We consider a damped plate equation on an open bounded subset of , or a smooth manifold, with boundary, along with general boundary operators fulfilling the Lopatinskiĭ-Šapiro condition. The damping term acts on an internal region without imposing any geometrical condition. We derive a resolvent estimate for the generator of the damped plate semigroup that yields a logarithmic decay of the energy of the solution to the plate equation. The resolvent estimate is a consequence of a Carleman inequality obtained for the bi-Laplace operator involving a spectral parameter under the considered boundary conditions. The derivation goes first through microlocal estimates, then local estimates, and finally a global estimate.
Nous considérons une équation des plaques amorties sur un ouvert borné régulier de , ou sur une variété lisse et compacte à bord, avec des opérateurs au bord généraux qui satisfont la condition de Lopatinskiĭ-Šapiro. Le terme d’amortissement agit sur une région interne et aucune condition géométrique n’est imposée. Nous démontrons une estimée de résolvante pour le générateur du semi-groupe associé qui implique une décroissance logarithmique de l’énergie de la solution de l’équation des plaques. Cette estimée de résolvante est conséquence d’une inégalité de Carleman obtenue pour le bi-laplacien muni d’un paramètre spectral et sous les conditions au bord considérées. L’obtention de cette inégalité passe tout d’abord par des estimations microlocales, puis locales et enfin une estimation globale.
@article{JEP_2023__10__1_0, author = {J\'er\^ome Le Rousseau and Emmanuel Wend-Benedo Zongo}, title = {Stabilization of the damped plate equation under general boundary conditions}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1--65}, publisher = {\'Ecole polytechnique}, volume = {10}, year = {2023}, doi = {10.5802/jep.213}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.213/} }
TY - JOUR AU - Jérôme Le Rousseau AU - Emmanuel Wend-Benedo Zongo TI - Stabilization of the damped plate equation under general boundary conditions JO - Journal de l’École polytechnique — Mathématiques PY - 2023 DA - 2023/// SP - 1 EP - 65 VL - 10 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.213/ UR - https://doi.org/10.5802/jep.213 DO - 10.5802/jep.213 LA - en ID - JEP_2023__10__1_0 ER -
%0 Journal Article %A Jérôme Le Rousseau %A Emmanuel Wend-Benedo Zongo %T Stabilization of the damped plate equation under general boundary conditions %J Journal de l’École polytechnique — Mathématiques %D 2023 %P 1-65 %V 10 %I École polytechnique %U https://doi.org/10.5802/jep.213 %R 10.5802/jep.213 %G en %F JEP_2023__10__1_0
Jérôme Le Rousseau; Emmanuel Wend-Benedo Zongo. Stabilization of the damped plate equation under general boundary conditions. Journal de l’École polytechnique — Mathématiques, Volume 10 (2023), pp. 1-65. doi : 10.5802/jep.213. https://jep.centre-mersenne.org/articles/10.5802/jep.213/
[1] - “Piecewise multiplier method and nonlinear integral inequalities for Petrowsky equation with nonlinear dissipation”, J. Evol. Equ. 6 (2006) no. 1, p. 95-112 | DOI | MR | Zbl
[2] - “Sharp energy estimates for nonlinearly locally damped PDEs via observability for the associated undamped system”, J. Funct. Anal. 260 (2011) no. 8, p. 2424-2450 | DOI | MR | Zbl
[3] - “Nonlinear damped partial differential equations and their uniform discretizations”, J. Funct. Anal. 273 (2017) no. 1, p. 352-403 | DOI | MR | Zbl
[4] - “A sharp geometric condition for the boundary exponential stabilizability of a square plate by moment feedbacks only”, in Control of coupled partial differential equations, Internat. Ser. Numer. Math., vol. 155, Birkhäuser, Basel, 2007, p. 1-11 | DOI | MR | Zbl
[5] - “Exact controllability of the superlinear heat equation”, Appl. Math. Optim. 42 (2000) no. 1, p. 73-89 | DOI | MR | Zbl
[6] - “Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary”, SIAM J. Control Optim. 30 (1992) no. 5, p. 1024-1065 | DOI | MR | Zbl
[7] - “Non-uniform stability for bounded semi-groups on Banach spaces”, J. Evol. Equ. 8 (2008) no. 4, p. 765-780 | DOI | MR | Zbl
[8] - “Carleman estimates for elliptic operators with complex coefficients. Part I: Boundary value problems”, J. Math. Pures Appl. (9) 104 (2015) no. 4, p. 657-728 | DOI | MR | Zbl
[9] - Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011 | DOI
[10] - “Global uniqueness of a class of multidimensional inverse problems”, Soviet Math. Dokl. 24 (1981), p. 244-247 | Zbl
[11] - “Uniqueness in the Cauchy problem for partial differential equations”, Amer. J. Math. 80 (1958), p. 16-36 | DOI | MR | Zbl
[12] - “Sur un problème d’unicité pour les systèmes d’équations aux dérivées partielles à deux variables indépendantes.”, Ark. Mat. Astron. Fys. 26 (1939) no. 17, p. 1-9 | MR | Zbl
