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STABILIZATION OF THE DAMPED PLATE EQUATION

UNDER GENERAL BOUNDARY CONDITIONS

by Jérôme Le Rousseau & Emmanuel Wend-Benedo Zongo

Abstract. —We consider a damped plate equation on an open bounded subset of Rd, or a
smooth manifold, with boundary, along with general boundary operators fulfilling the Lopatin-
skĭı-Šapiro condition. The damping term acts on an internal region without imposing any
geometrical condition. We derive a resolvent estimate for the generator of the damped plate
semigroup that yields a logarithmic decay of the energy of the solution to the plate equation.
The resolvent estimate is a consequence of a Carleman inequality obtained for the bi-Laplace
operator involving a spectral parameter under the considered boundary conditions. The deriva-
tion goes first through microlocal estimates, then local estimates, and finally a global estimate.

Résumé (Stabilisation de l’équation des plaques amorties sous des conditions au bord générales)
Nous considérons une équation des plaques amorties sur un ouvert borné régulier de Rd, ou

sur une variété lisse et compacte à bord, avec des opérateurs au bord généraux qui satisfont
la condition de Lopatinskĭı-Šapiro. Le terme d’amortissement agit sur une région interne et
aucune condition géométrique n’est imposée. Nous démontrons une estimée de résolvante pour
le générateur du semi-groupe associé qui implique une décroissance logarithmique de l’énergie de
la solution de l’équation des plaques. Cette estimée de résolvante est conséquence d’une inégalité
de Carleman obtenue pour le bi-laplacien muni d’un paramètre spectral et sous les conditions
au bord considérées. L’obtention de cette inégalité passe tout d’abord par des estimations
microlocales, puis locales et enfin une estimation globale.
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2 J. Le Rousseau & E. Zongo

1. Introduction

Let Ω be a bounded connected open subset in Rd, or a smooth bounded connected
d-dimensional manifold, with smooth boundary ∂Ω, where we consider a damped
plate equation

(1.1)


∂2
t y + ∆2y + α(x)∂ty = 0 (t, x) ∈ R+ × Ω,

B1y|R+×∂Ω = B2y|R+×∂Ω = 0,

y|t=0 = y0, ∂ty|t=0 = y1,

where α > 0 and where B1 and B2 denote two boundary differential operators. The
damping property is provided by +α(x)∂t thus referred as the damping term. As in-
troduced below, ∆2 is the bi-Laplace operator, that is, the square of the Laplace
operator. Here, it is associated with a smooth metric g to be introduced below; it is
thus rather the bi-Laplace-Beltrami operator. This equation appears in models for the
description of mechanical vibrations of thin domains. The two boundary operators are
of order kj , j = 1, 2 respectively, yet at most of order 3 in the direction normal to the
boundary. They are chosen such that the two following properties are fulfilled:

(1) the Lopatinskĭı-Šapiro boundary condition holds (this condition is fully de-
scribed in what follows);

(2) along with the homogeneous boundary conditions given above the bi-Laplace
operator is self-adjoint and nonnegative. This guarantees the conservation of the en-
ergy of the solution in the case of a damping free equation, that is, if α = 0.
We are concerned with the decay of the energy of the solution in the case α is not
identically zero. We shall prove that the damping term yields a stabilization property:
the energy decays to zero as time t tends to infinity and we shall prove that the decay
rate is at least logarithmic.

1.1. Stabilization and control of Schrödinger and plate equations. — In the case
of the “hinged” boundary conditions

y|R+×∂Ω = ∆y|R+×∂Ω = 0,

the plate equation can be written as the product of two Schrödinger equations since
∂2
t y + ∆2y = (−i∂t + ∆)(i∂t + ∆). As observed by Lebeau in [34] this allows one to

transfer a control result obtained for the Schrödinger equation to the plates equations.
In particular, Lebeau proved that controllability can be obtained for both equations if
the control region fulfills the celebrated Rauch-Taylor condition, often coined GCC for
geometrical control condition [39, 6]. The GCC expresses that all rays of geometrical
optics reach the control region. Yet, the GCC condition is not a necessary condition
as expressed by the result of Jaffard [23] on the controllability of the plate equation on
a rectangle domain with an arbitrarily small control domain along with the “hinged”
boundary conditions. Yet, the proof of [23] relies on the generalization of Ingham type
inequalities in [25] and the very particular geometry that is considered.
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Stabilization of the damped plate equation under general boundary conditions 3

For stabilization, GCC concerns the damping region, here given by the support of
the function α. If GCC holds exponential stabilization holds. Note that in the same
geometry as that of [23] an exponential stabilization result is proved in [38], using
similar techniques. However, if no geometrical condition is imposed on the damping
region, if a general geometry is considered, and if different boundary conditions are
considered, one cannot expect an exponential decay rate. A logarithmic decay rate is
quite natural if one has in mind the equivalent result obtained for the wave equation
in the works of G. Lebeau [35] and G. Lebeau and L.Robbiano [37]. We also refer to
[31, Chap. 6] and [32, Chap. 10 & 11] where the result of [35, 37] for the wave equation
are reviewed and generalized in particular on the framework of general boundary con-
ditions as those we consider here. See also the work of P.Cornilleau and L.Robbiano
for a quite exotic boundary condition, namely the Zaremba condition.

Among the existing results available in the literature for plate type equations,
many of them concern the “hinged” boundary conditions described above. In [38]
where exponential stabilization is proved, the localized damping term involves the
time derivative ∂ty as in (1.1). Interior nonlinear feedbacks can be used for expo-
nential stabilization [41]. There, feedbacks are localized in a neighborhood of part of
the boundary that fulfills multiplier-type conditions. A general analysis of nonlinear
damping that includes the plate equation is provided in [2] under multiplier-type con-
ditions. For “hinged” boundary conditions also, with a boundary damping term, we
cite [4] where, on a square domain, a necessary and sufficient condition is provided
for exponential stabilization.

Note that under “hinged” boundary conditions the bi-Laplace operator is precisely
the square of the Dirichlet-Laplace operator. This makes its mathematical analysis
much easier, in particular where using spectral properties, and this explains why this
type of boundary conditions appears very frequently in the mathematical literature.

A more challenging type of boundary condition is the so-called “clamped” boundary
conditions, that is, u|∂Ω = 0 and ∂νu|∂Ω = 0, for which few results are available. We
cite [1], where a general analysis of nonlinearly damped systems that includes the
plate equation under multiplier-type conditions is provided. In [3], the analysis of
discretized general nonlinearly damped system is also carried out, with the plate
equation as an application. In [42], a nonlinear damping involving the p-Laplacian is
used also under multiplier-type conditions. In [13], an exponential decay is obtained
in the case of “clamped” boundary conditions, yet with a damping term of the Kelvin-
Voigt type, that is of the form ∂t∆y, that acts over the whole domain. In the case
of the “clamped” boundary conditions, the logarithmic-type stabilization result we
obtain here was proved in [33]. The present article thus stands as a generalization
of the stabilization result of [33] if considering a whole class of boundary condition
instead of specializing to a certain type. The present work contains in particular also
the case of “hinged” boundary conditions.

1.2. Method. — Following the works of [33, 35, 37] we obtain a logarithmic decay
rate for the energy of the solution to (1.1) by means of a resolvent estimate for the

J.É.P. — M., 2023, tome 10



4 J. Le Rousseau & E. Zongo

generator of the semigroup associated with the damped plate equation (1.1). In [33]
this was achieved by means of a Carleman estimate for the elliptic operator D4

s + ∆2

with an additional variable s in the case of the “clamped” boundary conditions. Exten-
sion of this strategy has however not been possible in the case of general boundary
conditions. The proof of the resolvent estimate we seek is yet also possible by means
of a Carleman estimate for the operator Pσ = ∆2−σ4 where σ is a spectral parameter
for the generator of the semigroup and we found that this method of proof extends
to general boundary conditions.

Our first goal is thus the derivation of the Carleman inequality for the operator Pσ
near the boundary under the boundary conditions given by B1 and B2.

Then, from the Carleman estimate one deduces an observation inequality for the
operator Pσ in the case of the prescribed boundary conditions. The resolvent estimate
then follows from this observation inequality.

1.3. On Carleman estimates. — A Carleman estimate is a weighted a priori inequal-
ity for the solutions of a partial partial differential equation, where the weight is of
exponential type. For instance, for a partial differential operator P away from the
boundary, it takes the form

‖eτϕu‖L2(Ω) 6 C‖e
τϕPu‖L2(Ω),

for u ∈ C∞c (Ω) and τ > τ0 for ϕ well chosen and some τ0 chosen sufficiently large.
The exponential weight function involves a parameter τ that can be taken as large as
desired, making Carleman inequalities very powerful estimates. Additional terms on
the left-hand side of the inequality can be obtained, including higher-order derivatives
of the function u, depending of course of the order of the operator P itself. For a
second-order elliptic operator such as the Laplace operator one has

τ3/2‖eτϕu‖L2(Ω) + τ1/2‖eτϕDu‖L2(Ω) + τ−1/2
∑
|β|=2

‖eτϕDβu‖L2(Ω)

6 C‖eτϕ∆u‖L2(Ω),

under the so-called sub-ellipticity condition; see [31, Chap. 3]. Note that the power of
the large parameter τ adds to 3/2 with the order of the derivative in each term on the
left-hand side. In fact, in the calculus used to derive such estimates one power of τ is
equivalent to a derivative of order one. Thus with this 3/2 compared with the order
two of the operator one says that one looses a half-derivative in the estimate.

This type of estimate was used for the first time by T.Carleman [12] to achieve
uniqueness properties for the Cauchy problem of an elliptic operator. Later, A.-P.
Calderón and L.Hörmander further developed Carleman’s method [11, 18]. To this
day, the method based on Carleman estimates remains essential to prove unique con-
tinuation properties; see for instance [43] for an overview. On such questions, more
recent advances have been concerned with differential operators with singular poten-
tials, starting with the contribution of D. Jerison and C.Kenig [24]. The reader is
also referred to [40, 27, 28, 14, 29]. In more recent years, the field of applications of
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Stabilization of the damped plate equation under general boundary conditions 5

Carleman estimates has gone beyond the original domain; they are also used in the
study of:

– Inverse problems, where Carleman estimates are used to obtain stability esti-
mates for the unknown sought quantity (for instance coefficient, source term) with
respect to norms on measurements performed on the solution of the PDE, see for
instance [10, 22, 30, 21]; Carleman estimates are also fundamental in the construction
of complex geometrical optic solutions that lead to the resolution of inverse problems
such as the Calderón problem with partial data [26, 15].

– Control theory for PDEs; Carleman estimates yield the null controllability of
linear parabolic equations [36] and the null controllability of classes of semi-linear
parabolic equations [17, 5, 16]. They can also be used to prove unique continuation
properties, that in turn are crucial for the treatment of low frequencies for exact
controllability results for hyperbolic equations as in [6].

For a function supported near a point at the boundary, in normal geodesic coordi-
nates where Ω is locally given by {xd > 0} (see Section 1.4 below) the estimate can
take the form∑
|β|62

τ3/2−|β|‖eτϕDβu‖L2(Ω) +
∑
|β|61

τ3/2−|β||eτϕDβu|xd=0+ |
L2(Ω)

6 C‖eτϕ∆u‖L2(Ω).

This is the type of estimate we seek here for the operator Pσ, with some uniformity
with respect to σ.

1.4. Geometrical setting. — On Ω we consider a Riemannian metric gx = (gij(x)),
with associated cometric (gij(x)) = (gx)−1. It stands as a bilinear form that act on
vector fields,

gx(ux, vx) = gij(x)uixv
j
x, ux = uix∂xi

, vx = vix∂xi
.

For x ∈ ∂Ω we denote by νx the unit outward pointing normal vector at x, unitary
in the sense of the metric g, that is

gx(νx, νx) = 1 and gx(νx, ux) = 0 ∀ux ∈ Tx∂Ω.

We denote by ∂ν the associated derivative at the boundary, that is, ∂νf(x) = νx(f).
We also denote by nx the unit outward pointing conormal vector at x, that is, nx = ν[x,
that is, (nx)i = gijν

j
x.

Near a boundary point we shall often use normal geodesic coordinates where Ω is
locally given by {xd > 0} and the metric g takes the form

g = dxd ⊗ dxd +
∑

16i,j6d−1

gijdx
i ⊗ dxj .

Then, the vector field νx is locally given by (0, . . . , 0,−1). The same for the one
form nx.

J.É.P. — M., 2023, tome 10



6 J. Le Rousseau & E. Zongo

Normal geodesic coordinates allow us to locally formulate boundary problems in a
half-space geometry. We write

Rd+ := {x ∈ Rd | xd > 0} where x = (x′, xd) with x′ ∈ Rd−1, xd ∈ R.

We shall denote its closure by Rd+, that is, Rd+ = {x ∈ Rd | xd > 0}.
The Laplace-Beltrami operator is given by

(1.2) (∆gf)(x) = (det gx)−1/2
∑

16i,j6d

∂xi

(
(det gx)1/2gij(x)∂xjf

)
(x).

in local coordinates. Its principal part is given by
∑

16i,j6d g
ij(x)∂xi

∂xj
and its prin-

cipal symbol by
∑

16i,j6d g
ij(x)ξiξj .

The bi-Laplace operator is P = ∆2
g. In the main text of the article we shall write

∆, ∆2 in place of ∆g, ∆2
g.

1.5. Main results

1.5.1. Stabilization result. — Let (P0, D(P0)) be the unbounded operator on L2(Ω)

given by the domain

(1.3) D(P0) =
{
u ∈ H4(Ω) | B1u|∂Ω = B2u|∂Ω = 0

}
,

given by P0u = ∆2u for u ∈ D(P0). As written above the two boundary differential
operators are such that (P0, D(P0)) is self-adjoint and nonnegative.

Let y(t) be a strong solution of the plate equation (1.1). A precise definition of
strong solutions is given in Section 9.3. One has y0 ∈ D(P0) and y1 ∈ D(P

1/2
0 ). Its

energy is defined as

E(y)(t) =
1

2

(
‖∂ty(t)‖2L2(Ω) + (P0y(t), y(t))L2(Ω)

)
.

Theorem 1.1 (logarithmic stabilization for the damped plate equation)
There exists C > 0 such that for any such strong solution to the damped plate

equation (1.1) one has

E(y)(t) 6
C(

log(2 + t)
)4 (‖P0y

0 + αy1‖2L2(Ω) + ‖P1/2
0 y1‖

2

L2(Ω)

)
.

Amore precise and more general statement is given in Theorem 10.3 in Section 10.2.
As explained in Section 1.2 the above stabilization result will be proved thanks to a
Carleman estimate that we present now.

1.5.2. Carleman estimate. — We state the main Carleman estimate for the operator
Pσ = ∆2 − σ4 in normal geodesic coordinates as presented in Section 1.4. A point
x0 ∈ ∂Ω is considered and a weight function ϕ is assumed to be defined locally and
such that

(1) ∂dϕ > C > 0 locally.
(2) (∆±σ2, ϕ) satisfies the sub-ellipticity condition of Definition 6.1 locally. This is

a necessary and sufficient condition for a Carleman estimate to hold for a second-order
operator ∆± σ2, regardless of boundary conditions [31, Chap. 3 and 4].

J.É.P. — M., 2023, tome 10



Stabilization of the damped plate equation under general boundary conditions 7

(3) (Pσ, B1, B2, ϕ) satisfies the Lopatinskĭı-Šapiro condition of Definition 4.1 at
%′ = (x0, ξ′, τ, σ) for all (ξ′, τ, σ) ∈ Rd−1 × [0,+∞) × [0,+∞) such that τ > κ0σ,
for some κ0 > 0. This means that the Lopatinskĭı-Šapiro condition holds after the
conjugation of the operator Pσ and the boundary operators B1 and B2 by the weight
function exp(τϕ).

Theorem 1.2 (Carleman estimate for Pσ = ∆2−σ4). — Let κ′0 > κ0 > 0. Let x0 ∈ ∂Ω.
Let ϕ be such that the properties above hold locally. Then, there exists a neighborhood
W 0 of x0, C > 0, τ0 > 0 such that

(1.4) τ−1/2‖eτϕu‖4,τ + | tr(eτϕu)|3,1/2,τ

6 C
(
‖eτϕPσu‖+ +

2∑
j=1

|eτϕBjv|xd=0+ |
7/2−kj ,τ

)
,

for τ > τ0, κ0σ 6 τ 6 κ′0σ, and u ∈ C
∞
c (W 0

+).

The volume norm is given by

‖eτϕu‖4,τ =
∑
|β|64

τ4−|β|‖eτϕDβu‖L2(Ω).

The trace norm is given by

| tr(eτϕu)|3,1/2,τ =
∑

06n63

|∂nν (eτϕu)|xd=0+ |
7/2−n,τ ,

where the norm |.|7/2−n,τ is the L2-norm in Rd−1 after applying the Fourier multiplier
(τ2 + |ξ′|2)7/4−n/2. These norms are well described in Section 2.3.

Observe that the Carleman estimate of Theorem 1.2 exhibits a loss of a half-
derivative. A more precise statement is given in Theorem 7.4 in Section 7.2.

Remark 1.3. — The condition κ0σ 6 τ 6 κ′0σ in Theorem 1.2 calls for a comment as
it is not classical in the case of Carleman estimates, even in the presence of a spectral
parameter. Usually one has only κ0σ 6 τ and in applications similar to that we have
in mind one chooses τ = κ0σ. The extended condition we make here thus does not
appear as a potential limitation.

We postpone the technical explanation to Remark 7.2 below Proposition 7.1 where
this condition appears first.

1.6. Some open questions

1.6.1. Boundary damping. — Here, we have considered a damping that acts in the
interior of the domain Ω. The study of boundary damping, as in [37] for the wave
equation, is also of relevance. Yet we foresee that it requires to specify more the used
boundary operators. This was not our goal as we wished to treat general boundary
operators here.

J.É.P. — M., 2023, tome 10



8 J. Le Rousseau & E. Zongo

1.6.2. Spectral inequality. — If the boundary operators B1 and B2 are well chosen,
the bi-Laplace operator ∆2 can be selfadjoint on L2(Ω); see Section 9.1. Associated
with the operator is then a Hilbert basis (φj)j∈N of L2(Ω). In the case of “clamped”
boundary condition the following spectral inequality was proved in [33].

Theorem 1.4 (Spectral inequality for the “clamped” bi-Laplace operator)
Let Ø be an open subset of Ω. There exists C > 0 such that

‖u‖L2(Ω) 6 Ce
Cµ1/4

‖u‖L2(Ø), µ > 0, u ∈ Span{φj | µj 6 µ}.

The proof of this theorem is based on a Carleman inequality for the fourth-order
elliptic operator D4

s + ∆2, that is, after the addition of a variable s. Extending this
strategy to the type of boundary conditions treated here was not successful because
it is not guaranteed that having the Lopatinskĭı-Šapiro condition for ∆2, B1, and B2

implies that the Lopatinskĭı-Šapiro condition holds for D4
s + ∆2, B1, and B2. Yet,

the Lopatinskĭı-Šapiro condition is at the heart of the proof of our Carleman esti-
mate. Proving a spectral estimate as in the above statement for the general boundary
conditions considered here is an open question.

1.6.3. Quantification of the unique continuation property. — For a second-order oper-
ator like the Laplace operator ∆ and a boundary operator B of order k (yet of order
at most one in the normal direction) such that the Lopatinskĭı-Šapiro condition holds
one can derive the following inequality that locally quantifies the unique continuation
property up to the boundary; see [31, Lem. 9.2].

Proposition 1.5. — Let x0 ∈ ∂Ω and V be a neighborhood of x0 where the Lopatinskĭı-
Šapiro condition holds. There exist a neighborhood W of x0, ε ∈ (0, 1), δ ∈ (0, 1), and
C > 0, such that

(1.5) ‖u‖H1(W ) 6 C‖u‖
1−δ
H1(V )

(
‖∆u‖L2(V ) + |Bu|H1−k(V ∩∂Ω) + ‖u‖H1(Vε)

)δ
,

for u ∈ H2(V ), with Vε = {x ∈ V | dist(x, ∂Ω) > ε}.

This inequality can be obtained from a Carleman estimate as in Theorem 1.2 for
the Laplace operator, yet with the large parameter τ allowed to be chosen as large as
desired. This is exploited in an optimization procedure on the parameter τ in [τ0,+∞[

for some τ0. Note however that in the statement of Theorem 1.2 one has σ . τ . σ.
Thus, the optimization procedure cannot be carried out in [τ0,+∞[. While having a
result quantifying the unique continuation under Lopatinskĭı-Šapiro-type conditions
for the bi-Laplace operator similar to that of Proposition 1.5 can be expected, the
Carleman estimate we obtain in the present article cannot be used, at least directly,
for a proof as carried out in [31] or in former sources such as [36].

J.É.P. — M., 2023, tome 10



Stabilization of the damped plate equation under general boundary conditions 9

1.7. Outline. — This article is organized as follows. In Section 2 we recall some
basic aspects of pseudo-differential operators with a large parameters τ > 0 and some
positivity inequality of Gårding type in particular for quadratic forms in a half-space
or at the boundary. Associated with the large parameters are Sobolev like norms, also
in a half-space or at the boundary.

In Section 3, the Lopatinskĭı-Šapiro boundary condition is properly defined for an
elliptic operator, we give examples focusing on the Laplace and bi-Laplace operator
and we give a formulation in local normal geodesic coordinates that we shall mostly
use throughout the article. For the bi-Laplace operator we provide a series of examples
of boundary operators for which the Lopatinskĭı-Šapiro boundary condition holds and
moreover the resulting operator is symmetric. We also show that the algebraic condi-
tions that characterize the Lopatinskĭı-Šapiro condition is robust under perturbation.
This last aspect is key in the understanding of how the Lopatinskĭı-Šapiro condition
get preserved under conjugation and the introduction of a spectral parameter. This is
done in Section 4, where an analysis of the configuration of the roots of the conjugated
bi-Laplace operator is performed. In Section 4.5 the Lopatinskĭı-Šapiro condition for
the conjugated operator is exploited to obtain a symbol positivity for a quadratic
form to prepare for the derivation of a Carleman estimate.

In Section 5 we derive an estimation of the boundary traces. This is precisely where
the Lopatinskĭı-Šapiro condition is used. The result is first obtained microlocally and
we then apply a patching procedure.

To obtain the Carleman estimate for the bi-Laplace operator with spectral param-
eter ∆2−σ4 in Section 6 we first derive microlocal estimates for the operators ∆±σ2.
Imposing σ to be non-zero, in the sense that σ & τ , the previous estimates exhibits
losses in different microlocal regions. Thus concatenating the two estimates one derives
an estimate for ∆2 − σ4 where losses do not accumulates. A local Carleman estimate
with only a loss of a half-derivative is obtained. This is done in Section 7. With the
traces estimation obtained in Section 5 one obtains the local Carleman estimate of
Theorem 1.2.

For the application to stabilization we have in mind, in Section 8 we use a global
weight function and derive a global version of the Carleman estimate for ∆2 − σ4 on
the whole Ω. This leads to an observability inequality.

In Section 9 we recall aspects of strong and weak solutions to the damped plate
equation, in particular through a semigroup formulation. With the observability in-
equality obtained in Section 8 we derive in Section 10 a resolvent estimate for the
generator of the plate semigroup that in turn implies the stabilization result of The-
orem 1.1.

1.8. Some notation. — The canonical inner product in Cm is denoted by

(z, z′)Cm =

m−1∑
k=0

zkz′k, for z = (z0, . . . , zm−1) ∈ Cm, z′ = (z′0, . . . , z
′
m−1) ∈ Cm.

The associated norm will be denoted |z|2Cm =
∑m−1
k=0 |zk|2.
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10 J. Le Rousseau & E. Zongo

We shall use the notations a . b for a 6 Cb and a & b for a > Cb, with a constant
C > 0 that may change from one line to another. We also write a � b to denote
a . b . a.

For an open set U of Rd we set U+ = U ∩ Rd+ and

(1.6) C
∞
c (U+) = {u = v|Rd

+
| v ∈ C∞c (Rd) and supp(v) ⊂ U}.

We set S (Rd+) = {u|Rd
+
| u ∈ S (Rd)} with S (Rd) the usual Schwartz space in Rd:

u ∈ S (Rd) ⇐⇒ u ∈ C∞(Rd) and ∀α, β ∈ Nd sup
x∈Rd

|xαDβ
xu(x)| <∞.

We recall that the Poisson bracket of two smooth functions is given by

{f, g} =

d∑
j=1

(∂ξjf∂xj
g − ∂xj

f∂ξjg).

