ(ω, x) dx

⩽ F1(ω, v, tQ) + C

∫
tQ(1+δ)∖tQ

κ(ω, x)(|∇φ(x)|p|ξx− ξ0x|p + |ξ|p + |ξ0|p + 1) dx

⩽ F1(ω, v, tQ) + C

∫
tQ(1+δ)∖tQ

κ(ω, x)((δt)−p|ξ − ξ0|p|x|p + |ξ|p + |ξ0|p + 1) dx.

Since |x| ⩽ CQ(1 + δ)t on tQ(1 + δ), for δ ⩽ 1 we can pass to the infimum over v to
deduce that

µξ0(ω, tQ(1+δ)) ⩽ µξ(ω, tQ)+C(δ−p|ξ−ξ0|p+ |ξ|p+ |ξ0|p+1)

∫
tQ(1+δ)∖tQ

κ(ω, x) dx.

Now assume that ξ0 ∈ Qm×d and consider ω in the set of full probability such that
the limit of t 7→ |tQ|−1µξ0(ω, tQ) at +∞ exists for all rational matrices ξ0 and all
cubes. Theorem 2.2 applied to κ then yields that

(4.12) fhom(ξ0) ⩽ lim inf
t→+∞

1

|tQ|
µξ(ω, tQ)

+ C(δ−p|ξ − ξ0|p + |ξ|p + |ξ0|p + 1)E[κ(·, 0)]
(
1− 1

(1 + δ)d

)
.

A similar construction based on the cubes tQ and tQ(1− δ) yields that

µξ(ω, tQ) ⩽ µξ0(ω, tQ(1−δ))+C(δ−p|ξ−ξ0|p+ |ξ|p+ |ξ0|p+1)

∫
tQ∖tQ(1−δ)

κ(ω, x) dx,
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which again by the ergodic theorem shows that

(4.13) lim sup
t→+∞

1

|tQ|
µξ(ω, tQ) ⩽ fhom(ξ0)

+ C(δ−p|ξ − ξ0|p + |ξ|p + |ξ0|p + 1)E[κ(·, 0)]
(
1− (1− δ)d

)
.

Combining the two inequalities (4.12) and (4.13) then yields

lim sup
t→+∞

1

|tQ|
µξ(ω, tQ) ⩽ lim inf

t→+∞

1

|tQ|
µξ(ω, tQ)

+ C(δ−p|ξ − ξ0|p + |ξ|p + |ξ0|p + 1)E[κ(·, 0)]
(
2− (1− δ)d − 1

(1 + δ)d

)
.

Considering a sequence of rational matrices that converges to ξ and then letting δ → 0

we deduce that

lim sup
t→+∞

1

|tQ|
µξ(ω, tQ) ⩽ lim inf

t→+∞

1

|tQ|
µξ(ω, tQ),

so that the limit exists for such ω and consequently the convergence statement indeed
holds for a uniform (with respect to ξ and Q) set of full probability. It remains to
show the continuity of fhom. With what we have shown we can evaluate (4.12) for all
ξ, ξ0 ∈ Rm×d and infer that for all 0 < δ < 1 it holds that

fhom(ξ0) ⩽ fhom(ξ) + C(δ−p|ξ − ξ0|p + |ξ|p + |ξ0|p + 1)E[κ(·, 0)]
(
1− 1

(1 + δ)d

)
.

This estimate implies the continuity of fhom. □

4.4. Optimality of the integrability assumptions. — In the proof of Lemma 4.3
we have strongly used the integrability properties of the matrix A given by Assump-
tion 1. In this section, we show that they are indeed necessary to have a non-degenerate
model in the sense of Remark 3.2.

Example 4.4. — We only consider the scalar case m = 1. The vectorial case can be
treated the same way arguing separately for each component. Following [29], we con-
sider a sequence λk : Ω → (0,+∞) of iid random variables. Those can be extended
to a random function λ : Ω × R → (0,+∞) via piecewise constant interpolation on
the intervals [k, k + 1) with k ∈ Z. The resulting function, which is a priori only
Z-stationary and ergodic, can be turned into a R-stationary and ergodic weight with
the same piecewise constant structure using non-integer translations on an extended
probability space (for details on this construction, see [24, p. 236]). We then define
the integrand f(ω, x, ξ) = |ξA(ω, x)|p, where the matrix A : Ω × Rd → Dd is the
matrix A(ω, x) = λ(ω, x1)I with I denoting the identity from Rd to Rd. By definition,
it holds that |A(ω, x)|p = λ(ω, x1)

p and |A(ω, x)−1|p/(p−1) = λ(ω, x1)
−p/(p−1).

We first discuss the case E[λ(·, 0)p] = +∞. Fix u ∈ W 1,1
0 (kQ) and define the

lower dimensional cube Qd−1 = (0, 1)d−1. Then for a.e. x1 ∈ (0, k) it holds that
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u(x1, ·) ∈W 1,1
0 (kQd−1) and by Tonelli’s theorem

−
∫
kQ

|(ξ +∇u(x))A(ω, x)|p dx ⩾ −
∫ k

0

λ(ω, x1)
p−
∫
kQd−1

|(ξ2, . . . , ξd) +∇yu(x1, y)|p dy.

The inner integral on the right-hand side is minimal for u(x1, ·) ≡ 0 due to Jensen’s
inequality. Therefore

inf

{
−
∫
kQ

|(ξ +∇u(x))A(ω, x)|p dx : u ∈W 1,1
0 (kQ)

}
⩾ |(ξ2, . . . , ξd)|p−

∫
kQ

λ(ω, x1)
p dx.

Combining a truncation of the weight λ with the ergodic theorem, for ξ /∈ Re1 it fol-
lows that a.s.

(4.14) lim
k→+∞

inf

{
−
∫
kQ

|(ξ +∇u(x))A(ω, x)|p dx : u ∈W 1,1
0 (kQ)

}
= +∞.

Next we consider the case when E[λ(·, 0)−p/(p−1)] = +∞ and ξ = e1. In order to treat
the case of Dirichlet boundary conditions instead of periodic minimizers, we need to
assume in addition that E[λ(·, 0)p] < +∞. Given s ∈ (0, 1), we define the regularized
weight λs(ω, x1) = max{s, λ(ω, x1)} and the map u ∈ W 1,1

per(kQ) by u(x) = vk,s(x1),
where

vk,s(x1) =

(
−
∫ k

0

λs(ω, t)
−p/(p−1) dt

)−1 ∫ x1

0

λs(ω, t)
−p/(p−1) dt− x1.

An elementary calculation yields that

−
∫
kQ

λs(ω, x1)
p|e1 +∇u(x)|p dx =

(
−
∫ k

0

λs(ω, t)
−p/(p−1) dt

)1−p

.

Passing to the limit in k, it follows that

fper,s(e1, ω) : = lim sup
k→+∞

inf

{
−
∫
kQ

λs(ω, x1)
p|e1 +∇u(x)|p dx : u ∈W 1,1

per(kQ)

}
⩽ lim

k→+∞

(
−
∫ k

0

λs(ω, t)
−1/(p−1) dt

)1−p

= E[λs(·, 0)−1/(p−1)]1−p,

where the last equality follows from the additive ergodic theorem. Since the weight λs
satisfies the deterministic estimate s ⩽ λs and is integrable, our Γ-convergence result
in Theorem 3.1 holds and by standard arguments (see [29, §4.7]) one can prove that
almost surely

fper,s(e1, ω) = lim
k→+∞

inf

{
−
∫
kQ

λs(ω, x)
p|e1 +∇u(x)|p dx : u ∈W 1,1

0 (kQ)

}
.

Since λ ⩽ λs for all s > 0, we deduce that

E[λs(·, 0)−1/(p−1)]1−p ⩾ lim sup
k→+∞

inf

{
−
∫
kQ

|(e1 +∇u(x))A(ω, x)|p dx : u ∈W 1,1
0 (kQ)

}
and letting s → 0 in the left-hand side, we deduce from the monotone convergence
theorem that

0 = lim
k→+∞

inf

{
−
∫
kQ

|(e1 +∇u(x))A(ω, x)|p dx : u ∈W 1,1
0 (kQ)

}
,
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so that the multi-cell formula with affine boundary condition e1x degenerates.
By p-homogeneity it follows that we can replace e1 by re1 for all r ∈ R and we obtain
the statement of Remark 3.2.

4.5. Proof of unconstrained Γ-convergence. — Here we prove the Γ-convergence
without boundary conditions and external forces, fixing a typical element ω ∈ Ω

(cf. beginning of Section 4) such that in addition Lemma 4.3 holds. We first prove
the existence of a recovery sequence for a given map u ∈ W 1,p(D,Rm). We argue by
density using a piecewise affine approximation of u and then focus on a single cell T
where the target function is affine with gradient ξ. We partition this cell (up to a
boundary layer) with small cubes. On such cubes Q we use a rescaled version of an
almost solution of the infimum problem defining µξ(ω, ε

−1Q). This construction will
lead to the following result.

Proposition 4.5. — Given u ∈W 1,p(D,Rm), there exists a sequence

uε ∈W 1,1(D,Rm)

such that uε → u in L1(D,Rm) and

lim sup
ε→0

Fε(ω, uε, D) ⩽
∫
D

fhom(∇u(x)) dx.

Proof. — For convenience, we define the abstract Γ-upper limit of Fε as the function
F ′′(ω, ·) : L1(D,Rm) → [0,+∞] given by

F ′′(ω, u) = inf
{
lim sup

ε→0
Fε(ω, uε, D) : uε → u in L1(D,Rm)

}
.

It is well-known that u 7→ F ′′(ω, u) is lower semicontinuous on L1(D,Rm). We will
show that

(4.15) F ′′(ω, u) ⩽
∫
D

fhom(∇u(x)) dx

for all u ∈W 1,p(D,Rm). Since D has Lipschitz boundary, we can assume without loss
of generality that u ∈W 1,p(Rd,Rm). Due to the p-growth from above and continuity
of fhom, the right-hand side in (4.15) is continuous with respect to strong convergence
in W 1,p(D,Rm). Hence by standard density arguments it suffices to prove (4.15) for
continuous, piecewise affine functions u : Rd → Rm, that means, there exists a locally
finite triangulation {Ti}i∈N of Rd into non-degenerate (d+1)-simplices such that u|Ti

is affine for every i ∈ N and u is continuous. We will provide a local construction such
that uε ∈ u +W 1,1

0 (Ti,Rm) for all i ∈ N, which due to the continuity of u can then
be glued together to obtain a full recovery sequence uε ∈ W 1,1

loc (Rd,Rm). Hence for
the moment we consider a single simplex T = Ti and write u|T (x) = ξx + b. Given
0 < δ ≪ 1, consider the set of cubes

Qδ(T ) := {Q = δz + (−δ/2, δ/2)d : z ∈ Zd, Q ⊂ T}
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and define an interior approximation of T by Tδ :=
⋃

Q∈Qδ(T )Q. We will define the
sequence uε = uε,δ separately on each cube in Qδ(T ). For ε > 0 and Q ∈ Qδ(T )

we choose vε,Q ∈W 1,1
0 (Q/ε,Rm) satisfying∫

Q/ε

f(ω, x, ξ +∇v(x)) dx ⩽ µξ(ω,Q/ε) + ε,

for which we recall that

µξ(ω,Q/ε) = inf

{∫
Q/ε

f(ω, x,∇v(x)) dx : v ∈ ξx+W 1,1
0 (Q/ε,Rm)

}
.

We then define uε on T (and depending on δ) by

uε(x) = ξx+ b+
∑

Q∈Qδ(T )

εvε,Q(x/ε)χQ(x).

Due to the zero boundary conditions of vε,Q it holds that uε ∈ u+W 1,1
0 (T,Rm). From

Lemma 4.3 we know that

lim
ε→0

1

|Q/ε|
µξ(ω,Q/ε) −→ fhom(ξ).

Using the upper bound for f in Assumption 1 and performing the change of variables
y = x/ε, we can estimate the energy of uε on the simplex T by

Fε(ω, uε, T ) =
∑

Q∈Qδ(T )

∫
Q

f(ω, x/ε, ξ +∇vε,Q(x/ε)) dx+

∫
T∖Tδ

f(ω, x/ε, ξ) dx

⩽
∑

Q∈Qδ(T )

εd
∫
Q/ε

f(ω, y, ξ +∇vε,Q(y)) dy + εd
∫
(T∖Tδ)/ε

|ξ|p|A(ω, y)|p + Λ(ω, y) dy.

