[Faisceau cotangent tordu des variétés hyperkählériennes]
Soit une variété hyperkählérienne, et un diviseur ample sur . Nous donnons une borne inférieure en fonction de la forme de Beauville-Bogomolov-Fujiki pour la pseudo-effectivité du faisceau cotangent tordu . Si est équivalente par déformation au schéma de Hilbert ponctuel d’une surface K3, cette borne inférieure peut être calculée explicitement et nous étudions son optimalité.
Let be a Hyperkähler manifold, and let be an ample divisor on . We give a lower bound in terms of the Beauville–Bogomolov–Fujiki form for the pseudoeffectivity of the twisted cotangent bundle . If is deformation equivalent to the punctual Hilbert scheme of a K3 surface, the lower bound can be written down explicitly and we study its optimality.
Accepté le :
Publié le :
Keywords: Hyperkähler manifold, cotangent bundle, positivity of vector bundles
Mot clés : Variété hyperkählérienne, fibré cotangent, positivité des fibrés vectoriels
Fabrizio Anella 1 ; Andreas Höring 2
@article{JEP_2021__8__1429_0, author = {Fabrizio Anella and Andreas H\"oring}, title = {Twisted cotangent bundle of {Hyperk\"ahler~manifolds} (with an appendix by {Simone} {Diverio)}}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1429--1457}, publisher = {\'Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.175}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.175/} }
TY - JOUR AU - Fabrizio Anella AU - Andreas Höring TI - Twisted cotangent bundle of Hyperkähler manifolds (with an appendix by Simone Diverio) JO - Journal de l’École polytechnique — Mathématiques PY - 2021 SP - 1429 EP - 1457 VL - 8 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.175/ DO - 10.5802/jep.175 LA - en ID - JEP_2021__8__1429_0 ER -
%0 Journal Article %A Fabrizio Anella %A Andreas Höring %T Twisted cotangent bundle of Hyperkähler manifolds (with an appendix by Simone Diverio) %J Journal de l’École polytechnique — Mathématiques %D 2021 %P 1429-1457 %V 8 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.175/ %R 10.5802/jep.175 %G en %F JEP_2021__8__1429_0
Fabrizio Anella; Andreas Höring. Twisted cotangent bundle of Hyperkähler manifolds (with an appendix by Simone Diverio). Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 1429-1457. doi : 10.5802/jep.175. https://jep.centre-mersenne.org/articles/10.5802/jep.175/
[AD19] - “Characterization of generic projective space bundles and algebraicity of foliations”, Comment. Math. Helv. 94 (2019) no. 4, p. 833-853 | DOI | MR | Zbl
[Bar75] - Espace analytique réduit des cycles analytiques complexes compacts d’un espace analytique complexe de dimension finie, Lect. Notes in Math., vol. 482, Springer-Verlag, Berlin, 1975 | Zbl
[BDPP13] - “The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension”, J. Algebraic Geom. 22 (2013), p. 201-248 | DOI | Zbl
[Bea83] - “Variétés kähleriennes dont la première classe de Chern est nulle”, J. Differential Geom. 18 (1983) no. 4, p. 755-782 (1984) | Zbl
[BK08] - “Holonomy groups of stable vector bundles”, Publ. RIMS, Kyoto Univ. 44 (2008) no. 2, p. 183-211 | DOI | MR | Zbl
[Buc08] - “Algebraic deformations of compact Kähler surfaces. II”, Math. Z. 258 (2008) no. 3, p. 493-498 | DOI | MR | Zbl
[COP10] - “Non-algebraic hyperkähler manifolds”, J. Differential Geom. 85 (2010) no. 3, p. 397-424 | Zbl
[Dem12] - Analytic methods in algebraic geometry, Surveys of Modern Math., vol. 1, International Press, Somerville, MA, 2012 | MR | Zbl
[DP04] - “Numerical characterization of the Kähler cone of a compact Kähler manifold”, Ann. of Math. (2) 159 (2004) no. 3, p. 1247-1274 | DOI | Zbl
[dR84] - Differentiable manifolds. Forms, currents, harmonic forms, Grundlehren Math. Wiss., vol. 266, Springer-Verlag, Berlin, 1984 | DOI | Zbl
[EGL01] - “On the cobordism class of the Hilbert scheme of a surface”, J. Algebraic Geom. 10 (2001) no. 1, p. 81-100 | MR | Zbl
[Fuj79] - “Closedness of the Douady spaces of compact Kähler spaces”, Publ. RIMS, Kyoto Univ. 14 (1978/79) no. 1, p. 1-52 | DOI | Zbl
[Fuj79] - “Countability of the Douady space of a complex space”, Japan. J. Math. (N.S.) 5 (1979) no. 2, p. 431-447 | DOI | MR | Zbl
[Fuj87] - “On the de Rham cohomology group of a compact Kähler symplectic manifold”, in Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, p. 105-165 | DOI | Zbl
[GO20] - “Remarks on the positivity of the cotangent bundle of a K3 surface”, Épijournal de Géom. Alg. 4 (2020), article ID 8, 16 pages | DOI | MR | Zbl
[Har77] - Algebraic geometry, Graduate Texts in Math., vol. 52, Springer-Verlag, New York, 1977 | Zbl
[HP19] - “Algebraic integrability of foliations with numerically trivial canonical bundle”, Invent. Math. 216 (2019) no. 2, p. 395-419 | DOI | MR | Zbl
[Huy97] - Compact hyperkähler manifolds, Habilitationsschrift, Essen, 1997
[Huy99] - “Compact hyper-Kähler manifolds: basic results”, Invent. Math. 135 (1999) no. 1, p. 63-113 | DOI | Zbl
[Huy03a] - “Erratum to [Huy99]”, Invent. Math. 152 (2003) no. 1, p. 209-212 | DOI | MR | Zbl
[Huy03b] - “Finiteness results for compact hyperkähler manifolds”, J. reine angew. Math. 558 (2003), p. 15-22 | DOI | Zbl
[Huy05] - Complex geometry. An introduction, Universitext, Springer-Verlag, Berlin, 2005 | Zbl
[Huy16] - Lectures on K3 surfaces, Cambridge Studies in Advanced Math., vol. 158, Cambridge University Press, Cambridge, 2016 | DOI | MR | Zbl
[Hör14] - “Twisted cotangent sheaves and a Kobayashi-Ochiai theorem for foliations”, Ann. Inst. Fourier (Grenoble) 64 (2014) no. 6, p. 2465-2480 | DOI | Numdam | MR | Zbl
[Kob80] - “The first Chern class and holomorphic symmetric tensor fields”, J. Math. Soc. Japan 32 (1980) no. 2, p. 325-329 | DOI | MR | Zbl
[Kob87] - Differential geometry of complex vector bundles, Publ. of the Math. Society of Japan, vol. 15, Princeton University Press, Princeton, NJ, 1987 | MR | Zbl
[KV98] - “Partial resolutions of Hilbert type, Dynkin diagrams, and generalized Kummer varieties”, 1998 | arXiv
[Laz04] - Positivity in algebraic geometry. II, Ergeb. Math. Grenzgeb. (3), vol. 49, Springer-Verlag, Berlin, 2004 | MR | Zbl
[Miy87] - “The Chern classes and Kodaira dimension of a minimal variety”, in Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, p. 449-476 | DOI | MR | Zbl
[MM64] - “Two fundamental theorems on deformations of polarized varieties”, Amer. J. Math. 86 (1964), p. 668-684 | DOI | MR | Zbl
[MR84] - “Restriction of stable sheaves and representations of the fundamental group”, Invent. Math. 77 (1984) no. 1, p. 163-172 | DOI | MR | Zbl
[Ogu08] - “Bimeromorphic automorphism groups of non-projective hyperkähler manifolds—a note inspired by C. T. McMullen”, J. Differential Geom. 78 (2008) no. 1, p. 163-191 | Zbl
[Ott15] - “Nef cycles on some hyperkahler fourfolds”, 2015 | arXiv
[Ver96] - “Hyper-Kähler embeddings and holomorphic symplectic geometry. I”, J. Algebraic Geom. 5 (1996) no. 3, p. 401-413 | MR | Zbl
[Ver98] - “Trianalytic subvarieties of the Hilbert scheme of points on a K3 surface”, Geom. Funct. Anal. 8 (1998) no. 4, p. 732-782 | DOI | MR | Zbl
[Voi02] - Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés, vol. 10, Société Mathématique de France, Paris, 2002 | Zbl
[Zha15] - “Character formulas on cohomology of deformations of Hilbert schemes of K3 surfaces”, J. London Math. Soc. (2) 92 (2015) no. 3, p. 675-688 | DOI | MR | Zbl
Cité par Sources :