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TWISTED COTANGENT BUNDLE OF
HYPERKAHLER MANIFOLDS

(WITH AN APPENDIX BY SIMONE D1VERIO)

BY FaBRr1Z1o ANELLA & ANDREAS HORING

Asstract. — Let X be a Hyperkédhler manifold, and let H be an ample divisor on X. We give a
lower bound in terms of the Beauville-Bogomolov—Fujiki form g(H) for the pseudoeffectivity of
the twisted cotangent bundle Qx ® H. If X is deformation equivalent to the punctual Hilbert
scheme of a K3 surface, the lower bound can be written down explicitly and we study its
optimality.

Risumi: (Faisceau cotangent tordu des variétés hyperkahlériennes). — Soit X une variété hyper-
kédhlérienne, et H un diviseur ample sur X. Nous donnons une borne inférieure en fonction de
la forme de Beauville-Bogomolov-Fujiki g(H) pour la pseudo-effectivité du faisceau cotangent
tordu Qx ®H. Si X est équivalente par déformation au schéma de Hilbert ponctuel d’une surface
K3, cette borne inférieure peut étre calculée explicitement et nous étudions son optimalité.
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1. InTRODUCTION
1.A. MormvaTioN AND MAIN RESULT. — Let X be a compact Kéahler manifold, and

let Qx be the cotangent bundle of X. If the canonical bundle Kx = det Qx is posi-
tive (e.g. pseudoeffective or nef) we can use stability theory to describe the positivity
of Qx. The most famous result in this direction is Miyaoka’s theorem [Miy87] which
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says that for a projective manifold that is not uniruled, the restriction Qx|c to a gen-
eral complete intersection curve C' of sufficiently ample general divisors is nef. However
this result only captures a part of the picture: denote by ¢ — P(Q2x) the tautological
class on the projectivized cotangent bundle 7 : P(Qx) — X. If X is Calabi-Yau or a
projective Hyperkédhler manifold the tautological class ¢ is not pseudoeffective [HP19,
Th. 1.6]. In particular X is covered by curves C' such that Qx|c is not nef.

Our goal is to measure this defect of positivity by considering polarized manifolds
(X, H). We say that the twisted cotangent bundle of (X, H), i.e., Qx ® H, is pseudo-
effective (resp. nef) if, by definition, the tautological line bundle of its projectivization
has this property (see also Definition 2.3). This goal has been accomplished for in-
finitely many families of projective K3 surfaces in a beautiful paper of Gounelas and
Ottem:

1.1. Tueorem ([GO20, Th.B]). — Let (X, H) be a primitively polarized K3 surface of
degree d and Picard number one. Denote by w : P(Qx) — X the projectivization of
the cotangent bundle, and by ¢ — P(Qx) the tautological class. Suppose that d/2 is a
square and the Pell equation
2?2 —2dy? =5

has no integer solution.

Then (+(2/+/d/2)m* H is pseudoeffective and ¢ + ((2/1/d/2) — e)7*H is not pseu-
doeffective for any € > 0.

In the situation above one has ((2/1/d/2)H)? = 8, so we see that, under these
numerical conditions, the class { + 7*A is pseudoeffective for an ample R-divisor
class A of degree at least eight. In view of this observation we make the following

1.2. ConyucTurRE. — Fiz an even natural number 2n. Then there exists only finitely
many deformation families of polarized Hyperkdihler manifolds (X, H) such that
dimX = 2n and H is ample Cartier divisor on X such that ( + 7*H is not
pseudoeffective.

This conjecture should be seen as an analogue of the situation for uniruled mani-
folds: in this case 2x is not even generically nef in the sense of Miyaoka, but Qx ® H
is generically nef unless X is very special ([Hor14, Th.1.1], see [AD19, Cor. 1.3] for a
stronger version).

In this paper we give a sufficient condition for the pseudoeffectivity of twisted
cotangent bundles for Hyperkdhler manifolds. Since deformations to non-projective
Hyperkédhler manifolds are crucial for the proof we state the result in the analytic
setting:

1.3. TaeEoREM. Let X be a (not necessarily projective) Hyperkdhler manifold of
dimension 2n, and denote by q(-) its Beauville-Bogomolov-Fujiki form. Denote by
7 : P(Qx) = X the projectivization of the cotangent bundle, and by ¢ — P(Qx) the
tautological class. There exists a constant C'x > 0 depending only on the deformation
family of X such that the following holds:

JIEP. — M., 2021, tome 8



TWISTED COTANGENT BUNDLE OF HYPERKAHLER MANIFOLDS 1431

— Let wx be a nef and big (1,1)-class on X such that q(wx) > Cx. Then (+1*wx
1s pseudoeffective.

— Suppose that X is very general in its deformation space, and let wx be a nef and
big (1,1)-class on X. Then q(wx) = Cx if and only if ( + m*wx is nef.

The proof of the second statement is a combination of Demailly-Paun’s criterion
for nef cohomology classes with classical results on the cohomology ring of very gen-
eral Hyperkéhler manifolds: we show in Lemma 3.1 that all the relevant intersection
numbers are in fact polynomials in one variable, the variable being the Beauville-
Bogomolov-Fujiki form ¢(wx ). The largest real roots of these polynomials turn out to
be bounded from above, this yields the existence of the constant C'x. The first state-
ment then follows by a folklore degeneration argument that is proved by S. Diverio in
the appendix.

As an immediate consequence we obtain some good evidence for Conjecture 1.2:

1.4. COROLLARY. Let Xo be a differentiable manifold of real dimension 4n. Then
there exist at most finitely many deformation families of polarized Hyperkahler man-
ifolds (X, H) such that X L X and H is an ample Cartier divisor on X such that
¢+ 7*H is not pseudoeffective.

1.B. HypersAnrer mantrorps or Tvee K3, — While Theorem 1.3 is quite satisfac-
tory from a theoretical point of view, it it is not clear how to compute the constant C'x
in practice. We therefore prove a more explicit version under a technical assumption:

1.5. Turorem. — Let X be a (not necessarily projective) Hyperkdihler manifold of
dimension 2n. Suppose that a very general deformation of X does not contain any
proper subvarieties. Let wx be a Kdhler class on X.

— Suppose that
(C+ATwx)™ >0 VA>1.

Then ¢ + m*wx is pseudoeffective.
— Suppose that X is very general in its deformation space. Then ¢ + m*wx is nef
if and only if
(C+ATwx)™ >0 VA> 1.

We also prove in Proposition 4.2 that for very general X, the class ( + m*wx is
pseudoeffective if and only if it is nef. Thus Theorem 1.5 is optimal at least for very
general X. Since (¢ + AMm*wx)**~! can be expressed as a polynomial depending only
on the Segre classes of X, see equation (5), the sufficient condition can be written
down explicitly.

If wx is the class of an ample divisor, the condition in Theorem 1.5 essentially says
that the leading term of the Hilbert polynomial

X(P(Qx), Opay) (¢ + mrwx)))

is positive. It is however possible that the higher cohomology of Op(q ) (£({ 4+ m*wx))
grows with order 4n — 1, so it is not obvious that { + m*wx is pseudoeffective.

JE.P.— M., 2021, tome 8



1432 F. ANeLea & A Horine

Let S be a K3 surface, and denote by X := SI") the Hilbert scheme parametrizing
0-dimensional subschemes of length n. Then X is Hyperkahler [Bea83], and by a
theorem of Verbitsky [Ver98, Th.1.1] a very general deformation does not contain
any proper subvarieties. Thus the technical condition in Theorem 1.5 is satisfied for
a Hyperkéihler manifold of deformation type K3[". We compute the constant C'x for
Hilbert schemes of low dimension. In particular we obtain

1.6. Cororrary. — Let S be a (not necessarily projective) K3 surface. Let wg be a
nef and big (1,1)-class on S such that w% > 8. Then { + m*ws is pseudoeffective.

The theorem of Gounelas and Ottem shows that this result is optimal for infinitely
many 19-dimensional families of projective K3 surfaces. Their results also show that
for certain families, e.g. general smooth quartics in P3, our estimate is not optimal
[GO20, Cor.4.2]. In these cases the obstruction comes from the projective geometry
of X [GO20, §4.2].

In higher dimension the situation becomes much more complicated. We show in
Corollary 5.3 that for a nef and big class wx on a Hilbert square X := S? such that

[21
g(wx) =3+ =

the class ( + m*wx is pseudoeffective. This bound is optimal for a very general defor-
mation of X. However a Hilbert square S1? deforms as a complex manifold in a
21-dimensional space, while its deformations as a Hilbert square only form a 20-dimen-
sional family. In Section 5 we study in detail very general elements of the family of
Hilbert squares: since the Hilbert square always contains an exceptional divisor, it is
obvious that the nef cone and the pseudoeffective cone of P(Qg12;) do not coincide. It
is much more difficult to decide if ( +m*wy is nef if it is pseudoeffective. For this pur-
pose we construct in Section 5.D a “universal” subvariety Z C P(Qg121) that surjects
onto Sl and is an obstruction to the nefness of ¢ + 7*wx (cf. Proposition 5.10).

Acknowledgements. We thank D.Huybrechts for his remarks on the first version
of this paper. We thank S. Boissiére and S. Diverio for very detailed communications,
appearing in Proposition 6.2 and the appendix respectively.

2. NOTATION AND BASIC FACTS

We work over C, for general definitions we refer to [Har77, Dem12]. Manifolds
and normal complex spaces will always be supposed to be irreducible. We will not
distinguish between an effective divisor and its first Chern class.

We recall some basic facts about the positivity of (1,1)-cohomology classes that
generalize the corresponding notions for divisors classes.

2.1. Derinition. — Let X be a compact Kéhler manifold and o € H%!(X,R). The
class « is a Kéhler class if it can be represented by a smooth real form of type (1, 1)
that is positive definite at every point. The class « is pseudoeffective if it can be
represented by a closed real positive (1,1)-current.

JIEP. — M., 2021, tome 8



TWISTED COTANGENT BUNDLE OF HYPERKAHLER MANIFOLDS 1433

The cone generated by the Kahler forms is the open convex cone J#(X) in
HY'(X,R) called Kihler cone. The cone generated by closed positive real (1,1)-
currents is a closed convex cone denoted by &(X) called pseudoeffective cone. The
closure of the Kéahler cone is the nef cone and the interior of the pseudoeffective cone
is the big cone. Clearly since a pseudoeffective class may be represented by a singular
current the pseudoeffective cone contains the nef cone.

Suppose now that X is a projective manifold. Inside the real vector space
HY'(X,R) there is the group of real divisors modulo numerical equivalence or real
Néron—Severi space

NSr(X) = (H""(X,R) N H*(X,Z)) ®z R.

Then we have

H(X)NNSz(X) = Nef(X),  &(X)NNSp(X) = Eff(X),

where Nef(X) (resp. Eff (X)) is the nef cone (resp. pseudoeffective cone) well-known
to algebraic-geometers (cf. [BDPP13] for more details).

In the analytic context it is difficult to characterize the positivity of a (1, 1)-class
via intersection numbers, however we have the following easy consequence of the
Demailly-Paun criterion [DP04, Th.0.1]:

2.2, LEmmA. Let X be a compact Kdhler manifold, and let V be a vector bundle
over X. Denote by m : P(V) — X the natural morphism, and by ( the tautological
class on P(V'). Let wx be a Kdhler class on X such that for all A = 1 we have

(¢ +  Mrwx)imZ. 7 > 0 VZ c P(V) irreducible.

Then ¢ + m*wx is a Kdihler class.

Proof. By assumption the class ¢ + A\m*wx is an element of the positive cone
P C HYY(P(V)) of classes having positive intersection with all subvarieties. By the
Demailly-Paun criterion [DP04, Th. 0.1] the Kahler cone £ is a connected component
of Z. Since ( is a relative Kéhler class, we know that (¢ + AM*wx) € # for A > 0
[Voi02, Proof of Prop. 3.18]. Conclude by connectedness. O

Given a vector bundle V over a complex manifold, we will denote by 7 : P(V) — X
its projectivization in the sense of Grothendieck, i.e., the space of hyperplanes in the
fibres of V' — X. We denote by ¢ the tautological class on P(V).

2.3. Derinirion ([Laz04, §6.2]). Let V' be a vector bundles over a compact Kéhler
manifold, and 7 : P(V) — X its projectivization. Given a (1,1)-class @ on X we say
that the twisted vector bundle V<a> is pseudoeffective (resp. nef) if the (1, 1)-class
¢ 4+ m*« is pseudoeffective (resp. nef).

If « is the first Chern class of a line bundle H, the formal notation V<eci (H)> can
be replaced by the more familiar V' ® L. Recall also [Laz04, Ex.8.3.5] that the k-th
Segre class of V is given by 7, ("t* = s, (V*) = (=1)Fs5 (V).

JE.P.— M., 2021, tome 8



1434 F. ANeLea & A Horine

A (not necessarily projective) Hyperkédhler manifold is a simply connected compact
Kihler manifold X such that H°(X, Q%) is spanned by a symplectic form o, i.e., an
everywhere non-degenerate holomorphic two form. The existence of the symplectic
form o implies that dim X is even, so we will write dim(X) = 2n. The symplectic
form defines an isomorphism Tx — Qx, so we can also consider P({2x) as the space
of lines, allowing us to use e.g. [Kob87]. Moreover the odd Chern and Segre classes
of X vanish.

The second cohomology group with integer coefficients H?(X,Z) is a lattice for the
Beauville-Bogomolov-Fujiki quadratic form ¢ = ¢x [Bea83, §8]. Somewhat abusively
we denote by ¢(.,.) the associated bilinear form. If X is projective it follows from the
Bochner principle that all the symmetric powers S¢Qx are slope stable with respect
to any polarization H on X [Kob80, Th. 6].

We will frequently use basic facts about the deformation theory of Hyperkahler
manifolds, as explained in [Bea83, §8] [Huy99, §1]. In particular we use that a very
general point of the deformation space corresponds to a non-projective manifold, but
the projective manifolds form a countable union of codimension one subvarieties that
are dense in the deformation space. A very general deformation of X is a manifold X,
which corresponds to a very general point ¢ in the Kuranishi space of X.

The Picard group Pic(X) is by definition the group of isomorphism classes of line
bundles on X. Since H!(X,0x) = 0 and H?(X,Z) is torsion-free, the Lefschetz
(1,1)-theorem [Huy05, Prop. 3.3.2] gives an isomorphism

H*(X,Z) N H"'(X,R) ~ Pic(X).

2.4. Remark. — By Hodge theory a class a € H?(X,Z) is of type (1,1) if an only
if it is orthogonal to the symplectic form ox. If ox is not orthogonal to any non
zero element of the lattice H?(X,Z) then there are no integral cohomology classes
of type (1,1) in X. For any 0 # a € H?(X,Z) the orthogonal a* C H?(X,C) is a
proper hyperplane because the Beauville-Bogomolov-Fujiki form ¢ is non degenerate.
By the local Torelli theorem [Bea83, Th.5], the moduli space of the deformations
of X is locally an open inside the quadric {¢(8) = 0} Cc P(H?*(X,C)). So a very
general Hyperkihler manifold can be taken outside all the hyperplanes o such that
0 # o € H?(X,Z), hence has trivial Picard group.

2.5. Remark. — For any very general Hyperkidhler X we have by [Huy03a, Cor. 1]

where ¢'(X) is the connected component of {« € H»'(X,R) | g(a) > 0} that contains
2 (X) and £9(X) is the interior of the pseudoeffective cone. In particular the classes
in the boundary of the Kéhler cone cannot be in the interior of the pseudoeffective
cone because they have trivial top self intersection. Thus a big class, being in the
interior of &(X), is in fact Kéhler.