Since |Q/ε| = |Q|ε−d and Qδ(T ) is a family of pairwise disjoint cubes, we deduce in
the limit ε→ 0 that

lim sup
ε→0

Fε(ω, uε, T )

⩽
∑

Q∈Qδ(T )

|Q|fhom(ξ) + lim sup
ε→0

εd
∫
(T∖Tδ)/ε

|ξ|p|A(ω, y)|p + Λ(ω, y) dy

⩽
∫
T

fhom(∇u(y)) dy + (|ξ|p + 1) lim sup
ε→0

εd
∫
(T∖Tδ)/ε

|A(ω, y)|p + Λ(ω, y) dy.

The last limit can be treated with Theorem 2.2 applied to |A|p+Λ, which yields that

lim
ε→0

εd
∫
(T∖Tδ)/ε

|A(ω, y)|p + Λ(ω, y) dy = |T ∖ Tδ|E[|A(·, 0)|p + Λ(·, 0)].

The right-hand side vanishes when δ → 0. Summing up, we have proved that

(4.16) lim sup
ε→0

Fε(ω, uε, T )

⩽
∫
T

fhom(∇u(x)) dx+ (|ξ|p + 1)|T ∖ Tδ|E[|A(·, 0)|p + Λ(·, 0)].

We next consider the asymptotic behavior of uε. Due to (4.16) we can combine
Poincaré’s inequality and Lemma 4.2 to infer that uε is bounded in W 1,1(T,Rm)
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and that up to a subsequence (not relabeled) uε → ũδ in L1(T,Rm) for some ũδ.
Let us estimate the difference between ũδ and the target function u in L1(T,Rm).
By Poincaré’s inequality on the small cubes Q ∈ Qδ, we have that

∥ũδ − u∥L1(T ) = lim
ε→0

∑
Q∈Qδ(T )

∫
Q

|εvε,Q(x/ε)|dx ⩽ Cδ lim inf
ε→0

∑
Q∈Qδ(T )

∫
Q

|∇vε,Q(x/ε)|dx

⩽ Cδ

(
|ξ||T |+ lim inf

ε→0

∑
Q∈Qδ(T )

∫
Q

|ξ +∇vε,Q(x/ε)|dx
)

⩽ Cδ

(
|ξ||T |+ lim inf

ε→0

∫
T

|∇uε(x)|dx
)
.

Applying Hölder’s inequality, the right-hand side can be further estimated leading to

∥ũδ−u∥L1(T ) ⩽ Cδ

(
|ξ||T |+lim

ε→0

(∫
T

f(ω, x/ε,∇uε) dx
)1/p

∥|A(ω, x/ε)−1|∥Lp/(p−1)(T )

)
.

Due to Lemma 4.1 and (4.16) the term inside the parenthesis is finite, so we con-
clude that ũδ → u in L1(T,Rm) as δ → 0. Considering then the global sequence
uε ∈W 1,1(Rd,Rm) and the corresponding L1(D,Rm)-limit ũδ, from (4.16) and lower
semicontinuity of u 7→ F ′′(ω, u) we deduce that

F ′′(ω, u) ⩽ lim inf
δ→0

F ′′(ω, ũδ) ⩽ lim inf
δ→0

∑
T∩D ̸=∅

lim sup
ε→0

Fε(ω, uε, T )

⩽
∑

T∩D ̸=∅

∫
T

fhom(∇u(x)) dx ⩽
∫
D

fhom(∇u(x)) dx+
∑

T∩∂D ̸=∅

∫
T

fhom(∇u(x)) dx.

For the fixed piecewise affine function u, we can refine the triangulation with triangles
of arbitrarily small diameter and repeat the above construction to make the last term
arbitrarily small. Therefore

F ′′(ω, u) ⩽
∫
D

fhom(∇u(x)) dx,

that is, equation (4.15) holds true for all piecewise affine functions, which concludes
the proof. □

Next we prove the Γ-liminf inequality. The basic idea is to use the standard blow-
up method. The subtle point is that we need to locally adapt the boundary values
of a sequence with equibounded energy, which is beyond the standard framework
due to the presence of the weight A(ω, ·). We first prove the lower bound under the
assumptions that the sequence under consideration is bounded in L∞. With a vectorial
truncation we can then remove this restriction in a second step. Since we need the
vectorial truncation several times in the paper, we formulate it as a separate result
below. It is here where we need that A is a diagonal matrix.

Lemma 4.6. — Let uε ∈ W 1,1(D,Rm) be such that uε → u in L1(D,Rm) as
ε → 0. Then for every δ > 0 there exists a constant Cδ > 0 and a function
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uε,δ ∈W 1,1(D,Rm) such that uε,δ = uε a.e. on {|uε| ⩽ δ−1} and for a.e. x ∈ D

|uε,δ(x)| ⩽ |uε(x)|, |uε,δ(x)| ⩽ Cδ.

Moreover, for ε small enough it holds that

Fε(ω, uε,δ, D) ⩽ (1 + δ)Fε(ω, uε, D) + δ.

Proof. — As proved in [9, §4], for every r > 0 there exists ψr ∈ C∞
c (Rm,Rm) that is

1-Lipschitz, ψr(x) = x for |x| ⩽ r, |ψr(x)| ⩽ 2r and supp(ψr) ⊂ B3r(0). Note that the
1-Lipschitz continuity implies that |ψr(x)| ⩽ |x|. Adapting [9, Lem. 4.1] to our setting,
we now construct a suitable truncation of uε. To this end, we discretize the co-domain
of uε and use an averaging argument to find a good truncation level. Fix N ∈ N and
for 0 ⩽ i ⩽ N let r0 = N and ri+1 = 3ri. Then N ⩽ ri ⩽ 3NN < +∞. We consider
the truncated sequence uε,i=ψri ◦uε. By the chain rule ∇uε,i=∇ψri(uε)∇uε, so that

∇uε,i = ∇uε a.e. on {|uε| ⩽ ri}, ∇uε,i(x) = 0 a.e. on {|uε| ⩾ 3ri = ri+1}.

In the intermediate region {ri < |uε| < ri+1} we use that A is a diagonal matrix. The
kth partial derivatives of uε,i satisfies

|∂kuε,i| = |∇ψri(uε)∂kuε| ⩽ |∂kuε|,

where the last inequality follows from the 1-Lipschitz continuity of ψri . Write A =

diag(λk)
d
k=1. Then for the Frobenius norm | · |F we have that

|∇uε,i(x)A(ω, x/ε)|F =

(∑
k

λk(ω, x/ε)
2|∂kuε,i|2

)1/2

⩽

(∑
k,ℓ

λk(ω, x/ε)
2|∂kuε|2

)1/2

=
∣∣∇uε(x)A(ω, x/ε)∣∣F .

Using the upper bound in Assumption 1, it follows from the equivalence of norms on
Rm×d that

Fε(ω, uε,i, D) ⩽ Fε(ω, uε, D) +

∫
{ri<|uε|<ri+1}

C|∇uε(x)A(ω, x/ε)|p + Λ(ω, x/ε) dx

+

∫
{|uε|⩾ri+1}

Λ(ω, x/ε) dx.

By construction the sets {ri < |uε| < ri+1}Ni=1 are pairwise disjoint and contained
in D, so there exists 1 ⩽ i∗ ⩽ N such that

Fε(ω, uε,i∗ , D) ⩽
1

N

N∑
i=1

Fε(ω, uε,i, D)

⩽ Fε(ω, uε, D) +
C

N

∫
D

|∇uε(x)A(ω, x/ε)|p dx+ 2

∫
{|uε|⩾N}

Λ(ω, x/ε) dx

⩽ Fε(ω, uε, D) +
C

N
Fε(ω, uε, D) + 2

∫
{|uε|⩾N}

Λ(ω, x/ε) dx.

Due to Lemma 4.1 we know that Λ(ω, ·/ε) is equi-integrable as ε → 0. Moreover,
since uε converges in L1, it follows that the set {|uε| > N} has small measure for N
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large uniformly in ε. Hence, given δ > 0 and ε > 0 small enough, there exists Nδ ⩾ δ−1

such that
2

∫
{|uε|⩾Nδ}

Λ(ω, x/ε) dx ⩽ δ

and 1 + C/Nδ ⩽ 1 + δ. For such Nδ we find that

Fε(ω, uε,i∗ , D) ⩽ (1 + δ)Fε(ω, uε,, D) + δ.

Since ri∗ ⩾ Nδ ⩾ δ−1, it suffices to set uε,δ := uε,i∗ and Cδ = 3Nδ+1Nδ. The property
|uε,δ| ⩽ |uε| follows from the inequality |ψr(x)| ⩽ |x|. □

The following proposition establishes the lower bound for the Γ-convergence state-
ment in Theorem 3.1.

Proposition 4.7. — Let uε ∈ L1(D,Rm) and u ∈ W 1,1(D,Rm) be such that uε → u

in L1(D,Rm) as ε→ 0. Then∫
D

fhom(∇u(x)) dx ⩽ lim inf
ε→0

Fε(ω, uε, D).

In particular, u ∈W 1,p(D,Rm) whenever the right-hand side is finite.

Proof. — Without loss of generality, we assume that the limit inferior is finite and,
passing to a non-relabeled subsequence, it is actually a limit. By Lemma 4.2 we
deduce that u ∈ W 1,p(D,Rm). Define the absolutely continuous Radon-measure νε
on all Borel sets B ⊂ D by

νε(B) =

∫
B

f(ω, x/ε,∇uε(x)) dx.

By our assumption, the sequence of measures νε is equibounded, so that (up to passing
to a further subsequence) νε

∗−⇀ ν for some nonnegative finite Radon measure ν

(possibly depending on ω). Using Lebesgue’s decomposition theorem, we can write
dν = f̃(x) dx+dσ, with a nonnegative measure σ that is singular with respect to the
Lebesgue measure. Since D is open, the weak∗ convergence implies that

lim inf
ε→0

Fε(ω, uε, D) = lim inf
ε→0

νε(D) ⩾ ν(D) ⩾
∫
D

f̃(x) dx.

Hence it suffices to show that f̃(x0) ⩾ fhom(∇u(x0)) for a.e. x0 ∈ D. For x ∈ D,
let rx > 0 be such that Qr(x) ⊂ D for all 0 < r < rx. Since ν is a finite measure,
it follows that ν(∂Qr(x)) = 0 except for a countable number of radii r ∈ (0, rx). The
Besicovitch differentiation theorem [22, Th. 1.153] and Portmanteau’s theorem imply
that for a.e. x0 ∈ D we have (along a suitable sequence r → 0)

f̃(x0) = lim
r→0

ν(Qr(x0))

rd
= lim

r→0
lim
ε→0

νε(Qr(x0))

rd
.

Therefore it suffices to prove that for a.e. x0 ∈ D we have

(4.17) lim inf
r→0

lim inf
ε→0

−
∫
Qr(x0)

f(ω, x/ε,∇uε(x)) dx ⩾ fhom(∇u(x0)).
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In what follows, we let x0 be a Lebesgue point of u and ∇u. To reduce notation,
we define the linearization of u at x0 by Lu,x0(x) = u(x0) +∇u(x0)(x− x0).

Step 1. — We prove (4.17) under the additional assumption that there exists C0 > 0

such that

(4.18) sup
0<ε<1

∥uε∥L∞(D) ⩽ C0,

which also implies that u ∈ L∞(D). Since x0 is fixed in this step, we drop it from
the notation for cubes. Let us modify uε close to ∂Qr: Given 0 < η < 1 and N ∈ N
we define for 0 ⩽ i ⩽ N the numbers ηi = 1 − ηi/N and the cubes Qηir. Note that
Q(1−η)r ⊂ Qηir ⊂ Qr. For 1 ⩽ i ⩽ N we pick a cut-off function φi,η ∈ C∞

c (Rd, [0, 1])

such that φi,η(x) = 1 on Qηir and supp(φi,η) ⊂ Qηi−1r, which can be chosen such
that ∥∇φi,η∥∞ ⩽ CN/ηr. Define then the function uε,ηi

: D → Rm by

uε,ηi
(x) = φi,η(x)uε(x) + (1− φi,η(x))Lu,x0

(x).

Since uε ∈ W 1,1(D,Rm) due to the global energy bound, it holds that uε,ηi ∈
W 1,1(D,Rm). By the product rule we have that

∇uε,ηi
= ∇φi,η ⊗ uε + φi,η∇uε −∇φi,η ⊗ Lu,x0

+ (1− φi,η)∇u(x0),

so that 0 ⩽ φi,η ⩽ 1 implies the estimate

(4.19) |∇uε,ηi
(x)A(ω, x/ε)|p ⩽ C

(
|∇φi,η(x)|p|uε(x)− Lu,x0

(x)|p|A(ω, x/ε)|p

+ |∇uε(x)A(ω, x/ε)|p + |∇u(x0)A(ω, x/ε)|p
)
.

Since uε,ηi
= uε on Qηir and uε,ηi

= Lu,x0
on Rd∖Qηi−1r, we can estimate the energy

of uε,ηi
on Qr by

(4.20) 1

rd
Fε(ω, uε,ηi

, Qr) ⩽
1

rd
Fε(ω, uε, Qr) +

1

rd
Fε(ω, uε,ηi

, Qηi−1r ∖Qηir)

+
1

rd
Fε(ω,Lu,x0

, Qr ∖Qηi−1r).

We argue that the last two terms are asymptotically negligible for a suitable choice of i.
To reduce notation, we set Sr

i,η = Qηi−1r ∖Qηir. Using the bounds in Assumption 1
and (4.19) we have that
1

rd
Fε(ω, uε,ηi , S

r
i,η) ⩽

1

rd

∫
Sr
i,η

|∇uε,ηi(x)A(ω, x/ε)|p + Λ(ω, x/ε) dx

⩽
C

rd

∫
Sr
i,η

(N/(ηr))p|uε(x)− Lu,x0
(x)|p|A(ω, x/ε)|p + |∇uε(x)A(ω, x/ε)|p dx

+
C

rd

∫
Sr
i,η

|∇u(x0)A(ω, x/ε)|p + Λ(ω, x/ε) dx

⩽
C

rd

(∫
Sr
i,η

(N/(ηr))p|uε(x)− Lu,x0
(x)|p|A(ω, x/ε)|p dx+ Fε(ω, uε, S

r
i,η)

)
+
C

rd

∫
Qr∖Q(1−η)r

|∇u(x0)|p|A(ω, x/ε)|p + Λ(ω, x/ε) dx.
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To bound the last term in (4.20), we argue similarly and obtain that
1

rd
Fε(ω,Lu,x0

, Qr ∖Qηi−1r) ⩽
C

rd

∫
Qr∖Q(1−η)r

|∇u(x0)|p|A(ω, x/ε)|p + Λ(ω, x/ε) dx.

Combining the last two estimates and summing (4.20) over 1 ⩽ i ⩽ N , the fact that
the sets (Sr

i,η)
N
i=1 are pairwise disjoint and all contained in Qr ∖Q(1−η)r implies that

1

N

N∑
i=1

1

rd
Fε(ω, uε,ηi

, Qr) ⩽
1

rd
Fε(ω, uε, Qr) +

C

Nrd
Fε(ω, uε, Qr ∖Q(1−η)r)

+
CNp−1

ηprd+p

∫
Qr

|uε(x)− Lu,x0
(x)|p|A(ω, x/ε)|p dx

+
C

rd

∫
Qr∖Q(1−η)r

|∇u(x0)|p|A(ω, x/ε)|p + Λ(ω, x/ε) dx.

Taking i∗ = iε,η ∈ {1, . . . , N} such that Fε(ω, uε,ηi∗
, Qr) ⩽ Fε(ω, uε,ηi

, Qr) for all
1 ⩽ i ⩽ N , the energy of the corresponding sequence is bounded by

1

rd
Fε(ω, uε,ηi∗

, Qr) ⩽
(
1 +

C

N

) 1

rd
Fε(ω, uε, Qr)(4.21)

+
CNp−1

ηprd+p

∫
Qr

|uε(x)− Lu,x0
(x)|p|A(ω, x/ε)|p dx

+
C

rd

∫
Qr∖Q(1−η)r

|∇u(x0)|p|A(ω, x/ε)|p + Λ(ω, x/ε) dx.

We now pass to the limit in ε. Due to the construction it holds that

uε,ηi∗
− u(x0) +∇u(x0)x0 ∈ ∇u(x0)x+W 1,1

0 (Qr,Rm).

Since the energy is invariant under the shift u 7→ u + a for any fixed a ∈ Rm, by a
change of variables from Qr to Qr/ε we conclude that

1

rd
Fε(ω, uε,ηi∗

, Qr) ⩾
1

|Qr/ε|
µ∇u(x0)(ω,Qr/ε).

For the last integral in (4.21) we can use the ergodic theorem. The other integral in
(4.21) is the nontrivial term in the case of degenerate growth conditions. Since we
assume that uε is bounded in L∞(D) and converges in L1(D) to u, (up to a subse-
quence) we can assume that |uε(x) − Lu,x0(x)|p converges a.e. to |u(x) − Lu,x0(x)|p
and is uniformly bounded. Moreover, we know from Lemma 4.1 that |A(ω, ·/ε)|p con-
verges weakly in L1(D) to E[|A(·, 0)|p]. By [22, Prop. 2.61] the product thus converges
weakly in L1(D) to the product of the limits. Hence by Lemma 4.3

N

N + C
fhom(∇u(x0)) ⩽ lim inf

ε→0

1

rd
Fε(ω, uε, Qr)

+ C E[|A(·, 0)|p] N
p−1

ηprd+p

∫
Qr

|u(x)− Lu,x0(x)|p dx

+ C (E[|A(·, 0)|p]|∇u(x0)|p + E[Λ(·, 0)]) (1− (1− η)d).
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Our construction allows us to consider the following order of limits: first we let r → 0.
Since u ∈ W 1,p(D,Rm), the Lp-differentiability of Sobolev functions (cf. [21, Th. 2,
p. 230]) yields that

lim
r→0

1

rp
−
∫
Qr

|u(x)− Lu,x0(x)|p dx = 0.

In a second step we let η → 0 and N → +∞ and conclude that

fhom(∇u(x0)) ⩽ lim inf
r→0

lim inf
ε→0

1

rd
Fε(ω, uε, Qr),

which coincides with (4.17).

Step 2. — Now consider a general sequence uε ∈ W 1,1(D,Rm) such that uε → u in
L1(D,Rm) and with equibounded energy Fε(ω, uε, D). Instead of proving (4.17), we
directly show the lower bound using Lemma 4.6. Given δ > 0, let uε,δ ∈W 1,1(D,Rm)

be the function given by Lemma 4.6, so that

lim inf
ε→0

Fε(ω, uε, D) ⩾
1

1 + δ
lim inf
ε→0

Fε(ω, uε,δ, D)− δ.

In particular, by Lemma 4.2 it follows that (up to a subsequence) uε,δ ⇀ uδ in
W 1,1(D,Rm) with uδ ∈ W 1,p(D,Rm). From Step 1 and the uniform boundedness of
uε,δ we infer that

lim inf
ε→0

Fε(ω, uε, D) ⩾
1

1 + δ

∫
D

fhom(∇uδ(x)) dx− δ.

Hence it suffices to show that

(4.22) lim inf
δ→0

∫
D

fhom(∇uδ(x)) dx ⩾
∫
D

fhom(∇u(x)) dx.

Since uε,δ = uε on {|uε| ⩽ δ−1}, it follows that uδ = u a.e. on {|u| ⩽ δ−1}. More-
over, it is a consequence of Lemma 4.6 that |uδ(x)| ⩽ |u(x)| a.e. on D. Domi-
nated convergence thus implies that uδ → u in L1(D,Rm), while ∇uδ is bounded
in Lp(D,Rm×d) due to the p-growth from below of fhom (cf. Lemma 4.3). Hence
uδ ⇀ u in W 1,p(D,Rm). Finally, note that by what we have proved we already know
that uδ = u for δ small enough if u ∈ L∞(D,Rm). Hence, we have identified the
Γ-limit on W 1,p(D,Rm) ∩ L∞(D,Rm). Since fhom has p-growth and the Γ-limit has
to be lower semicontinuous on L1(D), it follows by standard results ([11, Th. 8.4])
that fhom is quasiconvex. Hence the integral functional

u 7−→
∫
D

fhom(∇u(x)) dx

is lower-semicontinuous with respect to weak convergence in W 1,p(D,Rm) (see [11,
Th. 8.11]) and therefore we obtain (4.22) which concludes the proof. □

Proof of Theorem 3.1. — By Lemma 4.2 the Γ-limit is finite only on W 1,p(D,Rm).
Propositions 4.5 and 4.7 yield the Γ-convergence statement, while the properties of
fhom are proved in Lemma 4.3. □
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4.6. Proof with boundary data. — In this section we fix a boundary condition g ∈
W 1,∞

loc (Rd,Rm) and prove a compactness statement and the corresponding lower and
upper bounds when the functionals are restricted to maps uε satisfying the boundary
condition uε = g on ∂D in the sense of traces. The case of external forces is postponed
to the next section.

Lemma 4.8. — Let uε ∈ g +W 1,1
0 (D,Rm) be such that

sup
ε∈(0,1)

Fε(ω, uε, D) < +∞.

Then there exists u ∈ g + W 1,p
0 (D,Rm) such that up to a subsequence uε ⇀ u in

W 1,1(D,Rm) and uε → u in L
d

d−1 (D,Rm).

Proof. — Due to Lemma 4.2 and Theorem B.1, the convergence follows once we show
that uε is bounded in L1(D,Rm). This is a consequence of Poincaré’s inequality since
by Lemma 4.2 ∇uε is bounded in L1(D,Rm×d). It remains to prove that u = g on ∂D.
Since uε ⇀ u in W 1,1(D,Rm), the trace of uε converges weakly in L1(∂Ω) to the trace
of u. Hence u = g on ∂D in the sense of traces and therefore u ∈ g+W 1,p

0 (D,Rm). □

Next we prove the lower and upper bound with active boundary conditions.

Proposition 4.9. — Let uε ∈ g +W 1,1
0 (D,Rm) be such that uε → u in L1(D,Rm)

and moreover lim infε→0 Fε(ω, uε, D) < +∞. Then u ∈ g +W 1,p
0 (D,Rm) and∫

D

fhom(∇u(x)) dx ⩽ lim inf
ε→0

Fε(ω, uε, D).

Proof. — By Lemma 4.2 we know that uε ⇀ u in W 1,1(D,Rm) and u ∈ g +

W 1,p
0 (D,Rm). The lower bound is a consequence of Proposition 4.7. □

Proposition 4.10. — Let u ∈ g + W 1,p
0 (D,Rm). Then there exists uε ∈ g +

W 1,1
0 (D,Rm) such that uε → u in L1(D,Rm) and

lim sup
ε→0

Fε(ω, uε, D) ⩽
∫
D

fhom(∇u(x)) dx.

Proof. — By density it is enough to prove the claim when u−g ∈ C∞
c (D,Rm). Due to

Proposition 4.5 we find a sequence uε ∈W 1,1(D,Rm) such that uε → u in L1(D,Rm)

and

(4.23) lim sup
ε→0

Fε(ω, uε, D) ⩽
∫
D

fhom(∇u(x)) dx.

We modify uε near ∂D such that it belongs to g + W 1,1
0 (D,Rm) with a negligible

increase in energy. This will be achieved by certain convex combinations as in the
proof of Proposition 4.7. Hence we need again to truncate the sequence uε. Using
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Lemma 4.6, for every δ > 0 there exists Cδ > 0 and a sequence uε,δ ∈ W 1,1(D,Rm)

with the following properties:

∥uε,δ∥L∞(D) ⩽ Cδ,(4.24)
uε,δ = uε a.e. on {|uε| ⩽ δ−1},(4.25)
|uε,δ(x)| ⩽ |uε(x)|,(4.26)
lim sup

ε→0
Fε(ω, uε,δ, D) ⩽ (1 + δ) lim sup

ε
Fε(ω, uε, D) + δ.(4.27)

Choosing δ sufficiently small, we can additionally assume that

(4.28) ∥u∥L∞(D) + ∥g∥L∞(D) < δ−1.

