Étant donné un sous-groupe approximatif définissablement moyennable d’un groupe (local) dans une structure du premier ordre, il y a un sous-groupe type-définissable normalisé par et contenu dans tel que tout ensemble définissable contenant est de mesure positive.
Given a definably amenable approximate subgroup of a (local) group in some first-order structure, there is a type-definable subgroup normalized by and contained in such that every definable superset of has positive measure.
Accepté le :
DOI : 10.5802/jep.17
Keywords: Approximate subgroup, definability, definable amenability
Mot clés : Sous-groupe approximatif, moyennable, sous-groupe type-définissable
Jean-Cyrille Massicot 1 ; Frank O. Wagner 2
@article{JEP_2015__2__55_0, author = {Jean-Cyrille Massicot and Frank O. Wagner}, title = {Approximate subgroups}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {55--63}, publisher = {\'Ecole polytechnique}, volume = {2}, year = {2015}, doi = {10.5802/jep.17}, mrnumber = {3345797}, zbl = {1379.03008}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.17/} }
TY - JOUR AU - Jean-Cyrille Massicot AU - Frank O. Wagner TI - Approximate subgroups JO - Journal de l’École polytechnique — Mathématiques PY - 2015 SP - 55 EP - 63 VL - 2 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.17/ DO - 10.5802/jep.17 LA - en ID - JEP_2015__2__55_0 ER -
Jean-Cyrille Massicot; Frank O. Wagner. Approximate subgroups. Journal de l’École polytechnique — Mathématiques, Tome 2 (2015), pp. 55-63. doi : 10.5802/jep.17. https://jep.centre-mersenne.org/articles/10.5802/jep.17/
[1] - “The structure of approximate groups”, Publ. Math. Inst. Hautes Études Sci. 116 (2012), p. 115-221 | DOI | MR
[2] - “Approximate groups [after Hrushovski, and Breuillard, Green, Tao]”, in Séminaire Bourbaki (2013/14), Astérisque, Société Mathématique de France, Exp. no 1077, to appear | Zbl
[3] - “Definable quotients of locally definable groups”, Selecta Math. (N.S.) 18 (2012) no. 4, p. 885-903 | DOI | MR | Zbl
[4] - “Groups without small subgroups”, Ann. of Math. (2) 56 (1952), p. 193-212 | DOI | MR | Zbl
[5] - “Hilbert’s fifth problem for local groups”, Ann. of Math. (2) 172 (2010) no. 2, p. 1269-1314 | DOI | MR | Zbl
[6] - “Stable group theory and approximate subgroups”, J. Amer. Math. Soc. 25 (2012) no. 1, p. 189-243 | DOI | MR | Zbl
[7] - “On NIP and invariant measures”, J. Eur. Math. Soc. (JEMS) 13 (2011) no. 4, p. 1005-1061 | DOI | MR | Zbl
[8]
, Private communication, 2014[9] - “On a nonabelian Balog-Szemerédi-type lemma”, J. Aust. Math. Soc. 89 (2010) no. 1, p. 127-132 | DOI | MR | Zbl
[10] - “A generalization of a theorem of Gleason”, Ann. of Math. (2) 58 (1953), p. 351-365 | DOI | MR | Zbl
Cité par Sources :