JIEP. — M., 2021, tome 8



TWISTED COTANGENT BUNDLE OF HYPERKATILER MANTFOLDS 1435

3. THE PROJECTIVIZED COTANGENT BUNDLE

Let X be a compact Kahler manifold, and let V' — X be a vector bundle over X.
Denote by ¢ := ¢1(0y (1)) the tautological class on P(V) and by 7 : P(V) — X the
projection. By [Kob87, Chap. 2] the cohomology ring with integral coefficients is

H*(P(V),Z) = H*(X, Z)[¢]/p(C),

where p(¢) = (" + (" rte (V) + -+ w¥e, (V).
Passing to complex coefficients we get that any class o € H?*(P(V),C) can be
uniquely written as

k
@ = Z Cp . 7T*ﬂ2k—2p7
p=0

where Sor_op € H?k=2r(X C).
Since X is Kéhler we can consider the Hodge decomposition of H2*(P(V),C) and
obtain a decomposition

H"F(P(V)) = @ CF ' @ n* HY (X).
i=0
Using the canonical inclusion H**(P(V)) ¢ H?*(P(V),C) we can compare the two
decompositions and obtain

(1) HMF®V)) 0 H*(P(V),Z) = é 7 @ o (HY (X)) N H? (X, 7).
=0

In particular the cohomology class of a codimension k subvariety Z of P(V') can be
uniquely written as

(2) (2] = BoCF +¢F 7 B+ By T B,

where 3; € H*(X) N H*(X,Z) and fBy € Z.

In this section we will first use this decomposition to establish Theorem 1.3, see
Section 3.A. Then we will prove an additional restriction on the component 3; that
allows us to describe the varieties Z C P(Q2x) in some cases, see Section 3.B.

3.A. Proor or tHE MAIN RESULT. — For a very general Hyperkdhler manifold X
many computations can be reduced to its Beauville-Bogomolov-Fujiki form [Huy99].
We start by showing a similar property for P(Qx):

3.1. Lemma. — Let X be a Hyperkahler manifold of dimension 2n, and denote by q(-)
its Beauville-Bogomolov-Fujiki form. Let

0 € HHF(P(Qx)) N H*(P(Qx), Z)

be an integral class of type (k,k). Suppose that the class © is of type (k, k) for every
small deformation of X. Then there exists a polynomial pg(t) € Q[t] such that for
any (1,1)-class w on X, one has

(C+7mw) 178 0 = pe(q(w))-

JE.P. — M., 2021, tome 8



1436 F. AneLea & A. Horine
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Proof. Observe first that both sides of the equation are polynomial functions on
HY'(X). In particular they are determined by their values on an open set and we can
assume without loss of generality that w is Kéahler. Let

k
(3) ©=> ¢"'rB;
=0

be the decomposition of © according to (1) where 8; € H**(X) N H*(X,Z). By our
assumption, for any small deformation X — A, the class © deforms as an integral
class ©; of type (k, k). Thus we can write

k

.

O =Y T B,
i=0

with 8;+ € H(X;) N H*'(X},Z). Since the family P(X) — A is locally trivial in the
differentiable category, we can consider the classes f3; as elements of H?'(X;,Z) for
t # 0. The integral cohomology class ©; € H?*(P(Qx,,Z) does not depend on t, so (3)
induces a decomposition

k
Or =) (i
=0

By uniqueness of the decomposition we have 5; = 3, ;, in particular the classes 3; are
of type (,4) in X,.
We have

dn—1—k
(<+7T*w)4n—1—k _ Z <4n_1_k
J

=0

>C4n—1—k—jﬂ_*w]7
SO

An—1—k dn—1—k k o )
(<_|_ﬂ_*w)4nflfk .O = Z ( . ) ZC4R717]717T*(ﬁ1"w'7).
j=0 J i=0
By the projection formula and the definition of Segre classes one has for ¢ 4+ 7 < 2n
T (B W) = (1) s i Bi - W,
where s; = $;(Qx). Since the odd Segre classes of a Hyperkéahler manifold vanish, we

can implicitly assume that i + j is even. In particular (—1)**/ = 1. We claim that we
can also assume that j is even.

Proof of the claim. — Note that f(w) := s2,—j—; - 8; - w’ defines a polynomial on
HY'(X). Thus, up to replacing w by a general Kéhler class, we can assume that
Son—j—i - Bi -w? = 0 if and only if so,,—j—; - Bi - (w')? = 0 for every (1,1)-class w'.
As we have already observed at the start of the proof, we can make this generality
assumption without loss of generality. If so,_;_; - 8; - w? = 0, the term is irrelevant
for our computation. If s, —;j—; - B; -w? # 0, then by [Ver96, Th. 2.1] the degree of the
cohomology class Sa,—;—; - §; is divisible by 4 (here we use that w is a Kéhler class).
Since sa,—j—i - fi € H* 7% (X, R), the claim follows.

JIEP. — M., 2021, tome 8
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Thus we obtain
An—1—k k
dn—1-k .
((+mw)ytn=t7F .9 = Z ( " ) ZSQn—j—i B w?.
=0 J i=0
We have shown above that the classes s2,,—;—; - 8; are of type (2n — j,2n — j) on all

small deformations of X. Since j is even, we know by [Huy97, Th.5.12] that there
exist constants d; ; € Q such that for any § € HY1(X,R) we have

Son—j—i* Bi- § = di,jq(5)j/2~
The polynomial

dn—1—k dn—1—k k '
poi= 3 (")) S
j=0 J i=0
has the claimed property. O

Proofof Theorem 1.3. — Suppose first that X is very general in its deformation space.
Let Z C P(2x) be a subvariety. Since X is very general, we know that for any small
deformation X — A, the variety Z deforms to a variety Z; C P(Q%,). In particular its
cohomology class [Z] is of type (k, k) for every small deformation. Thus Lemma 3.1
applies and there exists a polynomial pz(t) = pz)(t) such that

(C+mw) =7 7] = pz(q(w))
for any (1, 1)-class w on X. Since intersection numbers are invariant under deformation
and the cycle space has only countably irreducible components, we obtain a countable
number of polynomials (p,,(t))men such that for every subvariety Z C P(2x) there
exists a polynomial p,,, such that

(C+mw) "R 2] = pu(a(w))-
Denote by ¢,, the largest real root of the polynomial p,,. We claim that

sup {¢ } < oo.
meN

Indeed fix a Kéhler class n on X such that ¢ + 7*n is a Kédhler class on P(2x). Then
¢+ An*n is a Kahler class for all A > 1, so

Pm(Nq(m)) = (¢ + Ax* )18 [Z] > 0
for all A > 1. In particular ¢,, < ¢(7n), and hence sup,,cy{cm } < ¢(n). This shows the

claim and we denote the real number sup,,cn{cm} by Cx.

Proof of the second statement. — Since X is very general, we know by Remark 2.5
that the nef and big class wx is Kahler. If g(wx) > Cx then by construction of the
constant C'x one has

(C+ M wx) "1 7F 2] = pm(Nq(wx)) > 0
for every subvariety Z. By Lemma 2.2 this implies that ¢ + 7*wx is Kéhler.
If g(wx) > Cx then ¢((1+e)wx) > Cx, so ¢+ (1 +¢&)m*wx is Kahler. Thus {4+ m*wx
is nef.

JE.P.— M., 2021, tome 8



1438 F. ANeLra & A. Horine

Vice versa suppose that ( +7*wx is nef. Then ( + Ar*wx is nef for all A > 1. Thus
Pm(Nq(wx)) = (¢ + Ar*wx) "1 7F - [Z] > 0

for all A > 1. Since limy_,o, A?q(wx) = oo, this implies ¢,, < q(wx) for all m € N.
Hence we obtain ¢(wx) > Cx.

Proof of the first statement. — We claim that we can assume that wx is a Kéhler class
with g(wx) > Cx. Indeed let § be any Kéhler class on X, then wx + § is Kéhler.
Moreover one has

q(wx +96) = q(wx) +q(6) +2¢(6,w) > g(wx) > Cx.

Thus if ¢ + 7*(wx + J) is pseudoeffective for every 0, then the closedness of the
pseudoeffective cone implies the statement by taking the limit § — 0. This shows the
claim.

We denote by 0 € Def(X) the point corresponding to X in its Kuranishi family.
By [Huyl16, Prop.5.6] we can assume that in a neighborhood U of 0 € Def(X) the
Kahler class wx deforms as a Kéhler class (wx, )tcv. In order to simplify the notation
we replace U with a very general disc A centered at 0 and consider the family 2"~ — A.
Since the Beauville-Bogomolov-Fujiki form is continuous we have, up to replacing A
by a smaller disc, that ¢(wx,) > Cx for every ¢t € A. By the second statement
this implies that for ¢ € A very general the class (; + 7; wx, is nef, in particular it is
pseudoeffective. Now we apply Theorem A.1 to the family P(Qx) — A and the classes
Ct + m*wx,: this shows that ( + 7*wx is pseudoeffective. |

Proof of Corollary 1.4. — By [Huy03b, Th. 2.1] there exist at most finitely many dif-
ferent deformation families of irreducible holomorphic symplectic complex structures
on Xjy. For any such deformation type, Theorem 1.3 gives a constant C} such that
¢+ m*wx is pseudoeffective for every Kéahler class wx such that ¢(wx) > C. Let Cx
be the maximum among the constants Cj. Since the differentiable structure on X is
fixed, the constant of proportionality between the Beauville-Bogomolov-Fujiki form
q(wx) and the top intersection w3 is fixed. Thus the polarized Hyperkéihler manifolds

(X, H) such that X, X and ¢ 4+ 7*H is not pseudoeffective satisfy H?" < b for
some constant b. By a theorem of Matsusaka-Mumford [MM64] there are for any fixed
0 < ¢ < b only a finite number of deformation families of polarized Hyperkahler man-
ifolds (X, H) such that H?" = i. Thus the cases where ¢ +7*H is not pseudoeffective
belong to one of these finitely many families. O

3.B. SUBVARIETIES OF THE PROJECTIVIZED COTANGENT BUNDLE. — We start with a tech-
nical observation:

3.2. Lemma. — Let X be a projective Hyperkdhler manifold of dimension 2n. Let Z be
an effective cycle on P(Qx) of codimension k>0 such that w(Supp Z)=X. Denote by

[Z)=BoCF + ¢ B+ T By T B

the decomposition (2) of its cohomology class. Then we have 81 # 0.
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Proof. We argue by contradiction and suppose that 81 = 0. Let C C X be a general
complete intersection of sufficiently ample divisors D; € |H| so that the Mehta—
Ramanathan theorem [MR84, Th.4.3] applies for Qx. Then the restriction Qx|c is
stable, and by a result of Balaji and Kollar [BK08, Prop. 10] its algebraic holonomy
group is Spy, (C). Thus not only Qx|c, but also all its symmetric powers S‘Qx|c
are stable. Denote by Z¢c the restriction of the effective cycle Z to P(Qx|¢c). Since
m(Supp Z) = X the effective cycle Z¢ is not zero. Then its cohomology class is

(Zc] = (BoCF + ¢ 2 "By 4+ + 7 By) - T HAT = BoE,

where (¢ is the restriction of the tautological class. In particular, since ¢ (Qx|¢c) = 0,
we have ("% - [Zc] = Bo¢Z* = 0. Yet this is a contradiction to [HP19, Prop.1.3]. O

3.3. Remark. — Lemma 3.2 also holds if X is a Calabi-Yau manifold (in the sense
of [Bea83]): the cotangent bundle Qx is also stable and the algebraic holonomy is
SLgim x (C) [BKO08, Prop. 10]. Thus the proof above applies without changes.

In [COP10, Cor.2.6] it is shown that a very general Hyperkéhler manifold is not
covered by proper subvarieties. We show an analogue for the projectivized cotangent
bundle Qx:

3.4. LEMMA. Let X be a Hyperkahler manifold of dimension 2n. Suppose that X is
very general in the following sense: we have

(1) Pic(X) =0;
(2) if X = A is a deformation of X = Xo, then every irreducible component of the
cycle space € (P(Qx,)) deforms to € (P(Qx,)) fort #0.

Let Z C P(2x) be a compact analytic subvariety. Then w(Z) C X.

By countability of the irreducible components of the relative cycle space [Fuj79,
Th.] and by Remark 2.4 we know that for a very general choice of X the hypothesis
of the lemma are satisfied.

Proof. — We argue by contradiction, and suppose that Z is a subvariety of P(Qx) of
codimension k > 0 such that 7(Z) = X. Denote by

(Z] = BoCF + 1w B+ (PP B+ T By

the decomposition (2) of its cohomology class. Since Pic(X) = 0 we know that 3, = 0.

Projective Hyperkéahler manifolds are dense in the deformation space of any Hyper-

kéhler manifold [Bea83, §9] [Buc08, Prop. 5], so we can consider a small deformation
of X

X—X

0 A

—
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such that X,, is projective for some point ¢y € A. This deformation comes naturally
with a deformation of the cotangent bundle, so we have a diagram

P(Qx) —— P(2x/a)

|

X—X

L

0—A

By the second assumption the subvariety Z C P(Qx) deforms in a family of subvari-
eties Z; C P(Qx,) having cohomology class

(2] = BoCF + "2 "By -+ + T B

Since the cycle space is proper over the base A [Bar75, Th. 1] we obtain in particular
that the class BoC* 4 (¥72 - 1By + - - - 4+ m* By is effectively represented on P(Qx,, )-
This contradicts Lemma 3.2. ]

3.5. Cororrary. — Let X be a Hyperkdahler manifold of dimension 2n. Suppose that X
is very general in the sense of Lemma 3.4. Suppose also that X contains no proper
compact subvarieties. Let Z C P(Qx) be a compact analytic subvariety. Then w(Z) is
a point.

Proof. — By Lemma 3.4 we have 7(Z) C X for every subvariety Z C P(Qx). By our
assumption this implies that 7(Z) is a point. O

3.6. REMARK. A very general deformation of Kummer type does not satisfy the
assumptions of the corollary ([KV98, §6.1]).

4. ThE POSITIVITY THRESHOLD

In view of the results from Section 3.B, we will deduce Theorem 1.5 from the main
result:

4.1. Prorosition. — Let X be a Hyperkdhler manifold of dimension 2n. Suppose that
a very general deformation of X contains no proper compact subvarieties. Let px (t)
be the polynomial defined by applying Lemma 3.1 to [P(Qx)]. Then the constant Cx
appearing in Theorem 1.3 is the largest real root of px (t).

Proof. Since Cx only depends on the deformation family we can assume that X
is very general in its deformation space. In the proof of Theorem 1.3 we defined the
constant C'x as sup,,en{c¢m}, where ¢, is the largest real root of the polynomials
Pm (t), and the family of polynomials (py,(t))men is obtained by applying Lemma 3.1
to the classes of all the subvarieties Z C P(Qx).
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By our assumption and Corollary 3.5 we know that a proper subvariety Z C P(2x)
is contained in a fiber. Thus for any Kéhler class wx the restriction

(C + F*wx)z = ClZ = Cl(ﬁp2n—1(1))|z
is ample. Hence the corresponding polynomial p,,(t) is constant and positive. In par-

ticular there is no real root to take into account for the supremum. |

Proof'of Theorem 1.5. — By Proposition 4.1 the constant Cx in Theorem 1.3 is the
largest real root of the polynomial px (t) defined by

px(g(w)) = (€ + )L,
Thus the condition ¢(wx) > Cx is equivalent to
(C+AT*w)*" 1 >0
for all A > 1. Conclude with Theorem 1.3. O
We have already observed that for a very general Hyperkahler manifold the pseudo-

effective cone and the nef cone coincide. This also holds for the projectivized cotangent
bundle:

4.2. Prorosition. — Let X be a Hyperkdhler manifold of dimension 2n. Suppose
that X is very general in the sense of Lemma 3.4. Suppose also that X contains no
proper compact subvarieties.

Let Cx > 0 be the constant from Theorem 1.3. Then we have

(4) E(P(OX)) = {aC + 76| a> 0,0 € Z(X), q(8) > a*Cx}
and
&(P(Qx)) = A (P(Q%))-

Proof. — We start proving the last statement. We recall the definition of the Null
cone of P(Q%) that is the following set

N = {33 € HHY(P(QY),R) | fﬂ”(ﬂk) g2l = 0}.
For any class v € 9 (P(QY)) there exists a subvariety V of P(2%) such that
fv A4m(V) = (. Since we are assuming that there are no proper subvarieties in X,
by Lemma 3.4 we know that the proper subvarieties of P(2},) are contracted to points

in X. Since P(Q2%) is a projective bundle the integral along a contracted subvariety V
has the following property

/ (al + 7*0)3Im(V) =0 «—= a=0.
1%
This implies using [DP04, Th. 0.1] that

4 (P(Q%)) € A Ufa=0}.

A (1,1) form in the hyperplane {a = 0} is in the null cone. This tells that the Kahler
cone is one of the connected component of H1(P(2% ), R) \. .#". Hence the classes in
the boundary of the Kédhler cone are nef classes with trivial self intersection, so they
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are also in the boundary of the pseudoeffective cone [DP04, Th. 0.5]. This proves that
the closure of the Kéahler cone is the pseudoeffective cone.
For notation’s convenience we set

A = {aC+7r*6 la>0,60¢c.2(X),q0) > aQC'X}.

The inclusion &(P(Q%)) O & follows from the first statement of Theorem 1.3.
To prove the other inclusion we argue as follows. The points of 0./ are contained
in the set {a = 0V ¢(6) = a®>Cx}. By definition of the constant C'x the self intersec-
tion of the classes a¢ + 7*§ vanishes. We also have (7*§)?"~! = 0, hence

o C N.

Moreover there are no points in the interior of &/ contained in the null cone, so &7°
must be a connected component of H!'(P(Q),R) \ 4. Since the intersection of
&(P(QY)) and & is non-empty and both are closed convex cones the conclusion
follows. |

4.3. REmMARK. The rest of the paper is devoted to giving more explicit expressions
of the conditions in Theorem 1.3 and Theorem 1.5, so for clarity’s sake let us write
down the polynomial px (t) from Proposition 4.1: let X be a Hyperkahler manifold of
dimension 2n, and denote by ¢ the tautological class of 7 : P(Qx) — X. Recall that
by definition of the Segre classes we have m,(?"** = (—1)%s;(X). Since the odd Chern
classes of a Hyperkdhler manifold are trivial, the odd Segre classes vanish. Note also
that (7*wx)® = 0 if i > 2n. The top self-intersection is thus

2n
Px(gwx)) = ((+Ar"wx) " = 3 <4” N 1)&”” AN

. (3
=0

" [dn —1 . L
(5) = CQ"L—l Z ( n2l >C2n—21 . 7.(.*0‘}%{2)\21
=0

" f4n —1 L.
= Z ( 2 )SQnQZ(X) . wg(’)\%.
‘ P
1=0
Recall also that by [Fuj87, Rem. 4.12] there exist constants dg; € R that depend only
on the family such that
(6) Son—2i(X) - w¥ = doiq(wx)’
for any (1,1)-class wx. Note that so(X) - w3 = w¥ = danq(wx)™, s0 da, > 0.
4.4. EXAMPLE. For n = 1 we obtain
(¢ + M*wx)? = —ca(X) + 3w A2
For n = 2 we obtain

(CH+ M*wx)" = (c2(X)? — ca(X)) — 21ea(X) - W A2 + 35wi AL
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Proof of Corollary 1.6. By Proposition 4.1 we only have to compute the largest real
root of px(t). By Formula (5) and Example 4.4 the constant Cx is the largest root
of —co(X) + 3t = 0. Since c2(X) = 24 the result follows. O

4.5. DEFINITION. Let X be a Hyperkédhler manifold of dimension 2n, and let wx
be a nef and big class on X. The positivity threshold of (X,wx) is defined as

Yp(wx) i=inf{Ag € R | (¢ + A wx)*™ 1 > 0 VA > Ao}

4.6. REMARK. Since (¢ 4+ Mr*wx )71 ~ A2"w3 for t > 0 we have v, (wx) < +oo.
It seems unlikely that (¢ + Am*wx)*" =1 > 0 for all A € R. If (a very general deforma-
tion of) X contains no proper subvarieties, this can be seen as follows: since X has no
subvarieties, the nef and big class wy is Kdhler. By Corollary 3.5, the class ( + Anm*wx
satisfies the condition of Lemma 2.2 for any A € R, so { + An*wx is Kéhler for any
A € R. But #(P(2x)) does not contain any lines.

Let X be a Hyperkédhler manifold, and let wx be a Kéhler class on X. We define
the pseudoeffective threshold

Ye(wx) := inf{t € R| ¢ + tr*wx is big/pseudoeffective}
and the nef threshold
Yn(wx) ;= inf{t € R| ¢ + tr*wx is Kéhler/nef}.
Since ¢ + tm*wx is Kéhler for ¢ > 0, both thresholds are real numbers.

4.7. ProposiTiON. Let X be a (not necessarily projective) Hyperkihler manifold of
dimension 2n. Suppose that a very general deformation of X does not contain any
proper subvarieties. Let wx be a Kdhler class on X. Then we have

Yelwx) < 7p(wX> < Yn(wx).

For a very general deformation of X these inequalities are equalities for any Kdhler
class wx.

Proof. — The top self-intersection of a Kéhler class is certainly positive, so the in-
equality vp(wx) < Yn(wx) is trivial. The inequality ve(wx) < vp(wx) follows from
Theorem 1.5. For a very general deformation of X we can apply Proposition 4.2, so the
nef cone and the pseudoeffective cone coincide. Thus we have v.(wx) = v (wx). O

We will show in Section 5 that for the Hilbert square of a K3 surface the second
inequality is strict.
5. HiLBERT sQUARE oF A K3 surrack

5.A. Serue. — We recall the basic geometry of the Hilbert square, using the notation
and results of [Bea83, §6]: let S be a (not necessarily algebraic) K3 surface, and let
p: S xS — S xS8 be the blow-up along the diagonal A C S x S. We denote the
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exceptional divisor of this blowup by E. The natural involution on the product S x S
lifts to an involution

ié}-‘/s:SXS—)SXS,

and we denote by 7 : m — X the ramified two-to-one covering defined by taking
the quotient with respect to this involution. It is well-known that X is smooth and
Hyperkéhler. Finally we denote by 7 : P(Qx) — X the natural projection, and by
¢ — P(Qx) the tautological divisor.

Recall that X is isomorphic to the Hilbert scheme of length two zero dimensional
subschemes S, and denote by

e: 5 — 5@

the natural map to the symmetric product. We denote by Ex C X the exceptional
divisor of this contraction, and observe that n|g induces an isomorphism E ~ Ex.
Since p is the blowup of the diagonal one has F ~ P(Qg), and we denote by

ms = plg 2 nlpy :P(Qs) — S

the natural map. Denote by (s — P(Qg) the tautological divisor.
By [Bea83, §6, Prop.6] we have a canonical inclusion i : H%(S,Z) < H?*(X,Z)
inducing a morphism of Hodge structures

H*(X,7) ~ H*(S,Z) & 7.,

where § is a primitive class such that 26 = Ex. This decomposition is orthogonal
with respect to the Beauville-Bogomolov-Fujiki quadratic form ¢ [Bea83, §9, Lem. 1]
and one has ¢(0) = —2 [Bea83, §1, Rem. 1]. By construction of the inclusion ¢ [Bea83,
§6, Prop. 6] we have

(7) OleEX :27T§-Cks,

and by [Bea83, §9, Rem. 1] one has ¢(ax) = a?.
Since F is the ramification divisor of the two-to-one cover 1, we have n*Ex = 2F.
Since E|g = —(g and 20 = E, we obtain

(8) d|px = —Cs.
By [Bea83, §9, Lem. 1] we have
() a' =3q(a)’

for any o € HV1(X). If ag is any (1,1)-class on S, we set ay = (i ® id¢)(as).
The second Chern class cz(X) is a multiple of the Beauville-Bogomolov-Fujiki form.
More precisely we have

(10) c2(X) - a? = 30¢(a)

for any o € HY1(X) [Ott15, §3.1].

JIEP. — M., 2021, tome 8



TWISTED COTANGENT BUNDLE OF HYPERKATILER MANTFOLDS 445

5.B. INTERSECTION comMPUTATION ON X, Denote by p; : S x S — S the projection
on the i-th factor. The composition of p; with the blow-up p defines a submersion

piop:SxS— 5

the fiber over a point x € S being isomorphic to the blow-up of S in x. We denote
by F; a p; o p-fiber and by S = n(F}) its image” in X. We will denote by S, the

—_~—

image of the fiber p; o p~1(z) C S x S in X.
The tangent sequence for p

0—> P*QSXS — Qé—;fg — ﬁE(QE) — 0
immediately yields
c1(Q =FE c3(Qez) = B> +24(F) + F») - E,

(11) 575 ) §x8
co(Vag) = 24(Fy + ) — B2, cy(Q = —FE* - 24(F, + F,) - E® + 576.

Sx8 5*?5*)

From tangent sequence for 7
0—n"Qx — Q§§/S — Og(—E) — 0
one deduces
12) a(n*Qx) =0, c3(n"Qx) =0,
ca(n*Qx) = 24(Fy + F) — 3E%,  c4(n*Qx) = 648.

We can then deduce the Segre and Chern classes of X:

S1(X):0:C1(X), S3(X):0:C3(X),
(13) 59(X) = =245 + 307 = —co(X), s2(X)* =828 = cp(X)?,
54(X) = 504, ca(X) = 324.

More precisely these formulas follow from (12), the projection formula and the fol-
lowing lemmas.

5.1. LEmma. In the setup of subsection 5.A, one has
S-6=¢
where £ is the class of a fiber of €|g, : Ex — S. Moreover one has
S.6-ax=0 S§-2=-1, 8§ =1, S-a% =0’
Proof. — The first statement is equivalent to S - Ex = 2. Since S = 7« F1 and
n*Ex = 2E we know by the projection formula that
S -Ex=n.F - -Ex=F -n"Ex =2F -E.

Now recall that F; is the blow-up of p x S in the point (p,p). Thus the intersection
F, - E is the exceptional divisor of the blowup F; — p x S. This exceptional P! maps
isomorphically onto a fiber of ¢|g,, . This shows the first statement.

(1)Note that the involution ié}fs maps F; onto Fh, so S is well-defined.
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The equalities S-§-ax = 0, S-462 = —1 now follow from (7) and (8). Since
n*S = Fy + F; the projection formula implies
— 1, = 1
5= 5(77*5)2 =5 +R)?=F-F=1,
where the last equality is due to the fact that the strict transform of p x S and S x ¢
intersect exactly in (p, q) if p # q.
Finally the equality S - a3 = o follows from the construction of ay [Bea83, §6,
Prop. 6] and observing that if Fy , is the fiber of p; o p over x € S, then ax/|, (s, ,) =

prag where p, : Fy x S is the blow-up in z. O
5.2. Lemva. — In the setup of subsection 5.A, one has
ok =3(a%)?, a%-0=0, ok -6*=-2a% ax-0°=0, &' =12

Proof. — A standard intersection computation based on (9), (7), (8) and ¢(d§)=-2.

|
5.C. PosITive THRESHOLD. Using the preceding section we can easily compute the
positive threshold:
5.3. COROLLARY. Let X be a four-dimensional Hyperkdhler manifold of deformation

type K32, Let wx be a nef and big (1,1)-class on X such that

/21
C](WX) = 3+ g ~ 5.0493.

Then (+m*wx is pseudoeffective. This bound is optimal for a very general deformation
of X.

Proof. — By Proposition 4.1 we only have to compute the largest real root of px (¢).
By Formula (5) and Example 4.4 we have to compute the largest solution of

do + 21dat + 35d4t? = 0,
where the constants dg; are defined by (6). By (9) and (10) we have
e2(X)a® =30¢(er), o =3g(a)?

for any element o € H1(X,R). By (13) we have c4(X) = 324, ¢2 = 828. Thus we
obtain the quadratic equation

504 — 630t + 105¢% = 0.

Its largest solution is

630 + 424/105
Oy = +21 Ty / O

4. Remark. — Let X be a four-dimensional Hyperkahler manifold, not necessarily
deformation equivalent to a Hilbert square. In this case the coefficients d; are not

JIEP. — M., 2021, tome 8



TWISTED COTANGENT BUNDLE OF HYPERKAHLER MANIFOLDS 447

known. However, if a very general deformation of X does not contain any subvarieties,
we can use Example 4.4 to show that for a Kéahler class wx the positivity threshold is

21w co + v/ (21wZ )2 — 140(wk ) (c2 — c4)
"YP(WX) = 700.)4 '
X

5.D. A susvariery or P(Qx). Denote by p; : S x S — S the projection on the i-th

factor. Then p; o p: S xS — S is a submersion, the fiber over a point x € S being
isomorphic to the blow-up of S in x. Thus we obtain rank two foliations

ker Tpiop =% C TEY@

In view of the description of the .Z;-leaves it is clear that the natural map %, @ %, —

T's< has rank 4 in the complement of the exceptional divisor E, but

cg”\l|EﬂTE :TE/S = 352|EQTE.

5.5. Lemwa. — The composition of the inclusion F; C Tgy- with the tangent map

Tg;‘[; — n*T'x is injective in every point. Thus F; — n*Tx is a rank 2 subbundle.

Proof. — Since T,, is an isomorphism in the complement of F, it is sufficient to study
the restriction to E. Note also that

Tsigle — ("'Tx)|e
has rank three in every point, since n|g induces an isomorphism E — Ex. Arguing

by contradiction we assume that there exists a point z € E such that the map

91'@ — Té‘;g,w — (W*TX)JC

has rank at most one for some i € {1,2}. Since 7 o igz5 = 7 this implies that

y?)-i,z — Té—;,/s,x — (n*TX)w

also has rank at most one. Yet ker T}, , has dimension one, so we obtain
ker Ty » N F1 o =ker T, o = ker T}, , N Fo 4.
In particular we have
kerTn)x = 91@ N ygw = TE/S,I'

Yet n induces an isomorphism £ — Ex, so Tg/s, C Tk, is not in the kernel. O

By Lemma 5.5 we have an injection %#; — n*Tx. The corresponding quotient
n*Tx — Q; defines a subvariety P(Q;) of m, : P(n*Tx) — S x S that is a P!-bundle
over § x S. Since 7 oigzz = 1 the involution it~ acts on P(n*Tx) and maps P(Q1)
to P(Q2). Thus if we denote by Z C P(T’x) the image of P(Q;) under the two-to-one
cover 11 : P(n*Tx) — P(Tx ), we have

1°12] = [P(Q1)] + [P(Q2)]-

5.6. Prorosrrion. In the situation of Section 5.A, denote by Z C P(Tx) ~P(2x)

the subvariety constructed above. Then we have

(14) [Z] = 2¢% 4+ 27%6 - ¢ + 77 (245 — 662).
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Proof. — Consider the exact sequence
0—>§l—>Tm —)(piop)*TS — 0.

The Chern classes of (p; o p)*Ts and T are known, cf. (11). An elementary com-
putation then yields

(15) ci(F) = —E, c(F) =24F;_; — 3E>.
Denote by ¢, the tautological bundle on P(n*Tx). Since Q; = n*Tx /.%#; we have
P(Q:)] = ¢ — Gy - mper (Fo) + mea(F) = G + Gy - B + 7)) (24F5_; — 3E®).
Since 77*[Z] = [P(Q1)] + [P(Q2)] and
NS =Fi+F, n=E 7=,

the claim follows. O

—~

5.7. REMARK. The geometry of Z can be understood as follows: on S x S we have
two distinct families of surfaces ((p; o p) 1 (x))zes. The images in X of these two
families coincide and form a web of surfaces (S;)zcs. For a point € X that is not
in Fx there are exactly two members of the web passing through x and they intersect
transversally. The projectivization of their normal bundle defines a projective line in
P(Qx ;). Since the intersection is transversal, the general fiber of Z — X is thus a
pair of disjoint lines.

For a point € E C X, the involution i*— acts on P((n*Tx).) and identifies
P(Q1,;) with P(Q2,). Thus the fiber of Z — X over a point in x € Ex ~ E is
a double line. Hence Z N n*E is non-reduced with multiplicity two. In fact since
(*Tx)|e ~ Tx|gy we can identify (Z N 7*E)wq to the quotient defined by the
inclusion %;|g — (*Tx)|E.

5.E. THE INTERSECTION COMPUTATION. We will now compute some intersection num-

bers on P(Qx).

5.8. Lemva. — In the situation of Section 5.A, let as be a (1,1)-class on S and
ax = (i®idc)(as) € HYY(X,R). Then one has
¢" = 504,

¢ =60, ¢® -1 (0-ax)=0, ¢® 7ok =-30a%,
Gorrot=12, G0 ax)=0, ¢ 17(6?-a%) = —2a%,
¢om(8-a%) =0, ¢ -mray =3(ak)
Proof. — Observe first that (7 = s4(X), so the first statement is included in (13).
Also note that by (13) one has
(% = 59(X) = —245 + 362,

so the second statement follows from Lemma 5.1 and Lemma 5.2. The intersections
with ¢3 are simply a restatement of Lemma 5.2. O
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In order to compute the intersection numbers with 7*S, note that by Lemma 5.1
one has

a(Qxlz) =0, s2(Qx|g) = s2(Qx) - S = (248 + 36?) - S = —27.
Thus we have ¢? - 7*§ = —27 and
(16) ¢ont§-62=-1, ¢ 7S-ax-0=0, ¢ 75 ok =ak.