Next, let η > 0 be such that {x ∈ D : dist(x, ∂D) ⩽ η} ⊂ {u = g}. Given N ∈ N and
0 ⩽ i ⩽ N we define the sets

Di =
{
x ∈ D : dist(x, ∂D) >

i

N
η
}

and for 1 ⩽ i ⩽ N we choose a cut-off function φi ∈ C∞
c (Rd, [0, 1]) such that φi ≡ 1

on Di, supp(φi) ⊂ Di−1, and ∥∇φi∥L∞(Rd) ⩽ CN/η. We then define the interpolation
between uε,δ and g by

(4.29) uε,δ,i = φiuε,δ + (1− φi)g ∈ g +W 1,1
0 (D,Rm).

In order to estimate its energy we can argue as for (4.20) and the subsequent estimates
to obtain

Fε(ω, uε,δ,i, D) ⩽ Fε(ω, uε,δ, D) + Fε(ω, uε,δ,i, Di−1 ∖Di) + Fε(ω, g,D ∖Di−1)

⩽ Fε(ω, uε,δ, D) + CFε(ω, uε,δ, Di−1 ∖Di) + (1 + C)Fε(ω, g,D∖DN )

+ C

∫
Di−1∖Di

(N/η)p|uε,δ(x)− g(x)|p|A(ω, x/ε)|p + Λ(ω, x/ε) dx.

The sets {Di−1∖Di}Ni=1 are pairwise disjoint and contained in D∖DN . Hence, similar
to (4.21), for every ε > 0 there exists 1 ⩽ iε ⩽ N such that, setting u∗ε,δ = uε,δ,iε , it
holds that

(4.30) Fε(ω, u
∗
ε,δ, D) ⩽

(
1 +

C

N

)
Fε(ω, uε,δ, D) + (1 + C)Fε(ω, g,D ∖DN )

+
C

N

∫
D∖DN

(N/η)p|uε,δ(x)− g(x)|p|A(ω, x/ε)|p + Λ(ω, x/ε) dx.

To pass to the limit in ε, we need to bound the last two terms. Since g ∈W 1,∞(D,Rm),
we conclude that

Fε(ω, g,D ∖DN ) ⩽ (∥∇g∥L∞(D) + 1)

∫
D∖DN

|A(ω, x/ε)|p + Λ(ω, x/ε) dx.

The definition of DN yields that D∖DN ⊂ {x ∈ D : dist(x, ∂D) ⩽ η}. The measure
of the latter set vanishes as η → 0. Lemma 4.1 on the L1-weak convergence in the
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ergodic theorem then implies that for η = η(δ) small enough, it holds that

(4.31) lim sup
ε→0

(1 + C)Fε(ω, g,D ∖DN ) +
C

N

∫
D∖DN

Λ(ω, x/ε) dx ⩽ δ.

In order to bound the last term in (4.30), we note that due to (4.24) the function
x 7→ |uε,δ(x)− g(x)|p is uniformly bounded as ε→ 0. Moreover, for a.e. x ∈ D∖DN ,
due to (4.28) we have along a subsequence

g(x) = u(x) = lim
εj→0

uεj (x)
(4.25)
= lim

εj→0
uεj ,δ(x),

so that we can apply [22, Prop. 2.61] and deduce that

lim
εj→0

∫
D∖DN

|uεj ,δ(x)− g(x)|p|A(ω, x/εj)|p dx = 0.

The limit is independent of the subsequence, so this convergence is valid along any
sequence ε → 0. Combined with (4.27), (4.23), and (4.31), the estimate (4.30) with
C/N ⩽ δ yields

(4.32) lim sup
ε→0

Fε(ω, u
∗
ε,δ, D) ⩽ (1 + δ)2

∫
D

fhom(∇u(x)) dx+ 2δ.

We finally argue that u∗ε,δ → u in L1(D,Rm). Due to (4.28) and (4.25), we know that
along a subsequence, for a.e. x ∈ D, it holds that

u(x) = lim
εj→0

uεj (x) = lim
εj→0

uεj ,δ(x).

Since

u∗εj ,δ(x) = φiε(x)uεj ,δ(x) + (1− φiε(x))g(x)

=

{
uεj ,δ(x) on DN ,

φiε(x)uεj ,δ(x) + (1− φiε(x))u(x) on D ∖DN ,

it follows that along the same subsequence we have u∗εj ,δ(x) → u(x). Due to (4.26)
we can apply Lebesgue’s dominated convergence theorem to deduce that (now along
the whole sequence) u∗ε,δ → u in L1(D,Rm). Since δ > 0 was arbitrary, a diagonal
argument in (4.32) proves the claim. □

4.7. Proof with boundary data and external forces. — Here we add the linear
force term to the energy. As Γ-convergence is stable under continuously converging
perturbations, the proof comes almost for free.

Proof of Theorem 3.3. — We first show the compactness statement. Repeating the
estimate (4.2), we have that(

|D|−
∫
D/ε

|A(ω, y)−1|p/(p−1) dy

)1−p(∫
D

|∇uε(x)|dx
)p

⩽ CFε(ω, uε, D).
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Applying the ergodic theorem to the first integral on the left-hand side, we deduce
that there exists a constant C > 0 such that for ε > 0 small enough we have

(4.33) 1

C
∥∇uε∥pL1(D) ⩽ Fε(ω, uε, D).

Set q = p/(p− 1) as the dual exponent of p. From Hölder’s inequality, the Sobolev
embedding, Young’s inequality, and Poincaré’s inequality in W 1,1

0 (D,Rm), we deduce
that for any δ > 0 it holds that∣∣∣∣∫

D

fε(x) · uε(x) dx
∣∣∣∣ ⩽ ∥fε∥Ld(D)∥uε∥Ld/(d−1)(D) ⩽ C∥fε∥Ld(D)∥uε∥W 1,1(D)

⩽
Cδ−q

q
∥fε∥qLd(D)

+
Cδp

p
∥uε∥pW 1,1(D)

⩽
Cδ−q

q
∥fε∥qLd(D)

+
Cδp

p

(
∥∇uε∥pL1(D) + ∥g∥pW 1,1(D)

)
.

From (4.33) we conclude that for δ small enough∣∣∣∣∫
D

fε(x) · uε(x) dx
∣∣∣∣ ⩽ Cδ,p∥fε∥qLd(D)

+
1

2
Fε(ω, uε, D) + ∥g∥pW 1,1(D).

In particular, since fε is bounded in Ld(D,Rm), a bound of the form

lim sup
ε→0

(
Fε(ω, uε, D)−

∫
D

fε(x) · uε(x) dx
)
< +∞

implies that Fε(ω, uε, D) is bounded as ε → 0 and therefore the compactness state-
ment follows from Lemma 4.8. Since uε → u in Ld/(d−1)(D,Rm) implies that

lim
ε→0

∫
D

fε(x) · uε(x) dx =

∫
D

f0(x) · u(x) dx,

the Γ-convergence follows from the result without external forces (see Propositions
4.9 and 4.10). □

4.8. Proof for the obstacle problem. — The last constraint we treat is u ⩾ φε.

Proof of Theorem 3.6. — To reduce notation, we just consider the scalar case m = 1,
but the same arguments can be applied for every component. Moreover, since g enters
the problem only with its values on ∂D, we can replace it by another W 1,∞(D)-
function that has the same trace. We construct such a function g̃ satisfying g̃ ⩾ φε

on D for all ε small enough, which turns out to be convenient for the proof. Note that
such g̃ also satisfies g̃ ⩾ φ in D since φε → φ uniformly on D. To construct g̃, we fix
a large constant cg > 0 and set ϕ(x) = min{1,dist(x, ∂D)} and

g̃(x) = cgϕ(x) + (1− ϕ(x))g(x).

Then g̃ ∈W 1,∞(D) due to the Lipschitz continuity of the distance function. Moreover,
for x ∈ D let xp be any point such that |x − xp| = dist(x, ∂D). Since g ⩾ φε on ∂D
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by assumption, we obtain

g̃(x)− φε(x) ⩾ ϕ(x)(cg − g(x)) + g(x)− g(xp) + φε(xp)− φε(x)

⩾ ϕ(x)(cg − g(x))− C|x− xp|

⩾

{
cg − g(x)− C diam(D) if dist(x, ∂D) ⩾ 1,
|x− xp|(cg − g(x)− C) otherwise,

where in the penultimate estimate we used that g + φε is bounded in W 1,∞(D) as
ε→ 0, so that by the Lipschitz regularity of ∂D the sequence g+φε is equi-Lipschitz
on D as ε → 0. For cg large enough the right-hand side terms in the above estimate
are nonnegative. Finally, it holds that g̃ = g on ∂D, so that from now on we may
assume that for ε > 0 small enough

(4.34) g ⩾ max{φ,φε} on D.

We now come to the actual proof. Note that when uε → u and φε → φ in L1(D), the
condition uε ⩾ φε a.e. implies that u ⩾ φ a.e. Since Fφε

ε,fε,g
(ω, u,D) ⩾ Fε,fε,g(ω, u,D)

for all u ∈ L1(D,Rm), the compactness property and the Γ-liminf inequality follow
from Lemma 4.8 and Proposition 4.9, respectively. Therefore it suffices to show the
Γ-limsup inequality. Without loss of generality we set fε = 0 since the linear term is a
continuously converging perturbation with respect to weak convergence in W 1,1(D).

For the moment, we ignore the boundary condition g and consider a general map
u ∈ W 1,∞(D) such that u ⩾ φ. For η > 0 consider the function uη := u + η ∈
W 1,∞(D), which satisfies

(4.35) uη ⩾ φ+ η.

Fix δ > 0. By Lemma 4.6 we find a sequence uε,δ,η ∈W 1,1(D) such that ∥uε,δ,η∥∞ ⩽
Cδ, uε,δ,η → uη in L1(D) as ε→ 0 and

lim sup
ε→0

Fε(ω, uε,δ,η, D) ⩽ (1 + δ)

∫
D

fhom(∇uη(x)) dx+ δ

= (1 + δ)

∫
D

fhom(∇u(x)) dx+ δ.

In order to satisfy the constraint, we introduce vε,δ,η = max{uε,δ,η, φε} ∈ W 1,1(D).
Writing vε,δ,η = max{φε − uε,δ,η, 0} + uε,δ,η, we see that vε,δ,η → uη in L1(D) and
from the chain rule it follows that a.e. in D we have

∇vε,δ,η = ∇(φε−uε,δ,η)χ{φε>uε,δ,η}+∇uε,δ,η = ∇φεχ{φε>uε,δ,η}+∇uε,δ,ηχ{φε⩽uε,δ,η}.

Using the upper bound in Assumption 1 and the nonnegativity of the integrand f ,
we deduce that

Fε(ω, vε,δ,η, D) ⩽ Fε(ω, uε,δ,η, D) +

∫
{φε>uε,δ,η}

|∇φε(x)|p|A(ω, x/ε)|p + Λ(ω, x/ε) dx

⩽ Fε(ω, uε,δ,η, D) + (∥∇φε∥∞ + 1)

∫
{φε>uε,δ,η}

|A(ω, x/ε)|p + Λ(ω, x/ε) dx.
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We claim that the last term vanishes as ε → 0. Since φε is bounded in W 1,∞(D)

and x 7→ |A(ω, x/ε)|p +Λ(ω, x/ε) is equi-integrable by Lemma 4.1, it suffices to show
that |{φε > uε,δ,η}| → 0 as ε → 0. Since φε → φ and uε,δ,η → uη in L1(D), this is a
consequence of (4.35). Summing up, we have constructed a sequence vε,δ,η ∈W 1,1(D)

such that vε,δ,η → uη in L1(D), ∥vε,δ,η∥ ⩽ C ′
δ, vε,δ,η ⩾ φε in D and

lim sup
ε→0

Fε(ω, vε,δ,η, D) ⩽ (1 + δ)

∫
D

fhom(∇u(x)) dx+ δ.

Since uη → u in L1(D) as η → 0, using a diagonal argument we find a sequence
uε,δ ∈ W 1,1(D) such that uε,δ → u in L1(D) as ε → 0, ∥uε,δ∥∞ ⩽ C ′

δ, uε,δ ⩾ φε

in D and
lim sup

ε→0
Fε(ω, ũε,δ, D) ⩽ (1 + δ)

∫
D

fhom(∇u(x)) dx+ δ.

Next we include the boundary condition g. Fix u ∈ g+W 1,p
0 (D) such that u ⩾ φ a.e.

In order to repeat the argument for Proposition 4.10 we need to reduce the analysis
to the case that u − g has compact support in D and that u ∈ L∞(D). To this end,
consider a sequence un ∈ g + C∞

c (D) such that un → u in W 1,p(D). In general,
this sequence does not satisfy the constraint un ⩾ φ a.e. Hence, we consider the
modified sequence vn = max{un, φ} ∈ W 1,∞(D). Since g ⩾ φ on D, the function
vn − g ∈ W 1,∞(D) has compact support in D and vn ⩾ φ a.e. Moreover, writing
vn = max{φ − un, 0} + un, the Lipschitz continuity of the map x 7→ max{x, 0} and
the convergence un → u in W 1,p(D) imply that vn → max{φ − u, 0} + u = u in
W 1,p(D) (cf. [27, Th. 1]). As a consequence, it suffices to show the upper bound for
functions u ∈W 1,∞(D) such that u−g has compact support in D and u ⩾ φ. From the
above argument we know that for every δ > 0 there exists a sequence uε,δ ∈W 1,1(D)

with uε,δ → u in L1(D) as ε→ 0, ∥uε,δ∥∞ ⩽ C ′
δ, uε,δ ⩾ φε in D and

lim sup
ε→0

Fε(ω, uε, D) ⩽ (1 + δ)

∫
D

fhom(∇u(x)) dx+ δ.

We modify the sequence uε,δ in the same manner as in the proof of Proposition 4.10.
The estimates are analogous, but we have to ensure that the constraint is preserved.
To this end, recall that due to the boundedness in L∞(D), the only modification is
the adjustment of the boundary condition via a convex combination of uε,δ and g

(cf. (4.29)). Due to (4.34) this construction still dominates φε. The remaining part of
the proof is unchanged and we conclude by a diagonal argument with respect to δ. □

4.9. Stochastic homogenization of the Euler-Lagrange equations. — In this sec-
tion (and only here) we add Assumption 2 to the setting. In order to prove the
differentiability and strict convexity of the homogenized integrand, we first derive a
non-asymptotic formula for fhom that is well-known in the non-degenerate setting
(see, for instance, [24, Chap. 15] or [19, Lem. 3.7]).

Define the set
(4.36) F 1

pot = {h ∈ L1(Ω,Rd) : E[h] = 0 and for a.e. ω ∈ Ω and all 1 ⩽ i, j ⩽ d

the function x 7−→ h(τxω) ∈ L1
loc(Rd,Rd) satisfies ∂ihj − ∂jhi = 0 on Rd}.
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Even though d ̸= 3 in general, we refer to the distributional equality ∂ihj − ∂jhi = 0

as h being curl-free. The following lemma holds.

Lemma 4.11. — The space Fpot is a closed subspace of L1(Ω,Rd). Moreover, given
h ∈ F 1

pot, there exists a map φ : Ω → W 1,1
loc (Rd) such that ∇φ(ω, x) = h(τxω) almost

surely as maps in L1
loc(Rd,Rd) and such that for every bounded set B ⊂ Rd the maps

ω 7→ φ(ω, ·) and ω 7→ ∇φ(ω, ·) are measurable from Ω to L1(B) and to L1(B,Rd),
respectively.

Proof. — F 1
pot is a linear subspace of L1(Ω,Rd). To show that it is closed, consider

a sequence hn ∈ F 1
pot such that hn → h in L1(Ω,Rd). Then E[h] = 0 and, as shown

on [24, p. 224], the convergence implies that (up to a subsequence) it holds that
x 7→ hn(τxω) → x 7→ h(τxω) in L1

loc(Rd,Rd) for almost every ω ∈ Ω. Hence it
follows that h ∈ F 1

pot. Next, we argue that for almost every ω ∈ Ω there exists
φ(ω, ·) ∈W 1,1

loc (Rd) such that ∇φ(ω, x) = h(τxω) as elements in L1
loc(Rd,Rd). Since Ω

is complete, we can assume without loss of generality that ∂ihj = ∂jhi for all ω ∈ Ω.
To reduce notation, we temporarily suppress the dependence on ω and just write
h = h(x). Given η > 0 we consider the regularization hη = h∗θη, where θη ∈ C∞

c (Rd)

is a family of standard mollifiers. Then hη ∈ C∞(Rd,Rd) and due to Fubini’s theorem
it follows that in a distributional (and hence classical) sense ∂ihη,j − ∂jhη,i = 0 for
all 1 ⩽ i, j ⩽ d. By the classical Poincaré lemma on simply connected domains there
exists a function φη ∈ C∞(Rd) such that ∇φη = hη and −

∫
B1(0)

φη dx = 0. Fix now
any ball B′ centered at the origin and containing B1(0). Then we have a Poincaré
inequality of the form∫

B′
|u−−

∫
B1(0)

u(y) dy|dx ⩽ C(B′)

∫
B′

|∇u|dx for all u ∈W 1,1(B′).

By well-known properties of convolution, we have that ∇φη → h in L1(B′,Rd) and
by the Sobolev embedding also φη → φ for some φ ∈ W 1,1(B′) with ∇φ = h in B′.
Since B′ was arbitrary, we conclude that φ ∈ W 1,1

loc (Rd) with ∇φ = h. Moreover,
it follows that for any bounded set B ⊂ Rd we have that φη → φ in W 1,1(B). Hence
the measurability properties of the map ω 7→ φ(ω, ·) and its gradient follow once we
prove them for the approximating map φη(ω, ·) and its gradient. The construction by
convolution yields an explicit formula for φη which reads

φη(ω, x) =

∫ 1

0

hη(ω, tx) · xdt =
∫ 1

0

∫
Rd

h(τyω)θη(tx− y) · xdy dt.

Since we assume that (ω, x) 7→ τxω is jointly measurable, it follows from Fubini’s
theorem that hη is measurable in ω, and by smoothness also continuous in its second
variable. Hence hη is jointly measurable and again by Fubini’s theorem and regularity
in the second variable, we deduce that φη is jointly measurable. By construction,
∇φη = hη is also jointly measurable. Then by [20, Lem. 16 b), p. 196] the maps
ω 7→ φη(ω, ·) and ω 7→ ∇φη(ω, ·) are measurable with values in L1(B) and L1(B,Rd),
respectively. This concludes the proof. □
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We shall also need a suitable estimate for the local Lipschitz constant of ξ 7→
f(ω, x, ξ) that we prove in the next lemma. We show a slightly more general statement
to include the claim in Remark 3.9 b).

Lemma 4.12. — In addition to Assumption 1, assume that the map ξ 7→ f(ω, x, ξ)

is separately convex. Then there exists a constant C = C(p, d +m) such that for all
y := (ω, x) ∈ Ω× Rd and all ξ0, ξ1 ∈ Rm×d

(4.37) |f(y, ξ1)− f(y, ξ0)|

⩽ C
(
(Λ(y)1/p + |ξ0A(y)|+ |ξ0A(y)|)p−1 + Λ(y)(p−1)/p

)
|(ξ1 − ξ0)A(y)|.

In particular, if f(y, ·) is also differentiable in ξ, then for all z ∈ Rm×d we have

(4.38) |⟨∂ξf(y, ξ), z⟩| ⩽ C
(
(Λ(y)1/p + |A(y)ξ|)p−1 + Λ(y)(p−1)/p

)
|zA(y)|.

Proof. — Since y = (ω, x) is fixed in the proof, we drop it from the notation. By
[22, Th. 4.36], a separately convex function f̃ is Lipschitz-continuous on any ball
Br(ξ) ⊂ Rm×d with Lipschitz constant bounded by

√
m+ d

osc(f̃ ;B2r(ξ))

r
:=

√
m+ d sup

ξ′,ξ′′∈B2r(ξ)

|f̃(ξ′′)− f̃(ξ′)|
r

.

Consider the function ξ 7→ f̃(ξ) := f(ξA−1), which according to Assumption 1 satisfies

|f̃(ξ)| ⩽ |ξ|p + Λ.

Since A−1 is also a diagonal matrix, it follows that f̃ is separately convex, too. Hence
for any given ξ0, ξ1 ∈ Rm×d we infer that

|f̃(ξ1)− f̃(ξ0)| ⩽
√
m+ d sup

|ξ|⩽2(Λ1/p+|ξ1|+|ξ0|)

2|f̃(ξ)|
Λ1/p + |ξ0|+ |ξ1|

|ξ1 − ξ0|

⩽
√
m+ d

(
2p+1(Λ1/p + |ξ0|+ |ξ1|)p−1 + 2Λ(p−1)/p

)
|ξ1 − ξ0|,

which implies (4.37) via the formula f(ξ) = f̃(ξA). When f is differentiable with
respect to the last variable, we deduce from the chain rule and the above local Lipschitz
estimate that

|⟨∂ξf(ξ), z⟩| = |⟨(∂ξ f̃)(ξA), zA⟩| ⩽ C
(
(Λ1/p + |ξA|)p−1 + Λ(ω, x)(p−1)/p

)
|zA|. □

Now we can formulate an alternative formula for fhom that allows us to prove its
strict convexity and differentiability with elementary arguments.

Lemma 4.13. — In addition to Assumption 1, suppose that the map ξ 7→ f(ω, x, ξ) is
convex. Then for all ξ ∈ Rm×d, there exists hξ ∈ (F 1

pot)
m such that

(4.39) fhom(ξ) = inf
h∈(F 1

pot)
m
E[f(·, 0, ξ + h)] = E[f(·, 0, ξ + hξ)].
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Proof. — We first show the existence of a minimizer for the above minimization
problem. The map h 7→ E[f(·, 0, ξ+h)] is lower semicontinuous with respect to strong
convergence in L1(Ω,Rm×d) due to Fatou’s lemma and Assumption 1. As this func-
tional is convex, it is also weakly lower semicontinuous. Being a linear space, (F 1

pot)
m is

weakly closed due to Lemma 4.11. Hence it suffices to show that a minimizing sequence
hn is relatively weakly compact in L1(Ω,Rm×d). Since Ω has finite measure, it suf-
fices to show that minimizing sequences are L1-bounded and equi-integrable. Fix any
measurable set F ∈F. Then, by Hölder’s inequality and Assumption 1, we have that∫

F

|ξ + hn|dP ⩽

(∫
F

|A(ω, 0)(ξ + hn(ω))|p dP︸ ︷︷ ︸
⩽CE[f(·,0,ξ+hn)]⩽C(ξ)

)1/p (∫
F

|A(ω, 0)−1|p/(p−1)

)(p−1)/p

⩽ C(ξ)

(∫
F

|A(ω, 0)−1|p/(p−1) dP
)(p−1)/p

.

Since the function ω 7→ |A(ω, 0)−1|p/(p−1) is integrable by assumption, the above
estimate proves the equi-integrability and boundedness of hn and thus there exists
a minimizer hξ ∈ (F 1

pot)
m. For the proof of the first equality in (4.39), we roughly

follow [19]. Fix a cube Q ⊂ D. For every ε > 0 consider a function uε ∈W 1,1(D,Rm)

with −
∫
Q
uε dx = 0 and −

∫
Q
∇uε dx = 0, satisfying

1

|Q|
Fε(ω, uε, Q)− ε ⩽ inf

{
−
∫
Q

f(ω, x/ε, ξ +∇u(x)) dx : −
∫
Q

∇udx = 0

}
.

Since u = 0 is admissible in the above minimization problem, it follows from
Lemma 4.2 and the Poincaré inequality that up to a subsequence (not relabeled) we
have uε → u in L1(Q,Rm) for some u ∈ W 1,p(Q,Rm) with −

∫
Q
∇udx = 0. Applying

Theorem 3.1 with Q = D, Jensen’s inequality yields that

(4.40)
fhom(ξ) = fhom

(
−
∫
Q

ξ +∇u(x) dx
)

⩽ −
∫
Q

fhom(ξ +∇u(x)) dx

⩽ lim inf
ε→0

inf

{
−
∫
Q

f(ω, x/ε, ξ +∇u(x)) dx : −
∫
Q

∇udx = 0

}
.

Here we used that fhom inherits the convexity of f , which follows from the general fact
that the Γ-limit of convex functionals is convex. Next, given a minimizer hξ ∈ (F 1

pot)
m,

let φξ : Ω → W 1,1
loc (Rd,Rm) be the function given componentwise by Lemma 4.11.

Define the W 1,1
loc (Rd,Rm)-valued random variable uξ,ε by

uξ,ε(x) = εφξ(ω)(x/ε)−−
∫
Q

∇φξ(ω)(y/ε)x dy.

Then
∫
Q
∇uε dx = 0 and therefore almost surely

inf

{
−
∫
Q

f(ω, x/ε, ξ +∇u(x)) dx : −
∫
Q

∇udx = 0

}
⩽ −
∫
Q

f(ω, x/ε, ξ +∇uξ,ε(x)) dx

= −
∫
Q

f

(
ω, x/ε, ξ + hξ(τx/εω)−−

∫
Q

hξ(τy/εω) dy

)
dx.

(4.41)
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The ergodic theorem implies that (expect for a null set depending on ξ that we exclude
for this proof)

lim
ε→0

−
∫
Q

hξ(τy/εω) dy = E[hξ] = 0,(4.42)

lim
ε→0

−
∫
Q

f(ω, x/ε, ξ + hξ(τx/εω)) dx = E[f(·, 0, ξ + hξ)].(4.43)

To conclude the inequality fhom(ξ) ⩽ E[f(·, 0, ξ + hξ)], we recall that due to
Lemma 4.12

|f(·, x, ξ1)−f(·, x, ξ0)| ⩽ C
(
(Λ(·, x)1/p + |ξ0A(·, x)|+ |ξ0A(·, x)|)p−1 + Λ(·, x)(p−1)/p

)
× |(ξ1 − ξ0)A(·, x)|.

Set Hξ,ε(ω) = −
∫
Q
hξ(τy/εω) dy. Due to (4.42) we may assume that |Hξ,ε(ω)| ⩽ 1.

Inserting the above local Lipschitz-estimate into (4.41) and replacing all exponents
p− 1 by p (without loss of generality Λ ⩾ 1) yields that

−
∫
Q

f
(
ω, x/ε, ξ + hξ(τx/εω)−Hξ,ε(ω)

)
dx ⩽ −

∫
Q

f(ω, x/ε, ξ + hξ(τx/εω)) dx

+

{
−
∫
Q

(
Λ(ω, x/ε) + |A(ω, x/ε)|p + |(ξ + hξ(τx/εω))A(ω, x/ε)|p

)
dx

}
C|Hξ,ε(ω)|.

Since Hξ,ε(ω) → 0 by (4.42), we deduce from (4.43), the ergodic theorem applied
to |A|p and Λ as well as the lower bound in Assumption 1 that

lim inf
ε→0

−
∫
Q

f
(
ω, x/ε, ξ + hξ(τx/εω)−Hξ,ε(ω)

)
dx ⩽ E[f(·, 0, ξ + hξ)].

Combined with (4.40) this shows that

(4.44) fhom ⩽ E[f(·, 0, ξ + hξ)].

We still need to show the reverse inequality. By Lemma C.1, we obtain for every ε > 0

a measurable function uξ,ε : Ω →W 1,1
0 (Q/ε,Rm) such that almost surely

F1(ω, ξx+ uξ,ε(ω), Q/ε) = µξ(ω,Q/ε)

= inf{F1(ω, u,Q1/ε) : u ∈ ξx+W 1,1
0 (Q/ε,Rm)}.

(Due to convexity, the almost sure existence of minimizers can be proved as in Lemma
4.16.) Next, we need to switch to a jointly measurable version. From [20, Lem. 16,
p. 196] we infer that there exist F⊗Ld-measurable functions vξ,ε, bξ,ε : Ω×Q/ε→ R
such that vξ,ε(ω, ·) = uξ,ε(ω) and bξ,ε(ω, ·) = ∇uξ,ε(ω) for a.e. ω ∈ Ω. In particular,
for a.e. ω ∈ Ω we have vξ,ε(ω, ·) ∈ W 1,1

0 (Q/ε,Rm) and ∇vξ,ε(ω, ·) = bξ,ε(ω, ·). With
a slight abuse of notation, we therefore write bξ,ε = ∇vξ,ε. By [24, Lem. 7.1] we can
assume that the set of ω, for which these properties hold, is invariant under the group
action τx for almost all x ∈ Rd. Finally, we extend vξ,ε and ∇vξ,ε to Ω×(Rd∖Q/ε) by 0.
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This extension is jointly measurable on Ω×Rd. We now define hξ,ε∈L1(Ω,Rm×d) by

hξ,ε(ω) = −
∫
Q/ε

∇vξ,ε(τ−yω, y) dy.

Note that hξ,ε is well defined and measurable due to the joint measurability of ∇vξ,ε
and the joint measurability of the group action. To see that it is integrable, we can
use Fubini’s theorem and a change of variables in Ω to deduce that∫
Ω

|ξ + hξ,ε(ω)|dP ⩽ −
∫
Q/ε

∫
Ω

|ξ +∇vξ,ε(τ−yω, y)|dP dy

= −
∫
Q/ε

∫
Ω

|ξ +∇vξ,ε(ω, y)|dPdy =

∫
Ω

−
∫
Q/ε

|ξ +∇vξ,ε(ω, y)|dy dP.

The last term can be controlled via Hölder’s inequality as at the beginning of this
proof, using that for a.e. ω ∈ Ω the function ∇vξ,ε(ω, ·) is the gradient of an energy
minimizer on Q/ε. We argue that hξ,ε ∈ (F 1

pot)
m. Since for a.e. ω ∈ Ω the func-

tion ∇vξ,ε is the weak gradient of uξ,ε(ω) ∈ W 1,1
0 (Q/ε,Rm), it follows from Fubini’s

theorem and a change of variables in Ω that∫
Ω

hξ,ε(ω) dP =

∫
Ω

−
∫
Q/ε

∇vξ,ε(ω, y) dy︸ ︷︷ ︸
=0 almost surely

dP = 0.

Hence, it suffices to show that all rows of x 7→ hξ,ε(τxω) satisfy the curl-free condition
of Definition 4.36. To this end, we derive a suitable formula for the distributional
derivative of this map. Fix θ ∈ C∞

c (Rd) and an index 1 ⩽ j ⩽ d. Since ∇vξ,ε(ω, ·) = 0

on Rd ∖ (Q/ε), we can write∫
Rd

hξ,ε(τxω)∂jθ(x) dx =

∫
Rd

∫
Rd

∇vξ,ε(τx−yω, y)

|Q/ε|
∂jθ(x) dy dx

=

∫
Rd

∫
Rd

∇vξ,ε(τzω, x− z)

|Q/ε|
∂jθ(x) dz dx

=

∫
Rd

∫
Rd

∇vξ,ε(τzω, y)
|Q/ε|

∂jθ(y + z) dy dz.

In order to conclude that hξ,ε ∈ (F 1
pot)

m, it suffices to note that for a.e. ω ∈ Ω and
almost every z ∈ Rd the function y 7→ ∇vξ,ε(τzω, y) is the gradient of the Sobolev
function uξ,ε(τzω) ∈W 1,1

0 (Q/ε,Rm), so that the curl-free conditions follows. Now we
can conclude the proof. Since hξ,ε ∈ (F 1

pot)
m, it follows from Jensen’s inequality that

E[f(·, 0, ξ + hξ)] ⩽ E[f(·, 0, ξ + hξ,ε)] ⩽
∫
Ω

−
∫
Q/ε

f(ω, 0, ξ +∇vξ,ε(τ−yω, y)) dy dP

=

∫
Ω

−
∫
Q/ε

f(τyω, 0, ξ +∇vξ,ε(ω, y)) dy dP

=

∫
Ω

−
∫
Q/ε

f(ω, y, ξ +∇vξ,ε(ω, y)) dy dP =
1

|Q/ε|
E[µξ(ω,Q/ε)],
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where we used the stationarity of f , and that ∇vξ,ε(ω, ·) = ∇uξ,ε(ω) almost surely
in the last step. Passing to the limit as ε→ 0, we obtain from L1-convergence in the
subadditive ergodic theorem (see [31] or [25, Th. 2.3, p. 203]) that

E[f(·, 0, ξ + hξ)] ⩽ fhom(ξ),

which concludes the proof. □

We now prove that strict convexity of ξ 7→ f(ω, x, ξ) is inherited by fhom.

Proposition 4.14. — In addition to Assumption 1, assume that the map ξ 7→
f(ω, x, ξ) is strictly convex. Then also fhom is strictly convex.

Proof. — Fix ξ0, ξ1 ∈ Rm×d and t ∈ (0, 1) and let hξ0 , hξ1 ∈ (F 1
pot)

m be as in Lem-
ma 4.13. From the same lemma we know that

fhom(tξ0 + (1− t)ξ1) ⩽ E[f(·, 0, t(ξ0 + hξ0) + (1− t)(ξ1 + hξ1))]

⩽ tE[f(·, 0, ξ0 + hξ0)] + (1− t)E[f(·, 0, ξ1 + hξ1)]

= tfhom(ξ0) + (1− t)fhom(ξ1).

To have an equality, we need in particular that the second inequality is an equality.
Since ξ 7→ f(ω, 0, ξ) is strictly convex, the only possibility to have an inequality is
when ξ0 + hξ0 = ξ1 + hξ1 almost surely. Taking expectations, we deduce in this case
that ξ0 = ξ1 (recall that E[h] = 0 for all h ∈ (F 1

pot)
m). Hence fhom is strictly convex

as claimed. □

In the next lemma we show the crucial property that fhom is differentiable.

Proposition 4.15. — Under Assumption 2, the function fhom given by Lemma 4.3 is
continuously differentiable and the derivative satisfies the estimate

|∇fhom(ξ)| ⩽ C(1 + |ξ|p−1) for all ξ ∈ Rm×d and some constant C > 0.

Proof. — We first show that fhom is differentiable. We know from the previous lemma
that fhom is (separately) convex. Due to [6, Cor. 2.5] it thus suffices to show that fhom
is upper semidifferentiable, that is, for all ξ ∈ Rm×d there exists ξ∗ ∈ Rm×d such that

lim sup
η→ξ

fhom(η)− fhom(ξ)− ⟨ξ∗, η − ξ⟩
|η − ξ|

⩽ 0.

We prove this property using the formula for fhom given by Lemma 4.13. Given
ξ ∈ Rm×d and hξ ∈ (F 1

pot)
m as in Lemma 4.13, we define ξ∗ ∈ Rm×d as the matrix

given by
⟨ξ∗, v⟩ := E[⟨∂ξf(·, 0, ξ + hξ), v⟩].

Then for η ∈ Rm×d we have that

(4.45) fhom(η)− fhom(ξ)− ⟨ξ∗, η − ξ⟩
|η − ξ|

⩽ E
[f(·, 0, η + hξ)− f(·, 0, ξ + hξ)− ⟨∂ξf(·, 0, ξ + hξ), η − ξ⟩

|η − ξ|

]
.
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The integrand on the right-hand side tends to 0 almost surely when η → ξ since
f(ω, 0, ·) is differentiable in the point ξ + hξ(ω). It remains to apply the dominated
convergence theorem. Due to the mean value theorem and (4.38) we have for some
random number t = t(ω) ∈ [0, 1] that∣∣∣f(ω, 0, η + hξ(ω))− f(ω, 0, ξ + hξ(ω))

|η − ξ|

∣∣∣ = ∣∣∣ ⟨∂ξf(ω, 0, tη + (1− t)ξ + hξ(ω)), η − ξ⟩
|η − ξ|

∣∣∣
⩽ C

(
(Λ(ω, 0)1/p + |(η − ξ)A(ω, 0)|+ |(ξ + hξ(ω))A(ω, 0)|)p−1 + Λ(ω, 0)(p−1)/p

)
× |A(ω, 0)|

⩽ C
(
(Λ(ω, 0)1/p + |A(ω, 0)|+ |(ξ + hξ(ω))A(ω, 0)|)p−1 + Λ(ω, 0)(p−1)/p

)
|A(ω, 0)|,

where we assumed that |η − ξ| ⩽ 1 from the second to the last line. To see that the
term in the last line is integrable, one applies Hölder’s inequality with exponents p and
p/(p−1) and uses the integrability of Λ(ω, 0), ∥A(ω, 0)∥p, and of |(ξ+hξ(ω))A(ω, 0)|p.
For t = 0 we obtain the bound for the remaining term in(4.45). Hence the dominated
convergence theorem yields that fhom is upper semidifferentiable and therefore also
differentiable.

By [22, Th. 4.65] the derivative of a (separately) convex function is continuous. The
claimed bound on the derivative follows from the estimate

|fhom(ξ1)− fhom(ξ2)| ⩽ C(1 + |ξ1|p−1 + |ξ2|p−1)|ξ1 − ξ2|,

which holds due to the (separate) convexity of fhom and its p-growth from above
(cf. [22, Prop. 4.64]). □

Having established the strict convexity and the differentiability of fhom, it remains
to prove the existence of minimizers for fixed ε and that they satisfy the associated
Euler-Lagrange equation of Fε.

Lemma 4.16. — Under Assumption 2, for every ε > 0, g ∈ W 1,∞
loc (Rd,Rm) and fε ∈

Ld(D,Rm) there exists a unique minimizer of the problem

inf

{∫
D

f(ω, x/ε,∇u(x)) dx−
∫
D

fε(x) · u(x) dx : u ∈ g +W 1,1
0 (D,Rm)

}
,

which is the unique weak solution of the PDE (3.2) in the affine energy space

Ag,ε(ω) :=

{
u ∈ g +W 1,1

0 (D,Rm) :

∫
D

|∇u(x)A(ω, x)|p dx < +∞
}
.

Proof. — The function g is admissible for the infimum problem and has finite energy.
Now consider a minimizing sequence un ∈ g+W 1,1

0 (D,Rm). Using the same estimates
as in the proof of Theorem 3.3 in Section 4.7, it follows that

sup
n∈N

Fε(ω, un, D) < +∞.

Combining Hölder’s inequality with the fact that for fixed ε > 0 the function x 7→
|A(ω, x/ε)−1|p/(p−1) is equi-integrable, one shows as in the proof of Lemma 4.2 that
∇un is bounded and equi-integrable. Due to Poincaré’s inequality it follows that, up
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to a subsequence, un converges to some u ∈ g+W 1,1
0 (D,Rm) weakly in W 1,1(D,Rm)

and by Theorem B.1 also strongly in Ld/(d−1)(D,Rm), which allows to pass to the
limit in the linear term. The functional u 7→ Fε(ω, u,D) is lower semicontinuous with
respect to strong convergence in W 1,1(D,Rm) due to Fatou’s lemma and by convexity
also weakly lower semicontinuous. Hence, by the direct method of the calculus of
variations, u is a minimizer. Due to strict convexity of ξ 7→ f(ω, x/ε, ξ), the minimizer
under Dirichlet boundary conditions is unique. To prove the assertion about the Euler-
Lagrange equation, we fix φ ∈ W 1,1

0 (D,Rm) such that
∫
D
|A(ω, x/ε)∇φ(x)|p < +∞.

An elementary calculation based on the dominated convergence theorem, the bound
(4.38) and Hölder’s inequality, implies that Fε(ω, ·, D) is Gateaux-differentiable at u
in the direction φ with derivative

δFε(ω, u,D)φ =

∫
D

∂ξf(ω, x/ε,∇u(x))∇φ(x) dx.

Since the term
∫
D
fεudx is linear and continuous on W 1,1(D,Rm), it follows that the

minimizer solves (3.2) in the claimed weak form. The solution of the PDE is unique in
Ag,ε(ω) since any other solution would also be a global minimizer due to the convexity
of the energy (which is infinite outside Ag,ε(ω)). □

Proof of Theorem 3.8. — The claimed properties of fhom follow from Proposition 4.14
and Proposition 4.15. The existence and uniqueness of solutions of the PDE at the
ε-level is proved in Lemma 4.16, the existence and uniqueness of solutions (via the
existence and uniqueness of minimizers) of the homogenized PDE follow by standard
methods using the properties of ∇fhom stated in Lemma 4.15 and the almost sure
convergence of solutions is a consequence of the convergence of minimizers under
Γ-convergence, which holds due to Theorem 3.3. □

Appendix A. Differentiability of fhom without convexity assumptions

In this section we show that the differentiability of fhom can be obtained without
the formula given by Lemma 4.13, but with the additional assumptions (3.3) and
(3.4).

Lemma A.1. — In addition to Assumption 1, assume that the map ξ 7→ f(ω, x, ξ)

is differentiable and that its derivative satisfies (3.3) and (3.4). Then fhom given
by Theorem 3.1 is continuously differentiable and the derivative satisfies the bound
|∇fhom(ξ)| ⩽ C(1 + |ξ|p−1).

Proof. — The function fhom is quasiconvex and finite, so in particular it is separately
convex. Hence the only point to be adapted in the proof of Proposition 4.15 is the
upper semi-differentiability of fhom, that is, for all ξ ∈ Rm×d there exists ξ∗ ∈ Rm×d

such that

lim sup
η→ξ

fhom(η)− fhom(ξ)− ⟨ξ∗, η − ξ⟩
|η − ξ|

⩽ 0.
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Fix ξ ∈ Rm×d and given ε > 0 we choose a function uξ,ε ∈W 1,1
0 (Q/ε,Rm) such that

−
∫
Q/ε

f(ω, x, ξ +∇uξ,ε) dx ⩽
1

|Q/ε|
µξ(ω,Q/ε) + ε,

where µξ(ω,Q/ε) is given by Lemma 4.3. We then set ξ∗ε ∈ Rm×d as the matrix
defined by

⟨ξ∗ε , v⟩ := −
∫
Q/ε

⟨∂ξf(ω, x, ξ +∇uξ,ε), v⟩dx.

Let η ∈ Rm×d be such that |η − ξ| ⩽ 1. Then it holds that

1

|Q/ε|
µη(ω,Q/ε)−

1

|Q/ε|
µξ(ω,Q/ε)− ⟨ξ∗ε , η − ξ⟩

⩽ −
∫
Q/ε

f(ω, x, η +∇uξ,ε)− f(ω, x, ξ +∇uξ,ε) dx

−−
∫
Q/ε

⟨∂ξf(ω, x, ξ +∇uξ,ε), η − ξ⟩dx+ ε.

To bound the right-hand side, we use the fundamental theorem of calculus and (3.3)
to deduce that

1

|Q/ε|
µη(ω,Q/ε)−

1

|Q/ε|
µξ(ω,Q/ε)− ⟨ξ∗ε , η − ξ⟩ − ε

⩽ −
∫
Q/ε

∫ 1

0

⟨∂ξf(ω, x, t(η − ξ) + ξ +∇uξ,ε)− ∂ξf(ω, x, ξ +∇uξ,ε), η − ξ⟩dtdx

⩽ C−
∫
Q/ε

∫ 1

0

{
(Λ(ω, x)1/p + t|(η − ξ)A(ω, x)|+ 2|(ξ +∇uξ,ε)A(ω, x)|)p−1−αtα

× (|A(ω, x)||η − ξ|)1+α
}
dx.

Since t ∈ [0, 1] and p − 1 ⩾ α > 0, we may replace t by 1 and absorb the factor 2

in C. Then Hölder’s inequality and the bound |η − ξ| ⩽ 1 yield that
1

|Q/ε|
µη(ω,Q/ε)−

1

|Q/ε|
µξ(ω,Q/ε)− ⟨ξ∗ε , η − ξ⟩ − ε

⩽ C

(
−
∫
Q/ε

(Λ(ω, x)1/p + |A(ω, x)|+ |(ξ +∇uξ,ε)A(ω, x)|)p dx
)(p−1−α)/p

×
(
−
∫
Q/ε

(|A(ω, x)||η − ξ|)p dx
)(1+α)/p

⩽ C

(
−
∫
Q/ε

Λ(ω, x) + |A(ω, x)|p dx+
1

|Q/ε|
µξ(ω,Q/ε) + ε

)(p−1−α)/p

×
(
−
∫
Q/ε

|A(ω, x)|p dx
)(1+α)/p

|η − ξ|1+α.
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Letting ε→ 0, we deduce from Lemma 4.3 and the ergodic theorem that

fhom(η)− fhom(ξ)− lim inf
ε→0

⟨ξ∗ε , η − ξ⟩ ⩽ C
(
E[Λ(·, 0) + |A(·, 0)|p] + fhom(ξ)

)(p−1−α)/p

× E[|A(·, 0)|p](1+α)/p|η − ξ|1+α

and since α > 0, the upper semi-differentiability of fhom follows once we show that ξ∗ε
is relatively compact in Rm×d. To show boundedness, we use (3.3) and (3.4) to infer
that
|ξ∗ε | ⩽ −

∫
Q/ε

|∂ξf(ω, x, ξ +∇uξ,ε)|dx

⩽ −
∫
Q/ε

|∂ξf(ω, x, ξ +∇uξ,ε)− ∂ξf(ω, x, 0)|+ Λ(ω, x) dx

⩽ C−
∫
Q/ε

|A(ω, x)|
(
Λ(ω, x)1/p + |(ξ +∇uξ,ε)A(ω, x)|

)p−1−α

|(ξ +∇uξ,ε)A(ω, x)|α dx

+−
∫
Q/ε

Λ(ω, x) dx

⩽ C−
∫
Q/ε

|A(ω, x)|
(
Λ(ω, x)1/p + |(ξ +∇uξ,ε)A(ω, x)|

)p−1

+−
∫
Q/ε

Λ(ω, x) dx

⩽ C

(
−
∫
Q/ε

|A(ω, x)|p dx
)1/p(

−
∫
Q/ε

Λ(ω, x) + |(ξ +∇uξ,ε)A(ω, x)|p dx
)(p−1)/p

+−
∫
Q/ε

Λ(ω, x),

where we used Hölder’s inequality to obtain the last line. Using Assumption 1, the
almost minimality of uξ,ε, and the ergodic theorem, we deduce that

lim sup
ε→0

|ξ∗ε | ⩽ CE[|A(·, 0)|p]1/p
(
E[Λ(·, 0)] + fhom(ξ)

)(p−1)/p

+ E[Λ(·, 0)],

which implies the boundedness of ξ∗ε and thus the differentiability of fhom. □

Appendix B. Complete continuity of the embedding W 1,1 ↪→ Ld/(d−1)

We show that the non-compact Sobolev embedding W 1,1 ↪→ Ld/(d−1) is completely
continuous.

Theorem B.1. — Let d,m ∈ N and d ⩾ 2. If (un)n∈N ⊂ W 1,1(Rd,Rm) is a sequence
such that un ⇀ u in W 1,1(Rd,Rm), then un → u in Ld/(d−1)(Rd,Rm). The same result
holds true when Rd is replaced by an extension domain O, i.e., in case there exists a
bounded, linear operator E : W 1,1(O,Rm) → W 1,1(Rd,Rm) such that E(u) = u a.e.
on O.

Remark B.2. — Every bounded open set with Lipschitz boundary is an extension
domain. For such sets it suffices to prove the equi-integrability of |un|d/(d−1). This
has already been shown in [17, Lem. A.3].
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Proof of Theorem B.1. — Arguing separately for each component, it suffices to prove
the scalar case m = 1. Consider un, u0 ∈ W 1,1(Rd) such that un ⇀ u0 in W 1,1(Rd).
From the Gagliardo-Nirenberg-Sobolev inequality we infer hat u0 ∈ Ld/(d−1)(Rd). To
show strong convergence in this space, we first show that the sequence |un|d/(d−1)

does not lose mass at infinity. Since ∇un ⇀ ∇u0 in L1(Rd,Rd), it follows from the
Dunford-Pettis theorem that for every ε > 0 there exists a set Aε ⊂ Rd with finite
measure such that

sup
n∈N

∫
Rd∖Aε

|∇un|dx < ε.

Although it might be known to experts, we argue that we can take the sets Aε to
be compact. Indeed, due to the inner regularity of the Lebesgue measure there exists
Kε ⊂ Aε compact such that |Aε ∖Kε| ⩽ ρ(ε), where ρ(ε) > 0 is chosen such that the
equi-integrability of |∇un| implies that

sup
n∈N

∫
Aε∖Kε

|∇un|dx ⩽ ε.

We conclude that
sup
n∈N

∫
Rd∖Kε

|∇un|dx < 2ε.

Since Kε is compact, we find a radius R = Rε > 0 such that Kε ⊂ BR. For any
N ∈ N and 1 ⩽ i ⩽ N we define the radii ri = R + i and consider a cut-off function
φ ∈ C∞

c (Rd, [0, 1]) such that φ ≡ 1 on Bri−1 , supp(φi) ⊂ Bri and ∥∇φi∥∞ ⩽ 2.
We then define the function

un,i = (1− φi)un ∈W 1,1(Rd).

By the product rule it holds that ∇un,i = (1 − φi)∇un − ∇φiun. The Gagliardo-
Nirenberg-Sobolev inequality then yields that(∫

Rd∖Bri

|un|d/(d−1) dx

)(d−1)/d

⩽

(∫
Rd

|un,i|d/(d−1) dx

)(d−1)/d

⩽ C

∫
Rd

|∇un,i|dx

⩽ C

∫
Rd∖Bri

|∇un|dx+ 2C

∫
Bri

∖Bri−1

|un|dx

⩽ C

∫
Rd∖BR

|∇un|dx+ 2C

∫
Bri

∖Bri−1

|un|dx.

Since BR ⊃ Kε, the penultimate integral above can be bounded by 2Cε uniformly
in n. Moreover, since the sets (Bri+1

∖Bri)
N
i=1 are pairwise disjoint, it follows that(∫

Rd∖BrN

|un|d/(d−1) dx

)(d−1)/d

⩽
1

N

N∑
i=1

(∫
Rd∖Bri

|un|d/(d−1) dx

)(d−1)/d

⩽ 2Cε+
2C

N

∫
Rd

|un|dx.

Since un is a bounded sequence in L1(Rd), it follows that for given ε > 0 we can find
a number N = Nε and a corresponding ball Bε = BR+Nε

such that

(B.1) sup
n∈N

∫
Rd∖Bε

|un|d/(d−1) dx ⩽ (4Cε)d/(d−1) ⩽ ε,

J.É.P. — M., 2023, tome 10



Stochastic homogenization of degenerate integral functionals 299

where we assumed that ε ≪ 1 for the last estimate (recall that d ⩾ 2). Due to
the compact embedding W 1,1(B) ↪→↪→ L1(B) for any ball B ⊂ Rd, we deduce that
un → u locally in measure on Rd. Combined with (B.1) it follows that un → u in
measure on Rd. Given k ∈ N, we consider the truncated sequence

un,k = min{max{−k, un}, k}.

Then a.e. on Rd it holds that ∇un,k = ∇unχ{|un|<k}, so that un,k ∈ W 1,1(Rd).
Moreover, pointwise it holds that |un,k| ⩽ |un|. Therefore also |un,k|d/(d−1) satisfies
(B.1). Since the truncation operator x 7→ min{max{−k, x}, k} is 1-Lipschitz, for any
δ > 0 it holds that

lim
n→+∞

|{|un,k − u0,k| > δ}| ⩽ lim
n→+∞

|{|un − u0| > δ}| = 0

and we conclude that un,k converges to u0,k in measure. Moreover, |un,k|d/(d−1) is
bounded in L∞(Rd). Hence it is equi-integrable and we conclude from Vitali’s con-
vergence theorem [22, Th. 2.24] that un,k → uk in Ld/(d−1)(Rd). Next, note that∫

Rd

|un − un,k|+ |∇un −∇un,k|dx ⩽
∫
{|un|>k}

(|un| − k) + |∇un|dx

⩽
∫
{|un|>k}

|un|+ |∇un|dx.

Since |{|un| ⩾ k}| ⩽ k−1∥un∥L1(Rd), the equi-integrability of un and ∇un imply that

lim
k→+∞

sup
n∈N

∫
Rd

|un − un,k|+ |∇un −∇un,k|dx = 0.

The triangle inequality and the Gagliardo-Nirenberg-Sobolev inequality yield that
∥u− un∥Ld/(d−1)(Rd)

⩽ ∥u− uk∥Ld/(d−1)(Rd) + ∥uk − un,k∥Ld/(d−1)(Rd) + ∥un,k − un∥Ld/(d−1)(Rd)

⩽ ∥u− uk∥Ld/(d−1)(Rd) + ∥uk − un,k∥Ld/(d−1)(Rd) + C sup
n∈N

∥un,k − un∥W 1,1(Rd).

Letting first n→ +∞ and then k → +∞ we deduce that
lim sup
n→+∞

∥u− un∥Ld/(d−1)(Rd) = 0.

This proves the claim forD = Rd. IfD ⊂ Rd is an extension domain, then by definition
there exists a bounded, linear extension operator E :W 1,1(D) →W 1,1(Rd), which is
also weakly continuous. Hence the claim follows from the continuity of the restriction
map Ld/(d−1)(Rd) → Ld/(d−1)(D). □

Appendix C. Measurability

Here we establish the following lemma:

Lemma C.1. — Under Assumption 1 the function ω 7→ µξ(ω,O) defined in Lemma 4.3
is measurable for every open, bounded set O ⊂ Rd. Moreover, if for almost every
ω ∈ Ω there exists a minimizer for the problem defining µξ(ω,O), then there exists a
measurable function u : Ω → ξx +W 1,1

0 (O,Rm) such that F1(ω, u(ω), O) = µξ(ω,O)

for almost every ω ∈ Ω.
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We first show a more general result for the measurability of infimum-values and
minimizers that is well-known in some special cases.

Lemma C.2. — Let Y be a complete, separable metric space and (T,A,m) be a com-
plete measure space. Assume that F : T × Y → R ∪ {+∞} is A ⊗ B(Y )-measurable
and that y 7→ F (t, y) is lower semicontinuous and not constantly +∞ for every t ∈ T .
Then the function t 7→ infy∈Y F (t, y) is A-measurable. Moreover, if for every t ∈ T

there exists a minimizer of y 7→ F (t, y), then there exists an A-B(Y )-measurable
function ymin : T → Y such that ymin(t) ∈ argminF (t, ·).

Proof. — It will be convenient to consider the epigraph of F defined as the multi-
function

t 7−→ epiF (t, ·) := {(y, α) ∈ Y × R : F (t, y) ⩽ α}.
The lower semicontinuity assumption on F in the second variable shows that epiF (t, ·)
is closed-valued. Moreover, it is non-empty by the finiteness assumption on y 7→
F (t, y). Since F is jointly measurable, the graph of epiF (t, ·) defined by

Gr(epiF (t, ·)) = {(t, y, α) ∈ T × Y × R : F (t, y) ⩽ α}

belongs to A⊗B(Y )⊗B(R). Due to the completeness of A with respect to m and the
properties of Y we can apply [22, Rem. 6.11] and conclude that epiF (t, ·) is weakly
measurable in the sense that

{t ∈ T : epiF (t, ·) ∩O ̸= ∅}

is A-measurable for every open set O ⊂ Y × R. We now follow [30, Th. 14.37] in
order to prove the measurability of the infimum value. Denote by Π : Y ×R → R the
projection map defined by Π(y, α) = α. We introduce a multifunction Γ : T → P(R)
setting Γ(t) = Π(epiF (t, ·)). Let U ⊂ R be open. Then

{t ∈ T : Π(epiF (t, ·)) ∩ U ̸= ∅} = {t ∈ T : epiF (t, ·) ∩ (Y × U) ̸= ∅},

which is A-measurable since Y ×U is open in Y ×R. Hence also Γ is weakly measurable.
Since Γ(t) ∩ U ̸= ∅ if and only if Γ(t) ∩ U ̸= ∅, it follows that also the closure
of Γ is weakly measurable. Finally, since Γ(t) ⊂ R, we know that it is even strongly
measurable, that is,

{t ∈ T : Γ(t) ∩ C ̸= ∅}
is A-measurable for every closed set C ⊂ R (cf. [22, Rem. 6.4]). An elementary argu-
ment shows that

{t ∈ T : inf
y∈Y

F (t, y) ⩽ α} = {t ∈ T : α ∈ Γ(t)} = {t ∈ T : Γ(t) ∩ {α} ≠ ∅}.

The set on the right-hand side is A-measurable. Hence also t 7→ infy∈Y F (t, y) is A-
measurable. To obtain the measurable selection of minimizers, define the multifunction
M : T → P(Y ) by

M(t) = {y ∈ Y : F (t, y) = inf
y∈Y

F (t, y)}.

By assumption, M(t) ̸= ∅ and due to lower semicontinuity M(t) is closed for all
t ∈ T . Moreover, by the measurability of the infimum value the graph of M is
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A⊗B(Y )-measurable. Since T is complete, Aumann’s measurable selection Theorem
(see [22, Th. 6.10]) implies the existence of a measurable selection of minimizers. □

With the above lemma at hand we can now prove the measurability of the process
µξ(ω,A).

Proof of Lemma C.1. — Since we assume Ω to be a complete probability space, we can
set f(ω, x, ξ) = |ξ|p on the null set where |A(ω, ·)|p + Λ(ω, ·) is not locally integrable
and this modification does not affect measurability. We have to transfer the measur-
ability properties of the integrand to the energy. To this end, we first regularize the
integrand in ξ. Given k ∈ N, define the Moreau-Yosida-regularization of f by

fk(ω, x, ξ) = inf
ζ∈Rm×n

{f(ω, x, ζ) + k|ζ − ξ|}.

It is well-known that fk is k-Lipschitz in the last variable. In order to apply Lemma C.2
we need to complete the product σ-algebra F⊗Ld with respect to the product measure
P × | · |. Denote the completed σ-algebra by F ⊗ Ld. Considering ξ as a parameter,
we deduce from Lemma C.2 and Assumption 1 that the function (ω, x) → fk(ω, x, ξ)

is measurable with respect to F ⊗ Ld. By a well-known argument for Carathéodory-
functions it follows that fk is F ⊗ Ld ⊗ B(Rm×d)-measurable. Hence for any u ∈
ξx +W 1,1

0 (O,Rm) the function (ω, x) 7→ fk(ω, x,∇u(x)) is F ⊗ Ld-measurable and,
by Tonelli’s theorem in the form of [22, Th. 1.121], we can define

Fk(ω, u) : Ω×
(
ξx+W 1,1

0 (O,Rm)
)
−→ [0,+∞)

by

F k(ω, u) =

∫
O

fk(ω, x,∇u(x)) dx.

The integral is indeed finite since the nonnegativity of f and the Lipschitz continuity
of fk imply that

(C.1) 0 ⩽ fk(ω, x, ξ) ⩽ fk(ω, x, 0) + k|ξ| ⩽ f(ω, x, 0) + k|ξ| ⩽ Λ(ω, x) + k|ξ|.

(Recall that Λ(ω, ·) is locally integrable on Rd.) Due to (C.1) and the Lipschitz-
continuity of fk in the last variable, the functional F k(ω, ·) is continuous on ξx +

W 1,1
0 (O,Rm). Moreover, again by Tonelli’s theorem, for fixed u ∈ ξx+W 1,1

0 (O,Rm)

the function ω 7→ F k(ω, u) is measurable. In particular, the functional F k is
F ⊗ B(ξx + W 1,1

0 (O,Rm))-measurable. Due to lower semicontinuity it holds that
fk ↑ f pointwise and therefore also F k → F1 pointwise. It follows that F1 is also
F ⊗ B(ξx + W 1,1

0 (O,Rm))-measurable (and not constantly +∞ for fixed ω ∈ Ω

since F1(ω, ξx,O) < +∞). Using that ξx + W 1,1
0 (O,Rm) is a separable, complete

metric space, the measurability of w 7→ µξ(ω,O) follows once again from Lemma C.2
due to the completeness of Ω. In the case when minimizers exist almost surely, we
set f(ω, x, ξ) = 0 for those ω, for which no minimizer exists. As just proved the
(modified) function F1 is F ⊗ B(ξx +W 1,1

0 (O,Rm))-measurable and the measurable
selection of minimizers follows from Lemma C.2. □
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