Twisted cotangent bundle of Hyperkähler manifolds (with an appendix by Simone Diverio)
[Faisceau cotangent tordu des variétés hyperkählériennes]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 1429-1457.

Soit X une variété hyperkählérienne, et H un diviseur ample sur X. Nous donnons une borne inférieure en fonction de la forme de Beauville-Bogomolov-Fujiki q(H) pour la pseudo-effectivité du faisceau cotangent tordu Ω X H. Si X est équivalente par déformation au schéma de Hilbert ponctuel d’une surface K3, cette borne inférieure peut être calculée explicitement et nous étudions son optimalité.

Let X be a Hyperkähler manifold, and let H be an ample divisor on X. We give a lower bound in terms of the Beauville–Bogomolov–Fujiki form q(H) for the pseudoeffectivity of the twisted cotangent bundle Ω X H. If X is deformation equivalent to the punctual Hilbert scheme of a K3 surface, the lower bound can be written down explicitly and we study its optimality.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.175
Classification : 14J42, 14J60, 14J28
Keywords: Hyperkähler manifold, cotangent bundle, positivity of vector bundles
Mot clés : Variété hyperkählérienne, fibré cotangent, positivité des fibrés vectoriels

Fabrizio Anella 1 ; Andreas Höring 2

1 Mathematisches Institut, Universität Bonn Endenicher Allee 60, 53115 Bonn, Germany
2 Université Côte d’Azur, CNRS, LJAD 06108 Nice cedex 02, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2021__8__1429_0,
     author = {Fabrizio Anella and Andreas H\"oring},
     title = {Twisted cotangent bundle of {Hyperk\"ahler~manifolds}  (with an appendix by {Simone} {Diverio)}},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1429--1457},
     publisher = {\'Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.175},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.175/}
}
TY  - JOUR
AU  - Fabrizio Anella
AU  - Andreas Höring
TI  - Twisted cotangent bundle of Hyperkähler manifolds  (with an appendix by Simone Diverio)
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2021
SP  - 1429
EP  - 1457
VL  - 8
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.175/
DO  - 10.5802/jep.175
LA  - en
ID  - JEP_2021__8__1429_0
ER  - 
%0 Journal Article
%A Fabrizio Anella
%A Andreas Höring
%T Twisted cotangent bundle of Hyperkähler manifolds  (with an appendix by Simone Diverio)
%J Journal de l’École polytechnique — Mathématiques
%D 2021
%P 1429-1457
%V 8
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.175/
%R 10.5802/jep.175
%G en
%F JEP_2021__8__1429_0
Fabrizio Anella; Andreas Höring. Twisted cotangent bundle of Hyperkähler manifolds  (with an appendix by Simone Diverio). Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 1429-1457. doi : 10.5802/jep.175. https://jep.centre-mersenne.org/articles/10.5802/jep.175/

[AD19] C. Araujo & S. Druel - “Characterization of generic projective space bundles and algebraicity of foliations”, Comment. Math. Helv. 94 (2019) no. 4, p. 833-853 | DOI | MR | Zbl

[Bar75] D. Barlet - Espace analytique réduit des cycles analytiques complexes compacts d’un espace analytique complexe de dimension finie, Lect. Notes in Math., vol. 482, Springer-Verlag, Berlin, 1975 | Zbl

[BDPP13] S. Boucksom, J.-P. Demailly, M. Păun & T. Peternell - “The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension”, J. Algebraic Geom. 22 (2013), p. 201-248 | DOI | Zbl

[Bea83] A. Beauville - “Variétés kähleriennes dont la première classe de Chern est nulle”, J. Differential Geom. 18 (1983) no. 4, p. 755-782 (1984) | Zbl

[BK08] V. Balaji & J. Kollár - “Holonomy groups of stable vector bundles”, Publ. RIMS, Kyoto Univ. 44 (2008) no. 2, p. 183-211 | DOI | MR | Zbl

[Buc08] N. Buchdahl - “Algebraic deformations of compact Kähler surfaces. II”, Math. Z. 258 (2008) no. 3, p. 493-498 | DOI | MR | Zbl

[COP10] F. Campana, K. Oguiso & T. Peternell - “Non-algebraic hyperkähler manifolds”, J. Differential Geom. 85 (2010) no. 3, p. 397-424 | Zbl

[Dem12] J.-P. Demailly - Analytic methods in algebraic geometry, Surveys of Modern Math., vol. 1, International Press, Somerville, MA, 2012 | MR | Zbl

[DP04] J.-P. Demailly & M. Paun - “Numerical characterization of the Kähler cone of a compact Kähler manifold”, Ann. of Math. (2) 159 (2004) no. 3, p. 1247-1274 | DOI | Zbl

[dR84] G. de Rham - Differentiable manifolds. Forms, currents, harmonic forms, Grundlehren Math. Wiss., vol. 266, Springer-Verlag, Berlin, 1984 | DOI | Zbl

[EGL01] G. Ellingsrud, L. Göttsche & M. Lehn - “On the cobordism class of the Hilbert scheme of a surface”, J. Algebraic Geom. 10 (2001) no. 1, p. 81-100 | MR | Zbl

[Fuj79] A. Fujiki - “Closedness of the Douady spaces of compact Kähler spaces”, Publ. RIMS, Kyoto Univ. 14 (1978/79) no. 1, p. 1-52 | DOI | Zbl

[Fuj79] A. Fujiki - “Countability of the Douady space of a complex space”, Japan. J. Math. (N.S.) 5 (1979) no. 2, p. 431-447 | DOI | MR | Zbl

[Fuj87] A. Fujiki - “On the de Rham cohomology group of a compact Kähler symplectic manifold”, in Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, p. 105-165 | DOI | Zbl

[GO20] F. Gounelas & J. C. Ottem - “Remarks on the positivity of the cotangent bundle of a K3 surface”, Épijournal de Géom. Alg. 4 (2020), article ID 8, 16 pages | DOI | MR | Zbl

[Har77] R. Hartshorne - Algebraic geometry, Graduate Texts in Math., vol. 52, Springer-Verlag, New York, 1977 | Zbl

[HP19] A. Höring & T. Peternell - “Algebraic integrability of foliations with numerically trivial canonical bundle”, Invent. Math. 216 (2019) no. 2, p. 395-419 | DOI | MR | Zbl

[Huy97] D. Huybrechts - Compact hyperkähler manifolds, Habilitationsschrift, Essen, 1997

[Huy99] D. Huybrechts - “Compact hyper-Kähler manifolds: basic results”, Invent. Math. 135 (1999) no. 1, p. 63-113 | DOI | Zbl

[Huy03a] D. Huybrechts - “Erratum to [Huy99]”, Invent. Math. 152 (2003) no. 1, p. 209-212 | DOI | MR | Zbl

[Huy03b] D. Huybrechts - “Finiteness results for compact hyperkähler manifolds”, J. reine angew. Math. 558 (2003), p. 15-22 | DOI | Zbl

[Huy05] D. Huybrechts - Complex geometry. An introduction, Universitext, Springer-Verlag, Berlin, 2005 | Zbl

[Huy16] D. Huybrechts - Lectures on K3 surfaces, Cambridge Studies in Advanced Math., vol. 158, Cambridge University Press, Cambridge, 2016 | DOI | MR | Zbl

[Hör14] A. Höring - “Twisted cotangent sheaves and a Kobayashi-Ochiai theorem for foliations”, Ann. Inst. Fourier (Grenoble) 64 (2014) no. 6, p. 2465-2480 | DOI | Numdam | MR | Zbl

[Kob80] S. Kobayashi - “The first Chern class and holomorphic symmetric tensor fields”, J. Math. Soc. Japan 32 (1980) no. 2, p. 325-329 | DOI | MR | Zbl

[Kob87] S. Kobayashi - Differential geometry of complex vector bundles, Publ. of the Math. Society of Japan, vol. 15, Princeton University Press, Princeton, NJ, 1987 | MR | Zbl

[KV98] D. Kaledin & M. Verbitsky - “Partial resolutions of Hilbert type, Dynkin diagrams, and generalized Kummer varieties”, 1998 | arXiv

[Laz04] R. Lazarsfeld - Positivity in algebraic geometry. II, Ergeb. Math. Grenzgeb. (3), vol. 49, Springer-Verlag, Berlin, 2004 | MR | Zbl

[Miy87] Y. Miyaoka - “The Chern classes and Kodaira dimension of a minimal variety”, in Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, p. 449-476 | DOI | MR | Zbl

[MM64] T. Matsusaka & D. Mumford - “Two fundamental theorems on deformations of polarized varieties”, Amer. J. Math. 86 (1964), p. 668-684 | DOI | MR | Zbl

[MR84] V. B. Mehta & A. Ramanathan - “Restriction of stable sheaves and representations of the fundamental group”, Invent. Math. 77 (1984) no. 1, p. 163-172 | DOI | MR | Zbl

[Ogu08] K. Oguiso - “Bimeromorphic automorphism groups of non-projective hyperkähler manifolds—a note inspired by C. T. McMullen”, J. Differential Geom. 78 (2008) no. 1, p. 163-191 | Zbl

[Ott15] J. C. Ottem - “Nef cycles on some hyperkahler fourfolds”, 2015 | arXiv

[Ver96] M. Verbitsky - “Hyper-Kähler embeddings and holomorphic symplectic geometry. I”, J. Algebraic Geom. 5 (1996) no. 3, p. 401-413 | MR | Zbl

[Ver98] M. Verbitsky - “Trianalytic subvarieties of the Hilbert scheme of points on a K3 surface”, Geom. Funct. Anal. 8 (1998) no. 4, p. 732-782 | DOI | MR | Zbl

[Voi02] C. Voisin - Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés, vol. 10, Société Mathématique de France, Paris, 2002 | Zbl

[Zha15] L. Zhang - “Character formulas on cohomology of deformations of Hilbert schemes of K3 surfaces”, J. London Math. Soc. (2) 92 (2015) no. 3, p. 675-688 | DOI | MR | Zbl

Cité par Sources :