The intersections with ¢* and (% are all equal to zero: the Segre classes s1(X) and
s3(X) vanish, so the statement follows from the projection formula.

Let now S be a very general K3 surface such that Pic(S) = 0, in particular S does
not contain any curves. The subvarieties of the product S x S are exactly S x z,
x x S and the diagonal A: the case of curves and divisors is easily excluded. For a
surface Z C S x S we first observe that the projection on S is étale, since S does not
contain any curve. Since S is simply connected, we obtain that Z is the graph of an
automorphism of S. Yet a very general K3 surface has no non-trivial automorphisms
[Ogu08, Cor. 1.6].

5.9. Lemma. — In the situation of Section 5.A, let S be a very general K3 surface
such that Pic(S) = 0.

— The subvarieties of X are exactly (S;)zes, the exceptional divisor Ex and the
fibres of Ex ~P(Qx) — S.

— Let ag be a Kdhler class on S. Then ax — § is a Kdhler class if and only if
oz?g > 2.
Proof. Since 7 is finite, any subvariety of X corresponds to a subvariety of m .
By the discussion above and Corollary 3.5 we know the subvarieties of S x S and
P(Qs), so the first statement follows.

We know that tax — ¢ is Kéhler for £ > 0, so by the Demailly-Paun theorem it is
enough to check when axy — J is in the positive cone. By Lemma 5.1 and Lemma 5.2

we have
(ax —0)* = 3((a?)? — 402 + 4), (ax —6)* - E =12(a% —2),
(ax —6)*-S=a%—1, (ax —0)-£=1,
which are all positive for a% > 2. O
5.10. Prorosition. — In the situation of Section 5.A, let ag be a Kdihler class on S

such that w := ax — ¢ is a Kdhler class. Let Z C P(Tx) ~ P(Q2x) be the subvariety
constructed in Section 5.D. Then we have

((+m*w)® - [Z] = 15((a%)? — 8al — 56).

In particular we have
(C+m*w)’-[Z2] >0
if and only if o > (8 +1/288)/2 ~ 9, 6569.
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Proof. — The class [Z] is given by (14) and all the intersection numbers are de-
termined in Section 5.E. The statement follows from an elementary, but somewhat
lengthy computation. O

We can summarize our computations on X = S as follows: since a? = qlax)
we know that for a very general K3 surface, the class ax — ¢ is Kéhler if g(ax) > 2
(Lemma 5.9). The class ( + 7*(ax — 0) is pseudoeffective if ¢(ax) > 5+ /21/5
(Corollary 5.3). If g(ax) < (8 + 1/288)/2, the class ¢ +7*(ax — §) is not nef (Propo-
sition 5.10). In particular we see that for the Hilbert square of a K3 surface polarized
by an ample line bundle L of degree eight, the integral class ¢+ 7*(c1(L)x — 9) is big
but not nef.

5.F. Remark oN suBvarieTiEs oF X. — By [Ver98, Th. 1.1] a very general deformation
of the Hilbert scheme S!™ does not contain any proper subvarieties. Verbitsky’s proof
is rather involved, but for the case n = 2 general arguments are sufficient: a very
general deformation satisfies satisfies Pic(X) = 0, so there are no divisors and by
duality there are no curves on X. The vector space

HY(X,Q) N H**(X)

is one dimensional by [Zhal5, TableB.1] and thus generated by the non-zero class
co(X). If X contains a surface S, we obtain that co(X) is represented by an effective
Q-cycle for X very general. By properness of the relative Barlet space [Fuj79, Th.4.3]
this implies that co(X) is effectively represented for every member in the deformation
family. Yet this contradicts [Ott15, Prop. 2].

6. HiLBERT cUBE OF A K3 SURFACE

Now we compute explicitly the positivity threshold for n = 3.

6.1. CororLLary. — Let X be a siz-dimensional Hyperkdhler manifold of deformation
type K331, Let wx be a nef and big (1,1)-class on X such that

2 3 3
alwx) > o (184 {61875 — 7v1933) + {/6(1875 + 7V/1233) ) ~ 5.9538.

Then (+m*wx is pseudoeffective. This bound is optimal for a very general deformation
of X.

The proof is based on the following proposition, communicated to us by Samuel
Boissiere:
6.2. Prorosition (S.Boissiere). — Let X be a siz-dimensional Hyperkahler manifold
of deformation type K331, Then for any (1,1)-class a on X one has
a® = 15¢(a), czat = 108¢(a)?,
c3a’ = 1848¢(a), ey = 2424¢(a).
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Proof. By [Fuj87, Rem.4.12] or [Huy97, Th.5.12] we know that for any element
v € H%(X,R) that deforms to a very general deformation of X as element of type
(i,4), its intersection with a class in H?(X,R) satisfies v - a = C(v)q(a)"~* for any

a € H*(X,Z). We need to compute these constants for varieties that are deformation
equivalent to K313 and + in the subalgebra generated by the Chern classes. By abuse of
notations we will denote by ¢; the Chern classes of X. The constants C'(y) are invariant
by deformations, so we can assume that X is isomorphic to SP! for a projective K3
surface S. As we mention before in the case of S2 there is an isometric inclusion
i : H*(S,Z) — H?*(X,Z). Geometrically this inclusion is realized sending a line
bundle L on S to the line bundle Lz := det L. By Riemann-Roch formula and by
[EGLO1, Lem. 5.1] we have

L)+2
/ ec1(La) TOdd(X) _ XX(LS) _ (XS( ) + )
X 2
From now on we by abuse of notation we will confuse line bundles with their first
Chern class. We recall that the Todd class for six dimensional Hyperké&hler manifolds is

1 1 1
17 Td =14+ — ——c3 —
(17) (X)=1+ 1202 910 240 %~ 735% + 50482 ~ G7a0° 30240°

and ys(L) = L? + 2 = q(L3) + 2. Putting the Todd class and the characteristics in
the equation above we get

1 1 1 1 1 1 1
7L6 - L4 -2 - L2 3
7078t gl (g ~ Tz et 604802 67202 T 3022024
1 3 13
= 5Xs(L)(xs(D) + 1)(xs(L) +2) = qu(LB) 8q(Ls)2 + 5 a(Ls) +4

that, by homogeneity, tells us that

L3 =15q(L3), oLy = 108¢(L3)>.
The quadratic term is not sufficient to gives us the other constants but tells only that
(18) 3c3L3 — cy L3 = 3120¢(L3).

We are going to use a consequence of a formula due to Nieper that can be found in
[Huy03b, Th.4.2]:

(19) /\/W (14 Az /\/ﬁ

for a quadratic form A : H?(X,C) — C and any x € H?(X,C). One can deduce
directly by (17) that

Td(X) = 1+

7 1 31, 11 1
* 56502~ 1440 * 9676802~ 241920 T 60450
By the terms of degree 4 and 6 of (19) we deduce that A(x) = 3q(z). This fact with
the degree two component of (19) gives

7
(20) Zc%ch — cy2® = 810q(x).
Finally the solution of the system given by (18) and (20) is
c3L3 = 1848q(L3), cy L3 = 2424q(L3). O
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Proofof Corollary 6.1. By Proposition 4.1 we only have to compute the largest real
root of px(t). By Formula (5) we have to compute the largest solution of

11 11 11
(D) (s (s

where the constants dy; are defined by (6). Using Proposition 6.2 we can compute the
constant do; in our setting, one obtains the cubic equation

6930t — 35640¢% — 31680t — 10560. = 0.

This polynomial has only one real solution, the one from the statement. The last
statement is the second part of Theorem 1.3. ]

~ *
A]’]’EN])IX. LLIMITS IN FAMILY OF PSEUDOEFFECTIVE CLASSES, BY SimonNE DTVERIO( )

A crucial step in the proof of Theorem 1.3 is to pass from the twisted cotangent
bundle of very general Hyperkahler manifold to a specialization. This step fits into a
more general framework:

Let m: X — A be a proper holomorphic submersion onto the complex unit disc of
relative complex dimension n, and call X; = 7=1(¢) the compact complex manifold
over the point t € A.

Suppose also that 7 is a weakly Kéhler fibration, i.e., there exists a real 2-form w
on X such that its restriction w; = w|x, is a Kéhler form on X, for each t € A.

By Ehresmann’s fibration theorem, m it is a locally trivial fibration in the smooth
category. Thus, after possibly shrinking A, we may suppose that we are given a
smooth compact real manifold F' of real dimension 2n and a smooth diffeomorphism
f: X — F x A such that the following diagram commutes:

}I—>F><A

N

Next, call §; :=0|x,: Xy — F. Forany t € A, given a real (1, 1)-cohomology class
~coo

a; € HY1(Xy, R), we can then think of it as an element 3; of H2(F,R), by pulling-back
via 0, ', that is £, := (9[1)*%.

Now, suppose that we are given a class ag € HV!(Xp,R) with the following
property: there is a sequence of points {tx} C A converging to 0, for each k it is
given a (1,1)-class ay, € HY'(X,,,R) which is pseudoeffective and the corresponding
classes f;, converge to (3 in the finite dimensional vector space H2(F,R). Then we
have the following statement that completes the proof of the first part of Theorem 1.3.

(*)Simone Diverio, Dipartimento di Matematica “Guido Castelnuovo”, Sapienza Universita di
Roma, I-00185 Roma, Italy. F-mail: diverio@mat.uniromal.it.
Partially supported by the ANR Programme Défi de tous les savoirs (DS10) 2015, “GRACK”, Project
ID: ANR-15-CE40-0003ANR, and by the ANR Programme Défi de tous les savoirs (DS10) 2016,
“FOLIAGE”, Project ID: ANR~16-CE40-0008.
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A.1l. THEOREM. The class aq is also pseudoeffective.

We claim in no way any originality for this theorem, since this is certainly a well-
known statement for the experts, and moreover widely used. But we were unable to
find a clean proof in the available literature. We take thus the opportunity here to
give a complete proof. We follow the notations of Demailly’s book [Dem12].

Proof. — To start with, we select for each k a closed, positive (1,1)-current T}, €
Q:Ltl,nq(th) representing the cohomology class a4, . Each of these, being a positive

current, is indeed a real current of order zero.

Now, set O := (Htk)*Tk. This is a closed, real 2-current of order zero on the
compact real smooth manifold F.

The first step is to produce a weak limit © of the sequence O on F'. In order to to
this, by the standard Banach—Alaoglu theorem, it suffices to show that for every fixed
test form g € D?"~2(F) we have that the sequence (Oy, g) is bounded. By definition,
we have

Ok, 9) = ((00.) , Tr: 9) = (Tk, (61) " 9),

and of course (T, (Gtk)*g> = (Tk, fr), where fi is the (n — 1,n — 1) component of
(Htk)*g on the complex manifold Xy, . The (n—1,n—1)-forms fj, are real, since (Gtk)*g
is so.

A2, Lemma. — Let (X,w) be a compact Kihler manifold, T be a closed positive
current of X, and f be a real smooth (n—1,n—1)-form. Then, there exists a constant
C > 0 depending continuously on f and w such that we have

(T, A < O] W™,
where the right hand side is intended to be the intersection product in cohomology.

Proof. — Since f is real, we are enabled to define the following (possibly indefinite)
hermitian form on 7T'%:
FAEAT
€y — L0
We also have the positive definite hermitian form given by
wrlAEAT
(&M — o

It is positive because (£,§)., = %trw(i €N €). By compactness of the bundle of (-, -),,-
unitary (1,0)-forms on X, we can define
! .
¢hi= = min {(&9s},

and we have that (§,1)" — (§,1)5+C" (£, n)w is positive semidefinite. This constant C’
depends manifestly continuously on f and w. We can do the same job with —f in
the place of f thus obtaining another constant C”', still depending continuously on f
and w such that

(5’77)” — _(§7n)f +C” (67”)&&1
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is positive semidefinite. Now set C':= max{C’,C"} > 0, which again depends contin-
uously on f and w. This means exactly that both f + Cw” ! and —f + Cw" ™! are
positive (n — 1,n — 1)-forms.
But then, begin T" positive on positive forms,
(T, f)=(T,f+Cw" ' =Cw" ™)
> —C(T,w" 1) = =C[T] - [w]" ™,

and (T, f)=(T,f —Cw" ' +Cw" 1)
= (T, ~f+Cw" ) +{T,Cw" ™)
<C(T,W" 1) =CT] - [w]" . 0

Now, we apply the above lemma with (X,w) = (X;,,w:,), T = T} and f = f.
We therefore obtain positive constants Cj, such that

Tk, fi)| < Ci [Th] - [we, ]"

The right hand side is equal to Cy, 3, ~ka_1, where Q; € H?(F,R) is the cohomology
class of (9[ 1)*wt. It converges to the quantity Cpaqg - g, where Cj is the constant
obtained if one applies the above lemma with (X, w) = (Xo,wp), and f the (n—1,n—1)
component of (90)* g. Thus, the left hand side is uniformly bounded independently
of k.

We finally come up with a real 2-current ©® on F' which is a weak limit of the
Oy’s. By continuity of the differential with respect to the weak topology we find also
that © is closed and of course its cohomology class is [y. Being © trivially with
compact support since it lives on the compact manifold F', by [dR84, Cor. on p.43],
it is of finite order, say of order p.

A.3. REmark. — We can then look at the whole sequence {©} together with its weak
limit © as a set of currents of order p. In particular, this is a set of continuous linear
functionals on the Banach space PD?"~2(F) which are pointwise bounded. By the
Banach—Steinhaus theorem this set is uniformly bounded in operator norm, i.e., there
exists a constant A > 0 such that for each positive integer k and each g € PD?"~2(F)
we have

106(9)] < Allglpan-2c)-

This remark will be crucial in what follows.

Next, set T := (961 ,©. It is a real current of degree 2 on Xo. We are left to show
that T is indeed a (1, 1)-current which is moreover positive.

A.4. Prorosition. — The current T is of pure bidegree (1,1).

Proof. — If not, there exists a (n,n — 2)-form h on Xy such that (T, h) # 0. Fix a
finite open covering of Xy by coordinate charts and a partition of unity {¢;} relative
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to this covering. Since

0# (T, h) = <T7 Zj @jh> = Z<T7 @jh>v
J

there exists a jo such that (T, ¢; h) # 0. Thus, we may assume that h is compactly
supported in a coordinate chart (U, z). Without loss of generality, we can also suppose
that such a coordinate chart is adapted to the fibration 7, i.e., U = % N Xy, where %
is a coordinate chart for X with coordinates (¢, z) such that 7 (¢, z) = t.

In this way, we can extend h “constantly” on the nearby fibres of m: call this
extension h and write Et for E|%mxt- If we set u; := (9;1)*Et we obtain a family of

test form on F' such that, for k sufficiently large, we have
(Tk hay) = (O, up, ).
By Remark A.3, we have
(T ) = (T, B)] =[O, g, ) — (O, up)]
< (O, ut, — uo)| + (O, uo) — (O, uo)|
< A lug, — uollpp2n—2(py + (O, uo) — (O, uo)|

— 0, by construction — 0, by weak convergence

Being the T’s of bidegree (1,1) and Etk of bidegree (n,n — 2), we have that

(Tk, hy,) = 0 and we deduce then that (T, h) = 0, contradiction. O
A.5. Prorosition. — The current T is positive.
Proof. — The proof is almost identical to that of the above proposition. We want to

show that for any positive (n—1, n—1)-form h on X, we have that (T, h) > 0. As before
the question is local, so we can suppose that h is compactly supported in U as above.
Now the “constant” extensions ?Lt are again positive (n—1,n—1)-forms on Xy, so that
(Tk, hy, ) > 0 and we still have convergence to (T, k). But then (T, h) > 0. O

This concludes the proof of the theorem, since we have represented «ag by a closed
positive (1, 1)-current, i.e., ag is a pseudoeffective class. O
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