Acknowledgements. — The authors wish to thank two anonymous reviewers that pro-
vided useful corrections and remarks that improved the readability of the article.

2. Pseudo-differential calculus

In a half-space geometry motivated by the normal geodesic coordinates introduced
in Section 1.4 we shall use ξ = (ξ′, ξd) ∈ Rd−1×R and we shall consider the operators
Dd = −i∂d and D′ = −i∂′, with ∂′ = (∂x1 , . . . , ∂xd−1

).

2.1. Pseudo-differential operators with a large a parameter. — In this subsec-
tion we recall some notions on semi-classical pseudo-differential operators with large
parameter τ > 1. We denote by Smτ the space of smooth functions a(x, ξ, τ) defined
on Rd × Rd, with τ > 1 as a large parameter, that satisfies the following : for all
multi-indices α, β ∈ Nd and m ∈ R, there exists Cα,β > 0 such that

|∂αx ∂
β
ξ a(x, ξ, τ)| 6 Cα,βλm−|β|τ , where λ2

τ = τ2 + |ξ|2,

for all (x, ξ, τ) ∈ Rd × Rd × [1,∞). For a ∈ Smτ , one defines the associated pseudo-
differential operator of order m, denoted by A = Op(a),

Au(x) :=
1

(2π)d

∫
Rd

eix·ξa(x, ξ, τ)û(ξ)dξ, u ∈ S (Rd).

One says that a is the symbol of A. We denote Ψm
τ the set of pseudo-differential

operators of order m. We shall denote by Dm
τ the space of semi-classical differential

operators, i.e, the case when the symbol a(x, ξ, τ) is a polynomial of order m in (ξ, τ).

2.2. Tangential pseudo-differential operators. — Here, we consider pseudo-diffe-
rential operators that only act in the tangential direction x′ with xd behaving as a
parameter. We shall denote by SmT,τ , the set of smooth functions b(x, ξ′, τ) defined for
τ > 1 as a large parameter and satisfying the following: for all multi-indices α ∈ Nd,
β ∈ Nd−1 and m ∈ R, there exists Cα,β > 0 such that

|∂αx ∂
β
ξ′b(x, ξ

′, τ)| 6 Cα,βλm−|β|T,τ , where λ2
T,τ = τ2 + |ξ′|2,
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Stabilization of the damped plate equation under general boundary conditions 11

for all (x, ξ′, τ) ∈ Rd×Rd−1× [1,∞). For b ∈ SmT,τ , we define the associated tangential
pseudo-differential operator B = OpT(b) of order m by

Bu(x) :=
1

(2π)d−1

∫
Rd−1

eix
′·ξ′b(x, ξ′, τ)û(ξ′, xd)dξ

′, u ∈ S (Rd+).

We define Ψm
T,τ as the set of tangential pseudo-differential operators of order m, and

Dm
T,τ the set of tangential differential operators of order m. We also set

ΛmT,τ = OpT(λmT,τ ).

Let m ∈ N and m′ ∈ R. If we consider a of the form

a(x, ξ, τ) =

m∑
j=0

aj(x, ξ
′, τ)ξjd, aj ∈ Sm+m′−j

T,τ ,

we define Op(a) =
∑m
j=0 OpT(aj)D

j
xd
. We write a ∈ Sm,m′τ and Op(a) ∈ Ψm,m′

τ .

2.3. Function norms. — For functions norms we use the notation ‖.‖ for functions
defined in the interior of the domain and |.| for functions defined on the boundary.
In that spirit, we shall use the notation

‖u‖+ = ‖u‖L2(Rd
+), (u, ũ)+ = (u, ũ)L2(Rd

+),

for functions defined in Rd+ and

|w|∂ = ‖w‖L2(Rd−1), (w, w̃)∂ = (w, w̃)L2(Rd−1),

for functions defined on {xd = 0}, such as traces.
We introduce the following norms, for m ∈ N and m′ ∈ R,

‖u‖m,m′,τ �
m∑
j=0

‖Λm+m′−j
T,τ Dj

xd
u‖

+
,

‖u‖m,τ = ‖u‖m,0,τ �
m∑
j=0

‖Λm−jT,τ Dj
xd
u‖

+
,

for u ∈ S (Rd+). One has

‖u‖m,τ �
∑
|α|6m

τm−|α|‖Dαu‖+,

and in the case m′ ∈ N one has

‖u‖m,m′,τ �
∑
αd6m

|α|6m+m′

τm+m′−|α|‖Dαu‖+,

with α = (α′, αd) ∈ Nd.
The following argument will be used on numerous occasions: for m ∈ N, m′, ` ∈ R,

with ` > 0,
‖u‖m,m′,τ � ‖u‖m,m′+`,τ

if τ is chosen sufficiently large.
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12 J. Le Rousseau & E. Zongo

At the boundary {xd = 0} we define the following norms, for m ∈ N and m′ ∈ R,

| tr(u)|2m,m′,τ =

m∑
j=0

|Λm+m′−j
T,τ Dj

xd
u|xd=0+ |

2

∂
, u ∈ S (Rd+).

2.4. Differential quadratic forms. — A differential quadratic form acts on a func-
tion and involves differentiations of various degrees of the function. One can associate
to these forms a symbol and positivity inequality can be obtained in the form of a
Gårding inequality. Such forms appear in proofs of Carleman estimates in the seminal
work of Hörmander [19, §8.2].

Here differential quadratic forms are defined either in a half-space or at the bound-
ary. The results we present here without proof can be found in [8] and [32].

2.4.1. Differential quadratic forms in a half-space

Definition 2.1 (interior differential quadratic form). — Let u ∈ S (Rd+). We say that

(2.1) Q(u) =

N∑
s=1

(Asu,Bsu)+, As = Op(as), Bs = Op(bs),

is an interior differential quadratic form of type (m, r) with smooth coefficients if,
for each s = 1, . . . N , we have as(%) ∈ Sm,r′τ and bs(%) ∈ Sm,r′′τ , with r′ + r′′ = 2r,
% = (x, ξ, τ).

The principal symbol of the quadratic form Q is defined as the class of

(2.2) q(%) =

N∑
s=1

as(%)bs(%)

in S2m,2r
τ /S2m,2r−1

τ .

A result we shall use is the following microlocal Gårding inequality.

Proposition 2.2 (microlocal Gårding inequality). — Let K be a compact set of Rd+
and let U be an conic open set of Rd+×Rd−1×R+ contained in K ×Rd−1×R+. Let
also χ ∈ S0

T,τ be homogeneous of degree 0 and such that supp(χ) ⊂ U . Let Q be an
interior differential quadratic form of type (m, r) with homogeneous principal symbol
q ∈ S2m,2r

τ satisfying, for some C0 > 0 and τ0 > 0,

Re q(%) > C0λ
2m
τ λ2r

T,τ ,

for τ > τ0, % = (%′, ξd), %′ = (x, ξ′, τ) ∈ U , and ξd ∈ R.
For 0 < C1 < C0 and N ∈ N there exist τ∗, C > 0, and CN > 0 such that

ReQ(OpT(χ)u) > C1‖OpT(χ)u‖2m,r,τ − C| tr(OpT(χ)u)|2m−1,r+1/2,τ − CN‖u‖
2
m,−N,τ ,

for u ∈ S (Rd+) and τ > τ∗.

We refer to [8, Prop. 3.5] and [32, Th. 6.17] for a proof. We also state a local version
of the result that follows from Proposition 2.2.
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Stabilization of the damped plate equation under general boundary conditions 13

Proposition 2.3 (Gårding inequality). — Let U0 be a bounded open subset of Rd+
and let Q be an interior differential quadratic form of type (m, r) with homogeneous
principal symbol q ∈ S2m,2r

τ satisfying, for some C0 > 0 and τ0 > 0,

Re q(%) > C0λ
2m
τ λ2r

T,τ ,

for τ > τ0, % = (%′, ξd), %′ = (x, ξ′, τ) ∈ U0 × Rd−1 × R+, and ξd ∈ R.
For 0 < C1 < C0 there exist τ∗, C > 0 such that

ReQ(u) > C1‖u‖2m,r,τ − C| tr(u)|2m−1,r+1/2,τ ,

for u ∈ S (Rd+) and τ > τ∗.

2.4.2. Boundary differential quadratic forms

Definition 2.4. — Let u ∈ S (Rd+). We say that

Q(u) =

N∑
s=1

(Asu|xd=0+ , Bsu|xd=0+)∂ , As = as(x,D, τ), Bs = bs(x,D, τ),

is a boundary differential quadratic form of type (m−1, r) with C∞ coefficients, if for
each s = 1, . . . N , we have as(%) ∈ Sm−1,r′

τ (Rd+×Rd), bs(%) ∈ Sm−1,r′′

τ (Rd+×Rd) with
r′ + r′′ = 2r, % = (%′, ξd) with %′ = (x, ξ′, τ). The symbol of the boundary differential
quadratic form Q is defined by

q(%′, ξd, ξ̃d) =

N∑
s=1

as(%′, ξd)bs(%
′, ξ̃d).

For z = (z0, . . . , z`−1) ∈ C` and a(%) ∈ S`−1,t
τ , of the form a(%′, ξd) =

∑`−1
j=0 aj(%

′)ξjd
with aj(%′) ∈ S`−1+t−j

T,τ we set

(2.3) Σa(%′, z) =

`−1∑
j=0

aj(%
′)zj .

From the boundary differential quadratic form Q we introduce the following bilinear
symbol ΣQ : Cm × Cm → C

(2.4) ΣQ(%′, z, z′) =

N∑
s=1

Σas(%′, z)Σbs(%′, z′), z, z′ ∈ Cm.

We let W be an open conic set in Rd−1 × Rd−1 × R+.

Definition 2.5
Let Q be a boundary differential quadratic form of type (m− 1, r) with homoge-

neous principal symbol and associated with the bilinear symbol ΣQ(%′, z, z′). We say
that Q is positive definite in W if there exist C > 0 and R > 0 such that

Re ΣQ(%′′, xd = 0+, z, z) > C
m−1∑
j=0

λ
2(m−1−j+r)
T,τ |zj |2,

for %′′ = (x′, ξ′, τ) ∈ W , with |(ξ′, τ)| > R, and z = (z0, . . . , zm−1) ∈ Cm.
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We have the following Gårding inequality.

Proposition 2.6. — Let Q be a boundary differential quadratic form of type (m−1, r),
positive definite in W , an open conic set in Rd−1 × Rd−1 × R+, with bilinear symbol
ΣQ(%′, z, z′). Let χ ∈ S0

T,τ be homogeneous of degree 0, with supp(χ|xd=0+) ⊂ W and
let N ∈ N. Then there exist τ∗ > 1, C > 0, CN > 0 such that

ReQ(OpT(χ)u) > C| tr(OpT(χ)u)|2m−1,r,τ − CN | tr(u)|2m−1,−N,τ ,

for u ∈ S (Rd+) and τ > τ∗.

2.5. Symbols and operators with an additional large parameter. — In this article,
we shall use operators with a symbol that depends on an additional large parameter σ,
say a(x, ξ, τ, σ). They will satisfy estimate of the form

|∂αx ∂
β
ξ a(x, ξ, τ, σ)| 6 Cα,β(τ2 + |ξ|2 + σ2)(m−|β|)/2.

We observe that if τ & σ one has
λ2
τ 6 τ

2 + |ξ|2 + σ2 . λ2
τ .

Thus, as far as pseudo-differential calculus is concerned it is as if a ∈ Smτ and this
property will be exploited in what follows.

Similarly if a = a(x, ξ′, τ, σ) fulfills a tangential-type estimate of the form

|∂αx ∂
β
ξ′a(x, ξ′, τ, σ)| 6 Cα,β(τ2 + |ξ′|2 + σ2)(m−|β|)/2,

if one has τ & σ one will be able to apply techniques adapted to symbols in SmT,τ and
associated operators, like for instance the results on differential quadratic forms listed
in Section 2.4.

3. Lopatinskiı̆-Šapiro boundary conditions for elliptic operator

Let P be an elliptic differential operator of order 2k on Ω, (k > 1), with principal
symbol p(x, ω) for (x, ω) ∈ T ∗Ω. One defines the following polynomial in z,

p̃(x, ω′, z) = p(x, ω′ − znx),

for x ∈ ∂Ω, ω′ ∈ T ∗x∂Ω, z ∈ R and where nx denotes the outward unit pointing conor-
mal vector at x (see Section 1.4). Here x and ω′ are considered to act as parameters.
We denote by ρj(x, ω′), 1 6 j 6 2k the complex roots of z 7→ p̃(x, ω′, z). One sets

p̃+(x, ω′, z) =
∏

Im ρj(x,ω′)>0

(z − ρj(x, ω′)).

Given boundary operators B1, . . . , Bk in a neighborhood of ∂Ω, with principal symbols
bj(x, ω), j = 1, . . . , k, one also sets b̃j(x, ω′, z) = bj(x, ω

′ − znx).

Definition 3.1 (Lopatinskĭı-Šapiro boundary condition). — Let (x, ω′) ∈ T ∗∂Ω with
ω′ 6= 0. One says that the Lopatinskĭı-Šapiro condition holds for (P,B1, . . . , Bk) at
(x, ω′) if for any polynomial f(z) with complex coefficients, there exists c1, . . . , ck ∈ C
and a polynomial g(z) with complex coefficients such that, for all z ∈ C,

f(z) =
∑

16j6k

cj b̃j(x, ω
′, z) + g(z)p̃+(x, ω′, z).
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We say that the Lopatinskĭı-Šapiro condition holds for (P,B1, . . . , Bk) at x ∈ ∂Ω if it
holds at (x, ω′) for all ω′ ∈ T ∗x∂Ω with ω′ 6= 0.

The Lopatinskĭı-Šapiro boundary condition is of great importance in the analysis
of elliptic equations. In fact, the Lopatinskĭı-Šapiro condition is equivalent to having
the operator

L : Hm+2k(Ω) −→ Hm(Ω)⊕Hm+2k−`1−1/2(∂Ω)⊕ · · · ⊕Hm+2k−`k−1/2(∂Ω)

u 7−→ (Pu,B1u|∂Ω, . . . , Bku|∂Ω),

to be Fredholm, if m > 0 and if each operator Bj is of order `j . This is done in great
generality in [20, Chap. 20]. If P is the Laplace operator this is presented in great
details in [32, Chap. 3].

Roughly speaking the Lopatinskĭı-Šapiro condition states that modes exponen-
tially small in the interior of the domain Ω (as frequency increases) yet not small at
the boundary cannot be estimated without the use of a proper boundary operator.
No boundary operator is needed for mode that do not have this asymptotic behavior.
This is explained in [32, §2.1.1].

3.1. Some examples. — The Lopatinskĭı-Šapiro condition holds in the following cases
– P = −∆ on Ω, with the Dirichlet boundary condition, Bu|∂Ω = u|∂Ω.
– P = ∆2 on Ω, along with the so-called clamped boundary conditions, i.e,

B1u|∂Ω = u|∂Ω and B2u|∂Ω = ∂νu|∂Ω, where ν is the normal outward pointing unit
vector to ∂Ω; see Section 1.4.

– P = ∆2 on Ω, along with the so-called hinged boundary conditions, i.e, B1u|∂Ω =

u|∂Ω and B2u|∂Ω = ∆u|∂Ω.

3.2. Case of the bi-Laplace operator. — With P = ∆2 on Ω, along with the general
boundary operators B1 and B2 of orders k1 and k2 respectively, we give a matrix
criterion of the Lopatinskĭı-Šapiro condition. The general boundary operators B1

and B2 are then given by

B`(x,D) =
∑

06j6min(3,k`)

Bk`−j` (x,D′)(i∂ν)j , ` = 1, 2,

with Bk`−j` (x,D′) differential operators acting in the tangential variables. We denote
by b1(x, ω) and b2(x, ω) the principal symbols of B1 and B2 respectively. For (x, ω′) ∈
T ∗∂Ω, we set

b̃`(x, ω
′, z) =

∑
06j6min(3,k`)

bk`−j` (x, ω′)zj , ` = 1, 2.

We recall that the principal symbol of P is given by p(x, ω) = |ω|4g. One thus has

p̃(x, ω′, z) = p(x, ω′ − znx) =
(
z2 + |ω′|2g

)2
.

Therefore p̃(x, ω′, z) = (z− i|ω′|g)2(z+ i|ω′|g)2. According to the above definition we
set p̃+(x, ω′, z) = (z− i|ω′|g)2. Thus, the Lopatinskĭı-Šapiro condition holds at (x, ω′)

with ω′ 6= 0 if and only if for any function f(z) the complex number i|ω′|g is a root
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of the polynomial z 7→ f(z)− c1b̃1(x, ω′, z)− c2b̃2(x, ω′, z) and its derivative for some
c1, c2 ∈ C. This leads to the following determinant condition.

Lemma 3.2. — Let P = ∆2 on Ω, B1 and B2 be two boundary operators. If x ∈ ∂Ω,
ω′ ∈ T ∗x∂Ω, with ω′ 6= 0, the Lopatinskĭı-Šapiro condition holds at (x, ω′) if and only if

(3.1) det

(
b̃1 b̃2

∂z b̃1 ∂z b̃2

)
(x, ω′, z = i|ω′|g) 6= 0.

Remark 3.3. — With the determinant condition and homogeneity, we note that if
the Lopatinskĭı-Šapiro condition holds for (P,B1, B2) at (x, ω′) it also holds in a
conic neighborhood of (x, ω′) by continuity. If it holds at x ∈ Ω, it also holds in a
neighborhood of x.

3.3. Formulation in normal geodesic coordinates. — Near a boundary point x ∈
∂Ω, we shall use normal geodesic coordinates. These coordinates are recalled in Sec-
tion 1.4. Then the principal symbols of ∆ and ∆2 are given by ξ2

d + r(x, ξ′) and
(ξ2
d + r(x, ξ′))2 respectively, where r(x, ξ′) is the principal symbol of a tangential

differential elliptic operator R(x,D′) of order 2, with

r(x, ξ′) =
∑

16i,j6d−1

gij(x)ξ′iξ
′
j and r(x, ξ′) > C|ξ′|2.

Here gij is the inverse of the metric gij . Below, we shall often write |ξ′|2x = r(x, ξ′)

and we shall also write |ξ|2x = ξ2
d + r(x, ξ′), for ξ = (ξ′, ξd).

If b1(x, ξ) and b2(x, ξ) are the principal symbols of the boundary operators B1

and B2 in the normal geodesic coordinates then the Lopatinskĭı-Šapiro condition for
(P,B1, B2) with P = ∆2 at (x, ξ′) reads

det

(
b1 b2

∂ξdb1 ∂ξdb2

)
(x, ξ′, ξd = i|ξ′|x) 6= 0,

if |ξ′|x 6= 0 according to Lemma 3.2. If the Lopatinskĭı-Šapiro condition holds at
some x0, because of homogeneity, there exists C0 > 0 such that

(3.2)

∣∣∣∣∣det

(
b1 b2

∂ξdb1 ∂ξdb2

)∣∣∣∣∣ (x0, ξ′, i|ξ′|x) > C0|ξ′|k1+k2−1
x , ξ′ ∈ Rd−1.

3.4. Stability of the Lopatinskiı̆-Šapiro condition. — To prepare for the study
of how the Lopatinskĭı-Šapiro condition behaves under conjugation with Carleman
exponential weight and the addition of a spectral parameter, we introduce some per-
turbations in the formulation of the Lopatinskĭı-Šapiro condition for (P,B1, B2) as
written in (3.2).

Lemma 3.4. — Let V 0 be a compact set of ∂Ω such that the Lopatinskĭı-Šapiro condi-
tion holds for (P,B1, B2) at every point x of V 0. There exist C1 > 0 and ε > 0 such
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that

(3.3)

∣∣∣∣∣det

(
b1 b2

∂ξdb1 ∂ξdb2

)∣∣∣∣∣ (x, ξ′ + ζ ′, ξd = i|ξ′|x + δ) > C1|ξ′|k1+k2−1
x ,

for x ∈ V 0, ξ′ ∈ Rd−1, ζ ′ ∈ Cd−1, and δ ∈ C, if |ζ ′|+ |δ| 6 ε|ξ′|x. Moreover one has

(3.4)

∣∣∣∣∣det

(
b1(x, ξ′ + ζ ′, ξd = i|ξ′|x + δ) b2(x, ξ′ + ζ ′, ξd = i|ξ′|x + δ)

b1(x, ξ′ + ζ ′, ξd = i|ξ′|x + δ̃) b2(x, ξ′ + ζ ′, ξd = i|ξ′|x + δ̃)

)∣∣∣∣∣
> C1|δ − δ̃| |ξ′|k1+k2−1

x ,

for x ∈ V 0, ξ′ ∈ Rd−1, ζ ′ ∈ Cd−1, and δ, δ̃ ∈ C, if |ζ ′|+ |δ|+ |δ̃| 6 ε|ξ′|x.

Proof. — From (3.2), since V 0 is compact having the Lopatinskĭı-Šapiro condition
holding at every point x of V 0 means there exists C0 > 0 such that

(3.5)

∣∣∣∣∣det

(
b1 b2

∂ξdb1 ∂ξdb2

)∣∣∣∣∣ (x, ξ′, i|ξ′|x) > C0|ξ′|k1+k2−1
x , x ∈ V 0, ξ′ ∈ Rd−1.

The first part is a consequence of the mean value theorem, homogeneity and (3.5)
with say C1 = C0/2.

For the second part it is sufficient to assume that δ 6= δ̃ since the result is obvious
otherwise. For j = 1, 2 one writes the Taylor formula

bj(x, ξ
′ + ζ ′, i|ξ′|x + δ̃)

= bj(x, ξ
′ + ζ ′, i|ξ′|x + δ) + (δ̃ − δ)∂ξdbj(x, ξ′ + ζ ′, i|ξ′|x + δ)

+ (δ̃ − δ)2

∫ 1

0

(1− s)∂2
ξd
bj(x, ξ

′ + ζ ′, i|ξ′|x + δs) ds,

with δs = (1− s)δ + sδ̃, yielding

1

δ̃ − δ
det

(
b1(x, ξ′ + ζ ′, i|ξ′|x + δ) b2(x, ξ′ + ζ ′, i|ξ′|x + δ)

b1(x, ξ′ + ζ ′, i|ξ′|x + δ̃) b2(x, ξ′ + ζ ′, i|ξ′|x + δ̃)

)

= det

(
b1 b2

∂ξdb1 ∂ξdb2

)
(x, ξ′ + ζ ′, i|ξ′|x + δ)

+ (δ̃ − δ)
∫ 1

0

(1− s)f(x, ξ′, ζ ′, δ, s) ds,

with

f(x, ξ′, ζ ′, δ, s) = det

(
b1(x, ξ′ + ζ ′, i|ξ′|x + δ) b2(x, ξ′ + ζ ′, i|ξ′|x + δ)

∂2
ξd
b1(x, ξ′ + ζ ′, i|ξ′|x + δs) ∂

2
ξd
b2(x, ξ′ + ζ ′, i|ξ′|x + δs)

)
.

With homogeneity, if |ζ ′|+ |δ|+ |δ̃| . |ξ′|x one finds∣∣∣∣∣det

(
b1(x, ξ′ + ζ ′, i|ξ′|x + δ) b2(x, ξ′ + ζ ′, i|ξ′|x + δ)

∂2
ξd
b1(x, ξ′ + ζ ′, i|ξ′|x + δs) ∂

2
ξd
b2(x, ξ′ + ζ ′, i|ξ′|x + δs)

)∣∣∣∣∣ . |ξ′|k1+k2−2
x ,

J.É.P. — M., 2023, tome 10



18 J. Le Rousseau & E. Zongo

Thus with |δ − δ̃| 6 ε|ξ′|x, for ε > 0 chosen sufficiently small, using the first part of
the lemma one obtains the second result. �

3.5. Examples of boundary operators yielding symmetry. — We give some examples
of pairs of boundary operators B1, B2 that

(1) fulfill the Lopatinskĭı-Šapiro condition,
(2) yield symmetry for the bi-Laplace operator P = ∆2, that is,

(Pu, v)L2(Ω) = (u, Pv)L2(Ω)

for u, v ∈ H4(Ω) such that Bju|∂Ω = Bjv|∂Ω = 0, j = 1, 2.
We first recall that following Green formula

(3.6) (∆u, v)L2(Ω) = (u,∆v)L2(Ω) + (∂nu|∂Ω, v|∂Ω)L2(∂Ω) − (u|∂Ω, ∂nv|∂Ω)L2(∂Ω),

which applied twice gives (Pu, v)L2(Ω) = (u, Pv)L2(Ω) + T (u, v) with

(3.7) T (u, v) = (∂n∆u|∂Ω, v|∂Ω)L2(∂Ω) − (∆u|∂Ω, ∂nv|∂Ω)L2(∂Ω)

+ (∂nu|∂Ω,∆v|∂Ω)L2(∂Ω) − (u|∂Ω, ∂n∆v|∂Ω)L2(∂Ω).

Using normal geodesic coordinates in a neighborhood of the whole boundary ∂Ω allows
one to write ∆ = ∂2

n+∆′ where ∆′ is the resulting Laplace operator on the boundary,
that is, associated with the trace of the metric on ∂Ω. Since ∆′ is selfadjoint on ∂Ω

this allows one to write formula (3.7) in the alternative forms

(3.8) T (u, v) = (∂3
nu|∂Ω, v|∂Ω)L2(∂Ω) − ((∂2

n + 2∆′)u|∂Ω, ∂nv|∂Ω)L2(∂Ω)

+ (∂nu|∂Ω, (∂
2
n + 2∆′)v|∂Ω)L2(∂Ω) − (u|∂Ω, ∂

3
nv|∂Ω)L2(∂Ω),

or

(3.9) T (u, v) = ((∂3
n + 2∆′∂n)u|∂Ω, v|∂Ω)L2(∂Ω) − (∂2

nu|∂Ω, ∂nv|∂Ω)L2(∂Ω)

+ (∂nu|∂Ω, ∂
2
nv|∂Ω)L2(∂Ω) − (u|∂Ω, (∂

3
n + 2∆′∂n)v|∂Ω)L2(∂Ω).

We start our list of examples with the most basics ones.

Example 3.5 (Hinged boundary conditions). — This type of conditions refers to
B1u|∂Ω = u|∂Ω and B2u|∂Ω = ∆u|∂Ω. With (3.7) one finds T (u, v) = 0 in the case of
homogeneous conditions, hence symmetry.

Note that the hinged boundary conditions are equivalent to having B1u|∂Ω = u|∂Ω

and B2u|∂Ω = ∂2
nu|∂Ω. With the notation of Section 3 this gives b̃1(x, ω′, z) = 1 and

b̃2(x, ω′, z) = (−iz)2 = −z2. It follows that

det

(
b̃1 b̃2

∂z b̃1 ∂z b̃2

)
(x, ω′, z = i|ω′|g) = det

(
1 |ω′|2g
0 −2i|ω′|g

)
= −2i|ω′|g 6= 0

if ω′ 6= 0 and thus the Lopatinskĭı-Šapiro condition holds by Lemma 3.2.
With the hinged boundary conditions observe that the bi-Laplace operator is pre-

cisely the square of the Dirichlet-Laplace operator. This makes its analysis quite
simple and this explains why this type of boundary condition is often chosen in the
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mathematical literature. Observe that symmetry is then obvious without invoking the
above formulas.

Example 3.6 (Clamped boundary conditions). — This type of conditions refers to
B1u|∂Ω = u|∂Ω and B2u|∂Ω = ∂nu|∂Ω. With (3.8) one finds T (u, v) = 0 in the case of
homogeneous conditions, hence symmetry. With the notation of Section 3 this gives
b̃1(x, ω′, z) = 1 and b̃2(x, ω′, z) = −iz. It follows that

det

(
b̃1 b̃2

∂z b̃1 ∂z b̃2

)
(x, ω′, z = i|ω′|g) = det

(
1 |ω′|g
0 −i

)
= −i 6= 0.

Thus the Lopatinskĭı-Šapiro condition holds by Lemma 3.2.
Note that with the clamped boundary conditions the bi-Laplace operator cannot be

seen as the square of the Laplace operator with some well chosen boundary condition
as opposed to the case of the hinged boundary conditions displayed above.

Examples 3.7 (More examples)
(1) Take B1u|∂Ω = ∂nu|∂Ω and B2u|∂Ω = ∂n∆u|∂Ω. With these boundary condi-

tions the bi-Laplace operator is precisely the square of the Neumann-Laplace operator.
The symmetry property is immediate and so is the Lopatinskĭı-Šapiro condition.

(2) Take B1u|∂Ω = (∂2
n + 2∆′)u|∂Ω and B2u|∂Ω = ∂3

nu|∂Ω. With (3.8) one finds
T (u, v) = 0 in the case of homogeneous conditions, hence symmetry.

We have b̃1(x, ω′, z) = −z2 − 2|ω′|2g and b̃2(x, ω′, z) = iz3 and

det

(
b̃1 b̃2

∂z b̃1 ∂z b̃2

)
(x, ω′, z = i|ω′|g) = det

(
−|ω′|2g |ω′|3g
−2i|ω′|g −3i|ω′|2g

)
= 5i|ω′|4g 6= 0

if ω′ 6= 0 and thus the Lopatinskĭı-Šapiro condition holds by Lemma 3.2.
(3) Take B1u|∂Ω = ∂nu|∂Ω and B2u|∂Ω = (∂3

n + A′)u|∂Ω, with A′ a symmetric
differential operator of order less than or equal to three on ∂Ω, with homogeneous
principal symbol a′(x, ω′) such that a′(x, ω′) 6= 2|ω′|3g for ω′ 6= 0, that is, a′(x, ω′) 6= 2

for |ω′|g = 1.
With (3.8) one finds

T (u, v) = (−A′u|∂Ω, v|∂Ω)L2(∂Ω) + (u|∂Ω, A
′v|∂Ω)L2(∂Ω) = 0,

in the case of homogeneous conditions, hence symmetry for P .
We have b̃1(x, ω′, z) = −iz and b̃2(x, ω′, z) = iz3 + a′(x, ω′) with a′ the principal

symbol of A′.

det

(
b̃1 b̃2

∂z b̃1 ∂z b̃2

)
(x, ω′, z = i|ω′|g) = det

(
|ω′|g |ω′|3g + a′(x, ω′)

−i −3i|ω′|2g

)
= i
(
a′(x, ω′)− 2|ω′|3g

)
6= 0,

if ω′ 6= 0 since a′(x, ω′) 6= 2|ω′|3g by assumption implying that the Lopatinskĭı-Šapiro
condition holds by Lemma 3.2.
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(4) Take B1u|∂Ω = u|∂Ω and B2u|∂Ω = (∂2
n + A′∂n)u|∂Ω with A′ a symmetric

differential operator of order less than or equal to one on ∂Ω, with homogeneous
principal symbol a′(x, ω′) such that a′(x, ω′) 6= −2|ω′|g for ω′ 6= 0, that is, a′(x, ω′) 6=
−2 for |ω′|g = 1. This is a refinement of the case of hinged boundary conditions given
in Example 3.5 above.

With (3.8) one finds

T (u, v) = (A′∂nu|∂Ω, ∂nv|∂Ω)L2(∂Ω) + (∂nu|∂Ω,−A′∂nv|∂Ω)L2(∂Ω) = 0,

in the case of homogeneous conditions, hence symmetry for P .
We have b̃1(x, ω′, z) = 1 and b̃2(x, ω′, z) = −z2 − iza′(x, ω′) with a′ the principal

symbol of A′.

det

(
b̃1 b̃2

∂z b̃1 ∂z b̃2

)
(x, ω′, z = i|ω′|g) = det

(
1 |ω′|2g + |ω′|ga′(x, ω′)
0 −2i|ω′|g − ia′(x, ω′)

)
= −i

(
a′(x, ω′) + 2|ω′|g

)
6= 0,

if ω′ 6= 0 since a′(x, ω′) 6= −2|ω′|g by assumption implying that the Lopatinskĭı-Šapiro
condition holds by Lemma 3.2.

(5) Take B1u|∂Ω = (∂2
n + A′∂n)u|∂Ω and B2u|∂Ω = (∂3

n + 2∂n∆′)u|∂Ω, with A′

a symmetric differential operator of order less than or equal to one on ∂Ω, with
homogeneous principal symbol a′(x, ω′) such that 2a′(x, ω′) 6= −3|ω′|g for ω′ 6= 0,
that is, a′(x, ω′) 6= −3/2 for |ω′|g = 1. With (3.9) one finds

T (u, v) = (A′∂nu|∂Ω, ∂nv|∂Ω)L2(∂Ω) + (∂nu|∂Ω,−A′∂nv|∂Ω)L2(∂Ω) = 0,

in the case of homogeneous conditions, hence symmetry for P .
We have b̃1(x, ω′, z) = −z2 − iza′(x, ω′) and b̃2(x, ω′, z) = iz3 + 2iz|ω′|2g and

det

(
b̃1 b̃2

∂z b̃1 ∂z b̃2

)
(x, ω′, z = i|ω′|g) = det

(
|ω′|2g + |ω′|ga′(x, ω′) −|ω′|3g
−2i|ω′|g − ia′(x, ω′) −i|ω′|2g

)
= −i|ω′|3g

(
2a′(x, ω′) + 3|ω′|g

)
6= 0,

if ω′ 6= 0 since 2a′(x, ω′) + 3|ω′|g 6= 0 by assumption implying that the Lopatinskĭı-
Šapiro condition holds by Lemma 3.2.

4. Lopatinskiı̆-Šapiro condition for the conjugated bi-Laplacian

Set Pσ = ∆2−σ4 with σ ∈ [0,+∞) and denote by Pσ,ϕ = eτϕPσe
−τϕ the conjugate

operator of Pσ with τ > 0 a large parameter and ϕ ∈ C∞(Rd,R). We shall refer to ϕ
as the weight function. The principal symbol of Pσ in normal geodesic coordinates is
given by

pσ(x, ξ) = (ξ2
d + r(x, ξ′))2 − σ4.
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Observe that eτϕDje
−τϕ = Dj + iτ∂jϕ ∈ D1

τ . So, after conjugation, the principal
symbol becomes

pσ,ϕ(x, ξ, τ) = pσ(x, ξ + iτdxϕ)

=
(
(ξd + iτ∂dϕ)2 + r(x, ξ′ + iτdx′ϕ)

)2 − σ4

=
(
(ξd + iτ∂dϕ)2 + r(x, ξ′ + iτdx′ϕ)− σ2

)
×
(
(ξd + iτ∂dϕ)2 + r(x, ξ′ + iτdx′ϕ) + σ2

)
.

We write pσ,ϕ(x, ξ, τ) = q1
σ,ϕ(x, ξ, τ)q2

σ,ϕ(x, ξ, τ) with

qjσ,ϕ(x, ξ, τ) = (ξd + iτ∂dϕ)2 + r(x, ξ′ + iτdx′ϕ) + (−1)jσ2, j = 1, 2.

We consider two boundary operators B1 and B2 of order k1 and k2 with bj(x, ξ)
for principal symbol, j = 1, 2. The associated conjugated operators

Bj,ϕ = eτϕBje
−τϕ,

have respective principal symbols

bj,ϕ(x, ξ, τ) = bj(x, ξ + iτdϕ), j = 1, 2.

We assume that the Lopatinskĭı-Šapiro condition holds for (P0, B1, B2) as in Def-
inition 3.1 for any point (x, ω′) ∈ T ∗x∂Ω. We wish to know if the Lopatinskĭı-Šapiro
condition can hold for (Pσ, B1, B2, ϕ), as given by the following definition (in the
chosen local normal geodesic coordinates for simplicity).

Definition 4.1. — Let (x, ξ′, τ, σ) ∈ ∂Ω×Rd−1×[0,+∞)×[0,+∞) with (ξ′, τ, σ) 6= 0.
One says that the Lopatinskĭı-Šapiro condition holds for (Pσ, B1, B2, ϕ) at (x, ξ′, τ, σ)

if for any polynomial f(z) with complex coefficients there exist c1, c2 ∈ C and a
polynomial `(z) with complex coefficients such that, for all z ∈ C

f(z) = c1b1,ϕ(x, ξ′, ξd = z, τ) + c2b2,ϕ(x, ξ′, ξd = z, τ) + `(z)p+
σ,ϕ(x, ξ′, ξd = z, τ),

with
p+
σ,ϕ(x, ξ′, ξd = z, τ) =

∏
Im ρj(ξ′,τ,σ)>0

(z − ρj(ξ′, τ, σ)),

where ρj(x, ξ
′, τ, σ), j = 1, . . . , 4, are the complex roots of the polynomial z 7→

pσ,ϕ(x, ξ′, ξd = z, τ).

In what follows, we shall assume that ∂dϕ > 0. Locally, one has ∂dϕ > C1 > 0, for
some C1 > 0.

4.1. Lopatinskiı̆-Šapiro condition and root positions. — With the assumption that
∂dϕ > 0, for any point (x, ξ′, τ, σ) at most two roots lie in the upper complex closed
half-plane (this is explained below). We then enumerate the following cases.

– Case 1 : No root lying in the upper complex closed half-plane, then

p+
σ,ϕ(x, ξ′, ξd, τ) = 1

and the Lopatinskĭı-Šapiro condition of Definition 4.1 holds trivially at (x, ξ′, τ, σ).
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– Case 2 : One root lying in the upper complex closed half-plane. Let us denote
by ρ+ that root, then p+

σ,ϕ(x, ξ′, ξd, τ) = ξd − ρ+. With Definition 4.1, for any choice
of f , the polynomial ξd 7→ f(ξd) − c1b1,ϕ(x, ξ′, ξd, τ) − c2b2,ϕ(x, ξ′, ξd, τ) admits ρ+

as a root for c1, c2 ∈ C well chosen. Hence, the Lopatinskĭı-Šapiro condition holds at
(x, ξ′, τ, σ) if and only if

b1,ϕ(x, ξ′, ξd = ρ+, τ) 6= 0 or b2,ϕ(x, ξ′, ξd = ρ+, τ) 6= 0.

Note that it then suffices to have

det

(
b1,ϕ b2,ϕ

∂ξdb1,ϕ ∂ξdb2,ϕ

)
(x, ξ′, ξd = ρ+, τ) 6= 0.

– Case 3 : Two different roots lying in the upper complex closed half-plane. Let
denote by ρ+

1 and ρ+
2 these roots. One has p+

σ,ϕ(x, ξ′, ξd, τ) = (ξd− ρ+
1 )(ξd− ρ+

2 ). The
Lopatinskĭı-Šapiro condition holds at (x, ξ′, τ, σ) if and only if the complex numbers ρ+

1

and ρ+
2 are the roots of the polynomial

ξd 7−→ f(ξd)− c1b1,ϕ(x, ξ′, ξd, τ)− c2b2,ϕ(x, ξ′, ξd, τ),

for c1, c2 well chosen. This reads{
f(ρ+

1 ) = c1b1,ϕ(x, ξ′, ξd = ρ+
1 , τ) + c2b2,ϕ(x, ξ′, ξd = ρ+

1 , τ),

f(ρ+
2 ) = c1b1,ϕ(x, ξ′, ξd = ρ+

2 , τ) + c2b2,ϕ(x, ξ′, ξd = ρ+
2 , τ).

Being able to solve this system in c1 and c2 for any f is equivalent to having

(4.1) det

(
b1,ϕ(x, ξ′, ξd = ρ+

1 , τ) b2,ϕ(x, ξ′, ξd = ρ+
1 , τ)

b1,ϕ(x, ξ′, ξd = ρ+
2 , τ) b2,ϕ(x, ξ′, ξd = ρ+

2 , τ)

)
6= 0.

– Case 4 : A double root lying in the upper complex closed half-plane. Denote by ρ+

this root; one has p+
σ,ϕ(x, ξ′, ξd, τ) = (ξd−ρ+)2. The Lopatinskĭı-Šapiro condition holds

at at (x, ξ′, τ, σ) if and only if for any choice of f , the complex number ρ+ is a double
root of the polynomial ξd 7→ f(ξd) − c1b1,ϕ(x, ξ′, ξ, τ) − c2b2,ϕ(x, ξ′, ξ, τ) for some
c1, c2 ∈ C. Thus having the Lopatinskĭı-Šapiro condition is equivalent of having the
following determinant condition,

(4.2) det

(
b1,ϕ(x, ξ′, ξd = ρ+, τ) b2,ϕ(x, ξ′, ξd = ρ+, τ)

∂ξdb1,ϕ(x, ξ′, ξd = ρ+, τ) ∂ξdb2,ϕ(x, ξ′, ξd = ρ+, τ)

)
6= 0.

Observe that Case 4 can only occur if σ = 0 (then one has (ξ′, τ) 6= (0, 0)). If σ > 0

then only Cases 1, 2, and 3 are possible. This is precisely stated in Lemma 4.7. This
will be an important point in what follows.

We now state the following important proposition.

Proposition 4.2. — Let x0 ∈ ∂Ω. Assume that the Lopatinskĭı-Šapiro condition holds
for (P0, B1, B2) at x0 and thus in a compact neighborhood V 0 of x0 (by Remark 3.3).
Assume also that ∂dϕ > C1 > 0 in V 0. There exist µ0 > 0 and µ1 > 0 such that if
(x, ξ′, τ, σ) ∈ V 0 × Rd−1 × [0,+∞)× [0,+∞) with (ξ′, τ, σ) 6= (0, 0, 0),

|dx′ϕ(x)| 6 µ0∂dϕ(x) and σ 6 µ1τ∂dϕ(x),

then the Lopatinskĭı-Šapiro condition holds for (Pσ, B1, B2, ϕ) at (x, ξ′, τ, σ).
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The proof of Proposition 4.2 is given below. We first need to analyze the configu-
ration of the roots of the symbol pσ,ϕ starting with each factor qjσ,ϕ, j = 1, 2.

4.2. Root configuration for each factor. — We consider either factors ξd 7→
qjσ,ϕ(x, ξ′, ξd, τ). We recall that

qjσ,ϕ(x, ξ, τ) = (ξd + iτ∂dϕ)2 + r(x, ξ′ + iτdx′ϕ) + (−1)jσ2, j = 1, 2.

First, we consider the case r(x, ξ′+ iτdx′ϕ) + (−1)jσ2 ∈ R−, that is, equal to −β2

with β ∈ R . Then, the roots of ξd 7→ qjσ,ϕ(x, ξ′, ξd, τ) are given by

−iτ∂dϕ+ β and − iτ∂dϕ− β.

Both lie in the lower complex open half-plane.
Second, we consider the case r(x, ξ′ + iτdx′ϕ) + (−1)jσ2 ∈ CrR−. There exists a

unique αj ∈ C such that Reαj > 0 and

α2
j (x, ξ

′, τ, σ) = r(x, ξ′ + iτdx′ϕ(x)) + (−1)jσ2

= r(x, ξ′)− τ2r(x, dx′ϕ(x)) + (−1)jσ2 + i2τ r̃(x, ξ′, dx′ϕ(x))2,
(4.3)

where r̃(x, ., .) denotes the symmetric bilinear form associated with the quadratic form
r(x, .). Then, the two roots of ξd 7→ qjσ,ϕ(x, ξ′, ξd, τ) are given by

πj,1(x, ξ′, τ, σ) = −iτ∂dϕ(x)− iαj(x, ξ′, τ, σ)(4.4)

and

πj,2(x, ξ′, τ, σ) = −iτ∂dϕ(x) + iαj(x, ξ
′, τ, σ).(4.5)

One has Imπj,1 < 0 since ∂dϕ > C1 > 0. With Imπj,2 = −τ∂dϕ+Reαj one sees that
the sign of Imπj,2 may change. The following lemma gives an algebraic characteriza-
tion of the sign of Imπj,2.

Lemma 4.3. — Assume that ∂dϕ > 0. Having Imπj,2(x, ξ′, τ, σ) < 0 is equivalent to
having

(∂dϕ)2r(x, ξ′) + r̃(x, ξ′, dx′ϕ)2 < τ2(∂dϕ)2|dxϕ|2x + (−1)j+1σ2(∂dϕ)2.

Proof. — From (4.4)–(4.5) one has Imπj,2 < 0 if and only if Reαj < τ∂dϕ = |τ∂dϕ|,
that is, if and only if

4(τ∂dϕ)2 Reα2
j − 4(τ∂dϕ)4 + (Imα2

j )
2 < 0,

by Lemma 4.4 below. With (4.3) this gives the result. �

Lemma 4.4. — Let z ∈ C such that m = z2. For x0 ∈ R such that x0 6= 0, we have

|Re z| S |x0| ⇐⇒ 4x2
0 Rem− 4x4

0 + (Imm)2 S 0.

The notation S is to be understood as <, =, or > in each term of the equivalence
respectively.
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Proof. — Let z = x+ iy ∈ C. On the one hand we have z2 = x2− y2 + 2ixy = m and
Rem = x2 − y2, Imm = 2xy. On the other hand we have

4x2
0 Rem− 4x4

0 + (Imm)2 = 4x2
0(x2 − y2)− 4x4

0 + 4x2y2

= 4(x2
0 + y2)(x2 − x2

0),

thus with the same sign as (x2−x2
0). Since |Re z| S |x0| ⇔ x2−x2

0 S 0, the conclusion
follows. �

With the following two lemmas we now connect the sign of Imπj,2 with the low
frequency regime |ξ′| . τ .

Lemma 4.5. — Assume there exists K0 > 0 such that |dx′ϕ| 6 K0|∂dϕ|. Then, there
exists CK0 > 0 such that Imπj,2(x, ξ′, τ, σ) < 0 if CK0 |ξ′|+ σ 6 τ∂dϕ, j = 0, 1.

Proof. — With Lemma 4.3 having Imπj,2 < 0 reads

(4.6) (∂dϕ)2r(x, ξ′) + r̃(x, ξ′, dx′ϕ)2 < τ2(∂dϕ)2|dxϕ|2x + (−1)j+1σ2(∂dϕ)2.

On the one hand, since |dx′ϕ| 6 K0|∂dϕ| one has

(∂dϕ)2r(x, ξ′) + r̃(x, ξ′, dx′ϕ)2 6 K(∂dϕ)2|ξ′|2,

for some K > 0 that depends on K0, using that |ξ′|x h |ξ′|. On the other hand one
has

τ2(∂dϕ)2|dxϕ|2x + (−1)j+1σ2(∂dϕ)2 > τ2(∂dϕ)4 − σ2(∂dϕ)2.

Thus (4.6) holds if one has

τ2(∂dϕ)4 − σ2(∂dϕ)2 > K(∂dϕ)2|ξ′|2,

that is, τ2(∂dϕ)2 > K|ξ′|2 + σ2. �

Lemma 4.6. — Let W be a bounded open set of Rd and x0 ∈W . Assume that ∂dϕ > 0

in W and let κ0 > 0. Then, there exists C > 0 such that

|ξ′| 6 Cτ if Imπj,2(x, ξ′, τ, σ) < 0 and κ0σ 6 τ, x ∈W.

Proof. — With Lemma 4.3 having Imπj,2 < 0 reads

(∂dϕ)2r(x, ξ′) + r̃(x, ξ′, dx′ϕ)2 < τ2(∂dϕ)2|dxϕ|2x + (−1)j+1σ2(∂dϕ)2.

In particular, this implies

r(x, ξ′) < τ2|dxϕ|2x + (−1)j+1σ2 6 (sup
W
|dxϕ|2x + 1/κ2

0)τ2.

The result follows since |ξ′| � r(x, ξ′). �

As mentioned in Section 4.1, we have the following result.

Lemma 4.7. — Assume that σ > 0. Then, π1,2(x, ξ′, τ, σ) 6= π2,2(x, ξ′, τ, σ). Moreover,
the roots π1,2(x, ξ′, τ, σ) and π2,2(x, ξ′, τ, σ) cannot be both real.
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Proof. — With the forms of the roots given in (4.4)–(4.5) if π1,2 = π2,2 then α1 = α2,
thus α2

1 = α2
2 implying σ2 = 0.

Assume now that π1,2 ∈ R and π2,2 ∈ R, that is, Imπ1,2 = Imπ2,2 = 0. This reads
Reαj = τ∂dϕ, giving |Reαj | = |∂dϕ|, for j = 1 and 2. With Lemma 4.4 one has

4(τ∂dϕ)2 Reα2
j − 4(τ∂dϕ)4 + (Imα2

j )
2 = 0, j = 1, 2.

Observing that Imα2
1 = Imα2

2 one thus obtains Reα2
1 = Reα2

2, and the conclusion
follows as for the first part. �

4.3. Proof of Proposition 4.2. — Here, according to the statement of Proposition
4.2 we consider

|dx′ϕ| 6 µ0∂dϕ and σ 6 µ1τ∂dϕ.

First, we choose 0 < µ0 6 1 and 0 < µ1 6 1/2. Below both may be chosen much
smaller. According to Lemma 4.5, with K0 = 1 therein, for some C2 = 2CK0 > 0

if one has C2|ξ′| 6 τ∂dϕ then all four roots of ξd 7→ pσ,ϕ(x, ξ′, ξd, τ) lie in the lower
complex open half-plane. If so, we face Case 1 as in the discussion of Section 4.1 and
the Lopatinskĭı-Šapiro condition holds. To carry on with the proof of Proposition 4.2
we now only have to consider having

(4.7) τ∂dϕ 6 C2|ξ′|.

Our proof of Proposition 4.2 relies on the following lemma.

Lemma 4.8. — There exists C3 > 0 such that, for j = 1 or 2, for 0 < µ0 6 1,
0 < µ1 6 1/2, and for all (x, ξ′, τ, σ) ∈ V 0 × Rd−1 × [0,+∞)× [0,+∞), one has

|dx′ϕ(x)| 6 µ0∂dϕ(x), σ 6 µ1τ∂dϕ(x) and Imπj,2(x, ξ′, τ, σ) > 0

=⇒
∣∣αj − |ξ′|x∣∣+ τ |dx′ϕ(x)| 6 |ξ′|xC3(µ0 + µ2

1).

Proof. — With (4.7) one has

(4.8) τ |dx′ϕ| 6 µ0τ∂dϕ . µ0|ξ′|x.

With the first-order Taylor formula one has

α2
j = r(x, ξ′ + iτdx′ϕ) + (−1)jσ2

= r(x, ξ′) +

∫ 1

0

dξ′r(x, ξ
′ + iτs dx′ϕ)(iτdx′ϕ)ds+ (−1)jσ2.

With (4.8) and homogeneity one has∣∣dξ′r(x, ξ′ + iτs dx′ϕ)(iτdx′ϕ)
∣∣ . µ0|ξ′|2x.

One also has σ 6 µ1τ∂dϕ . µ1|ξ′|x. Since r(x, ξ′) = |ξ′|2x, this yields

α2
j = |ξ′|2x

(
1 +O(µ0 + µ2

1)
)

and hence αj = |ξ′|x
(
1 +O(µ0 + µ2

1)
)
.

This and (4.8) give the result. �
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Before proceeding, we make the following computation. For j = 1, 2 and ` = 1, 2

we write
b`,ϕ(x, ξ′, ξd = πj,2, τ) = b`(x, ξ

′ + iτdx′ϕ, πj,2 + iτ∂dϕ)

= b`(x, ξ
′ + iτdx′ϕ, iαj)

= b`(x, ξ
′ + iτdx′ϕ, i|ξ′|x + i(αj − |ξ′|x)).

(4.9)

We use Lemma 3.4 and the value of ε > 0 given therein. We choose 0 < µ0 6 1 and
0 < µ1 6 1/2 such that

(4.10) C3(µ0 + µ2
1) 6 ε,

with C3 > 0 as given by Lemma 4.8.
We now consider the root configurations that remain to consider according to the

discussion in Section 4.1.

Case 2. — In this case, one root of pσ,ϕ lies in the upper complex closed half-plane.
We denote this root by ρ+. According to the discussion in Section 4.1 it suffices to
prove that

(4.11) det

(
b1,ϕ b2,ϕ

∂ξdb1,ϕ ∂ξdb2,ϕ

)
(x, ξ′, ξd = ρ+, τ) 6= 0.

In fact, one has ρ+ = πj,2 with j = 1 or 2. We use the first part of Lemma 3.4 with
ζ ′ = iτdx′ϕ and δ = i(αj − |ξ|x). With (4.9) and (4.10) with Lemma 4.8 and the first
part of Lemma 3.4 one obtains (4.11).

Case 3. — In this case Imπ1,2 > 0 and Imπ2,2 > 0. According to the discussion in
Section 4.1 it suffices to prove that

(4.12) det

(
b1,ϕ(x, ξ′, ξd = π1,2, τ) b2,ϕ(x, ξ′, ξd = π1,2, τ)

b1,ϕ(x, ξ′, ξd = π2,2, τ) b2,ϕ(x, ξ′, ξd = π2,2, τ)

)
6= 0.

We use the second part of Lemma 3.4 with ζ ′ = iτdx′ϕ, δ = i(α1 − |ξ|x), and δ̃ =

i(α2−|ξ|x). With (4.9) and (4.10) with Lemma 4.8 and the second part of Lemma 3.4
one obtains (4.12).

Case 4. — In this case (that only occurs if σ = 0) the Lopatinskĭı-Šapiro condition
holds also if one has (4.11). The proof is thus the same as for Case 2. This concludes
the proof of Proposition 4.2. �

4.4. Local stability of the algebraic conditions. — In Section 3 we saw that the
Lopatinskĭı-Šapiro condition for (Pσ, B1, B2) in Definition 3.1 exhibits some stabil-
ity property. This was used in the statement of Proposition 4.2 that states how the
Lopatinskĭı-Šapiro condition for (Pσ, B1, B2) can imply the Lopatinskĭı-Šapiro condi-
tion of Definition 4.1 for (Pσ, B1, B2, ϕ), that is, the version of this condition for the
conjugated operators.

A natural question would then be: does the Lopatinskĭı-Šapiro condition for the
conjugated operators enjoy the same stability property? The answer is yes. Yet, this
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is not needed in what follows. In fact, below one exploits the algebraic conditions
listed in Section 4.1 once the Lopatinskĭı-Šapiro condition is known to hold at a point
%0′ = (x0, ξ0′, τ0, σ0) in tangential phase space. One thus rather needs to know that
these algebraic conditions are stable. Here also the answer is positive and is the subject
of the present section.

As in Definition 4.1 for %′ = (x, ξ′, τ, σ) one denotes by ρj(%
′) the roots of

pσ,ϕ(x, ξ′, ξd, τ) viewed as a polynomial in ξd.
Let %0′ = (x0, ξ0′, τ0, σ0) ∈ ∂Ω× Rd−1 × [0,+∞)× [0,+∞). One sets

J+ =
{
j ∈ {1, 2, 3, 4} | Im ρj(%

0′) > 0},

J− =
{
j ∈ {1, 2, 3, 4} | Im ρj(%

0′) < 0},

and, for %′ = (x, ξ′, τ, σ),

κ+
%0′(%

′) =
∏
j∈J+

(
ξd − ρj(%′)

)
, κ−%0′(%

′) =
∏
j∈J−

(
ξd − ρj(%′)

)
.

Naturally, one has

κ+
%0′(%

0′, ξd) = p+
σ,ϕ(x0, ξ0′, ξd, τ

0) and κ−%0′(%
0′, ξd) = p−σ,ϕ(x0, ξ0′, ξd, τ

0).

Moreover, there exists a conic open neighborhood U0 of %0′ where both κ+
%0′(%

′) and
κ−%0′(%

′) are smooth with respect to %′. One has

pσ,ϕ = p+
σ,ϕp

−
σ,ϕ = κ+

%0′κ
−
%0′ .

Note however that for %′ = (x, ξ′, τ, σ) ∈ U0 it may very well happen that

p+
σ,ϕ(x, ξ′, ξd, τ) 6= κ+

%0′(%
′, ξd) and p−σ,ϕ(x, ξ′, ξd, τ) 6= κ−%0′(%

′, ξd).

The following proposition can be found in [8, Prop. 1.8].

Proposition 4.9. — Let the Lopatinskĭı-Šapiro condition hold at

%0′ = (x0, ξ0′, τ0, σ0) ∈ ∂Ω× Rd−1 × [0,+∞)× [0,+∞)

for (Pσ, B1, B2, ϕ). Then,
(1) The polynomial ξd 7→ p+

σ,ϕ(x0, ξ0′, ξd, τ
0) is of degree less than or equal to two.

(2) There exists a conic open neighborhood U of %0′ such that the family
{b1ϕ(%′, ξd), b

2
ϕ(%′, ξd)} is complete modulo κ+

%0′(%
′, ξd) at every point %′=(x, ξ′, τ, σ)∈U,

namely for any polynomial f(ξd) with complex coefficients there exist c1, c2 ∈ C and
a polynomial `(ξd) with complex coefficients such that, for all ξd ∈ C

(4.13) f(ξd) = c1b1,ϕ(x, ξ′, ξd, τ) + c2b2,ϕ(x, ξ′, ξd, τ) + `(ξd)κ
+
%0′(%

′, ξd).

We emphasize again that the second property in Proposition 4.9 looks very much
like the statement of Lopatinskĭı-Šapiro condition for (Pσ, B1, B2, ϕ) at %′ in Defi-
nition 4.1. Yet, it differs by having p+

σ,ϕ(x, ξ′, ξd, τ) that only depends on the root
configuration at %′ replaced by κ+

%0′(%
′, ξd) whose structure is based on the root con-

figuration at %0′.
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Let m+ be the common degree of p+
σ,ϕ(%0′, ξd) and κ+

%0′(%
′, ξd) and m− be the

common degree of p−σ,ϕ(%0′, ξd) and κ−%0′(%
′, ξd) for %′ ∈ U . One has m+ + m− = 4

and thus m− > 2 for %′ ∈ U since m+ 6 2.
Invoking the Euclidean division of polynomials, one sees that it is sufficient to

consider polynomials f of degree less than or equal to m+−1 6 1 in (4.13). Since the
degree of bj,ϕ(%′, ξd) can be as high as 3 > m+−1 it however makes sense to consider f
of degree less than or equal to m = 3. Then, the second property in Proposition 4.9
is equivalent to having

{b1,ϕ(x, ξ′, ξd, τ), b2,ϕ(x, ξ′, ξd, τ)} ∪
⋃

06`63−m+

{κ+
%0′(%

′, ξd)ξ
`
d}

be a complete in the set of polynomials of degree less than or equal to m = 3. Note
that this family is made of m′ = 6−m+ = 2 +m− polynomials.

We now express an inequality that follows from Proposition 4.9 that will be key in
the boundary estimation given in Proposition 5.1 below.

4.5. Symbol positivity at the boundary. — The symbols bj,ϕ, j = 1, 2, are polyno-
mial in ξd of degree kj 6 3 and we may thus write them in the form

bj,ϕ(%′, ξd) =

kj∑
`=0

b`j,ϕ(%′)ξ`d,

with b`j,ϕ homogeneous of degree kj − `.
The polynomial ξd 7→ κ+

%0′(%
′, ξd) is of degree m+ 6 2 for %′ ∈ U with U given by

Proposition 4.9. Similarly, we write

κ+
%0′(%

′, ξd) =

m+∑
`=0

κ+,`
%0′ (%

′)ξ`d,

with κ+,`
%0′ homogeneous of degree m+ − `. We introduce

ej,%0′(%
′, ξd) =

{
bj,ϕ(%′, ξd) if j = 1, 2,

κ+
%0′(%

′, ξd)ξ
j−3
d if j = 3, . . . ,m′.

As explained above, all these polynomials are of degree less than or equal to three.
If we now write

ej,%0′(%
′, ξd) =

3∑
`=0

e`j,%0′(%
′)ξ`d,

for j = 1, 2 one has e`j,%0′(%′) = b`j,ϕ(%′), with ` = 0, . . . , kj and e`j,%0′(%
′) = 0 for

` > kj , and for j = 3, . . . ,m′,

e`j,%0′(%
′) =


0 if ` < j − 3,

κ+,`+3−j
%0′ (%′) if ` = j − 3, . . . ,m+ + j − 3 6 m+ +m′ − 3,

0 if ` > m+ + j − 3.
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In particular e`j,%0′(%′) is homogeneous of degreem++j−`−3. Note thatm++m′−3=3.
We thus have the following result.

Lemma 4.10. — Set the m′×(m+1) matrixM(%′) = (Mj,`(%
′))16j6m′

06`6m
withMj,`(%

′) =

e`j,%0′(%
′). Then, the second point in Proposition 4.9 states that M(%′) is of rank

m+ 1 = 4 for %′ ∈ U .

Recall that m′ = m− + 2 > 4. We now set

(4.14) Σej,%0′ (%
′, z) =

3∑
`=0

e`j,%0′(%
′)z` =

3∑
`=0

Mj,`(%
′)z`, z = (z0, . . . , z3).

in agreement with the notation introduced in (2.3) in Section 2.4.2. One has the
following positivity result.

Lemma 4.11. — Let the Lopatinskĭı-Šapiro condition hold at a point

%0′ = (x0, ξ0′, τ0, σ0) ∈ ∂Ω× Rd−1 × [0,+∞)× [0,+∞)

for (Pσ, B1, B2, ϕ) and let U be as given by Proposition 4.9. Then, if %′ ∈ U there
exists C > 0 such that

m′∑
j=1

∣∣Σej,%0′ (%′, z)
∣∣2 > C|z|2C4 , z = (z0, . . . , z3) ∈ C4.

Proof. — In C4 define the bilinear form

ΣB(z, z′) =

m′∑
j=1

Σej,%0′ (%
′, z)Σej,%0′ (%

′, z′).

With (4.14) one has

ΣB(z, z′) =
(
M(%′)z,M(%′)z′

)
Cm′ =

(
tM(%′)M(%′)z, z′

)
C4 .

As rank tM(%′)M(%′) = rankM(%′) = 4 by Lemma 4.10 one obtains the result. �

5. Boundary norm estimate under Lopatinskiı̆-Šapiro condition

Near x0 ∈ ∂Ω we consider two boundary operators B1 and B2. As in Section 4
the associated conjugated operators are denoted by Bj,ϕ, j = 1, 2 with respective
principal symbols bj,ϕ(x, ξ, τ).

The main result of this section is the following proposition for the fourth-order
conjugated operator Pσ,ϕ. It is key in the final result of the present article. It states
that all traces are controlled by norms of B1,ϕv|xd=0+ and B2,ϕv|xd=0+ if the Lopatin-
skĭı-Šapiro condition holds for (P,B1, B2, ϕ).

Proposition 5.1. — Let κ0 > 0. Let x0 ∈ ∂Ω, with Ω locally given by {xd > 0}.
Assume that (Pσ, B1, B2, ϕ) satisfies the Lopatinskĭı-Šapiro condition of Definition 4.1
at %′ = (x0, ξ′, τ, σ) for all (ξ′, τ, σ) ∈ Rd−1 × [0,+∞)× [0,+∞) such that τ > κ0σ.
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Then, there exist a neighborhood W 0 of x0, C > 0, τ0 > 0 such that

| tr(v)|3,1/2,τ 6 C
(
‖Pσ,ϕv‖+ +

2∑
j=1

|Bj,ϕv|xd=0+ |
7/2−kj ,τ

+ ‖v‖4,−1,τ

)
,

for σ > 0, τ > max(τ0, κ0σ) and v ∈ C
∞
c (W 0

+).

The notation of the function space C
∞
c (W 0

+) is introduced in (1.6). For the proof
of Proposition 5.1 we start with a microlocal version of the result.

5.1. A microlocal estimate

Proposition 5.2. — Let κ1 > κ0 > 0. Let x0 ∈ ∂Ω, with Ω locally given by {xd > 0}
and let W be a bounded open neighborhood of x0 in Rd. Let

(ξ0′, τ0, σ0) ∈ Rd−1 × [0,+∞)× [0,+∞)

nonvanishing with τ0 > κ1σ
0 and such that (Pσ, B1, B2, ϕ) satisfies the Lopatinskĭı-

Šapiro condition of Definition 4.1 at %0′ = (x0, ξ0′, τ0, σ0).
Then, there exists a conic neighborhood U of %0′ in W ×Rd−1× [0,+∞)× [0,+∞)

where τ > κ0σ such that if χ ∈ S0
T,τ , homogeneous of degree 0 in (ξ′, τ, σ) with

supp(χ) ⊂ U , there exist C > 0 and τ0 > 0 such that

| tr(OpT(χ)v)|3,1/2,τ 6 C
( 2∑
j=1

|Bj,ϕv|xd=0+ |
7/2−kj ,τ

+ ‖Pσ,ϕv‖+

+ ‖v‖4,−1,τ + | tr(v)|3,−1/2,τ

)
,

for σ > 0, τ > max(τ0, κ0σ) and v ∈ C
∞
c (W+).

Proof. — We choose a conic open neighborhood U0 of %0′ according to Proposition 4.9
and such that U0 ⊂W ×Rd−1 × [0,+∞)× [0,+∞) . Assume moreover that τ > κ0σ

in U0.
In Section 4.5 we introduced the symbols ej,%0′(%′, ξd), j = 1, . . . ,m′ = m− + 2 =

6−m+. For a conic set V denote SV = {%′ = (x, ξ′, τ, σ) ∈ V | |(ξ′, τ, σ)| = 1}.
Consequence of the Lopatinskĭı-Šapiro condition holding at %0′, by Lemma 4.11 for

all %′ ∈ SU0 there exists C > 0 such that
m′∑
j=1

∣∣Σej,%0′ (%′, z)
∣∣2 > C|z|2C4 , z = (z0, . . . , z3) ∈ C4.

Let U1 be a second conic open neighborhood of %0′ such that U1 ⊂ U0. Since SU1
is

compact (recall that W is bounded), there exists C0 > 0 such that
m′∑
j=1

∣∣Σej,%0′ (%′, z)
∣∣2 > C0|z|2C4 , z = (z0, . . . , z3) ∈ C4, %′ ∈ SU1

.

Introducing the map Nt%′ = (x, tξ′, tτ, tσ), for %′ = (x, ξ′, τ, σ) with t = |(ξ′, τ, σ)|−1

one has

(5.1)
m′∑
j=1

∣∣Σej,%0′ (Nt%′, z)
∣∣2 > C0|z|2C4 , z = (z0, . . . , z3) ∈ C4, %′ ∈ U1,
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since Nt%′ ∈ SU1
. Now, for j = 1, 2 one has

Σej,%0′ (%
′, z) =

kj∑
`=0

e`j,%0′(%
′)z`,

with e`j,%0′(%′) homogeneous of degree kj − `, and for 3 6 j 6 m′ one has

Σej,%0′ (%
′, z) =

3∑
`=0

e`j,%0′(%
′)z`,

with e`j,%0′(%′) homogeneous of degreem++j−`−3. We define z′ ∈ C4 by z′` = t`−7/2z`,
` = 0, . . . , 3. One has

Σej,%0′ (Nt%
′, z′) = tkj−7/2Σej,%0′ (%

′, z), j = 1, 2,

and
Σej,%0′ (Nt%

′, z′) = tm
++j−13/2Σej,%0′ (%

′, z), j = 3, . . . ,m′.

Thus, from (5.1) we deduce

(5.2)
2∑
j=1

λ
2(7/2−kj)
T,τ

∣∣Σej,%0′ (%′, z)
∣∣2 +

m′∑
j=3

λ
2(13/2−m+−j)
T,τ

∣∣Σej,%0′ (%′, z)
∣∣2

> C0

3∑
`=0

λ
2(7/2−`)
T,τ |z`|2,

for z = (z0, . . . , z3) ∈ C4, and %′ ∈ U1, since t � λ−1
T,τ as τ & σ in U1.

We now choose U a conic open neighborhood of %0′, such that U ⊂ U1. Let
χ ∈ S0

T,τ be as in the statement and let χ̃ ∈ S0
T,τ be homogeneous of degree 0, with

supp(χ̃) ⊂ U1 and χ̃ ≡ 1 in a neighborhood of U , and thus in a neighborhood of
supp(χ).

For j = 3, . . . ,m′ one has ej,%0′(%′, ξd) = κ+
%0′(%

′, ξd)ξ
j−3
d ∈ Sm++j−3,0

τ . Set Ej =

Op(χ̃ej,%0′). The introduction of χ̃ is made such that χ̃ej,%0′ is defined on the whole
tangential phase-space. Observe that

B(w) =

2∑
j=1

|Bj,ϕw|xd=0+ |2
7/2−kj ,τ

+

m′∑
j=3

|Ejw|xd=0+ |2
13/2−m+−j,τ

=

2∑
j=1

|Λ7/2−kj
T,τ Bj,ϕw|xd=0+ |

2

∂
+

m′∑
j=3

|Λ13/2−m+−j
T,τ Ejw|xd=0+ |

2

∂

is a boundary quadratic form of type (3, 1/2) as in Definition 2.4. From Proposition 2.6
and (5.2) we have

(5.3) | tr(u)|23,1/2,τ .
2∑
j=1

|Bj,ϕu|xd=0+ |2
7/2−kj ,τ

+

m′∑
j=3

|Eju|xd=0+ |2
13/2−m+−j,τ

+ | tr(v)|23,−N,τ .

for u = OpT(χ)v and τ > κ0σ chosen sufficiently large.
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In U1 one can write
pσ,ϕ = p+

σ,ϕp
−
σ,ϕ = κ+

%0′κ
−
%0′ ,

with κ+
%0′ of degree m

+ and κ−%0′ of degree m
−. In fact we set

κ̃+
%0′(%

′) =
∏
j∈J+

(
ξd − χ̃ρj(%′)

)
, κ̃−%0′(%

′) =
∏
j∈J−

(
ξd − χ̃ρj(%′)

)
,

with the notation of Section 4.4, thus making the two symbols defined on the whole
tangential phase-space. In U , one has also

pσ,ϕ = κ̃+
%0′ κ̃

−
%0′ .

The factor κ̃−%0′ is associated with roots with negative imaginary part. With
Lemma A.1 given in Appendix A.1 one has the following microlocal elliptic estimate
‖OpT(χ)w‖m−,τ + | tr(OpT(χ)w)|m−−1,1/2,τ . ‖OpT(κ̃−%0′)OpT(χ)w‖

+
+ ‖w‖m−,−N,τ ,

for w ∈ S (Rd+) and τ > κ0τ chosen sufficiently large. We apply this inequality to
w = OpT(κ̃+

%0′)v. Since
OpT(κ̃−%0′)OpT(χ)OpT(κ̃+

%0′) = OpT(χ)Pσ,ϕ mod Ψ4,−1
τ ,

one obtains
| tr(OpT(χ)OpT(κ̃+

%0′)v)|
m−−1,1/2,τ

. ‖Pσ,ϕv‖+ + ‖v‖4,−1,τ .

With [OpT(χ),OpT(κ̃+
%0′)] ∈ Ψm+,−1

τ one then has
| tr(OpT(κ̃+

%0′)u)|
m−−1,1/2,τ

. ‖Pσ,ϕv‖+ + ‖v‖4,−1,τ + | tr(v)|3,−1/2,τ ,

with u = OpT(χ)v as above, using that m+ +m− = 4. Note that

| tr(OpT(κ̃+
%0′)u)|

m−−1,1/2,τ
�
m−−1∑
j=0

|Dj
dOpT(κ̃+

%0′)u|xd=0+ |
m−−j−1/2,τ

&
m′∑
j=3

|Eju|xd=0+ |
5/2+m−−j,τ − | tr(v)|xd=0+ |

3,−1/2,τ
,

using that ξjdκ̃
+
%0′ = χ̃ej+3,%0′ in a conic neighborhood of supp(χ) and using that

m− = m′ − 2. We thus obtain
m′∑
j=3

|Eju|xd=0+ |
13/2−m+−j,τ . ‖Pσ,ϕv‖+ + ‖v‖4,−1,τ + | tr(v)|3,−1/2,τ ,

since 13/2−m+ = 5/2 +m−. With (5.3) then one finds

| tr(u)|3,1/2,τ .
2∑
j=1

|Bj,ϕu|xd=0+ |2
7/2−kj ,τ

+ ‖Pσ,ϕv‖+ + ‖v‖4,−1,τ + | tr(v)|3,−1/2,τ .

In addition, observing that

|Bj,ϕu|xd=0+ |
7/2−kj ,τ

. |Bj,ϕv|xd=0+ |
7/2−kj ,τ

+ | tr(v)|3,−1/2,τ ,

the result of Proposition 5.2 follows. �
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5.2. Proof of Proposition 5.1. — As mentioned above the proof relies on a patching
procedure of microlocal estimates given by Proposition 5.2.

Let 0 < κ′0 < κ0. We set

Γd−1
+,κ0

= {(ξ′, τ, σ) ∈ Rd−1 × [0,+∞)× [0,+∞) | τ > κ0σ, },

and
Sd−1

+,κ0
= {(ξ′, τ, σ) ∈ Γd−1

+,κ0
| |(ξ′, τ, σ)| = 1}.

Consider (ξ0′, τ0, σ0) ∈ Sd−1
+,κ0

. Since the Lopatinskĭı-Šapiro condition holds at %0′ =

(x0, ξ0′, τ0, σ0), we can invoke Proposition 5.2:
(1) There exists a conic open neighborhood U%0′ of %0′ in W × Rd−1 × [0,+∞)×

[0,+∞) where τ > κ′0σ;
(2) For any χ%0′ ∈ S0

T,τ homogeneous of degree 0 supported in U%0′ the estimate of
Proposition 5.2 applies to OpT(χ%0′)v for τ > max(τ%0′ , κ0σ).
Without any loss of generality we may choose U%0′ of the form U%0′ = O%0′ × Γ%0′ ,
with O%0′ ⊂ W an open neighborhood of x0 and Γ%0′ a conic open neighborhood of
(ξ0′, τ0, σ0) in Rd−1 × [0,+∞)× [0,+∞) where τ > κ′0σ.

Since {x0}× Sd−1
+,κ0

is compact we can extract a finite covering of it by open sets of
the form of U%0′ . We denote by Ũi, i ∈ I with |I| <∞, such a finite covering. This is
also a finite covering of {x0} × Γd−1

+,κ0
.

Each Ũi has the form Ũi = Oi × Γi, with Oi an open neighborhood of x0 and Γi
a conic open set in Rd−1 × [0,+∞)× [0,+∞) where τ > κ′0σ.

We set O = ∩i∈IOi and Ui = O × Γi, i ∈ I. Let W 0 be an open neighborhood
of x0 such that W 0 b O. The open sets Ui give also an open covering of W 0 × Sd−1

+,κ0

and W 0×Γd−1
+,κ0

. With this second covering we associate a partition of unity χi, i ∈ I,
of W 0 × Sd−1

+,κ0
, where each χi is chosen smooth and homogeneous of degree one for

|(ξ′, τ, σ)| > 1, that is: ∑
i∈I

χi(%
′) = 1

for %′ = (x, ξ′, τ, σ) in a neighborhood of W 0 × Γd−1
+,κ0

, and |(ξ′, τ, σ)| > 1.
Let u ∈ C

∞
c (W 0

+)). Since each χi is in S0
T,τ and supported in Ui, Proposition 5.2

applies:

(5.4) | tr(OpT(χi)v)|3,1/2,τ 6 Ci
( 2∑
j=1

|Bj,ϕv|xd=0+ |
7/2−kj ,τ

+ ‖Pσ,ϕv‖+

+ ‖v‖4,−1,τ + | tr(v)|3,−1/2,τ

)
,

for some Ci > 0, for σ > 0, τ > max(τi, κ0σ) for some τi > 0.
We set χ̃ = 1 −

∑
i∈I χi. One has χ̃ ∈ S−∞T,τ microlocally in a neighborhood of

W 0 × Γd−1
+,κ0

. Thus, considering the definition of Γd−1
+,κ0

, if one imposes τ > κ0σ, as we
do, then χ̃ ∈ S−∞T,τ locally in a neighborhood of W 0.
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For any N ∈ N using that supp(v) ⊂W 0 one has

| tr(v)|3,1/2,τ 6
∑
i∈I
| tr(OpT(χi)v)|3,1/2,τ + | tr(OpT(χ̃)v)|3,1/2,τ

.
∑
i∈I
| tr(OpT(χi)v)|3,1/2,τ + | tr(v)|3,−N,τ

.
∑
i∈I
| tr(OpT(χi)v)|3,1/2,τ + ‖v‖4,−N,τ .

Summing estimates (5.4) together for i ∈ I we thus obtain

| tr(v)|3,1/2,τ .
2∑
j=1

|Bj,ϕv|xd=0+ |
7/2−kj ,τ

+ ‖Pσ,ϕv‖+ + ‖v‖4,−1,τ + | tr(v)|3,−1/2,τ ,

for τ > max(maxi τi, κ0σ). Therefore, by choosing τ > κ0σ sufficiently large one
obtains the result of Proposition 5.1. �

6. Microlocal estimates for second-order factors

We recall that Pσ = ∆2 − σ4 = (−∆ − σ2)(−∆ + σ2) with σ > 0. Set Qjσ =

−∆ + (−1)jσ2; then Pσ = Q1
σQ

2
σ. We also set Q = −∆, that is, Q = Q1

0 = Q2
0.

The principal symbols of Qjσ and Q are given by

(6.1) qjσ(x, ξ) = ξ2
d + r(x, ξ′) + (−1)jσ2 and q(x, ξ) = ξ2

d + r(x, ξ′),

respectively. The conjugated operator Pσ,ϕ = eτϕPσe
−τϕ reads

Pσ,ϕ = Q1
σ,ϕQ

2
σ,ϕ, with Qjσ,ϕ = eτϕQjσe

−τϕ.

We set

Qjs =
Qjσ,ϕ + (Qjσ,ϕ)∗

2
and Qa =

Qjσ,ϕ − (Qjσ,ϕ)∗

2i
,

both formally selfadjoint and such that Qjσ,ϕ = Qjs+iQa. Note that Qa is independent
of σ. Their respective principal symbols are

qjs(x, ξ, τ, σ) = ξ2
d − (τ∂dϕ)2 + r(x, ξ′) + (−1)jσ2 − τ2r(x, dx′ϕ),

qa(x, ξ, τ) = 2τξd∂dϕ+ 2τ r̃(x, ξ′, dx′ϕ).

Note that Qjs and Qa take the forms

(6.2) Qjs = D2
d + T js , Qa = τ(∂dϕDd +Dd∂dϕ) + Ta,

where T js , Ta ∈ D2
T,τ are such that (T js )∗ = T js and T ∗a = Ta. Naturally, the principal

symbol of Qjσ,ϕ is
qjσ,ϕ(x, ξ, τ) = qjs(x, ξ, τ, σ) + iqa(x, ξ, τ).

The principal symbol of Qjσ,ϕ = eτϕQjσe
−τϕ is

qjσ,ϕ(x, ξ, τ, σ) = (ξd + iτ∂dϕ)2 + r(x, ξ′) + (−1)jσ2 − τ2r(x, dx′ϕ) + 2iτ r̃(x, ξ′, dx′ϕ).

J.É.P. — M., 2023, tome 10



Stabilization of the damped plate equation under general boundary conditions 35

As in Section 4.2 we let αj ∈ C be such that

αj(x, ξ
′, τ, σ)2 = r(x, ξ′ + iτdx′ϕ) + (−1)jσ2

= r(x, ξ′)− τ2r(x, dx′ϕ) + 2iτ r̃(x, ξ′, dx′ϕ) + (−1)jσ2,

and Reαj > 0. Note that uniqueness in the choice of αj holds except if r(x, ξ′ +

iτdx′ϕ) + (−1)jσ2 ∈ R−; this lack of uniqueness in that case is however not an issue
in what follows. One has

qjσ,ϕ(x, ξ′, ξd, τ) = (ξd + iτ∂dϕ)2 + αj(x, ξ
′, τ, σ)2

=
(
ξd + iτ∂dϕ+ iαj(x, ξ

′, τ, σ)
)(
ξd + iτ∂dϕ− iαj(x, ξ′, τ, σ)

)
.

We recall from (4.4)–(4.5) that we write qjσ,ϕ(x, ξ′, ξd, τ) = (ξd − πj,1)(ξd − πj,2) with

πj,1 = −iτ∂dϕ− iαj(x, ξ′, τ, σ) and πj,2 = −iτ∂dϕ+ iαj(x, ξ
′, τ, σ).

The roots πj,k, k = 1, 2 are functions of x, ξ′, τ and σ.
We denote by B a boundary operator of order k that takes the form

B(x,D) = Bk(x,D′) +Bk−1(x,D′)Dd,

with Bk(x,D′) and Bk−1(x,D′) tangential differential operators of order k and k− 1

respectively. The boundary operator B(x,D) has b(x, ξ) = bk(x, ξ′)+ bk−1(x, ξ′)ξd for
principal symbol. The conjugate boundary operator Bϕ = eτϕBe−τϕ is then given by

Bϕ(x,D, τ) = Bkϕ(x,D′, τ) +Bk−1
ϕ (x,D′, τ)(Dd + iτ∂dϕ)

= B̂kϕ(x,D′, τ) +Bk−1
ϕ (x,D′, τ)Dd,

with B̂kϕ(x,D′, τ) = Bkϕ(x,D′, τ) + iτBk−1
ϕ (x,D′, τ)∂dϕ. The principal symbol of

Bϕ(x,D, τ) is
bϕ(x, ξ, τ) = b̂kϕ(x, ξ′, τ) + bk−1

ϕ (x, ξ′, τ)ξd,

where bk−1
ϕ (x, ξ′, τ) is homogeneous of degree k − 1 in λT,τ and

b̂kϕ(x, ξ′, τ) = bkϕ(x, ξ′, τ) + iτbk−1
ϕ (x, ξ′, τ)∂dϕ

is homogeneous of degree k in λT,τ .

6.1. Sub-ellipticity. — Set

qs(x, ξ, τ) = ξ2
d + r(x, ξ′)− (τ∂dϕ)2 − r(x, τdx′ϕ) = |ξ|2x − |τdϕ|2x,

where |ξ|2x = ξ2
d+r(x, ξ′). One has qjs = qs+(−1)jσ2. Observe that {qjs, qa} = {qs, qa}.

Definition 6.1 (Sub-ellipticity). — Let W be a bounded open subset of Rd and ϕ ∈
C∞(W ) such that |dxϕ| > 0. Let j = 1 or 2. We say that the couple (Qjσ, ϕ) satisfies
the sub-ellipticity condition in W if there exist C > 0 and τ0 > 0 such that for σ > 0

∀ (x, ξ) ∈W × Rd, τ > τ0σ,

qjσ,ϕ(x, ξ, τ) = 0 =⇒ {qjs, qa}(x, ξ, τ) = {qs, qa}(x, ξ, τ) > C > 0.

Remark 6.2. — Note that with homogeneity the sub-ellipticity property also reads

∀ (x, ξ) ∈W × Rd, τ > τ0σ, qjσ,ϕ(x, ξ, τ) = 0 =⇒ {qjs, qa}(x, ξ, τ) > Cλ3
τ .
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Proposition 6.3. — Let W be a bounded open subset of Rd and ψ ∈ C∞(Rd) such
that ψ > 0 and |dxψ| > C > 0 on W . Let τ0 > 0. Then, there exists γ0 > 1 such
that (Qjσ, ϕ) satisfies the sub-ellipticity condition on W for τ > τ0σ for ϕ = eγψ, with
γ > γ0, for both j = 1 and 2.

Proof. — We note that |dxϕ(x)| 6= 0. The proof is slightly different whether one
considers the symbol q1

σ,ϕ or the symbol q2
σ,ϕ.

Case 1: proof for q1
σ,ϕ. — Assume that q1

σ,ϕ = 0. Thus |ξ|2x− |τdϕ|2x−σ2 = 0 implying
|ξ| ∼ σ + γτϕ. On the one hand by Lemma 3.55 in [31], one has

(6.3) {qs, qa}(x, ξ, τ) = τ(γ2ϕ)(γϕ)2
(
(Hqψ(x, β))2 + 4τ2q(x, dψ(x))2

)
+ (γϕ)3 1

2i
{qψ, qψ}(x, β, τ),

with β = ξ/(γϕ), and where Hq denotes the Hamiltonian vector field associated with
the symbol q as defined in (6.1). Here, qψ denotes the principal symbol of eτψQe−τψ,
that is,

qψ(x, ξ, τ) = q(x, ξ + iτdxψ(x))

= (ξd + iτ∂dψ(x))2 + r(x, ξ′ + iτdx′ψ(x)).

On the other hand, one has (Hqψ(x, β))2 + 4τ2q(x, dψ(x))2 & τ2 and since
1
2i{qψ, qψ}(x, β, τ) is homogeneous of degree 3 in (β, τ), we obtain

{qs, qa} > Cγ(γτϕ)3 − C ′(γτϕ+ |β|γϕ)3 = Cγτ̃3 − C ′′(τ̃ + |ξ|)3,

with τ̃ = γτϕ. Yet, one has |ξ| ∼ σ + τ̃ implying

{qs, qa} > Cγτ̃3 − C ′′′(τ̃ + |ξ|)3 > Cγτ̃3 − C(4)(τ̃ + σ)3.

Since ψ > 0 and γ > 1 one has ϕ > 1 implying τ0σ 6 τ . τ̃ and thus

{qs, qa}(x, ξ, τ) > τ̃3(Cγ − C(5)).

It follows that for γ chosen sufficiently large one finds {qs, qa}(x, ξ, τ) > C > 0.

Case 2: proof for q2
σ,ϕ. — Assume that q2

σ,ϕ = 0. Then |ξ|2x + σ2 = |τdϕ|2x implying
|ξ|+ σ ∼ τ |dϕ| ∼ τ̃ . The same computation as in Case 1 gives

{qs, qa}(x, ξ, τ) > Cγτ̃3 − C ′(τ̃ + |ξ|)3.

Here |ξ|+ τ̃ . τ̃ yielding

{qs, qa}(x, ξ, τ) > (Cγ − C ′′)τ̃3.

The remaining part of the proof is the same. �

Lemma 6.4. — Let j = 1 or 2. Let (Qjσ, ϕ) have the sub-ellipticity property of Def-
inition 6.1 in W . For µ > 0 one sets t(%) = µ((qjs)

2 + q2
a)(%) + τ{qjs, qa}(%) with

% = (x, ξ, τ, σ) ∈W ×Rd× [0,∞)× [0,∞). Let τ0 > 0. Then, for µ chosen sufficiently
large and τ > τ0σ one has t(%) > Cλ4

τ for some C > 0.

The proof of Lemma 6.4 uses the following lemma.
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Lemma 6.5. — Consider two continuous functions, f and g, defined in a compact
set L , and assume that f > 0 and moreover

f(y) = 0 =⇒ g(y) > 0 for all y ∈ L .

Setting hµ = µf + g, we have hµ > C > 0 for µ > 0 chosen sufficiently large.

Proof of Lemma 6.4. — Consider the compact set

L = {(x, ξ, τ, σ) | x ∈W, |ξ|2 + τ2 + σ2 = 1, τ > τ0σ}.

Applying the result of Lemma 6.5 to t(%) on L with f = (qjs)
2 + q2

a and g = τ{qjs, qa}
we find for t(%) > C on L for some C > 0 for µ chosen sufficiently large. Since t(%)

is homogeneous of degree 4 in the variables (ξ, τ, σ) it follows that

t(%) > C(σ2 + τ2 + |ξ|2)2 & λ4
τ . �

6.2. Lopatinskiı̆-Šapiro condition for the second-order factors. — Above, in Sec-
tion 4, the Lopatinskĭı-Šapiro condition is addressed for the fourth-order operator
Pσ,ϕ. Here, we consider the two second-order factors Qjσ,ϕ.

With the roots πj,1 and πj,2 defined in (4.4)–(4.5) one sets

qj,+σ,ϕ(x, ξ′, ξd, τ) =
∏

Imπj,k>0
k=1,2

(
ξd − πj,k(x, ξ′, τ, σ)

)
.

Definition 6.6. — Let j = 1, 2. Let x ∈ ∂Ω, with Ω locally given by {xd > 0}. Let
(ξ′, τ, σ) ∈ Rd−1×[0,+∞)×[0,+∞) with (ξ′, τ, σ) 6= 0. One says that the Lopatinskĭı-
Šapiro condition holds for (Qjσ, B, ϕ) at %′ = (x, ξ′, τ, σ) if for any polynomial f(ξd)

with complex coefficients there exist c ∈ C and a polynomial `(ξd) with complex
coefficients such that, for all ξd ∈ C

(6.4) f(ξd) = cbϕ(x, ξ′, ξd, τ) + `(ξd)q
j,+
σ,ϕ(x, ξ′, ξd, τ).

Remark 6.7. — With the Euclidean division of polynomials, we see that it suffices
to consider the polynomial f(ξd) to be of degree less than that of qj,+σ,ϕ(x, ξ′, ξd, τ) in
(6.4). Thus, in any case, the degree of f(ξd) can be chosen less than or equal to one.

Lemma 6.8. — Let j = 1 or 2. Let x ∈ ∂Ω and (ξ′, τ, σ) ∈ Rd−1 × [0,+∞)× [0,+∞)

with (ξ′, τ, σ) 6= 0. The Lopatinskĭı-Šapiro condition holds for (Qjσ, B, ϕ) at (x, ξ′, τ, σ)

if and only if
(1) either qj,+σ,ϕ(x, ξ′, ξd, τ) = 1;
(2) or qj,+σ,ϕ(x, ξ′, ξd, τ) = ξd − π and bϕ(x, ξ′, π, τ) 6= 0.

Proof. — If qj,+σ,ϕ(x, ξ′, ξd, τ) =
(
ξd − πj,1(x, ξ′, τ, σ)

)(
ξd − πj,2(x, ξ′, τ, σ)

)
, that is,

both roots πj,1(x, ξ′, τ, σ) and πj,2(x, ξ′, τ, σ) are in the upper complex half-plane,
then condition (6.4) cannot hold, since by Remark 6.7 it means that the vector space
of polynomials of degree less than or equal to one would be generated by the single
polynomial bϕ(x, ξ′, ξd, τ).
Suppose that qj,+σ,ϕ(x, ξ′, ξd, τ) = ξd − π that is one the root πj,1(x, ξ′, τ, σ) and
πj,2(x, ξ′, τ, σ) has a nonnegative imaginary part and the other root has a negative
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imaginary part. Then, the Lopatinskĭı-Šapiro condition holds at (x, ξ′, σ, τ) if for any
f(ξd), the polynomial ξd 7→ f(ξd)− cbϕ(x, ξ′, ξd, τ) admits π as a root for some c ∈ C.
A necessary and sufficient condition is then bϕ(x, ξ′, ξd = π, τ) 6= 0.
Finally if qj,+σ,ϕ(x, ξ′, ξd, τ) = 1, that is, both roots πj,1(x, ξ′, τ, σ) and πj,2(x, ξ′, τ, σ)

lie in the lower complex half-plane, then condition (6.4) trivially holds. �

6.3. Microlocal estimates. — Here, for j = 1 or 2, we establish estimates for the
operator Qjσ in a microlocal neighborhood of point at the boundary where (Qjσ, B, ϕ)

satisfies the Lopatinskĭı-Šapiro condition (after conjugation) of Definition 6.6.
The quality of the estimation depends on the position of the roots. We shall assume

that ∂dϕ > 0. Thus, from the form of the roots πj,1 and πj,2 given in (4.4)–(4.5), the
root πj,1 always lies in the lower complex half-plane. The sign of Imπj,2 may however
vary. Three cases can thus occur:

(1) The root πj,2 at the considered point lies in the upper complex half-plane.
(2) The root πj,2 at the considered point is real.
(3) The root πj,2 at the considered point lies in the lower complex half-plane.

Proposition 6.9. — Let j = 1 or 2 and κ1 > κ0 > 0. Let x0 ∈ ∂Ω, with Ω locally given
by {xd > 0} and let W be a bounded open neighborhood of x0 in Rd. Let ϕ be such that
∂dϕ > C > 0 in W and such that (Qjσ, ϕ) satisfies the sub-ellipticity condition in W .
Let %0′ = (x0, ξ0′, τ0, σ0) with (ξ0′, τ0, σ0) ∈ Rd−1 × [0,+∞) × [0,+∞) nonvanishing
with τ0 > κ1σ

0 and such that (Qjσ, B, ϕ) satisfies the Lopatinskĭı-Šapiro condition of
Definition 6.6 at %0′.

(1) Assume that Imπj,2(%0′) > 0. Then, there exists a conic neighborhood U of %0′

in W ×Rd−1 × [0,+∞)× [0,+∞) where τ > κ0σ such that if χ ∈ S0
T,τ , homogeneous

of degree 0 in (ξ′, τ, σ) with supp(χ) ⊂ U , there exist C > 0 and τ0 > 0 such that

(6.5) ‖OpT(χ)v‖2,τ + | tr(OpT(χ)v)|1,1/2,τ
6 C

(
‖Qjσ,ϕv‖+ + |Bϕv|xd=0+ |

3/2−k,τ + ‖v‖2,−1,τ

)
,

for σ > 0, τ > max(τ0, κ0σ) and v ∈ C
∞
c (W+).

(2) Assume that Imπj,2(%0′) = 0. Then, there exists a conic neighborhood U of %0′

in W ×Rd−1 × [0,+∞)× [0,+∞) where τ > κ0σ such that if χ ∈ S0
T,τ , homogeneous

of degree 0 in (ξ′, τ, σ) with supp(χ) ⊂ U , there exist C > 0 and τ0 > 0 such that

(6.6) τ−1/2‖OpT(χ)v‖2,τ + | tr(OpT(χ)v)|1,1/2,τ
6 C

(
‖Qjσ,ϕv‖+ + |Bϕv|xd=0+ |

3/2−k,τ + ‖v‖2,−1,τ

)
,

for σ > 0, τ > max(τ0, κ0σ) and v ∈ C
∞
c (W+).

(3) Assume that Imπj,2(%0′) < 0. Then, there exists a conic neighborhood U of %0′

in W ×Rd−1 × [0,+∞)× [0,+∞) where τ > κ0σ such that if χ ∈ S0
T,τ , homogeneous

of degree 0 in (ξ′, τ, σ) with supp(χ) ⊂ U , there exist C > 0 and τ0 > 0 such that
(6.7) ‖OpT(χ)v‖2,τ + | tr(OpT(χ)v)|1,1/2,τ 6 C

(
‖Qjσ,ϕv‖+ + ‖v‖2,−1,τ

)
,

for σ > 0, τ > max(τ0, κ0σ) and v ∈ C
∞
c (W+).
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The notation of the function space C
∞
c (W+) is introduced in (1.6).

6.3.1. Case (i): one root lying in the upper complex half-plane. — One has

Imπj,2(%0′) > 0 and Imπj,1(%0′) < 0.

Since the Lopatinskĭı-Šapiro condition holds for (Qjσ, B, ϕ) at %0′, by Lemma 6.8
one has

bϕ(x0, ξ0′, ξd = πj,2(%0′), τ0) = b
(
x0, ξ0′ + iτ0dx′ϕ(x0), iαj(%

0′)
)
6= 0.

As the roots πj,1 and πj,2 are locally smooth with respect to %′ = (x, ξ′, τ, σ) and
homogeneous of degree one in (ξ′, τ, σ), there exists a conic neighborhood U of %0′ in
W × Rd−1 × [0,+∞)× [0,+∞) and C1 > 0, C2 > 0 such that

SU = {%′ ∈ U | |ξ′|2 + τ2 + σ2 = 1}

is compact and

τ > κ0σ, Imπj,2(%′) > C2λT,τ , and Imπj,1(%′) 6 −C1λT,τ ,

and

(6.8) bϕ(x, ξ′, ξd = πj,2(%′), τ) 6= 0,

if %′ = (x, ξ′, τ, σ) ∈ U .
We let χ ∈ S0

T,τ and χ̃ ∈ S0
T,τ be homogeneous of degree zero in the variable (ξ′, τ, σ)

and be such that supp(χ̃) ⊂ U and χ̃ ≡ 1 on a neighborhood of supp(χ). From the
smoothness and the homogeneity of the roots, one has χ̃πj,k ∈ S1

T,τ , k = 1, 2. We set

L2 = Dd −OpT(χ̃πj,2) and L1 = Dd −OpT(χ̃πj,1).

The proof of Estimate (6.5) is based on three lemmas that we now list. Their proofs
are given at the end of this section.

The following lemma provides an estimate for L2 and boundary traces.

Lemma 6.10. — There exist C > 0 and τ0 > 0 such that for any N ∈ N, there exists
CN > 0 such that∣∣ tr (OpT(χ)w

)∣∣
1,1/2,τ

6 C
(∣∣BϕOpT(χ)w|xd=0+

∣∣
3/2−k,τ

+
∣∣L2OpT(χ)w|xd=0+

∣∣
1/2,τ

)
+ CN | tr(w)|1,−N,τ ,

for τ > max(τ0, κ0σ) and w ∈ S (Rd+).

The proof of Lemma 6.10 relies on the Lopatinskĭı-Šapiro condition. The following
lemma gives an estimate for L1.

Lemma 6.11. — Let χ ∈ S0
T,τ , homogeneous of degree 0, be such that supp(χ) ⊂ U

and s ∈ R. There exist C > 0, τ0 > 0 and N ∈ N such that

‖OpT(χ)w‖1,s,τ + |OpT(χ)w|xd=0+ |
s+1/2,τ

6 C
(
‖L1OpT(χ)w‖0,s,τ + ‖w‖0,−N,τ

)
,

for w ∈ S (Rd+) and τ > max(τ0, κ0σ).
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The proof of Lemma 6.11 is based on a multiplier method and relies on the fact
that the root πj,1 that appears in the principal symbol of L1 lies in the lower complex
half-plane.

The following lemma gives an estimate for L2.

Lemma 6.12. — Let χ ∈ S0
T,τ , homogeneous of degree 0, be such that supp(χ) ⊂ U

and s ∈ R. There exist C > 0, τ0 > 0 and N ∈ N such that

‖OpT(χ)w‖1,s,τ 6 C
(
‖L2OpT(χ)w‖0,s,τ + |OpT(χ)w|xd=0+ |

s+1/2,τ
+ ‖w‖0,−N,τ

)
,

for w ∈ S (Rd+) and τ > max(τ0, κ0σ).

Note that this estimate is weaker than that of Lemma 6.11. Observing that

L1OpT(χ)L2 = OpT(χ)L1L2 mod Ψ1,0
τ

= OpT(χ)Qjσ,ϕ mod Ψ1,0
τ ,

and applying Lemma 6.11 to w = L2v with s = 0, one obtains

‖OpT(χ)L2v‖1,τ + |OpT(χ)L2v|xd=0+ |
1/2,τ

. ‖L1OpT(χ)L2v‖+ + ‖v‖1,−N,τ

. ‖Qjσ,ϕv‖+ + ‖v‖1,τ ,

for τ > κ0σ chosen sufficiently large. We set u = OpT(χ)v, and using the trace
inequality

|w|xd=0+ |
s,τ
. ‖w‖s+1/2,τ , w ∈ S (Rd+) and s > 0,

we have

‖L2u‖1,τ + |L2u|xd=0+ |
1/2,τ

. ‖OpT(χ)L2v‖1,τ + |OpT(χ)L2v|xd=0+ |
1/2,τ

+ ‖v‖1,τ + |v|xd=0+ |
1/2,τ

. ‖OpT(χ)L2v‖1,τ + |OpT(χ)L2v|xd=0+ |
1/2,τ

+ ‖v‖1,τ .

Therefore, we obtain

‖L2u‖1,τ + |L2u|xd=0+ |
1/2,τ

. ‖Qjσ,ϕv‖+ + ‖v‖1,τ .

With Lemma 6.10, one has the estimate∣∣ tr(u)
∣∣
1,1/2,τ

+ ‖L2u‖1,τ . |Bϕu|xd=0+ |
3/2−k,τ + ‖Qjσ,ϕv‖+ + ‖v‖2,−1,τ ,

for τ > κ0σ chosen sufficiently large using the following trace inequality

| tr(w)|m,s,τ . ‖w‖m+1,s−1/2,τ , w ∈ S (Rd+) and m ∈ N, s ∈ R.

With Lemma 6.12 for s = 1 one obtains

‖u‖1,1,τ +
∣∣ tr(u)

∣∣
1,1/2,τ

+ ‖L2u‖1,τ . |Bϕu|xd=0+ |
3/2−k,τ + ‖Qjσ,ϕv‖+ + ‖v‖2,−1,τ ,

for τ > κ0σ chosen sufficiently large. Finally, we write

‖Ddu‖1,τ 6 ‖L2u‖1,τ + ‖OpT(χ̃πj,2)u‖1,τ . ‖L2u‖1,τ + ‖u‖1,1,τ ,

yielding

‖u‖2,τ +
∣∣ tr(u)

∣∣
1,1/2,τ

. |Bϕu|xd=0+ |
3/2−k,τ + ‖Qjσ,ϕv‖+ + ‖v‖2,−1,τ .
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As u = OpT(χ)v, with a commutator argument we obtain

|Bϕu|xd=0+ |
3/2−k,τ . |Bϕv|xd=0+ |

3/2−k,τ + | tr(v)|1,−1/2,τ

. |Bϕv|xd=0+ |
3/2−k,τ + ‖v‖2,−1,τ .

yielding (6.5) and thus concluding the proof of Proposition 6.9 in Case (i). �

We now provide the proofs the three key lemmas used above.

Proof of Lemma 6.10. — Set

T(w) = |Bϕw|xd=0+ |2
3/2−k,τ + |L2w|xd=0+ |2

1/2,τ

= |Λ3/2−k
T,τ Bϕw|xd=0+ |

2

∂
+ |Λ1/2

T,τ L2w|xd=0+ |
2

∂
.

This is a boundary differential quadratic form of type (1, 1/2) in the sense of Defini-
tion 2.4. The associated bilinear symbol is given by

ΣT(%′, z, z′) = λ3−2k
T,τ

(
b̂kϕ(x, ξ′, τ)z0

+ bk−1
ϕ (x, ξ′, τ)z1

)(
b̂kϕ(x, ξ′, τ)z′0 + bk−1

ϕ (x, ξ′, τ)z′1
)

+ λT,τ

(
z1 − χ̃πj,2(%′)z0

)(
z′1 − χ̃πj,2(%′)z′0

)
,

with z = (z0, z1) ∈ C2 and z′ = (z′0, z
′
1) ∈ C2, yielding

ΣT(%′, z, z) = λ3−2k
T,τ

∣∣̂bkϕ(x, ξ′, τ)z0 + bk−1
ϕ (x, ξ′, τ)z1

∣∣2 + λT,τ

∣∣z1 − χ̃πj,2(%′)z0

∣∣2.
One has ΣT(%′, z, z) > 0. For z 6= (0, 0) if ΣT(%′, z, z) = 0 then{

z1 = χ̃πj,2(%′)z0,

b̂kϕ(x, ξ′, τ)z0 + bk−1
ϕ (x, ξ′, τ)z1 = 0,

implying that z0 6= 0 and

bϕ
(
x, ξ′, ξd = χ̃πj,2(%′), τ

)
= b̂kϕ(x, ξ′, τ) + bk−1

ϕ (x, ξ′, τ)χ̃πj,2(%′) = 0.

Let U1 ⊂ U be a conic open set such that supp(χ) ⊂ U1 and χ̃ = 1 in a conic
neighborhood of U1. Then, for %′ ∈ U1 one has

bϕ
(
x, ξ′, ξd = χ̃πj,2(%′), τ

)
= bϕ

(
x, ξ′, ξd = πj,2(%′), τ

)
6= 0,

by (6.8). From the homogeneity of bk−1
ϕ (x, ξ′, τ) and b̂kϕ(x, ξ′, τ) in %′, it follows that

there exists some C > 0 such that

ΣT(%′, z, z) > C
(
λ3

T,τ |z0|2 + λT,τ |z1|2
)
,

if %′ ∈ U1. The result of Lemma 6.10 thus follows from Proposition 2.6, having in
mind what is exposed in Section 2.5 since we have τ > κ0σ here. �
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Proof of Lemma 6.11. — We let u = OpT(χ)w. Performing an integration by parts,
one has

2 Re
(
L1u, iΛ

2s+1
T,τ u

)
+

= 2 Re
((
Dd −OpT(χ̃πj,1)

)
u, iΛ2s+1

T,τ u
)

+

= Re
(
i
(
Λ2s+1

T,τ OpT(χ̃πj,1)−OpT(χ̃πj,1)∗Λ1
T,τ

)
u, u

)
+

+ Re(Λ2s+1
T,τ u|xd=0+ , u|xd=0+)∂ .

Note that Re(Λ2s+1
T,τ u|xd=0+ , u|xd=0+)∂ = |u|xd=0+ |2

s+1/2,τ
.

Next, the operator i
(
Λ2s+1

T,τ OpT(χ̃πj,1) − OpT(χ̃πj,1)∗Λ2s+1
T,τ

)
has the following real

principal symbol
ϑ(%′) = −2 Imπj,1(%′)λ2s+1

T,τ ,

and since Imπj,1(%′) 6 −C1λT,τ < 0 in U one obtains ϑ(%′) & λ2s+2
T,τ in U . Since U

is neighborhood of supp(χ), the microlocal Gårding inequality of [31, Th. 2.49] (the
proof adapts to the case with parameter σ as explained in Section 2.5 since σ . τ)
yields

2 Re
(
L1u, iΛ

2s+1
T,τ u

)
+
> |u|xd=0+ |2

s+1/2,τ
+ C‖Λs+1

T,τ u‖
2

+
− CN‖w‖20,−N,τ ,

for τ > κ0σ chosen sufficiently large. With the Young inequality one obtains

|
(
L1u, iΛ

2s+1
T,τ u

)
+
| . 1

ε
‖ΛsT,τL1u‖2+ + ε‖Λs+1

T,τ u‖
2

+
,

which yields for ε chosen sufficiently small,

(6.9) |u|xd=0+ |
s+1/2,τ

+ ‖u‖0,s+1,τ . ‖L1u‖0,s,τ + ‖w‖0,−N,τ .

Finally, we write

(6.10) ‖Ddu‖0,s,τ 6 ‖L1u‖0,s,τ + ‖OpT(χ̃πj,1)u‖0,s,τ . ‖L1u‖0,s,τ + ‖u‖0,s+1,τ .

Putting together (6.9) and (6.10), the result of Lemma 6.11 follows. �

Proof of Lemma 6.12. — We let u = OpT(χ)w. Performing an integration by parts,
one has

2 Re
(
L2u,−iΛ2s+1

T,τ u
)

+
= 2 Re

((
Dd −OpT(χ̃πj,2)

)
u,−iΛ2s+1

T,τ u
)

+

= Re
(
i
(
OpT(χ̃πj,2)∗Λ1

T,τ − Λ2s+1
T,τ OpT(χ̃πj,2)

)
u, u

)
+

− Re(Λ2s+1
T,τ u|xd=0+ , u|xd=0+)∂ .

Note that Re(Λ2s+1
T,τ u|xd=0+ , u|xd=0+)∂ = |u|xd=0+ |2

s+1/2,τ
.

Next, the operator i
(
OpT(χ̃πj,2)∗Λ2s+1

T,τ − Λ2s+1
T,τ OpT(χ̃πj,2)

)
has the following real

principal symbol
ϑ(%′) = 2 Imπj,2(%′)λ2s+1

T,τ ,

and since Imπj,2(%′) > C2λT,τ > 0 in U one obtains ϑ(%′) & λ2s+2
T,τ in U . Since U

is neighborhood of supp(χ), the microlocal Gårding inequality of [31, Th. 2.49] (the
proof adapts to the case with parameter σ as explained in Section 2.5 since σ . τ)
yields

2 Re
(
L2u, iΛ

2s+1
T,τ u

)
+
> −|u|xd=0+ |2

s+1/2,τ
+ C‖Λs+1

T,τ u‖
2

+
− CN‖w‖20,−N,τ ,
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for τ > κ0σ chosen sufficiently large. The end of the proof is then similar to that of
Lemma 6.11. �

6.3.2. Case (ii): one real root. — One has Imπj,2(%0′) = 0 and Imπj,1(%0′) < 0.
Since the Lopatinskĭı-Šapiro condition holds for (Qjσ, B, ϕ) at %0′, by Lemma 6.8

one has

bϕ(x0, ξ0′, ξd = πj,2(%0′), τ0) = b
(
x0, ξ0′ + iτ0dx′ϕ(x0), iαj(%

0′)
)
6= 0.

As the roots πj,1 and πj,2 are locally smooth with respect to %′ = (x, ξ′, τ, σ) and
homogeneous of degree one in (ξ′, τ, σ), there exists a conic neighborhood U of %0′ in
W × Rd−1 × [0,+∞)× [0,+∞) and C1 > 0, C2 > 0 such that

SU = {%′ ∈ U | |ξ′|2 + τ2 + σ2 = 1}

is compact and

τ > κ0σ, πj,1(%′) 6= πj,2(%′),

Imπj,2(%′) > −C2λT,τ , and Imπj,1(%′) 6 −C1λT,τ ,

and

(6.11) bϕ(x, ξ′, ξd = πj,2(%′), τ) 6= 0,

if %′ = (x, ξ′, τ, σ) ∈ U .
We let χ ∈ S0

T,τ and χ̃ ∈ S0
T,τ be homogeneous of degree zero in the variable (ξ′, τ, σ)

and be such that supp(χ̃) ⊂ U and χ̃ ≡ 1 on supp(χ). From the smoothness and the
homogeneity of the roots, one has χ̃πj,k ∈ S1

T,τ , k = 1, 2. We set

L2 = Dd −OpT(χ̃πj,2) and L1 = Dd −OpT(χ̃πj,1).

Lemma 6.10 and Lemma 6.11 also apply in Case (ii) and we shall use them. In
addition to these two lemmas we shall need the following lemma.

Lemma 6.13. — There exist C > 0, τ0 > 0 such that

τ−1/2‖w‖2,τ 6 C
(
‖Qjσ,ϕw‖+ + | tr(w)|1,1/2,τ

)
,

for τ > max(τ0, κ0σ) and w ∈ C
∞
c (W+).

Proving Lemma 6.13 is fairly classical, based on writing Qjσ,ϕ = Qjs+iQa and on an
expansion of ‖Qjσ,ϕw‖

2

+
and some integration by parts. We provide the details in the

proof below as the occurrence of the parameter σ is not that classical. Lemma 6.13
expresses the loss of a half-derivative if one root, here πj,2, is real.

Observing that

L1OpT(χ)L2 = OpT(χ)L1L2 mod Ψ1,0
τ

= OpT(χ)Qjσ,ϕ mod Ψ1,0
τ ,
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and applying Lemma 6.11 to w = L2v, one obtains

|OpT(χ)L2v|xd=0+ |
1/2,τ

. ‖L1OpT(χ)L2v‖+ + ‖v‖1,−N,τ

. ‖Qjσ,ϕv‖+ + ‖v‖1,τ ,

for τ > κ0σ chosen sufficiently large. We set u = OpT(χ)v, and using the trace
inequality

|w|xd=0+ |
s,τ
. ‖w‖s+1/2,τ , w ∈ S (Rd+) and s > 0,

we have

|L2u|xd=0+ |
1/2,τ

. |OpT(χ)L2v|xd=0+ |
1/2,τ

+ |v|xd=0+ |
1/2,τ

. |OpT(χ)L2v|xd=0+ |
1/2,τ

+ ‖v‖1,τ .

Therefore, we obtain

|L2u|xd=0+ |
1/2,τ

. ‖Qjσ,ϕv‖+ + ‖v‖1,τ .

On the one hand, together with Lemma 6.10, one has the estimate

(6.12)
∣∣ tr(u)

∣∣
1,1/2,τ

. |Bϕu|xd=0+ |
3/2−k,τ + ‖Qjσ,ϕv‖+ + ‖v‖2,−1,τ ,

for τ > κ0σ chosen sufficiently large using the following trace inequality

| tr(w)|m,s,τ . ‖w‖m+1,s−1/2,τ , w ∈ S (Rd+) and m ∈ N, s ∈ R.

On the other hand, with Lemma 6.13 one has

τ−1/2‖u‖2,τ . ‖Q
j
σ,ϕu‖+ + | tr(u)|1,1/2,τ ,

again for τ > κ0σ chosen sufficiently large and since [Qjσ,ϕ,OpT(χ)] ∈ Ψ1,0
τ one finds

(6.13) τ−1/2‖u‖2,τ . ‖Q
j
σ,ϕv‖+ + ‖v‖1,τ + | tr(u)|1,1/2,τ ,

Now, with ε > 0 chosen sufficiently small one computes (6.12)+ε×(6.13) and obtains

τ−1/2‖u‖2,τ + | tr(u)|1,1/2,τ . ‖Q
j
σ,ϕv‖+ + |Bϕu|xd=0+ |

3/2−k,τ + ‖v‖2,−1,τ .

As u = OpT(χ)v, with a commutator argument we obtain

|Bϕu|xd=0+ |
3/2−k,τ . |Bϕv|xd=0+ |

3/2−k,τ + | tr(v)|1,−1/2,τ

. |Bϕv|xd=0+ |
3/2−k,τ + ‖v‖2,−1,τ .

yielding (6.6) and thus concluding the proof of Proposition 6.9 in Case (ii). �

We now provide a proof of Lemma 6.13.

Proof of Lemma 6.13. — We recall that Qjσ,ϕ = Qjs + iQa, yielding

(6.14) ‖Qjσ,ϕw‖
2

+
= ‖Qjsw‖

2

+ + ‖Qaw‖2+ + 2 Re(Qjsw, iQaw)+.

With the integration by parts formula

(f,Ddg)+ = (Ddf, g)+ − i(f|xd=0+ , g|xd=0+)∂ ,

and the forms of Qjs and Qa given in (6.2) one has

(f,Qjsg)+ = (Qjsf, g)+ − i(f|xd=0+ , Ddg|xd=0+)∂ − i(Ddf|xd=0+ , g|xd=0+)∂ ,
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and
(f,Qag)+ = (Qaf, g)+ − 2τi(∂dϕf|xd=0+ , g|xd=0+)∂ ,

yielding

(Qaw,Q
j
sw)+ = (QjsQaw,w)+ − i(Qaw|xd=0+ , Ddw|xd=0+)∂

− i(DdQaw|xd=0+ , w|xd=0+)∂ ,

(Qjsw,Qaw)+ = (QaQ
j
sw,w)+ − 2iτ(∂dϕQ

j
sw|xd=0+ , w|xd=0+)∂ .

This gives

(6.15) 2 Re(Qjsw, iQaw)+ = i([Qjs, Qa]w,w)+ + τA(w),

with

(6.16) A(w) = τ−1(Qaw,Ddw)∂ + τ−1
(
(DdQa − 2τ∂dϕQ

j
s)w,w

)
∂
.

We have the following lemma adapted from Lemma 3.25 in [31].

Lemma 6.14. — The operators Qa ∈ τD1 and DdQa − 2τ∂dϕQ
j
s ∈ D3

τ can be cast in
the following forms

Qa = 2τ∂dϕDd + 2r̃(x,D′, τdx′ϕ) mod τD0,

and

DdQa − 2τ∂dϕQ
j
s = −2τ∂dϕ

(
R(x,D′) + (−1)jσ2 − (τ∂dϕ)2 − r(x, τdx′ϕ)

)
+ 2r̃(x,D′, τdx′ϕ)Dd mod τΨ1,0

τ .

With this lemma we find
A(w) = 2(∂dϕDdw|xd=0+ , Ddw|xd=0+)∂

+ 2(r̃(x,D′, dx′ϕ)w|xd=0+ , Ddw|xd=0+)∂

+ 2
(
r̃(x,D′, dx′ϕ)Ddw|xd=0+ , w|xd=0+

)
∂

− 2
(
∂dϕ

(
R(x,D′) + (−1)jσ2

)
w|xd=0+ , w|xd=0+

)
∂

+ 2
(
∂dϕ

(
(τ∂dϕ)2 + r(x, τdx′ϕ)

)
w|xd=0+ , w|xd=0+

)
∂

+ (Op(c0)w|xd=0+ , Ddw|xd=0+)∂

+
((

Op(c̃0)Dd + Op(c1)
)
w|xd=0+ , w|xd=0+

)
∂
,

(6.17)

with Op(c0),Op(c̃0) ∈ D0 and Op(c1) ∈ D1
T,τ . Observe that one has

(6.18) |A(w)| . | tr(w)|21,0,τ .

From (6.14) and (6.15) one writes

(6.19) ‖Qjσ,ϕw‖
2

+
+ τ | tr(w)|21,0,τ & ‖Q

j
sw‖

2

+ + ‖Qaw‖2+ + Re(i[Qjs, Qa]w,w)+.

We now use the following lemma whose proof is given below.
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Lemma 6.15. — There exists C,C ′ > 0, µ > 0 and τ0 > 0 such that

µ
(
‖Qjsw‖

2

+ + ‖Qaw‖2+
)

+ τ Re(i[Qjs, Qa]w,w)+ > C‖w‖22,τ − C
′| tr(w)|21,1/2,τ ,

for τ > max(τ0, κ0σ) and w ∈ C
∞
c (W+)

Let µ > 0 be as in Lemma 6.15 and let τ > 0 be such that µτ−1 6 1. From (6.19)
one then writes

‖Qjσ,ϕw‖
2

+
+ τ | tr(w)|21,0,τ & τ

−1
(
µ
(
‖Qjsw‖

2

+ + ‖Qaw‖2+
)

+ iτ([Qjs, Qa]w,w)+

)
,

which with Lemma 6.15 yields the result of Lemma 6.13 using that τ | tr(w)|1,0,τ .
| tr(w)|1,1/2,τ . �

Proof of Lemma 6.15. — One has [Qjs, Qa] ∈ τD2
τ . Writing

τ Re
(
i[Qjs, Qa]w,w

)
+

= Re
(
iτ−1[Qjs, Qa]w, τ2w

)
+
,

it can be seen as a interior differential quadratic form of type (2, 0) as in Definition 2.1.
Therefore

T (w) = µ
(
‖Qjsw‖

2

+ + ‖Qaw‖2+
)

+ τ Re
(
i[Qjs, Qa]w,w

)
+

is also an interior differential quadratic form of this type with principal symbol given
by

t(%) = µ|qjσ,ϕ(%)|2 + τ{qjs, qa}(%), % = (x, ξ, τ, σ).

Let τ0 > 0. By Lemma 6.4, the sub-ellipticity property of (Qjσ, ϕ) implies

t(%) & λ4
τ , % ∈W × Rd × [0,+∞)× [0,+∞), τ > τ0σ,

for µ > 0 chosen sufficiently large. The Gårding inequality of proposition 2.3 yields

T (w) > C‖w‖22,τ − C ′| tr(w)|21,1/2,τ ,

for some C,C ′ > 0 and for τ > κ0σ chosen sufficiently large. �

6.3.3. Case (iii): both roots lying in the lower complex half-plane. — The result in the
present case is a simple consequence of the general result given in Lemma A.1 whose
proof can be found in [8]. In the second order case however, the proof does not require
the same level of technicality.

One has Imπj,1(%0′) < 0 and Imπj,2(%0′) < 0. As the roots πj,1 and πj,2 depend
continuously on the variable %′ = (x, ξ′, τ, σ), there exists a conic open neighborhood
U of %0′ in W × Rd−1 × [0,+∞)× [0,+∞) and C0 > 0 such that

τ > κ0σ, Imπj,1(%′) 6 −C0λT,τ , and Imπj,2(%′) 6 −C0λT,τ ,

if %′ = (x, ξ′, τ, σ) ∈ U .
Let χ ∈ S0

T,τ be as in the statement of Proposition 6.9 and set u = OpT(χ)v.
We recall that Qjσ,ϕ = Qjs + iQa, yielding

‖Qjσ,ϕu‖
2

+
= ‖Qjsu‖

2

+ + ‖Qau‖2+ + 2 Re(Qjsu, iQau)+.
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We set L(u) = ‖Qjsu‖
2

+ + ‖Qau‖2+. This is an interior differential quadratic form in
the sense of Definition 2.1. Its principal symbol is given by

`(%) = (qjs)(%)2 + qa(%)2, % = (x, ξ, τ, σ).

For ε ∈ (0, 1) we write

(6.20) ‖Qjσ,ϕu‖
2

+
> εL(u) + 2 Re(Qjsu, iQau)+.

For concision we write % = (%′, ξd) with %′ = (x, ξ′, τ, σ). The set

L = {% = (%′, ξd) | %′ ∈ U , ξd ∈ R, and |ξ|2 + τ2 + σ2 = 1}

is compact recalling that W is bounded. On L one has |qjσ,ϕ(%)| > C > 0. By homo-
geneity one has

(6.21) |qjσ,ϕ(%)| & λ2
τ , %′ ∈ U , ξd ∈ R, if τ > τ0σ,

for some τ0 > 0. Therefore

(6.22) `(%) & λ4
τ , %′ ∈ U , ξd ∈ R, if τ > τ0σ.

By the Gårding inequality of Proposition 2.2 one obtains

(6.23) ReL(u) > C‖u‖22,τ − C
′| tr(u)|21,1/2 − CN‖v‖

2
2,−N,τ ,

for τ > κ0σ chosen sufficiently large.
From the proof of Lemma 6.13 one has

(6.24) 2 Re(Qjsu, iQau)+ = i([Qjs, Qa]u, u)+ + τA(u)

with the boundary quadratic form A given in (6.16)–(6.17).
On the one hand, one has [Qjs, Qa] ∈ τD2

τ and therefore

(6.25) |Re([Qjs, Qa]u, u)+| . τ‖u‖22,−1,τ . τ
−1‖u‖22,τ .

On the other hand, we have the following lemma that provides a microlocal positivity
property for the boundary quadratic form A. A proof is given below.

Lemma 6.16. — There exist C,CN and τ0 > 0 such that

τ ReA(u) > C| tr(u)|21,1/2,τ − CN | tr(v)|21,−N,τ , for u = OpT(χ)v,

for τ > max(τ0, κ0σ).

With (6.24)–(6.25), and Lemma 6.16 one obtains

2 Re(Qjsu, iQau)+ > C| tr(u)|21,1/2,τ − C
′τ−1‖u‖22,τ − CN | tr(v)|21,−N,τ

> C| tr(u)|21,1/2,τ − C
′τ−1‖u‖22,τ − C

′
N‖v‖

2
2,−N,τ ,(6.26)

with a trace inequality, for τ > κ0σ chosen sufficiently large.
With (6.20), (6.23), and (6.26) one obtains

‖Qjσ,ϕu‖
2

+
> εC‖u‖22,τ − C

′ε| tr(u)|21,1/2 − CNε‖v‖
2
2,−N,τ

+ C| tr(u)|21,1/2,τ − C
′τ−1‖u‖22,τ − C

′
N‖v‖

2
2,−N,τ .
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With ε chosen sufficiently small and τ > κ0σ sufficiently large one obtains for any
N ∈ N

‖u‖2,τ + | tr(u)|1,1/2,τ . ‖Q
j
σ,ϕu‖+ + ‖v‖2,−N,τ .

With a commutator argument, as u = OpT(χ)v one finds ‖Qjσ,ϕu‖+ . ‖Q
j
σ,ϕv‖+ +

‖v‖2,−1,τ , yielding estimate (6.7) and thus concluding the proof of Proposition 6.9 in
Case (iii). �

Proof of Lemma 6.16. — With (6.17) one sees that it suffices to consider the following
boundary quadratic form

Ã(w) = 2(∂dϕDdw|xd=0+ , Ddw|xd=0+)∂

+ 2(r̃(x,D′, dx′ϕ)w|xd=0+ , Ddw|xd=0+)∂

+ 2
(
r̃(x,D′, dx′ϕ)Ddw|xd=0+ , w|xd=0+

)
∂

− 2
(
∂dϕ

(
R(x,D′) + (−1)jσ2

)
w|xd=0+ , w|xd=0+

)
∂
,

+ 2
(
∂dϕ

(
(τ∂dϕ)2 + r(x, τdx′ϕ)

)
w|xd=0+ , w|xd=0+

)
∂
,

in place of A. It is of type (1, 0) in the sense of Definition 2.4. Its principal symbol is
given by a0(%′, ξd, ξ

′
d) = (1, ξd)A(%′) t(1, ξd) with

A(%′) = 2

(
A11(%′) r̃(x, ξ′, dx′ϕ)|xd=0+

r̃(x, ξ′, dx′ϕ)|xd=0+ ∂dϕ|xd=0+

)
,

where

A11(%′) = −(∂dϕ)
(
r(x, ξ′) + (−1)jσ2 − (τ∂dϕ)2 − r(x, τdx′ϕ)

)
|xd=0+

with %′ = (x, ξ′, τ, σ). The associated bilinear symbol introduced in (2.4) is given by

ΣA(%′, z, z′) = zA(%′) tz′, z = (z0, z1) ∈ C2, z′ = (z′0, z
′
1) ∈ C2.

One computes

detA(%′) = −4
(

(∂dϕ)2
(
r(x, ξ′) + (−1)jσ2 − (τ∂dϕ)2

− r(x, τdx′ϕ)
)

+ r̃(x, ξ′, dx′ϕ)2
)
|xd=0+

.

With Lemma 4.3 one sees that Imπj,2 < 0 is equivalent to having detA(%′) > 0.
We thus have

detA(%′) > C > 0, for %′ = (x, ξ′, τ, σ) ∈ SU ,

with SU = {%′ ∈ U | ξd ∈ R, |ξ|2 + τ2 + σ2 = 1} since SU is compact. Since
∂dϕ|xd=0+ > C ′ > 0 then one finds that

Re ΣA(%′, z, z) > C(|z0|2 + |z1|2), %′ = (x, ξ′, τ, σ) ∈ U , |(ξ′, τ, σ)| = 1.

By homogeneity one obtains

Re ΣA(%′, z, z) > C(λ2
T,τ |z0|2 + |z1|2), %′ = (x, ξ′, τ, σ) ∈ U , |(ξ′, τ, σ)| > 1.
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With Proposition 2.6, having in mind what is exposed in Section 2.5 since we have
τ > κ0σ here, one obtains

Re Ã(u) > C| tr(u)|21,0,τ − CN | tr(v)|21,−N,τ , for u = OpT(χ)v,

for τ > κ0σ chosen sufficiently large.
Here, we have Imπj,2 < 0 and thus |ξ′| . τ by Lemma 4.6. Thus one has

τ | tr(u)|21,0,τ & | tr(u)|21,1/2,τ − | tr(v)|21,−N,τ ,

by the microlocal Gårding inequality, for instance invoking Proposition 2.6 for a
boundary quadratic form of type (1, 1/2). This concludes the proof. �

7. Local Carleman estimate for the fourth-order operator

In Proposition 5.1, we proved that a norm of all traces at the boundary could
be estimates from the values taken by the boundary operators. That result relied
on the Lopatinskĭı-Šapiro condition. Here we aim to moreover estimate a volume
norm. The strategy is to estimate this norm from all traces at the boundary and not
from the boundary operators. The proof is then much simpler. Yet combined with
Proposition 5.1 an estimation of both volume and trace norms will be obtained from
the the values taken by the boundary operators.

7.1. A first estimate

Proposition 7.1. — Let κ′0 > κ′1 > κ1 > κ0 > 0. Let x0 ∈ ∂Ω, with Ω locally
given by {xd > 0} and let W be a bounded open neighborhood of x0 in Rd. Let ϕ
be such that ∂dϕ > C > 0 in W and such that (Qjσ, ϕ) satisfies the sub-ellipticity
condition in W for both j = 1 and 2. Let %0′ = (x0, ξ0′, τ0, σ0) with (ξ0′, τ0, σ0) ∈
Rd−1 × [0,+∞)× [0,+∞) nonvanishing with κ1σ

0 6 τ0 6 κ′1σ
0.

Then, there exists a conic neighborhood U of %0′ in W ×Rd−1× [0,+∞)× [0,+∞)

where κ0σ 6 τ 6 κ′0σ such that if χ ∈ S0
T,τ , homogeneous of degree 0 in (ξ′, τ, σ) with

supp(χ) ⊂ U , there exist C > 0 and τ0 > 0 such that

(7.1) τ−1/2‖OpT(χ)v‖4,τ 6 C
(
‖Pσ,ϕv‖+ + | tr(v)|3,1/2,τ + ‖v‖4,−1,τ

)
,

for τ > τ0, κ0σ 6 τ 6 κ′0σ, and v ∈ C
∞
c (W+).

The proof of Proposition 7.1 is based on the microlocal results of Proposition 6.9.

Remark 7.2. — An important aspect is that here we have σ & τ ; it is key to have
only a loss of a half-derivative. Losses are due to lack of ellipticity, that is, having
root(s) of pσ,ϕ lying on the real axis. If σ = 0 the operator is a square and two roots
can lie and the real axis yielding a loss of a full derivative.

Note that the issue of having two potential roots on the real axis and thus a loss
of a full derivative is independent of the choice of boundary operators.

Having σ > 0 implies that only one root of pσ,ϕ can lie on the real axis. In the
proof we shall write Pσ as a factor of two operators and we apply the Carleman
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estimates of Proposition 7.1 to each one. Each estimates exhibits a loss of a half-
derivative. If naively concatenated the two estimates indeed yield a Carleman estimate
with a loss of a full derivative. In fact the loss of each estimate occurs in different
microlocal regions and a microlocal concatenation allows one to have a loss of only a
half derivative.

Having σ > 0 was not sufficient for us to separate microlocal regions if τ increases
because of homogeneity issues. This explains the introduction of the condition is
σ & τ . We do not exclude that σ > 0 could suffice to reach a similar estimate; we
could not prove it.

Proof. — We shall concatenate the estimates of Proposition 6.9 for Q1
σ,ϕ and Q2

σ,ϕ

with the boundary operator B simply given by the Dirichlet trace operator,

Bu|xd=0+ = u|xd=0+ .

One has b(x, ξ) = 1 and bϕ(x, ξ′, ξd, τ) = 1. Since ∂dϕ > 0 then Imπj,1 < 0. Thus,
either qj,+σ,ϕ(x, ξ′, ξd, τ) = 1 or qj,+σ,ϕ(x, ξ′, ξd, τ) = ξd − πj,2. With Lemma 6.8 one sees
that the Lopatinskĭı-Šapiro holds for (Q1

σ,ϕ, B, ϕ) and (Q2
σ,ϕ, B, ϕ) at %0′.

Proposition 6.9 thus applies. Let Uj be the conic neighborhood of %0′ obtained
invoking this proposition for Qjσ,ϕ, for j = 1 or 2. In Uj one has τ > κ0σ. We set

U = U1 ∩U2 ∩ {τ 6 κ′0σ},

and we consider χ ∈ S0
T,τ , homogeneous of degree 0 in (ξ′, τ, σ) with supp(χ) ⊂ U .

Since in U one has σ > 0 then π1,2 and π2,2 cannot be both real by Lemma 4.7.
Proposition 6.9 thus implies that we necessarily have the following two estimates

(7.2) τ−`1‖OpT(χ)w‖2,τ . ‖Q
1
σ,ϕw‖+ + |w|xd=0+ |

3/2,τ
+ ‖w‖2,−1,τ ,

and

(7.3) τ−`2‖OpT(χ)w‖2,τ . ‖Q
2
σ,ϕw‖+ + |w|3/2,τ + ‖w‖2,−1,τ ,

with either (`1, `2) = (1/2, 0) or (`1, `2) = (0, 1/2), for w ∈ C
∞
c (W+) and τ > κ0σ

chosen sufficiently large.
Let us assume that (`1, `2) = (1/2, 0). The other case can be treated similarly.

Writing Pσ,ϕ = Q2
σ,ϕQ

1
σ,ϕ, with (7.3) one has

‖OpT(χ)Q1
σ,ϕv‖2,τ . ‖Pσ,ϕv‖+ + |Q1

σ,ϕv|xd=0+ |
3/2,τ

+ ‖v‖4,−1,τ

. ‖Pσ,ϕv‖+ + | tr(v)|2,3/2,τ + ‖v‖4,−1,τ .

Since [OpT(χ), Q1
σ,ϕ] ∈ Ψ1,0

τ one finds

(7.4) ‖Q1
σ,ϕOpT(χ)v‖

2,τ
. ‖Pσ,ϕv‖+ + | tr(v)|3,1/2,τ + ‖v‖4,−1,τ .

For k = 0, 1 or 2, one writes

‖Q1
σ,ϕOpT(χ)Dk

dΛ2−k
T,τ v‖+ + | tr(OpT(χ)Dk

dΛ2−k
T,τ v)|

1,1/2,τ
+ ‖OpT(χ)Dk

dΛ2−k
T,τ v‖2,−1,τ

. ‖Q1
σ,ϕOpT(χ)v‖

2,τ
+ | tr(v)|3,1/2,τ + ‖v‖4,−1,τ ,

since [Q1
σ,ϕOpT(χ), Dk

dΛ2−k
T,τ ] ∈ Ψ4,−1

τ .
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Let χ̃ ∈ S0
T,τ be homogeneous of degree zero in the variable (ξ′, τ, σ) and be such

that supp(χ̃) ⊂ U and χ̃ ≡ 1 on a neighborhood of supp(χ). With (7.2), from (7.4)
one thus obtains

τ−1/2‖OpT(χ̃)OpT(χ)Dk
dΛ2−k

T,τ v‖2,τ . ‖Pσ,ϕv‖+ + | tr(v)|3,1/2,τ + ‖v‖4,−1,τ .

Since OpT(χ̃)OpT(χ)Dk
dΛ2−k

T,τ = Λ2−k
T,τ D

k
dOpT(χ) mod Ψ2,−1

τ one deduces

τ−1/2‖Dk
dOpT(χ)v‖2,2−k,τ . ‖Pσ,ϕv‖+ + | tr(v)|3,1/2,τ + ‖v‖4,−1,τ .

Using that k = 0, 1 or 2, the result follows. �

Consequence of this microlocal result is the following local result by means of a
patching procedure as for the proof of Proposition 5.1 in Section 5.2.

Proposition 7.3. — Let κ′0 > κ0 > 0. Let x0 ∈ ∂Ω, with Ω locally given by {xd > 0}
and letW be a bounded open neighborhood of x0 in Rd. Let ϕ be such that ∂dϕ > C > 0

in W and such that (Qjσ, ϕ) satisfies the sub-ellipticity condition in W for both j = 1

and 2.
Then, there exists a neighborhood W 0 of x0, C > 0, τ0 > 0 such that

(7.5) τ−1/2‖v‖4,τ 6 C
(
‖Pσ,ϕv‖+ + | tr(v)|3,1/2,τ

)
,

for τ > τ0, κ0σ 6 τ 6 κ′0σ, and v ∈ C
∞
c (W+).

7.2. Final estimate. — Combining the local results of Section 5 for the estimation
of the boundary norm under the Lopatinskĭı-Šapiro condition and the previous local
result without any prescribed boundary condition we obtain the Carleman estimate
of Theorem 1.2. For a precise statement we write the following theorem.

Theorem 7.4 (local Carleman estimate for Pσ). — Let κ′0 > κ0 > 0. Let x0 ∈ ∂Ω,
with Ω locally given by {xd > 0} and let W be a bounded open neighborhood of x0

in Rd. Let ϕ be such that ∂dϕ > C > 0 in W and such that (Qjσ, ϕ) satisfies the
sub-ellipticity condition in W for both j = 1 and 2.

Assume that (Pσ, B1, B2, ϕ) satisfies the Lopatinskĭı-Šapiro condition of Defini-
tion 4.1 at %′ = (x0, ξ′, τ, σ) for all (ξ′, τ, σ) ∈ Rd−1 × [0,+∞) × [0,+∞) such that
τ > κ0σ.

Then, there exists a neighborhood W 0 of x0, C > 0, τ0 > 0 such that

(7.6) τ−1/2‖eτϕu‖4,τ + | tr(eτϕu)|3,1/2,τ

6 C
(
‖eτϕPσu‖+ +

2∑
j=1

|eτϕBjv|xd=0+ |
7/2−kj ,τ

)
,

for τ > τ0, κ0σ 6 τ 6 κ′0σ, and u ∈ C
∞
c (W 0

+).

The notation of the function space C
∞
c (W 0

+) is introduced in (1.6). For the appli-
cation of this theorem, one has to design a weight function that yields the two impor-
tant properties: sub-ellipticity and the Lopatinskĭı-Šapiro condition. Sub-ellipticity is
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obtained by means of Proposition 6.3; the Lopatinskĭı-Šapiro condition by means of
Proposition 4.2.

Proof of Theorem 7.4. — The assumption of the theorem allows one to invoke both
Propositions 5.1 and 7.3 yielding the existence of a neighborhood W 0 of x0 where, by
Proposition 5.1, one has

(7.7) | tr(v)|3,1/2,τ . ‖Pσ,ϕv‖+ +

2∑
j=1

|Bj,ϕv|xd=0+ |
7/2−kj ,τ

+ ‖v‖4,−1,τ ,

for σ > 0, τ > max(τ1, κ0σ) for some τ1 > 0 and v ∈ C
∞
c (W 0

+). With the Proposi-
tion 7.3 one also has
(7.8) τ−1/2‖v‖4,τ . ‖Pσ,ϕv‖+ + | tr(v)|3,1/2,τ ,

for τ > τ ′1 and κ0σ 6 τ 6 κ′0σ for some τ ′1 > 0.
Consider σ > 0 and τ > max(τ1, τ

′
1) such that κ0σ 6 τ 6 κ′0σ. Combined together

(7.7) and (7.8) yield

τ−1/2‖v‖4,τ + | tr(v)|3,1/2,τ . ‖Pσ,ϕv‖+ +

2∑
j=1

|Bj,ϕv|xd=0+ |
7/2−kj ,τ

+ ‖v‖4,−1,τ .

Since ‖v‖4,−1,τ � τ−1/2‖v‖4,τ for τ large one obtains

τ−1/2‖v‖4,τ + | tr(v)|3,1/2,τ . ‖Pσ,ϕv‖+ +

2∑
j=1

|Bj,ϕv|xd=0+ |
7/2−kj ,τ

.

If we set v = eτϕu then the conclusion follows. �

8. Global Carleman estimate and observability

Using the local Carleman estimate of Theorem 7.4 we prove a global version of
this estimate. This allows us to obtain an observability inequality with observation in
some open subset O of Ω. In turn in Section 10 we use this latter inequality to obtain
a resolvent estimate for the plate semigroup generator that allows one to deduce a
stabilization result for the damped plate equation.

8.1. A global Carleman estimate. — Assume that the Lopatinskĭı-Šapiro condition
of Definition 3.1 holds for (P0, B1, B2) on ∂Ω.

Let O0,O1,O be open sets such that O0 b O1 b O b Ω. With Proposition 3.31
and Remark 3.32 in [31] there exists ψ ∈ C∞(Ω) such that

(1) ψ = 0 and ∂νψ < −C0 < 0 on ∂Ω;
(2) ψ > 0 in Ω;
(3) dψ 6= 0 in Ω r O0.

Then, by Proposition 6.3, for γ chosen sufficiently large, one finds that ϕ = exp(γψ)

is such that a
(1) ϕ = 1 and ∂νϕ < −C0 < 0 on ∂Ω;
(2) ϕ > 1 in Ω;
(3) (Qjσ, ϕ) satisfies the sub-ellipticity condition in ΩrO0, for j = 1, 2, for τ > τ0σ

for τ0 chosen sufficiently large.
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Then, with Proposition 4.2, for κ0 > 0 chosen sufficiently large one finds that the
Lopatinskĭı-Šapiro condition holds for (Pσ, B1, B2, ϕ) at any (x, ξ′, τ, σ) for any x ∈
∂Ω, ξ′ ∈ T ∗x∂Ω ' Rd−1, τ > 0, and σ > 0 such that τ > κ0σ, for κ0 chosen sufficiently
large, using that ∂Ω is compact.

Thus for any x ∈ ∂Ω the local estimate of Theorem 7.4 applies. A similar result
applies in the neighborhood of any point of Ω r O0.

With the weight function ϕ constructed above, following the patching procedure
described in the proof of Theorem 3.34 in [31], one obtains the following global esti-
mate

(8.1) τ−1/2‖eτϕu‖4,τ + | tr(eτϕu)|3,1/2,τ

. ‖eτϕPσu‖L2(Ω) +

2∑
j=1

|eτϕBju|∂Ω|7/2−kj ,τ + τ−1/2‖eτϕχ0u‖4,τ ,

for τ > τ0, κ0σ 6 τ 6 κ′0σ, and u ∈ C∞(Ω), and where χ0 ∈ C∞c (O) such that
χ0 ≡ 1 in a neighborhood of O1. Here, ‖.‖s,τ and |.|s,τ , the Sobolev norms with the
large parameter τ , are understood in Ω and ∂Ω respectively.

Remark 8.1. — Observe that inequality (8.1) also holds for third-order perturbations
of Pσ. Below, we shall use it for a second-order perturbation

Pσ − iσ2α = ∆2 − σ4 − iσ2α.

8.2. Observability inequality. — By density one finds that inequality 8.1 holds for
u ∈ H4(Ω). Let C0 > supΩ ϕ− 1. Since 1 6 ϕ 6 supΩ ϕ one obtains

(8.2) ‖u‖H4(Ω) . e
C0τ
(
‖Pσu‖L2(Ω) +

2∑
j=1

|Bju|∂Ω|H7/2−kj (∂Ω)
+ ‖u‖H4(O1)

)
,

for τ > τ0, κ0σ 6 τ 6 κ′0σ.
With the ellipticity of P0 one has

‖u‖H4(O1) . ‖P0u‖L2(O) + ‖u‖L2(O),

since O1 b O. This can be proved by the introduction of a parametrix for P0. One
thus obtain

‖u‖H4(O1) . ‖Pσu‖L2(Ω) + (1 + σ4)‖u‖L2(O),

and thus with (8.2) one obtains the following observability result.

Theorem 8.2 (observability inequality). — Let Pσ = ∆2 − σ4 and let B1 and B2 be
two boundary operators of order k1 and k2 as given in Section 3.2. Assume that the
Lopatinskĭı-Šapiro condition of Definition 3.1 holds. Let O be an open set of Ω. There
exists C > 0 such that

‖u‖H4(Ω) 6 Ce
C|σ|(‖Pσu‖L2(Ω) +

2∑
j=1

|Bju|∂Ω|H7/2−kj (∂Ω)
+ ‖u‖L2(O)

)
,

for u ∈ H4(Ω).
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Remark 8.3. — With Remark 8.1 the result of Theorem 8.2 hold for Pσ = ∆2 − σ4

replaced by Pσ − iσ2α = ∆2 − σ4 − iσ2α.

9. Solutions to the damped plate equations

Here, we review some aspects of the solutions of the damped plate equation whose
form we recall from the introduction:

(9.1)


∂2
t y + Py + α(x)∂ty = 0 (t, x) ∈ R+ × Ω,

B1y|R+×∂Ω = B2u|R+×∂Ω = 0,

y|t=0 = y0, ∂ty|t=0 = y1,

where P = ∆2 and α > 0, positive on some open subset of Ω. The boundary operators
B1 and B2 of orders kj , j = 1, 2, less than or equal to 3 in the normal direction are
chosen so that

(i) the Lopatinskĭı-Šapiro condition of Definition 3.1 is fulfilled for (P,B1, B2)

on ∂Ω;
(ii) the operator P is symmetric under homogeneous boundary conditions, that is,

(9.2) (Pu, v)L2(Ω) = (u, Pv)L2(Ω),

for u, v ∈ H4(Ω) such that Bju|∂Ω = Bjv|∂Ω = 0 on ∂Ω, j = 1, 2. Examples of such
conditions are given in Section 3.5.

With the assumed Lopatinskĭı-Šapiro condition the operator

L : H4(Ω) −→ L2(Ω)⊕H7/2−k1(∂Ω)⊕H7/2−k2(∂Ω)

u 7−→ (Pu,B1u|∂Ω, B2u|∂Ω)(9.3)

is Fredholm.

(iii) We shall further assume that the Fredholm index of the operator L is zero.

The previous symmetry property gives (Pu, u)L2(Ω) ∈ R. We further assume the
following nonnegativity property:

(iv) For u ∈ H4(Ω) such that Bju|∂Ω = 0 on ∂Ω, j = 1, 2 one has

(9.4) (Pu, u)L2(Ω) > 0.

This last property is very natural to define a nonnegative energy for the plate equation
given in (9.1).

We first review some properties of the unbounded operator associated with the
bi-Laplace operator and the two homogeneous boundary conditions based on the
assumptions made here. Second, the well-posedness of the plate equation is reviewed
by means of the a semigroup formulation. This semigroup formalism is also central in
the stabilization result in Sections 10.1–10.2.
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9.1. The unbounded bi-Laplace operator. — Associated with P and the boundary
operators B1 and B2 is the operator (P0, D(P0)) on L2(Ω), with domain

D(P0) =
{
u ∈ L2(Ω) | Pu ∈ L2(Ω), B1u|∂Ω = B2u|∂Ω = 0

}
,

and given by P0u = Pu ∈ L2(Ω) for u ∈ D(P0). The definition of D(P0) makes sense
since having Pu ∈ L2(Ω) for u ∈ L2(Ω) implies that the traces ∂kνu|∂Ω are well defined
for k = 0, 1, 2, 3.

Since the Lopatinskĭı-Šapiro condition holds on ∂Ω one has D(P0) ⊂ H4(Ω) (see
for instance Theorem 20.1.7 in [20]) and thus one can also write D(P0) as in (1.3).
From the assumed nonnegativity in (9.4) above one finds that P0 + Id is injective.
Since the operator

L′ : H4(Ω) −→ L2(Ω)⊕H7/2−k1(∂Ω)⊕H7/2−k2(∂Ω)

u 7−→ (Pu+ u,B1u|∂Ω, B2u|∂Ω)

is Fredholm and has the same zero index as L defined in (9.3), one finds that L′ is
surjective. Thus Ran(P0 +Id) = L2(Ω). One thus concludes that P0 is maximal mono-
tone. From the assumed symmetry property (9.2) and one finds that P0 is selfadjoint,
using that a symmetric maximal monotone operator is selfadjoint (see for instance
Proposition 7.6 in [9]).

The resolvent of P0 + Id being compact on L2(Ω), P0 has a sequence of eigenvalues
with finite multiplicities. With the assumed nonnegativity (9.4) they take the form of
a sequence

0 6 µ0 6 µ1 6 · · · 6 µk 6 · · ·
that grows to +∞. Associated with this sequence is (φj)j∈N a Hilbert basis of L2(Ω).
Any u ∈ L2(Ω) reads u =

∑
j∈N ujφj , with uj = (u, φj)L2(Ω). We define the Sobolev-

like scale

(9.5) Hk
B(Ω) = {u ∈ L2(Ω) | (µk/4j uj)j ∈ `2(C)} for k > 0.

One has D(P0) = H4
B(Ω) and L2(Ω) = H0

B(Ω). Each Hk
B(Ω), k > 0, is equipped with

the inner product and norm

(u, v)Hk
B(Ω) =

∑
j∈N

(1 + µj)
k/2ujvj . ‖u‖2Hk

B(Ω) =
∑
j∈N

(1 + µj)
k/2|uj |2,

yielding a Hilbert space structure. The space Hk
B(Ω) is dense in Hk′

B (Ω) if 0 6 k′ 6 k

and the injection is compact. Note that one uses (1 + µj)
k/2 in place of µk/2j since

ker(P0) may not be trivial. Note that if k = 0 one recovers the standard L2-inner
product and norm.

Using L2(Ω) as a pivot space, for k > 0 we also define the space H−kB (Ω) as the
dual space of Hk

B(Ω). One finds that any u ∈ H−kB (Ω) takes the form of the following
limit of L2-functions

u = lim
`→∞

∑̀
j=0

ujφj ,
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for some (uj)j ⊂C such that
(
(1 + µj)

−k/4uj
)
j
∈ `2(C), with the limit occurring in(

Hk
B(Ω)

)′ with the natural dual strong topology. Moreover, one has uj=〈u, φj〉H−k
B ,Hk

B
.

If u =
∑
j∈N ujφj ∈ H

−k
B (Ω) and v =

∑
j∈N vjφj ∈ Hk

B(Ω) one finds

〈u, v〉H−k
B ,Hk

B
=
∑
j∈N

ujvj .

One can then extend (or restrict) the action of P0 on any space Hk
B(Ω), k ∈ R.

One has P0 : Hk
B(Ω)→ Hk−4

B (Ω) continuously with

(9.6) P0u =
∑
j∈N

µjujφj ,

with convergence in Hk−4
B (Ω) for u =

∑
j∈N ujφj ∈ Hk

B(Ω). In particular, for u ∈
H4
B(Ω) = D(P0) and v ∈ H2

B(Ω) one has

(9.7) (P0u, v)L2(Ω) = 〈P0u, v〉H−2
B ,H2

B
=
∑
j∈N

µjujvj

and if u, v ∈ H2
B(Ω) one has

(9.8) (u, v)H2
B(Ω) = (u, v)L2(Ω) + 〈P0u, v〉H−2

B ,H2
B

=
∑
j∈N

(1 + µj)ujvj .

Note that

(9.9) 〈P0u, v〉H−2
B ,H2

B
= (P

1/2
0 u,P

1/2
0 v)L2(Ω),

with the operator P1/2
0 easily defined by means of the Hilbert basis (φj)j∈N. In fact,

H2
B(Ω) is the domain of P1/2

0 viewed as an unbounded operator on L2(Ω).
We make the following observations.
(1) If ker(P0) = {0} then

(u, v) 7−→ 〈P0u, u〉H−2
B ,H2

B

is also an inner-product on H2
B(Ω), that yields an equivalent norm.

(2) If 0 is an eigenvalue, that is, dim ker(P0) = n > 1 then (φ0, . . . , φn−1) is
a orthonormal basis of ker(P0) for the L2-inner product. From a classical unique
continuation property, since α(x) > 0 for x in an open subset of Ω one sees that

(9.10) (u, v) 7−→ (αu, v)L2(Ω)

is also an inner product on the finite dimensional space ker(P0) ⊂ L2(Ω). We introduce
a second basis (ϕ0, . . . , ϕn−1) of ker(P0) orthonormal with respect to this second inner
product.
In what follows, we treat the more difficult case where dim ker(P0) = n > 1. The case
ker(P0) = {0} is left to the reader.
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9.2. The plate semigroup generator. — Set H = H2
B(Ω)⊕L2(Ω) with natural inner

product and norm(
(u0, u1), (v0, v1)

)
H

= (u0, v0)H2
B(Ω) + (u1, v1)L2(Ω),(9.11) ∥∥(u0, u1)

∥∥2

H
= ‖u0‖2H2

B(Ω) + ‖u1‖2L2(Ω).(9.12)

Define the unbounded operator

(9.13) A =

(
0 −1

P0 α(x)

)
,

on H with domain given by D(A) = D(P0)⊕H2
B(Ω). This domain is dense in H and

A is a closed operator. One has

N = ker(A) =
{
t(u0, 0) | u0 ∈ ker(P0)

}
.

The important result of this section is the following proposition.

Proposition 9.1. — The operator (A,D(A)) generates a bounded semigroup S(t) =

e−tA on H.

The understanding of this generator property relies on the introduction of a reduced
function space associated with ker(P0), following for instance the analysis of [37]. It
will be also important in the derivation of a precise resolvent estimate in Section 10.1.
If ker(P0) = {0}, that is, µ0 > 0, this procedure is not necessary. For v ∈ ker(P0),
v 6= 0, we introduce the linear form

Fv : H −→ C

(u0, u1) 7−→ (αv, v)−1
L2(Ω)

(
(αu0, v)L2(Ω) + (u1, v)L2(Ω)

)
.

(9.14)

We set

(9.15) Ḣ =
⋂

v∈ker(P0)
v 6=0

ker(Fv) =
⋂

06j6n−1

ker(Fϕj ),

with the basis (ϕ0, . . . , ϕn−1) of ker(P0) introduced above. If (v, 0) ∈ ker(A), with
0 6= v ∈ ker(P0), note that Fv(v, 0) = 1. We set Θj = t(ϕj , 0), j = 0, . . . , n− 1 and

ΠNV =

n−1∑
j=0

Fϕj
(V )Θj , for V ∈ H,

and ΠḢ = IdH−ΠN. We obtain that ΠN and ΠḢ are continuous projectors associated
with the direct sum

(9.16) H = Ḣ ⊕N and Ḣ = ker(ΠN).

Note that Ḣ and N are not orthogonal in H. Yet, it is important to note the following
result.

Lemma 9.2. — We have Ran(A) ⊂ Ḣ.
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Proof. — Let U = t(u0, u1) = AV with V = t(v0, v1) ∈ D(A). One has u0 = −v1 ∈
H2
B(Ω) and u1 = P0v

0 + αv1 ∈ L2(Ω). If 0 6= ϕ ∈ ker(P0) one writes

(αϕ,ϕ)L2(Ω)Fϕ(U) = (−αv1, ϕ)L2(Ω) + (P0v
0 + αv1, ϕ)L2(Ω)

= (P0v
0, ϕ)L2(Ω) = (v0,P0ϕ)L2(Ω) = 0,

using that v0, ϕ ∈ D(P0), that (P0, D(P0)) is selfadjoint, and that ϕ ∈ ker(P0). The
conclusion follows from the definition of Ḣ in (9.15). �

The space Ḣ inherits the natural inner product and norm of H given in (9.11). Yet
one finds that the inner product

(9.17) ((u0, u1), (v0, v1))Ḣ = 〈P0u
0, v0〉H−2

B ,H2
B

+ (u1, v1)L2(Ω),

and associated norm

(9.18) ‖(u0, u1)‖2Ḣ = 〈P0u
0, u0〉H−2

B ,H2
B

+ ‖u1‖2L2(Ω),

yields an equivalent norm on Ḣ by a Poincaré-like argument. We introduce the un-
bounded operator Ȧ on Ḣ given by the domain D(Ȧ) = D(A) ∩ Ḣ and such that
ȦV = AV for V ∈ D(Ȧ). We then have A = Ȧ◦ΠḢ. Observe thatD(Ȧ) = ΠḢ

(
D(A)

)
since N = ker(A) ⊂ D(A). Thus, one has

(9.19) D(A) = D(Ȧ)⊕N.

As for the decomposition of H given in (9.16) note that D(Ȧ) and N are not orthog-
onal.

Lemma 9.3. — Let z ∈ C be such that Re z < 0. We have

‖(z IdḢ−Ȧ)U‖
Ḣ
> |Re z| ‖U‖Ḣ, U ∈ D(Ȧ).

The proof of this lemma is quite classical. It is given in Appendix A.2. With the
previous lemma, with the Hille-Yosida theorem one proves the following result.

Lemma 9.4. — The operator (Ȧ,D(Ȧ)) generates a semigroup of contraction Ṡ(t) =

e−tȦ on Ḣ.

If we set

(9.20) S(t) = Ṡ(t) ◦ΠḢ + ΠN,

we find that S(t) is a semigroup on H generated by (A,D(A)), thus proving Propo-
sition 9.1. If Y 0 ∈ D(A), the solution of the semigroup equation d

dtY (t) +AY (t) = 0

reads

(9.21) Y (t) = S(t)Y 0 = Ṡ(t) ◦ΠḢY
0 + ΠNY

0.

We set Ẏ (t) = ΠḢY (t) = Ṡ(t) ◦ΠḢY
0.

The adjoint of Ȧ has domain D(Ȧ∗) = D(A) and is given by

Ȧ∗ =

(
0 1

−P0 α(x)

)
.

Similarly to Lemma 9.3 one has the following result with a similar proof.
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Lemma 9.5. — Let z ∈ C be such that Re z < 0. We have

‖(z IdḢ−Ȧ
∗)U‖

Ḣ
> |Re z| ‖U‖Ḣ, U ∈ D(Ȧ∗) = D(Ȧ).

9.3. Strong and weak solutions to the damped plate equation. — For y(t) a so-
lution to the damped plate equation (9.1) one has Y (t) = t(y(t), ∂ty(t)) formally
solution to d

dtY (t) +AY (t) = 0 and conversely.
The semigroup S(t) generated by A as given by Proposition 9.1 allows one to go

beyond this formal observation and one obtains the following well-posedness result
for strong solutions of the damped plate equation.

Proposition 9.6 (strong solutions of the damped plate equation)
For (y0, y1) ∈ H4

B(Ω)×H2
B(Ω) there exists a unique

y ∈ C 0
(
[0,+∞);H4

B(Ω)
)
∩ C 1

(
[0,+∞);H2

B(Ω)
)
∩ C 2

(
[0,+∞);L2(Ω)

)
such that

∂2
t y + Py + α∂ty = 0 in L∞([0,+∞);L2(Ω)),

y|t=0 = y0, ∂ty|t=0 = y1.
(9.22)

Moreover, there exists C > 0 such that

(9.23) ‖y(t)‖H4
B(Ω) + ‖∂ty(t)‖H2

B(Ω) 6 C
(
‖y0‖H4

B(Ω) + ‖y1‖H2
B(Ω)

)
, t > 0.

With Y (t) as above, for such a solution y(t) one has
d

dt
Y (t) +AY (t) = 0, Y (0) = Y 0 = t(y0, y1),

that is,

Y (t) = S(t)Y 0 ∈ C 0
(
[0,+∞);D(A)

)
∩ C 1

(
[0,+∞);H2

B(Ω)⊕ L2(Ω)
)
.

A weak solution to the damped plate equation is simply associated with an initial
data (y0, y1) ∈ H2

B(Ω) × L2(Ω) and given by the first coordinate of Y (t) = S(t)Y 0.
Then one has

Y (t) ∈ C 0
(
[0,+∞);H

)
∩ C 1

(
[0,+∞);L2(Ω)⊕H−2

B (Ω)
)
,

or equivalently

y ∈ C 0
(
[0,+∞);H2

B(Ω)
)
∩ C 1

(
[0,+∞);L2(Ω)

)
∩ C 2

(
[0,+∞);H−2

B (Ω)
)
.

For a strong solution, the natural energy is given by

(9.24) E(y)(t) =
1

2

(
‖∂ty(t)‖2L2(Ω) + (P0y(t), y(t))L2(Ω)

)
.

Observe that if y0 ∈ ker(P0) then y(t) = y0 is solution to (9.1) with y1 = 0. This
is consistent with the form of the semigroup S(t) given in (9.20). Such a solution is
independent of the evolution variable t, and thus, despite damping, there is no decay.
However, note that such a solution is ‘invisible’ for the energy defined in (9.24). In fact,
for a strong solution to (9.1) as given by Proposition 9.6 one has

(9.25) E(y)(t) =
1

2
‖Ẏ (t)‖2Ḣ,
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with Ẏ (t) as defined below (9.21) and ‖.‖Ḣ defined in (9.18). For a strong solution,
we write
d

dt
E(y)(t) = Re(∂ty(t), ∂2

t y(t))L2(Ω)+
1

2
〈P0∂ty(t), y(t)〉H−2

B ,H2
B

+
1

2
(P0y(t), ∂ty(t))L2(Ω)

= Re(∂ty(t), (∂2
t + P0)y(t))L2(Ω)

= −Re(∂ty(t), α∂ty(t))L2(Ω) 6 0

since α > 0. Thus, the energy of a strong solution is nonincreasing. To understand
the decay of the energy one has to focus on the properties of the semigroup Ṡ(t) and
its generator (Ȧ,D(Ȧ)) on Ḣ. This is done in Section 10.1.

For a weak solution y(t) ∈ C 0
(
[0,+∞);H2

B(Ω)
)
∩ C 1

(
[0,+∞);L2(Ω)

)
the energy

is defined by

E(y)(t) =
1

2

(
‖∂ty(t)‖2L2(Ω) + 〈P0y(t), y(t)〉H−2

B ,H2
B

)
that coincides with (9.24) for a strong solution. The stabilization result we are inter-
ested in only concerns strong solutions (see Section 10.2). Thus, we shall not mention
weak solutions in what follows.

10. Resolvent estimates and applications to stabilization

Here we use the observability inequality of Theorem 8.2 to obtain a resolvent
estimate for the plate semigroup generator that allows one to deduce a stabilization
result for the damped plate equation. This a sequence of argument comes from the
seminal works of Lebeau [35] and Lebeau-Robbiano [37].

10.1. Resolvent estimate. — We prove a resolvent estimate for the unbounded oper-
ator (Ȧ,D(Ȧ)) that acts on Ḣ. First, we establish that {Re z 6 0} lies in the resolvent
set of Ȧ.

Proposition 10.1. — The spectrum of (Ȧ,D(Ȧ)) is contained in {z ∈ C | Re(z) > 0}.

The proof of this proposition is rather classical based on a unique continuation
argument and a Fredholm index argument for a compact perturbation. It is given in
Appendix A.3.

Theorem 10.2. — Let O be an open subset of Ω such that α > δ > 0 on O. Then, for
σ ∈ R the unbounded operator iσ Id−Ȧ is invertible on Ḣ and for there exist C > 0

such that

(10.1) ‖(iσ Id−Ȧ)−1‖L(Ḣ) 6 Ce
C|σ|1/2 , σ ∈ R.

Proof. — By Proposition 10.1 iσ Id−Ȧ is indeed invertible. Observe that it then
suffices to prove the resolvent estimate (10.1) for |σ| > σ0 for some σ0 > 0.

Let U = t(u0, u1) ∈ D(Ȧ) and F = t(f0, f1) ∈ Ḣ be such that (iσ Id−Ȧ)U = F .
This reads

f0 = iσu0 + u1, f1 = −P0u
0 + (iσ − α)u1.
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which gives
(P0 − σ2 − iσα)u0 = f

with f = (iσ − α)f0 − f1. Computing the L2-inner product with u0 one finds

((P0 − σ2)u0, u0)L2(Ω) − iσ(αu0, u0)L2(Ω) = (f, u0)L2(Ω).

As α > 0, computing the imaginary part one obtains

σ‖α1/2u0‖
2

L2(Ω) = − Im(f, u0)L2(Ω).

Since α > δ > 0 in O by assumption and since we consider |σ| > σ0 one has

δσ0‖u0‖2L2(O) 6 ‖f‖L2(Ω)‖u
0‖L2(Ω).

Applying Theorem 8.2 (with Remark 8.3) one has

‖u0‖H4(Ω) . e
C|σ|1/2(‖f‖L2(Ω) + ‖u0‖L2(O)

)
,

replacing |σ| by |σ|2 therein. Thus, we obtain

‖u0‖H4(Ω) . e
C|σ|1/2(‖f‖L2(Ω) + ‖f‖1/2L2(Ω)‖u

0‖1/2L2(Ω)

)
,

for |σ| > σ0. With Young inequality we write, for ε > 0,

eC|σ|
1/2

‖f‖1/2L2(Ω)‖u
0‖1/2L2(Ω) . ε

−1e2C|σ|1/2‖f‖L2(Ω) + ε‖u0‖L2(Ω).

Thus, with ε chosen sufficiently small one obtains

‖u0‖H4(Ω) . e
C|σ|1/2‖f‖L2(Ω).

Since u1 = f0 − iσu0 and f = (iσ − α)f0 − f1 we finally obtain that

‖u0‖H4(Ω) + ‖u1‖L2(Ω) . e
C|σ|1/2(‖f0‖L2(Ω) + ‖f1‖L2(Ω)

)
. eC|σ|

1/2

‖F‖Ḣ.

Since u0 ∈ H4(Ω) one has∣∣(P0u
0, u0)L2(Ω)

∣∣ 6 ‖u0‖H4(Ω)‖u
0‖L2(Ω) 6 ‖u

0‖2H4(Ω)

and thus one finally obtains

‖U‖2Ḣ = (P0u
0, u0)L2(Ω) + ‖u1‖2L2(Ω) . e

C|σ|1/2‖F‖2Ḣ,

which concludes the proof of the resolvent estimate (10.1). �

10.2. Stabilization result. — As an application of the resolvent estimate of Theo-
rem 10.2, we give a logarithmic stabilization result of the damped plate equation (1.1).

For the plate generator (A,D(A)) its iterated domains are inductively given by

D(An+1) = {U ∈ D(An) | AU ∈ D(An)}.

With Proposition 9.6, for Y 0 = t(y0, y1) ∈ D(An) then the first component of Y (t) =

S(t)Y 0 is precisely the solution to (9.1). One has Y (t) = Ẏ (t) + ΠNY
0 with Ẏ (t) =

Ṡ(t)ΠḢY
0 with the semigroup Ṡ(t) defined in Section 9.2. Moreover, by (9.25) the

energy of y(t) is given by the square of the Ḣ-norm of Ẏ (t).
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With the resolvent estimate of Theorem 10.2, with the result of Theorem 1.5 in [7]
one obtains the following bound for the energy of y(t):

(10.2) E(y)(t) = ‖Ẏ (t)‖2Ḣ 6
C(

log(2 + t)
)4n ‖AnY 0‖2Ḣ.

We have thus obtain the following theorem.

Theorem 10.3 (logarithmic stabilization for the damped plate equation)
Assume that conditions (i) to (iv) of Section 9 hold. Let n ∈ N, n > 1. Then, there

exists C > 0 such that for any Y 0 = t(y0, y1) ∈ D(An) the associated solution y(t) of
the damped plate equation (1.1) has the logarithmic energy decay given by (10.2).

Note that for n = 1 using the form of A and (9.9) one recovers the statement of
Theorem 1.1 in the introductory section.

Appendix. Some technical results and proofs

A.1. A perfect elliptic estimate. — Here we consider a(%′, ξd) polynomial in the ξd
variable and such that its root have negative imaginary parts microlocally.

Lemma A.1. — Let κ0 > 0. Let a(%′, ξd) ∈ Sk,0τ , with %′ = (x, ξ′, τ, σ) and with k > 1,
that is, a(%′, ξd) =

∑k
j=0 aj(%

′)ξk−jd , and where the coefficients aj are homogeneous
in (ξ′, τ, σ). Moreover, assume that a0(%′) = 1. Set A = Op(a).

Let U be a conic open subset of W ×Rd−1× [0,+∞)× [0,+∞) where τ > κ0σ and
such that all the roots of a(%′, ξd) have a negative imaginary part for %′ ∈ U .

Let χ(%′) ∈ S0
T,τ be homogeneous of degree zero and such that supp(χ) ⊂ U and

N ∈ N. Then there exist C > 0, CN > 0, and τ0 > 0 such that

‖OpT(χ)v‖k,τ + | tr(OpT(χ)v)|k−1,1/2,τ 6 C‖AOpT(χ)v‖+ + ‖v‖k,−N,τ ,

for w ∈ S (Rd+) and τ > max(τ0, κ0σ).

We refer to [8] for a proof (see Lemma 4.1 therein and its proof that adapts to the
presence of the parameter σ with σ . τ in a straightforward manner).

A.2. Basic resolvent estimation. — Here we provide a proof of Lemma 9.3
Let U = t(u0, u1) ∈ D(Ȧ). With (9.17) We write

((z IdḢ−Ȧ)U,U)Ḣ =

((
zu0 + u1

zu1 − P0u
0 − αu1

)
,

(
u0

u1

))
Ḣ

= z‖U‖2Ḣ + 〈P0u
1, u0〉H−2

B ,H2
B

− (P0u
0, u1)L2(Ω) − (αu1, u1)L2(Ω)

= z‖U‖2Ḣ + 2i Im(u1,P0u
0)L2(Ω) − (αu1, u1)L2(Ω).

Computing the real part one obtains

(A.1) − Re((z IdḢ−Ȧ)U,U)Ḣ = −Re(z)‖U‖2Ḣ + (αu1, u1)L2(Ω).
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As α > 0 and Re z < 0, this gives

|Re((z IdḢ−Ȧ)U,U)Ḣ| > |Re(z)| ‖U‖2Ḣ,

which yields the conclusion of Lemma 9.3. �

A.3. Basic estimation for the resolvent set. — Here we provide a proof of Propo-
sition 10.1. Let z ∈ C. We consider the two cases.

Case 1: Re z < 0. — By Lemma 9.3 z IdḢ−Ȧ is injective. Moreover, as its adjoint
z IdḢ−Ȧ∗ is injective and satisfies ‖(z IdḢ−Ȧ∗)U‖Ḣ & ‖U‖Ḣ for U ∈ D(Ȧ) by
Lemma 9.5 the map z IdḢ−Ȧ is surjective (see for instance [9, Th. 2.20]). The esti-
mation of Lemma 9.3 then gives the continuity of the operator (z IdḢ−Ȧ)−1 on Ḣ.

Case 2: Re z = 0. — We start by proving the injectivity of z IdḢ−Ȧ. Let thus U =
t(u0, u1) ∈ D(Ȧ) be such that zU − ȦU = 0. This gives

(A.2) zu0 + u1 = 0, −P0u
0 + (z − α)u1 = 0.

First, if z = 0 one has u1 = 0, and then P0u
0 = 0. Thus, u0 ∈ ker(P0) given

U ∈ N = ker(A). From the definition of Ḣ this gives U = 0.
Second, if now z 6= 0, using (A.1) we obtain

0 = Re((z IdḢ−Ȧ)U,U)Ḣ = −(αu1, u1)L2(Ω).

As α > 0, this implies that u0 vanishes a.e. on supp(α). Observe that

P0u
0 = zu1 = −z2u0.

The function u0 is thus an eigenfunction for P0 that vanishes on an open set. With
the unique continuation property we obtain that u0 vanishes in Ω and u1 as well.

If we now prove that z IdḢ−Ȧ is surjective, the result then follows from the closed
graph theorem as Ȧ is a closed operator. We write z IdḢ−Ȧ = T + IdḢ with T =

(z− 1) IdḢ−Ȧ. By the first part of the proof, T is invertible with a bounded inverse.
The operator T is unbounded on Ḣ. We denote by T̃ the restriction of T to D(Ȧ)

equipped with the graph-norm associated with Ȧ. The operator T̃ is bounded. It is
also invertible. It is thus a bounded Fredholm operator of index ind T̃ = 0. Similarly,
we denote by ι the injection of D(Ȧ) into Ḣ and Ã the restriction of Ȧ on D(Ȧ)

viewed as a bounded operator. We have zι− Ã = T̃ + ι. Since ι is a compact operator,
we obtain that zι− Ã is also a bounded Fredholm operator of index 0. Hence, zι− Ã
is surjective since z IdH−Ȧ is injective as proved above. Consequently, z IdH−Ȧ is
surjective. This concludes the proof of Proposition 10.1. �
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