[13] - “A structurally damped plate equation with Dirichlet-Neumann boundary conditions”, J. Differential Equations 259 (2015) no. 4, p. 1323-1353 | DOI | MR | Zbl
[14] - “Sharp Carleman estimates and unique continuation”, Duke Math. J. 129 (2005) no. 3, p. 503-550 | DOI | MR | Zbl
[15] - “Limiting Carleman weights and anisotropic inverse problems”, Invent. Math. 178 (2009) no. 1, p. 119-171 | DOI | MR | Zbl
[16] - “Null and approximate controllability for weakly blowing up semilinear heat equations”, Ann. Inst. H. Poincaré C Anal. Non Linéaire 17 (2000) no. 5, p. 583-616 | DOI | MR | Zbl
[17] - Controllability of evolution equations, Lect. Notes Series, vol. 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996
[18] - “On the uniqueness of the Cauchy problem”, Math. Scand. 6 (1958), p. 213-225 | DOI | Zbl
[19] - Linear partial differential operators, Grundlehren Math. Wiss., vol. 116, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963 | DOI
[20] - The analysis of linear partial differential operators. III, Classics in Math., Springer, Berlin, 2007 | DOI
[21] - “An inverse problem for the dynamical Lamé system with two sets of boundary data”, Comm. Pure Appl. Math. 56 (2003) no. 9, p. 1366-1382 | DOI | Zbl
[22] - Inverse problems for partial differential equations, Applied Math. Sciences, vol. 127, Springer, Cham, 2017 | DOI
[23] - “Contrôle interne exact des vibrations d’une plaque rectangulaire”, Portugal. Math. 47 (1990) no. 4, p. 423-429 | Zbl
[24] - “Unique continuation and absence of positive eigenvalues for Schrödinger operators”, Ann. of Math. (2) 121 (1985) no. 3, p. 463-494, With an appendix by E. M. Stein | DOI | Zbl
[25] - “Pseudo-périodicité et séries de Fourier lacunaires”, Ann. Sci. École Norm. Sup. 79 (1962), p. 93-150 | DOI | Zbl
[26] - “The Calderón problem with partial data”, Ann. of Math. (2) 165 (2007) no. 2, p. 567-591 | DOI | Zbl
[27] - “Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients”, Comm. Pure Appl. Math. 54 (2001) no. 3, p. 339-360 | DOI | MR | Zbl
[28] - “Sharp counterexamples in unique continuation for second order elliptic equations”, J. reine angew. Math. 542 (2002), p. 133-146 | DOI | MR | Zbl
[29] - “Dispersive estimates for principally normal pseudodifferential operators”, Comm. Pure Appl. Math. 58 (2005) no. 2, p. 217-284 | DOI | MR | Zbl
[30] - “Uniqueness in inverse hyperbolic problems—Carleman estimate for boundary value problems”, J. Math. Kyoto Univ. 40 (2000) no. 3, p. 451-473 | DOI | MR | Zbl
[31] - Elliptic Carleman estimates and applications to stabilization and controllability. Vol. I. Dirichlet boundary conditions on Euclidean space, Progress in Nonlinear Differential Equations and their Applications, vol. 97, Birkhäuser/Springer, Cham, 2022 | DOI
[32] - Elliptic Carleman estimates and applications to stabilization and controllability. Vol. II. General boundary conditions on Riemannian manifolds, Progress in Nonlinear Differential Equations and their Applications, vol. 98, Birkhäuser/Springer, Cham, 2022 | DOI
[33] - “Spectral inequality and resolvent estimate for the bi-Laplace operator”, J. Eur. Math. Soc. (JEMS) 22 (2020) no. 4, p. 1003-1094 | DOI | MR | Zbl
[34] - “Contrôle de l’équation de Schrödinger”, J. Math. Pures Appl. (9) 71 (1992) no. 3, p. 267-291 | Zbl
[35] - “Équation des ondes amorties”, in Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Math. Phys. Stud., vol. 19, Kluwer Acad. Publ., Dordrecht, 1996, p. 73-109 | DOI | Zbl
[36] - “Contrôle exact de l’équation de la chaleur”, Comm. Partial Differential Equations 20 (1995) no. 1-2, p. 335-356 | DOI
[37] - “Stabilisation de l’équation des ondes par le bord”, Duke Math. J. 86 (1997) no. 3, p. 465-491 | DOI | Zbl
[38] - “Internal stabilization of the plate equation in a square: the continuous and the semi-discretized problems”, J. Math. Pures Appl. (9) 85 (2006) no. 1, p. 17-37 | DOI | MR | Zbl
[39] - “Exponential decay of solutions to hyperbolic equations in bounded domains”, Indiana Univ. Math. J. 24 (1974), p. 79-86 | DOI | MR
[40] - “Oscillatory integrals and unique continuation for second order elliptic differential equations”, J. Amer. Math. Soc. 2 (1989) no. 3, p. 491-515 | DOI | MR | Zbl
[41] - “Well-posedness and stability of a hinged plate equation with a localized nonlinear structural damping”, Nonlinear Anal. 71 (2009) no. 12, p. e2288-e2297 | DOI | MR | Zbl
[42] - “Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the -Laplacian”, Discrete Contin. Dynam. Systems 32 (2012) no. 6, p. 2315-2337 | DOI | MR | Zbl
[43] - Uniqueness and non-uniqueness in the Cauchy problem, Progress in Math., vol. 33, Birkhäuser, Cham, 1983 | DOI
Cited by Sources: