Observability and controllability for the Schrödinger equation on quotients of groups of Heisenberg type
Journal de l’École polytechnique — Mathématiques, Volume 8 (2021), pp. 1459-1513.

We give necessary and sufficient conditions for the controllability of a Schrödinger equation involving the sub-Laplacian of a nilmanifold obtained by taking the quotient of a group of Heisenberg type by one of its discrete sub-groups. This class of nilpotent Lie groups is a major example of stratified Lie groups of step 2. The sub-Laplacian involved in these Schrödinger equations is subelliptic, and, contrary to what happens for the usual elliptic Schrödinger equation for example on flat tori or on negatively curved manifolds, there exists a minimal time of controllability. The main tools used in the proofs are (operator-valued) semi-classical measures constructed by use of representation theory and a notion of semi-classical wave packets that we introduce here in the context of groups of Heisenberg type.

Dans cet article, nous donnons des conditions nécessaires et des conditions suffisantes pour la contrôlabilité d’une équation de Schrödinger impliquant un opérateur sous-elliptique sur une variété compacte. Cet opérateur est le sous-laplacien d’une variété obtenue en quotientant un groupe de type Heisenberg par l’un de ses sous-groupes discrets. Cette classe de groupes nilpotents est un exemple important de groupes de Lie de pas 2. Le sous-laplacien est alors un opérateur sous-elliptique et nous montrons qu’à la différence de ce qui se passe pour le cas elliptique sur le tore ou sur des surfaces à courbures négatives, il existe un temps minimal de contrôlabilité pour l’équation de Schrödinger associée à ce sous-laplacien. Les principaux outils que nous utilisons sont des mesures semi-classiques à valeurs opérateurs construites via la théorie des représentations et une notion de paquets d’ondes semi-classiques que nous introduisons ici dans le contexte des groupes de type Heisenberg.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.176
Classification: 35R03,  35H20,  35J10,  93B07,  35Q93
Keywords: Sub-elliptic operator, control theory, observability, nilmanifold, H-type group
Clotilde Fermanian Kammerer 1, 2; Cyril Letrouit 3, 4

1 Univ Gustave Eiffel, LAMA F-77447 Marne-la-Vallée, France
2 Univ Paris Est Creteil, CNRS, LAMA F-94010 Creteil, France
3 DMA, École normale supérieure, CNRS, PSL Research University 75005 Paris, France
4 Sorbonne Université, Université Paris-Diderot, CNRS, Inria, LJLL 75005 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2021__8__1459_0,
     author = {Clotilde Fermanian Kammerer and Cyril Letrouit},
     title = {Observability and controllability for {the~Schr\"odinger} equation on quotients of groups of {Heisenberg} type},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1459--1513},
     publisher = {\'Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.176},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.176/}
}
TY  - JOUR
TI  - Observability and controllability for the Schrödinger equation on quotients of groups of Heisenberg type
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2021
DA  - 2021///
SP  - 1459
EP  - 1513
VL  - 8
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.176/
UR  - https://doi.org/10.5802/jep.176
DO  - 10.5802/jep.176
LA  - en
ID  - JEP_2021__8__1459_0
ER  - 
%0 Journal Article
%T Observability and controllability for the Schrödinger equation on quotients of groups of Heisenberg type
%J Journal de l’École polytechnique — Mathématiques
%D 2021
%P 1459-1513
%V 8
%I École polytechnique
%U https://doi.org/10.5802/jep.176
%R 10.5802/jep.176
%G en
%F JEP_2021__8__1459_0
Clotilde Fermanian Kammerer; Cyril Letrouit. Observability and controllability for the Schrödinger equation on quotients of groups of Heisenberg type. Journal de l’École polytechnique — Mathématiques, Volume 8 (2021), pp. 1459-1513. doi : 10.5802/jep.176. https://jep.centre-mersenne.org/articles/10.5802/jep.176/

[1] N. Anantharaman, C. Fermanian Kammerer & F. Macià - “Semiclassical completely integrable systems: long-time dynamics and observability via two-microlocal Wigner measures”, Amer. J. Math. 137 (2015) no. 3, p. 577-638 | DOI | MR | Zbl

[2] N. Anantharaman & F. Macià - “Semiclassical measures for the Schrödinger equation on the torus”, J. Eur. Math. Soc. (JEMS) 16 (2014) no. 6, p. 1253-1288 | DOI | Zbl

[3] H. Bahouri - “Non prolongement unique des solutions d’opérateurs ‘somme de carrés’”, Ann. Inst. Fourier (Grenoble) 36 (1986) no. 4, p. 137-155 | DOI | MR | Zbl

[4] H. Bahouri, C. Fermanian Kammerer & I. Gallagher - “Dispersive estimates for the Schrödinger operator on step-2 stratified Lie groups”, Anal. PDE 9 (2016) no. 3, p. 545-574 | DOI | Zbl

[5] H. Bahouri, P. Gérard & C.-J. Xu - “Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg”, J. Anal. Math. 82 (2000), p. 93-118 | DOI | Zbl

[6] K. Beauchard & P. Cannarsa - “Heat equation on the Heisenberg group: observability and applications”, J. Differential Equations 262 (2017) no. 8, p. 4475-4521 | DOI | MR | Zbl

[7] K. Beauchard, J. Dardé & S. Ervedoza - “Minimal time issues for the observability of Grushin-type equations”, Ann. Inst. Fourier (Grenoble) 70 (2020) no. 1, p. 247-312 | DOI | MR | Zbl

[8] A. Bonfiglioli, E. Lanconelli & F. Uguzzoni - Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Math., Springer, Berlin, 2007 | Zbl

[9] J.-M. Bony - “Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés”, Ann. Inst. Fourier (Grenoble) 19 (1969) no. 1, p. 277-304 | DOI | Numdam | Zbl

[10] N. Burq & C. Sun - “Time optimal observability for Grushin Schrödinger equation”, 2019, to appear in Anal. PDE | arXiv

[11] N. Burq & M. Zworski - “Control for Schrödinger operators on tori”, Math. Res. Lett. 19 (2012) no. 2, p. 309-324 | DOI | Zbl

[12] V. Chabu, C. Fermanian Kammerer & F. Macià - “Semiclassical analysis of dispersion phenomena”, in Analysis and partial differential equations: perspectives from developing countries, Springer Proc. Math. Stat., vol. 275, Springer, Cham, 2019, p. 84-108 | DOI | MR | Zbl

[13] V. Chabu, C. Fermanian Kammerer & F. Macià - “Wigner measures and effective mass theorems”, Ann. H. Lebesgue 3 (2020), p. 1049-1089 | DOI | MR | Zbl

[14] M. Combescure & D. Robert - Coherent states and applications in mathematical physics, Theoretical and Math. Physics, Springer, Dordrecht, 2012 | DOI | Zbl

[15] L. J. Corwin & F. P. Greenleaf - Representations of nilpotent Lie groups and their applications. Part I. Basic theory and examples, Cambridge Studies in Advanced Math., vol. 18, Cambridge University Press, Cambridge, 1990 | Zbl

[16] M. Duprez & A. Koenig - “Control of the Grushin equation: non-rectangular control region and minimal time”, ESAIM Control Optim. Calc. Var. 26 (2020), article ID 3, 18 pages | DOI | MR | Zbl

[17] C. Fermanian Kammerer - “Mesures semi-classiques 2-microlocales”, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) no. 7, p. 515-518 | DOI | MR | Zbl

[18] C. Fermanian Kammerer - “Analyse à deux échelles d’une suite bornée de L 2 sur une sous-variété du cotangent”, Comptes Rendus Mathématique 340 (2005) no. 4, p. 269-274 | DOI | MR | Zbl

[19] C. Fermanian Kammerer & V. Fischer - “Quantum evolution and sub-Laplacian operators on groups of Heisenberg type”, 2019, to appear in J. Spectral Theory | arXiv

[20] C. Fermanian Kammerer & V. Fischer - “Semi-classical analysis on H-type groups”, Sci. China Math. 62 (2019) no. 6, p. 1057-1086 | DOI | MR | Zbl

[21] C. Fermanian Kammerer & V. Fischer - “Defect measures on graded Lie groups”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 21 (2020), p. 207-291 | DOI | MR | Zbl

[22] C. Fermanian Kammerer & P. Gérard - “Mesures semi-classiques et croisement de modes”, Bull. Soc. math. France 130 (2002) no. 1, p. 123-168 | DOI | Numdam | MR | Zbl

[23] C. Fermanian Kammerer & C. Lasser - “Propagation through generic level crossings: a surface hopping semigroup”, SIAM J. Math. Anal. 40 (2008) no. 1, p. 103-133 | DOI | MR | Zbl

[24] V. Fischer & M. Ruzhansky - Quantization on nilpotent Lie groups, Progress in Math., vol. 314, Birkhäuser/Springer, Cham, 2016 | DOI | MR | Zbl

[25] P. Gérard - “Mesures semi-classiques et ondes de Bloch”, in Séminaire sur les Équations aux Dérivées Partielles, 1990–1991, École Polytechnique, Palaiseau, 1991, Exp. No. XVI, 19 p. | Numdam | Zbl

[26] P. Gérard - “Microlocal defect measures”, Comm. Partial Differential Equations 16 (1991) no. 11, p. 1761-1794 | DOI | MR | Zbl

[27] P. Gérard & É. Leichtnam - “Ergodic properties of eigenfunctions for the Dirichlet problem”, Duke Math. J. 71 (1993) no. 2, p. 559-607 | DOI | MR | Zbl

[28] P. Gérard, P. A. Markowich, N. J. Mauser & F. Poupaud - “Homogenization limits and Wigner transforms”, Comm. Pure Appl. Math. 50 (1997) no. 4, p. 323-379, Erratum: Ibid. 53 (2000), no. 2, p. 280–281 | DOI | MR | Zbl

[29] G. A. Hagedorn - “Semiclassical quantum mechanics. I. The 0 limit for coherent states”, Comm. Math. Phys. 71 (1980) no. 1, p. 77-93 | DOI | MR

[30] B. Helffer, A. Martinez & D. Robert - “Ergodicité et limite semi-classique”, Comm. Math. Phys. 109 (1987) no. 2, p. 313-326 | DOI | Zbl

[31] L. Hörmander - “Hypoelliptic second order differential equations”, Acta Math. 119 (1967), p. 147-171 | DOI | MR | Zbl

[32] S. Jaffard - “Contrôle interne exact des vibrations d’une plaque rectangulaire”, Portugal. Math. 47 (1990) no. 4, p. 423-429 | Zbl

[33] A. Kaplan - “Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms”, Trans. Amer. Math. Soc. 258 (1980) no. 1, p. 147-153 | DOI | MR | Zbl

[34] A. Koenig - “Non-null-controllability of the Grushin operator in 2D”, Comptes Rendus Mathématique 355 (2017) no. 12, p. 1215-1235 | DOI | MR | Zbl

[35] C. Lasser & S. Teufel - “Propagation through conical crossings: an asymptotic semigroup”, Comm. Pure Appl. Math. 58 (2005) no. 9, p. 1188-1230 | DOI | MR | Zbl

[36] C. Laurent & M. Léautaud - “Tunneling estimates and approximate controllability for hypoelliptic equations”, 2017, to appear in Mem. Amer. Math. Soc. | arXiv

[37] G. Lebeau - “Control for hyperbolic equations”, in Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1992), École Polytechnique, Palaiseau, 1992, 24 pages | Numdam | MR | Zbl

[38] G. Lebeau - “Contrôle de l’équation de Schrödinger”, J. Math. Pures Appl. (9) 71 (1992) no. 3, p. 267-291 | Zbl

[39] G. Lebeau - “Équation des ondes amorties”, in Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Math. Phys. Stud., vol. 19, Kluwer Acad. Publ., Dordrecht, 1996, p. 73-109 | DOI | Zbl

[40] C. Letrouit - “Subelliptic wave equations are never observable”, 2020 | arXiv

[41] C. Letrouit & C. Sun - “Observability of Baouendi-Grushin-type equations through resolvent estimates”, 2020, to appear in J. Inst. Math. Jussieu | arXiv

[42] J.-L. Lions - Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1. Contrôlabilité exacte, Recherches en Mathématiques Appliquées, vol. 8, Masson, Paris, 1988 | Zbl

[43] P.-L. Lions & T. Paul - “Sur les mesures de Wigner”, Rev. Mat. Iberoamericana 9 (1993) no. 3, p. 553-618 | DOI | MR | Zbl

[44] F. Macià - “High-frequency propagation for the Schrödinger equation on the torus”, J. Funct. Anal. 258 (2010) no. 3, p. 933-955 | DOI | MR | Zbl

[45] F. Macià - “The Schrödinger flow in a compact manifold: high-frequency dynamics and dispersion”, in Modern aspects of the theory of partial differential equations, Oper. Theory Adv. Appl., vol. 216, Birkhäuser/Springer Basel AG, Basel, 2011, p. 275-289 | DOI | MR

[46] F. Macià - “High-frequency dynamics for the Schrödinger equation, with applications to dispersion and observability”, in Nonlinear optical and atomic systems, Lect. Notes in Math., vol. 2146, Springer, Cham, 2015, p. 275-335 | DOI | MR | Zbl

[47] F. Macià & G. Rivière - “Two-microlocal regularity of quasimodes on the torus”, Anal. PDE 11 (2018) no. 8, p. 2111-2136 | DOI | MR | Zbl

[48] F. Macià & G. Rivière - “Observability and quantum limits for the Schrödinger equation on 𝕊 d , in Probabilistic methods in geometry, topology and spectral theory, American Mathematical Society, Providence, RI, 2019, p. 139-153 | DOI | Zbl

[49] L. Miller - Propagation d’ondes semi-classiques à travers une interface et mesures 2-microlocales, Ph. D. Thesis, École Polytechnique, Palaiseau, 1996

[50] F. Nier - “A semi-classical picture of quantum scattering”, Ann. Sci. École Norm. Sup. (4) 29 (1996) no. 2, p. 149-183 | DOI | Numdam | MR | Zbl

[51] N. V. Pedersen - “Matrix coefficients and a Weyl correspondence for nilpotent Lie groups”, Invent. Math. 118 (1994) no. 1, p. 1-36 | DOI | MR | Zbl

[52] L. Tartar - “H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations”, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) no. 3-4, p. 193-230 | DOI | MR | Zbl

[53] M. E. Taylor - Noncommutative harmonic analysis, Math. Surveys and Monographs, vol. 22, American Mathematical Society, Providence, RI, 1986 | DOI | MR | Zbl

Cited by Sources: